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What's new? 

• There are no studies on the structure and function of lower limb muscles in people 

with impaired glucose tolerance (IGT). 

• We believe such a study may provide insights into the early mechanisms of motor 

dysfunction in people with Type 2 diabetes. 

• People with IGT have a significant reduction in distal but not proximal leg muscle 

strength and no evidence of proximal or distal muscle atrophy. 

• Distal weakness was associated with increased distal intramuscular non-contractile 

tissue, small fibre neuropathy and vitamin D deficiency in subjects with IGT. 

 

Abstract 

Aim To quantify muscle strength and size in subjects with impaired glucose tolerance (IGT) 

in relation to intramuscular non-contractile tissue, the severity of neuropathy and vitamin D 

level. 

Methods A total of 20 subjects with impaired glucose tolerance and 20 control subjects 

underwent assessment of strength and size of knee extensor, flexor and ankle plantar and 

dorsi-flexor muscles, as well as quantification of intramuscular non-contractile tissue and 

detailed assessment of neuropathy and serum 25-hydroxy vitamin D  levels.  

Results In subjects with impaired glucose tolerance, proximal knee extensor strength 

(P=0.17) and volume (P=0.77), and knee flexor volume (P=0.97) did not differ from those in 

control subjects. Ankle plantar flexor strength was significantly lower (P=0.04) in the 

subjects with impaired glucose tolerance, with no difference in ankle plantar flexor (P=0.62) 

or dorsiflexor volume (P=0.06) between groups. Intramuscular non-contractile tissue level 
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was significantly higher in the ankle plantar flexors and dorsiflexors (P=0.03) of subjects 

with impaired glucose tolerance compared with control subjects, and it correlated with the 

severity of neuropathy. Ankle plantar flexor muscle strength correlated significantly with 

corneal nerve fibre density (r= 0.53; P=0.01), a sensitive measure of small fibre neuropathy, 

and was significantly lower in subjects with vitamin D deficiency (P=0.02).  

Conclusions People with impaired glucose tolerance have a significant reduction in distal but 

not proximal leg muscle strength, which is not associated with muscle atrophy, but with 

increased distal intramuscular non-contractile tissue, small fibre neuropathy and vitamin D 

deficiency.  

 

Introduction 

Diabetic polyneuropathy has traditionally been considered to manifest itself initially in the 

form of sensory and autonomic dysfunction, followed by later motor dysfunction [1]. Motor 

dysfunction presents as weakness, a reduction in muscle mass and limitation of joint range of 

motion [2]. Weakness and atrophy of the distal muscles has been shown in several previous 

studies and is related to the severity of diabetic neuropathy [2,3]. Sensorimotor neuropathy in 

the lower limbs has implications for the control of whole body movement and has been 

proposed to contribute significantly to increasing the risk of falls during common daily gait 

tasks [3]  

In people with Type 2 diabetes, muscle strength has been related to features of metabolic 

syndrome [4]. People with diabetes and obesity have an increased amount of intramuscular 

adipose tissue, which is highly correlated with insulin resistance and a reduction of muscle 

strength in the calf and thigh muscles. This accumulation of intramuscular non-contractile 
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tissue (IMNCT) in obese people can paradoxically enlarge the cross-sectional area of the 

muscles [5], despite reducing muscle area per se. Obesity, aging and polyneuropathy are also 

associated with increased IMNCT [6]. Vitamin D deficiency is related to muscle dysfunction 

and pain, and in severe deficiency it can lead to marked proximal weakness [7] and reduced 

physical activity [8].  

We believe that a detailed study of the structure and function of lower limb muscles in people 

with impaired glucose tolerance (IGT)  may provide insights into the early mechanisms of 

motor dysfunction in Type 2 diabetes. It may also identify potential early targets for 

intervention, which may reverse or limit progression to more overt motor pathology 

associated with Type 2 diabetes. Previous studies assessing muscle strength and structure in 

participants with IGT are limited to clinical examination of muscle strength and reflexes, and 

indeed, not surprisingly, have shown no abnormality [9]. Furthermore, only one study in 

postmenopausal women with IGT has shown an improvement in muscle mass and function 

after eccentric training [10], indicating a degree of reversibility. In the present study, we 

undertook a detailed quantification of lower limb muscle strength and structure in relation to 

IMNCT and neuropathy. Additionally, we assessed the effect of vitamin D deficiency on 

more subtle aspects of muscle function. 

