Manchester Metropolitan University's Research Repository

Adaptive response of human tendon to paralysis

Maganaris, Constantinos N., Reeves, Neil D., Rittweger, Joern, Sargeant, Anthony J., Jones, David A., Gerrits, Karin H. and Haan, Arnold de (2006) Adaptive response of human tendon to paralysis. Muscle and nerve, 33 (1). pp. 85-92. ISSN 0148-639X

File not available for download.


To gain insight into the adaptive response of human tendon to paralysis, we compared the mechanical properties of the in vivo patellar tendon in six men who were spinal cord-injured (SCI) and eight age-matched, able-bodied men. Measurements were taken by combining dynamometry, electrical stimulation, and ultrasonography. Tendon stiffness and Young's modulus, calculated from force-elongation and stress-strain curves, respectively, were lower by 77% (P < 0.01) and 59% (P < 0.05) in the SCI than able-bodied subjects. The cross-sectional area (CSA) of the tendon was 17% smaller (P < 0.05) in the SCI subjects, but there was no difference in tendon length between the two groups. Our results indicate that paralysis causes substantial deterioration of the structural and material properties of tendon. This needs to be taken into consideration in the design of electrical stimulation protocols for rehabilitation and experimental purposes, and when interpreting changes in the contractile speed of paralyzed muscle.

Impact and Reach


Activity Overview
6 month trend
6 month trend

Additional statistics for this dataset are available via IRStats2.


Actions (login required)

View Item View Item