e-space
Manchester Metropolitan University's Research Repository

    Planning & Acting: Optimal Markov Decision Scheduling of Aggregated Data in WSNs by Genetic Algorithm

    Djahel, S, Brahmi, IH, Maire, F and Murphy, J (2015) Planning & Acting: Optimal Markov Decision Scheduling of Aggregated Data in WSNs by Genetic Algorithm. In: Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 IEEE 26th Annual International Symposium on 30 August - 2 September 2015. IEEE, pp. 2066-2071.

    [img]
    Preview

    Available under License : See the attached licence file.

    Download (365kB) | Preview

    Abstract

    Data aggregation techniques have emerged as promising solutions for extending Wireless Sensor Networks (WSNs) lifetime. However, this approach suffers from a design issue in delivering the strict requirements needed by some monitoring applications. Carefully balancing Energy, Delay and Accuracy is essential for achieving these requirements. In this work, we focus on distributed data aggregation, where a sensor estimates the network information by the exchange of readings with different priority levels. We then propose an optimal decision policy for scheduling the transmission of the aggregated data at the node level. To model the investigated problem, we first adopt Markov Decision Process (MDP) whereby we define the reward function. Then, we apply a Genetic Algorithm (GA) to find a set of optimal decisions that ensures the best trade-off between energy saving, delay and accuracy of the received data based on their priority level. The simulation results yield excellent performance and our optimization shows a significant enhancement up to 20% compared to the other policies.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    328Downloads
    6 month trend
    309Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record