 

Methods 

A total of 20 subjects were identified with IGT and 20 subjects with normal glucose 

tolerance, based on an oral glucose tolerance test. These subjects underwent assessment at the 

muscle function laboratory at Manchester Metropolitan University and the National Institute 

for Health Research (NIHR)/Wellcome Trust Clinical Research Facility. Subjects aged 60–80 

years old, who were able to walk independently without any assistive device, were included 
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in the study. Subjects with known musculoskeletal problems, neurological, orthopaedic or 

surgical problems, severe foot deformities, foot ulcers, amputations and pregnant women 

were excluded from the study. This study was approved by the UK National Health Service 

(NHS) ethics committee and the local Research Ethics Committees at the University of 

Manchester and the Manchester Metropolitan University. Written informed consent was 

obtained from all subjects prior to participation. This research was conducted in accordance 

with the declaration of Helsinki.  

 

Clinical, metabolic and neuropathy assessment 

The IGT group underwent assessment of blood pressure, HbA1c, lipid profile (total 

cholesterol, LDL cholesterol, HDL cholesterol and triglycerides), albumin–creatinine 

excretion ratio, estimated GFR and serum 25-hydroxyvitamin D [25(OH)D] levels. The assay 

for 25(OH)D was an automated platform assay (ImmunoDiagnostic Systems Ltd, Bolden, 

UK), which is based on chemiluminescence technology. Signs and symptoms of neuropathy 

were assessed using the neuropathy symptom profile, the Neuropathy Disability Score (NDS) 

and vibration perception threshold (VPT) using a neurothesiometer (Horwell Scientific 

Laboratory Supplies, Nottingham, UK). Cold and warm thresholds, cold-induced pain and 

warm-induced pain were established on the dorsolateral aspect of the foot using the TSA-II 

NeuroSensory Analyser (Medoc Ltd., Ramat-Yishai, Israel). Electro-diagnostic studies were 

undertaken using a Dantec 'Keypoint' system (Dantec Dynamics Ltd, Bristol, UK), equipped 

with a DISA temperature regulator to keep limb temperature constantly between 32 and 

35°C. Sural sensory nerve amplitude, sural sensory nerve conduction velocity and peroneal 

motor nerve conduction velocity and amplitude were assessed by a consultant 

neurophysiologist. The control group only underwent an assessment of NDS and VPT. To 
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provide a reference comparison we therefore used data from age-matched control subjects 

who had previously undergone assessment for all comparable metabolic and neuropathy 

measures in our laboratory. 

 

Corneal confocal microscopy 

All the subjects included in the study underwent laser in vivo corneal confocal microscopy 

(Heidelberg Retinal Tomograph III Rostock Cornea Module; Heidelberg Engineering GmbH, 

Heidelberg, Germany) and four variables were quantified: corneal nerve fibre density [total 

number of nerve fibres (number/mm2)]; corneal nerve branch density [total number of nerve 

branches (number/mm2)]; corneal nerve fibre length [total length of all nerve fibres 

(mm/mm2) within the area of the cornea]; and corneal nerve fibre tortuosity (degree of non-

linearity of the nerve fibres). These variables were quantified using semi-automated, purpose-

written, proprietary software (CCMetrics®, M. A. Dabbah, Imaging Science Biomedical 

Engineering, University of Manchester, Manchester, UK).  

 

Intraepidermal nerve fibre density  

A 3-mm punch skin biopsy was taken from the dorsum of the foot, ~2 cm above the second 

metatarsal head under local anaesthesia (1% lidocaine) and 50-μm frozen sections were cut 

and immunostained using anti-human PGP 9.5 antibody (Abcam, Cambridge, UK). Nerve 

fibres were demonstrated using SG chromogen (Vector, Burlingame, CA, USA) and 

examined under a Zeiss AxioImager M2 microscope at 400× magnification. Intraepidermal 

nerve fibre density was quantified according to established criteria and expressed as 

number/mm [11]. 
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Isokinetic dynamometer  

The maximum isometric (static) muscle strength for knee extensors and ankle plantar flexors 

was assessed using an isokinetic dynamometer (Cybex Norm, Ronkonkoma, NY, USA). The 

dynamometer measured joint torque (Nm), which reflects the net forces acting around the 

knee and ankle joints and the anatomical leverage at these joints. The force produced by the 

major muscle groups acting around these joints is mainly reflected by the measure of joint 

torque, which we refer to as ‘muscle strength’ in the present paper. Details of the 

methodology used are included in Appendix S1. 

