e-space
Manchester Metropolitan University's Research Repository

Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration

Kao, S-J and Hilton, RG and Selvaraj, K and Dai, M and Zehetner, F and Huang, J-C and Hsu, S-C and Sparkes, R and Liu, JT and Lee, T-Y and Yang, J-YT and Galy, A and Xu, X and Hovius, N (2014) Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics, 2.

[img]
Preview

Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Geological sequestration of atmospheric carbon dioxide (CO2) can be achieved by the erosion of organic carbon (OC) from the terrestrial biosphere and its burial in long-lived marine sediments. Rivers on mountain islands of Oceania in the western Pacific have very high rates of OC export to the ocean, yet its preservation offshore remains poorly constrained. Here we use the OC content (Corg, %), radiocarbon (Δ 14Corg) and stable isotope (δ13Corg) composition of sediments offshore Taiwan to assess the fate of terrestrial OC, using surface, sub-surface and Holocene sediments. We account for rock-derived OC to assess the preservation of OC eroded from the terrestrial biosphere and the associated CO2 sink during flood discharges (hyperpycnal river plumes) and when river inputs are dispersed more widely (hypopycnal). The Corg, Δ14Corg and δ 13Corg of marine sediment traps and cores indicate that during flood discharges, terrestrial OC can be transferred efficiently down submarine canyons to the deep ocean and accumulates offshore with little evidence for terrestrial OC loss. In marine sediments fed by dispersive river inputs, the Corg, Δ14Corg and δ 13Corg are consistent with mixing of terrestrial OC with marine OC and suggest that efficient preservation of terrestrial OC (>70%) is also associated with hypopycnal delivery. Sub-surface and Holocene sediments indicate that this preservation is long-lived on millennial timescales. Re-burial of rock-derived OC is pervasive. Our findings from Taiwan suggest that erosion and offshore burial of OC from the terrestrial biosphere may sequester >8 TgC yr−1 across Oceania, a significant geological CO2 sink which requires better constraint. We postulate that mountain islands of Oceania provide a strong link between tectonic uplift and the carbon cycle, one moderated by the climatic variability which controls terrestrial OC delivery to the ocean.

Impact and Reach

Statistics

Downloads
Activity Overview
47Downloads
37Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item