e-space
Manchester Metropolitan University's Research Repository

Muscular adaptations and insulin-like growth factor-1 responses to resistance training are stretch-mediated

McMahon, Gerard, Morse, Christopher I, Burden, Adrian, Winwood, Keith and Onambélé, Gladys Leopoldine (2014) Muscular adaptations and insulin-like growth factor-1 responses to resistance training are stretch-mediated. Muscle & nerve, 49 (1). 108-119.. ISSN 0148-639X

File not available for download.

Abstract

Introduction: Modulation of muscle characteristics was attempted through altering muscle stretch during resistance training. We hypothesized that stretch would enhance muscle responses. Methods: Participants trained for 8 weeks, loading the quadriceps in a shortened (SL, 0–50° knee flexion; n = 10) or lengthened (LL, 40–90°; n = 11) position, followed by 4 weeks of detraining. Controls (CON; n = 10) were untrained. Quadriceps strength, vastus lateralis architecture, anatomical cross-sectional area (aCSA), and serum insulin-like growth factor-1 (IGF-1) were measured at weeks 0, 8, 10, and 12. Results: Increases in fascicle length (29 ± 4% vs. 14 ± 4%), distal aCSA (53 ± 12% vs. 18 ± 8%), strength (26 ± 6% vs. 7 ± 3%), and IGF-1 (31 ± 6% vs. 7 ± 6%) were greater in LL compared with SL muscles (P < 0.05). No changes occurred in CON. Detraining decrements in strength and aCSA were greater in SL than LL muscles (P < 0.05). Conclusions: Enhanced muscle in vivo (and somewhat IGF-1) adaptations to resistance training are concurrent with muscle stretch, which warrants its inclusion within training.

Impact and Reach

Statistics

Activity Overview
6 month trend
0Downloads
6 month trend
364Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

View Item View Item