 

Magnetic resonance imaging  

The thigh and lower leg were scanned using a 0.25-Tesla magnetic resonance imaging (MRI) 

peripheral scanner (G-Scan, Esaote, Italy). A T1 gradient echo scanning sequence was used 

with the following parameters: field of view = 200×200mm; matrix = 256×192 pixels; slice 

thickness = 10 mm, inter-slice gap = 1 mm; time to echo = 16 ms; time to repetition = 685 ms 

and flip angle = 90°. Serial axial plane images were obtained of the upper and lower leg, from 

which the cross-sectional areas of the individual muscles were analysed. The following 

subjects were excluded from MRI scanning: women who were or could be pregnant; subjects 

in whom ferromagnetic foreign bodies were detected; and those with cardiac 

pacemakers/cardioverter defibrillators, cochlear implants, intrauterine devices or implanted 

drug infusion pumps.  
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Muscle volume calculation 

We analysed serial cross sectional areas of the knee extensors (vastus medialis, vastus 

intermedius, vastus lateralis and rectus femoris), knee flexors (semi-membranosus, biceps 

femoris and semi-tendinosus), ankle plantar flexors (soleus, medial and lateral heads of the 

gastrocnemius muscle) and ankle dorsiflexors (tibialis anterior, extensor digitorum longus 

and extensor hallucis longus; these three dorsiflexors were measured as a group rather than 

their individual constituents because of difficulties in validly delineating each individual 

muscle along its entire length) using image analysis software (OsiriX, Pixmeo, Geneva, 

Switzerland), as detailed in Appendix S1.  

 

Intramuscular non-contractile tissue 

The MRI signal intensity reflects the density of different tissues. Connective tissue yields low 

signal intensity values, while fat tissue produces very high signal intensity values, with the 

signal intensity value of skeletal muscle falling between these two. Details of the 

methodology used are provided in Appendix S1.  

 

Statistical analysis 

We performed a power analysis before beginning the study (a priori power calculation) using 

the variable ankle joint strength (torque), based on the results of a previous study [12]. The 

power analysis indicated that we would need 14 subjects in each group to detect a difference 

of 22 Nm (~20% difference between groups) between the groups with an α level of 0.05 and 

a β level of 0.9 (i.e. power of 90%). To account for participant dropout and potentially 

unusable data in some subjects, we chose to recruit 20 subjects in each group. IBM SPSS v. 
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19.0 (Chicago, IL, USA) for Windows was used to compute the results. All the data were 

expressed as mean ± SD values, and analysis included descriptive and frequency statistics. All 

data were normally distributed and independent sample t-tests were used to evaluate between-

group differences. The association between variables was assessed using the Pearson 

correlation coefficient, and Pearson’s chi-squared test of independence was used to evaluate 

the association between categorical variables. For all the comparisons, a P value < 0.05 was 

taken to indicate statistical significance. 

 

Results 

Clinical and metabolic assessment  

A total of 20 control subjects (13 men and seven women) and 20 subjects with IGT (16 men 

and four women; eight were on simvastatin 40 mg daily) were assessed. Age and height were 

matched between groups, but weight (P=0.002) and BMI (P=0.008) were significantly higher 

in subjects with IGT than in control subjects. HbA1c level (P=0.006) was significantly higher 

and cholesterol (P=0.04) and LDL (P=0.002) were lower in subjects with IGT compared with 

the control subjects (Table 1).  

 

Neuropathy assessment  

We found that NDS (P=0.01), VPT (P=0.001) and warm threshold (P=0.01) were higher and 

peroneal motor nerve conduction velocity (P=0.05), peroneal motor nerve amplitude 

(P=0.01), corneal nerve fibre density (P=0.001), corneal nerve branch density (P=0.001) and 

corneal nerve fibre length (P=0.007) were significantly lower in subjects with IGT compared 

with the control group (Table 1). 
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Muscle strength and volume 

Knee extensor muscle strength (P=0.20) and knee extensor (P=0.80) and flexor (P=0.97) 

volumes did not differ between the IGT and the control group (Table 2). Ankle plantar flexor 

muscle strength (P=0.04) was significantly lower in the IGT group compared with the control 

group (Table 2 and Fig. 1). There was no difference in ankle plantar flexor (P=0.62) and 

dorsiflexor (P=0.70) muscle volume between the groups (Table 2). 

