Almurdhi, MM and Reeves, ND and Bowling, FL and Boulton, AJ and Jeziorska, M and Malik, RA (2016) Distal lower limb strength is reduced in subjects with impaired glucose tolerance and is related to elevated intramuscular fat level and vitamin D deficiency. Diabetic Medicine.
|
Download (343kB) | Preview |
Abstract
AIM: To quantify muscle strength and size in subjects with impaired glucose tolerance (IGT) in relation to intramuscular non-contractile tissue, the severity of neuropathy and vitamin D level. METHODS: A total of 20 subjects with impaired glucose tolerance and 20 control subjects underwent assessment of strength and size of knee extensor, flexor and ankle plantar and dorsi-flexor muscles, as well as quantification of intramuscular non-contractile tissue and detailed assessment of neuropathy and serum 25-hydroxy vitamin D levels. RESULTS: In subjects with impaired glucose tolerance, proximal knee extensor strength (P=0.17) and volume (P=0.77), and knee flexor volume (P=0.97) did not differ from those in control subjects. Ankle plantar flexor strength was significantly lower (P=0.04) in the subjects with impaired glucose tolerance, with no difference in ankle plantar flexor (P=0.62) or dorsiflexor volume (P=0.06) between groups. Intramuscular non-contractile tissue level was significantly higher in the ankle plantar flexors and dorsiflexors (P=0.03) of subjects with impaired glucose tolerance compared with control subjects, and it correlated with the severity of neuropathy. Ankle plantar flexor muscle strength correlated significantly with corneal nerve fibre density (r= 0.53; P=0.01), a sensitive measure of small fibre neuropathy, and was significantly lower in subjects with vitamin D deficiency (P=0.02). CONCLUSIONS: People with impaired glucose tolerance have a significant reduction in distal but not proximal leg muscle strength, which is not associated with muscle atrophy, but with increased distal intramuscular non-contractile tissue, small fibre neuropathy and vitamin D deficiency. This article is protected by copyright. All rights reserved.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.