e-space
Manchester Metropolitan University's Research Repository

    Aminosalicylic acid reduces the antiproliferative effect of hyperglycaemia, advanced glycation endproducts and glycated basic fibroblast growth factor in cultured bovine aortic endothelial cells: comparison with aminoguanidine

    Duraisamy, Yasotha, Gaffney, John, Slevin, Mark, Smith, Christopher A., Williamson, Kenneth and Ahmed, Nessar (2003) Aminosalicylic acid reduces the antiproliferative effect of hyperglycaemia, advanced glycation endproducts and glycated basic fibroblast growth factor in cultured bovine aortic endothelial cells: comparison with aminoguanidine. Molecular and Cellular Biochemistry, 246 (1-2). pp. 143-153. ISSN 0300-8177

    File not available for download.

    Abstract

    Hyperglycaemia reduces proliferation of bovine aortic endothelial cells in vitro. A similar effect in vivo may contribute to long-term complications of diabetes such as impaired wound-healing and retinopathy. We report the effect of increased glucose concentrations, glycated basic fibroblast growth factor (FGF-2) and bovine serum albumin-derived advanced glycation endproducts (BSA-AGE) on the proliferation of bovine aortic endothelial cells. Glucose (30 and 50 mmol/l) had an antiproliferative effect on endothelial cells. This effect may be mediated through reduced mitogenic activity of FGF-2. The glycation of FGF-2 with 250 mmol/l glucose-6-phosphate led to reduced mitogenic activity compared to native FGF-2. BSA-AGE at concentrations of 10, 50 and 250 g/ml had an antiproliferative effect on cultured endothelial cells. Aminosalicylic acid at a concentration of 200 mol/l proved to be more effective than equimolar concentrations of aminoguanidine in protecting endothelial cells against the antiproliferative effects of both high (30 mmol/l) glucose and 50 g/ml BSA-AGE. FGF-2 glycated in the presence of 4 mmol/l aminosalicylic acid or aminoguanidine retained mitogenic activity compared to that glycated in their absence. Compounds like aminoguanidine and, in particular, aminosalicylic acid protect endothelial cells against glucose-mediated toxicity and may therefore have therapeutic potential.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    470Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record