 

Intramuscular non-contractile tissue 

Figure 3 shows the cross-sectional MRI images at the mid thigh and mid-tibial levels, 

illustrating the increase in IMNCT in subjects with IGT. There was no significant difference 

in IMNCT in the knee extensor and flexor muscles between groups (Table 2). IMNCT was 

significantly higher in the lateral gastrocnemius (P=0.03) and ankle dorsiflexors (P=0.03) in 

the IGT group than in the control group (Table 2 and Fig. 2).  

 

Relationship to neuropathy 

When the subjects in the IGT group were categorized into those with plantar flexor muscle 

strength <2 vs > 2 SD from those in the control group, there were no significant differences in 

any measure of neuropathy. There was a significant correlation between ankle plantar flexor 

muscle strength and corneal nerve fibre density (r=0.53; P=0.01) among subjects with IGT. 

There was no significant correlation between any other measure of neuropathy and ankle 

plantar and dorsiflexor and knee extensor and flexor muscle volume; however, knee extensor 

and flexor muscle volume correlated significantly with sensory nerve conduction velocity (r= 

-0.49; P=0.03; r=0.465; P=0.04) and sural sensory nerve amplitude (r=-0.54; P=0.01, r=-
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0.52; P=0.02), respectively. There was a significant correlation between IMNCT in the soleus 

muscle and intraepidermal nerve fibre density (r= 0.51; P=0.03), IMNCT in the dorsiflexors 

with NDS (r= 0.65; P= 0.003), VPT (r= 0.69; P= 0.001) and warm threshold (r= 0.48; 

P=0.04) and IMNCT in the knee extensors with intraepidermal nerve fibre density (r=-0.49; 

P=0.04) and VPT (r=0.49; P=0.03). There was no significant correlation between the 

different measures of neuropathy and vitamin D. 

 

Vitamin D 

There was no significant difference in knee extensor muscle strength (1.6 ± 0.4 Nm/kg vs 1.7 

± 0.5 Nm/kg; P=0.80) or knee extensor (1153 ± 199 cm3 vs 1167 ± 546 cm3; P= 0.93) and 

flexor (643 ± 161 cm3 vs 678 ± 319 cm3; P=0.76) muscle volume in subjects with IGT with 

25(OH)D levels <25 nmol/l (n=4) compared with those with levels >25 nmol/l (n=16). Ankle 

plantar flexor strength was significantly lower, however, in subjects with IGT with 25(OH)D 

levels <25 nmol/l than in those with 25(OH)D levels >25 nmol/l (0.6 ± 0.1 Nm/kg vs 0.9 ± 

0.2 Nm/kg, respectively; P=0.02). There was no significant difference between low compared 

with normal 25(OH)D groups in the ankle plantar flexor (683 ± 226 cm3 vs 717 ± 340 cm3; 

P=0.81) or dorsiflexor (226 ± 70 cm3 vs 263 ± 68 cm3; P=0.3) muscle volume.  

 

Discussion  

We have shown that people with IGT have lower distal plantar flexor strength, but preserved 

proximal knee extensor muscle strength compared with an age-matched healthy control 

group. Despite the lower ankle plantar flexor strength in subjects with IGT, we found no 

difference in distal or proximal lower limb muscle volume between subjects with IGT and 
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control subjects. This is in contrast to the demonstration of quite marked distal muscle 

atrophy, particularly in patients with Type 2 diabetes and symptomatic neuropathy [12]. 

Weakness and atrophy of the distal muscles has been shown in several previous studies and is 

related to the severity of neuropathy in patients with Type 2 diabetes [1,2,13–15]. In the 

present study, we found evidence of an early reduction in distal muscle strength and early 

neuropathy in subjects with IGT. The latter finding is in keeping with several previous 

studies showing neuropathy in people with IGT [16–18]. Indeed, we have also shown 

significant small fibre neuropathy in people with IGT [19], particularly in those who later 

develop Type 2 diabetes [20]. This early small fibre neuropathy appears to be reversible, as 

supervised exercise has been shown to improve intraepidermal nerve fibre density in both 

patients without diabetes with metabolic syndrome [21] and in patients with diabetes without 

neuropathy [22]. Previous studies in patients with Type 2 diabetes have shown a significant 

relationship between both proximal and distal muscle strength and the severity of neuropathy 

[23]. In the present study, ankle plantar flexor strength did correlate with corneal nerve fibre 

density, a measure of small fibre neuropathy. Despite the fact that there was no significant 

reduction in knee extensor and flexor volumes, both correlated with sural nerve conduction 

velocity and amplitude, suggesting a relationship to the severity of distal neuropathy.  

In addition to atrophy, MRI can show an alteration in signal intensity indicating fibrous and 

fatty tissue. In the present study, we observed an overall higher signal intensity value in the 

distal lower limb muscles in subjects with IGT compared with control subjects. The overall 

signal intensity is derived from a spectrum between low MRI signal intensity indicating 

connective tissue and high MRI signal intensity indicating fat; therefore, this indicates 

increased distal intramuscular fat in subjects with IGT. Increased intramuscular fat has been 

previously associated with obesity [24], which is consistent with the findings of the present 

study, as the IGT group had a significantly greater BMI. Increased intramuscular fat has also 
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been associated with increased insulin resistance, which is present in people with IGT [25]. 

The accumulation of intramuscular fat can alter glucose consumption and fat oxidation in 

obese people with IGT [24] and may affect motor function and strength [6,26]. In a recent 

study, the accumulation of intramuscular lipids has been associated with a significant 

reduction in the maximum force production in distal muscles of the mouse lower limb as a 

result of impaired Ca2+ release and force production [26]. Increased IMNCT also correlates 

with a range of measures of neuropathy, including intraepidermal nerve fibre density, 

suggesting a link with neuropathy rather than its occurrence as a consequence of muscle 

atrophy. 

Low levels of vitamin D are associated with a decrease in muscle strength [27], and vitamin 

D supplementation has been shown to improve muscle strength and gait, with a reduction in 

falls [28]. Severe vitamin D deficiency can lead to a reduction in proximal muscle strength 

and size [8] as well as increased IMNCT [7,29]. Several randomized studies have recently 

shown significant improvements in both muscle volume and strength after treatment with 

vitamin D [30]. In the present study, subjects with IGT and vitamin D deficiency had 

preserved proximal muscle strength and volume but a reduction in plantar flexor muscle 

strength. This does not appear to be mediated via muscle atrophy or neuropathy, as there was 

no difference in muscle volume in those with low and normal vitamin D and there was no 

relationship between vitamin D levels and the severity of neuropathy.  

This is the first detailed quantitative study to examine the relationship between lower limb 

muscle strength and structure in relation to neuropathy and vitamin D deficiency in 

participants with IGT. Although the study was adequately powered to detect a difference in 

the variables assessed, potential confounders, such as differences in gender, ethnicity and 

BMI between subjects with IGT and control subjects may well influence the outcomes. The 
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main finding was a reduction in distal plantar flexor strength with increased distal 

intramuscular fat, which is related to neuropathy in participants with IGT. These data suggest 

that distal motor weakness may be an early feature in people with IGT and may be associated 

with small fibre neuropathy before the development of Type 2 diabetes. Whilst all subjects 

with IGT had insufficient levels of vitamin D, those with deficiency showed a further 

reduction in distal flexor muscle strength. This merits further study to explore the benefits of 

vitamin D replacement on distal muscle strength in people with IGT. 

In conclusion, people with IGT had a distal reduction in muscle strength, which was 

associated with elevated intramuscular fat levels and vitamin D deficiency. 
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 Supporting information 

 

Additional Supporting Information may be found in the online version of this article:  

 

Appendix S1. Supplementary methods. 

 

Table 1 Clinical and demographic characteristics of the participants 

Variable  Control IGT P 

Subjects, n (men/women) 20 (13/7) 20 (16/4) 0.28 

Age, years 61.5 ± 6.0 62.7 ± 11.1 0.67 

Height, m 1.7 ± 0.9 1.7 ± 0.07 0.15 

Weight, kg 78.1 ± 11.5 94.9 ± 18.7 0.002 

BMI, kg/m2 27.2 ± 3.9 31.5 ± 5.5 0.008 

Ethnicity: Asian/European, n 

 

9/11 5/15 0.21 

25(OH)D, nmol/l 78.9 ± 48.8 50.8 ± 34.8 0.04 

25(OH)D/BMI 2.9 ± 1.9 1.6 ± 1.2 0.01 

25(OH)D/ body surface area  1.9 ± 0.17 2.1 ± 0.23 0.002 

HbA1c, mmol/mol 38.0 ± 2.1 42.4 ± 6.3 0.007 
HbA1c, % 5.6 ± 0.1 6.0 ± 0.57 0.006 

Cholesterol, mmol/l 5.5 ± 0.8 4.7 ± 1.4 0.04 

HDL, mmol/l 2.1 ± 3.0 1.2 ± 0.4 0.18 

LDL, mmol/l 3.2 ± 0.7 2.1 ± 1.2 0.002 

Triglycerides, mmol/l 1.7 ± 0.69 2.2 ± 1.3 0.22 

NDS (0–10) 1.1 ± 1.2 3.3 ± 3.4 0.01 

VPT, Hz 6.4 ± 3.1 16.9 ± 11.7 0.001 
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Cold threshold, ºC 27.5 ± 2.0 24.9 ± 5.8 0.06 

Warm threshold, ºC 38.6 ± 2.7 41.2 ± 3.7 0.01 

Sensory nerve conduction 
velocity, m/s 

48.6 ± 4.5 45.8 ± 13.6 0.38 

Sural sensory nerve amplitude,   
μV 

13.7 ± 7.2 14.6 ± 14.8 0.82 

Peroneal motor nerve 
conduction velocity,  
m/s 

46.6 ± 4.7 41.4 ± 10.7 0.05 

Peroneal motor nerve 
amplitude, mV 

5.3 ± 1.8 3.8 ± 1.8 0.01 

Corneal nerve fibre density, 
number/mm2 

35.9 ± 5.1 27.6 ± 8.2 0.001 

Corneal nerve branch density, 
number/mm2  

94.9 ± 33.6 55.7 ± 35.8 0.001 

Corneal nerve fibre 
length, mm/mm2 

26.7 ± 3.7 21.8 ± 6.5 0.007 

Corneal nerve fibre tortuosity, 
TC 

16.4 ± 2.7 18.6 ± 6.5 0.16 

Intraepidermal nerve fibre 
density, number/mm 

7.7 ± 2.0 6.7 ± 3.4 0.28 

25(OH)D; 25-hydroxyvitamin D; IGT, impaired glucose tolerance; NDS, Neuropathy Disability Score; VPT, 

vibration perception threshold. 

Values are mean ± SD, unless otherwise indicated. 

Table 2 Muscle volume (cm3) with percentage difference and statistical differences between 

subjects with impaired glucose tolerance and control subjects  

Variables Control IGT  P  % difference 

Vastus medialis 342 ± 99 407 ± 119 0.08 +18 

Vastus intermedius 342 ± 106 400 ± 95 0.60 +5 

Vastus lateralis 369 ± 107 402 ± 97 0.31 +9 

Rectus femoris 149 ± 48 122 ± 36 0.06 -17 

Knee extensors 1202 ± 323 1164 ± 492 0.77 -3 

Semi-membranosus 228 ± 58 268 ± 88 0.11 +17 

Biceps femoris 288 ± 77 310 ± 84 0.41 +7 

Semi-tendinosus 152 ± 51 167 ± 60 0.43 +9 

Knee flexors 669 ± 173 671 ± 291 0.97 +0.3 

Soleus 419 ± 115 485 ± 116 0.08 +15 
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Medial gastrocnemius 185 ± 53 198 ± 72 0.52 +7 

Lateral gastrocnemius 106 ± 36 106 ± 46 0.98 0 

Ankle plantar flexors 710 ± 187 747 ± 275 0.62 +5 

Ankle dorsiflexors 

 

218 ± 50 

 

255 ± 68 

 

0.06 +16 

IGT, impaired glucose tolerance. 

 

FIGURE 1 Muscle strength of knee extensors and ankle plantar flexors, in control subjects 

and subjects with impaired glucose tolerance (IGT). 

 

FIGURE 2 Magnetic resonance imaging (MRI) signal intensities of intramuscular non-

contractile tissue (IMNCT) in knee extensors and flexors and ankle plantar and dorsiflexor 

muscles in control subjects and subjects with impaired glucose tolerance (IGT). 

FIGURE 3 Representative lower limb magnetic resonance imaging (MRI)  images from a 

healthy 54-year-old control (a) and (c) and a 69-year-old participant with impaired glucose 

tolerance [IGT (b) and (d)]. Images are from the mid-thigh level (a) and (b) and mid-tibia 

level (c) and (d). Note substantial increase in intramuscular non-contractile tissue (dark areas 

inside the muscle cross-sections are connective tissue) in images from participant with IGT. 

Note also thick subcutaneous fat layer in participant with IGT, especially in (b). VM, vastus 

medialis; VI, vastus intermedius; VL, vastus lateralis; RF, rectus femoris; BF, biceps femoris; 

ST, semitendinosus; SM, semimembranosus; DF, Dorsiflexors; SOL, soleus; LG, lateral 

gastrocnemius; MG, medial gastrocnemius. Scale-bar along the bottom or the left side of 

each image = 10 cm. 
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