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This paper presents a new anthropometrics-based method for generating realistic, controllable face models. Our method
establishes an intuitive and efficient interface to facilitate procedures for interactive 3D face modeling and editing. It takes 3D
face scans as examples in order to exploit the variations presented in the real faces of individuals. The system automatically
learns a model prior from the data-sets of example meshes of facial features using principal component analysis (PCA) and uses
it to regulate the naturalness of synthesized faces. For each facial feature, we compute a set of anthropometric measurements
to parameterize the example meshes into a measurement space. Using PCA coefficients as a compact shape representation, we
formulate the face modeling problem in a scattered data interpolation framework which takes the user-specified anthropometric
parameters as input. Solving the interpolation problem in a reduced subspace allows us to generate a natural face shape that
satisfies the user-specified constraints. At runtime, the new face shape can be generated at an interactive rate. We demonstrate the
utility of our method by presenting several applications, including analysis of facial features of subjects in different race groups,
facial feature transfer, and adapting face models to a particular population group.
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1. Introduction

One of the most challenging tasks in graphics modeling
is to build an interactive system that allows users to
model varied, realistic geometric models of human faces
quickly and easily. Applications of such a system range from
entertainment to communications: virtual human faces need
to be generated for movies, computer games, advertisements,
or other virtual environments, and facial avatars are needed
for video teleconference and other instant communication
programs. Some authoring tools for character modeling and
animation are available (e.g., Maya [1], Poser [2], DazStudio
[3], PeoplePutty [4]). In these systems, deformation settings
are specified manually over the range of possible deformation
for hundreds of vertices in order to achieve desired results.
An infinite number of deformations exist for a given face
mesh that can result in different shapes ranging from
the realistic facial geometries to implausible appearances.
Consequently, interactive modeling is often a tedious and
complex process requiring substantial technical as well as

artistic skill. This problem is compounded by the fact that
the slightest deviation from real facial appearance can be
immediately perceived as wrong by the most casual viewer.
While the exiting systems have exquisite control rigs to
provide detailed control, these controls are based on general
modeling techniques such as point morphing or free-form
deformations, and therefore lack intuition and accessibility
for novices. Users often face a considerable learning curve to
understand and use such control rigs.

To address the lack of intuition in current modeling
systems, we aim to leverage the anthropometrical measure-
ments as control rigs for 3D face modeling. Traditionally,
anthropometry—the study of human body measurement—
characterizes the human face using linear distance mea-
sures between anatomical landmarks or circumferences at
predefined locations [5]. The anthropometrical parameters
provide a familiar interface while still providing a high level
of control to users. While this is a compact description,
they do not uniquely specify the shape of the human
face. Furthermore, particularly for computer face modeling,
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the sparse anthropometric measurements taken at a small
number of landmarks on the face do not capture the detailed
shape variations needed for realism. The desire is to map
such sparse data into a fully reconstructed 3D surface model.
Our goal is a system that uses model priors learned from
prerecorded facial shape data to create natural facial shapes
that match anthropometric constraints specified by the user.
The system can be used to generate a complete surface mesh
given only a succinct specification of the desired shape, and
it can be used by expert and novice alike to create synthetic
3D faces for myriad uses.

1.1. Background and Previous Work. A large body of litera-
ture on modeling and animating faces has been published
in the last three decades. A good overview can be found
in the textbook [6] and in the survey [7]. In this work,
we focus on modeling static face geometry. In this context,
several approaches have been proposed. They can be roughly
classified into the creative approach and the reconstructive
approach.

The creative approach is to facilitate manual specification
of the new face model by a user. Parametric face models [8–
11] and many commercial modelers fall into this approach.
The desire is to create an encapsulated model that can
generate a wide range of faces based on a small set of
input parameters. They provide full control over the result,
including the ability to produce cartoon effects and the
high efficiency of geometric manipulation. However, manual
parameter tuning without geometric constraints from real
human faces for generating realistic faces is difficult and
time-consuming. Moreover, the choice of the parameter set
depends on the face mesh topology and therefore the manual
association of a group of vertices to a specific parameter is
required.

The reconstructive approach is to extract face geometry
from the measurement of a living subject. The recon-
structive approach is to extract face geometry from the
measurement of a living subject. In this category, the image-
based technique [12–18] utilizes an existing 3D face model
and information from few pictures (or video streams) for
the reconstruction of face geometry. Although this kind
of technique can provide reconstructed face models easily,
its drawbacks are the inaccurate geometry reconstruction
and inability to generate new faces that have no image
counterparts. Another limiting factor of this technique lies
in that it gives very little control to the user.

With a significant increase in the quality and availability
of 3D capture methods, a common approach towards
creating face models uses laser range scanners to acquire
both the face geometry and texture simultaneously [19–
22]. Although the acquired face data is highly accurate,
unfortunately, substantial effort is needed to process the
noisy and incomplete data into a model suitable for modeling
or animation. In addition, the result of this effort is a model
corresponding to a single individual; and each new face
must be found on a subject. The desired face may not even
physically exist. Furthermore, the user does not have any
control over the captured model to edit it in a way that
produces a novel face.

Besides these approaches, DeCarlo et al. [23] construct
a range of face models with realistic proportions using a
variationally constrained optimization technique. However,
without the use of the model priors, their method cannot
generate natural models unless the user accurately specifies a
very detailed set of constraints. Also, this approach requires
minutes of computation for the optimization process to
generate a face model. Blanz and Vetter [24] present a process
for estimating the shape of a face from a single photograph.
This is extended by Blanz et al. [25], who present a set of
controls for intuitive manipulation of facial attributes. In
contrast to our work, they manually assign attribute values
to characterize the face shape, and devise attribute controls
using linear regression. Vlasic et al. [26] use multilinear face
models to study and synthesize variations in faces along
several axes, such as identity and expression. An interface
for gradient-based face space navigation has been proposed
in [27]. Principal components that are not intuitive to users
are used as navigation axes in face space, and facial features
cannot be controlled individually. The authors focus on a
comparison of different user interfaces.

Several commercial systems for generating composite
facial images are available [28–30]. Although they are
effective to use, a 2D face composite still lacks some of the
advantages of a 3D model, such as the complete freedom
of viewpoint and the ability to be combined with other 3D
graphics. Additionally, to our knowledge, no commercial 2D
composite system available today supports automatic com-
pletion of unspecified facial regions according to statistical
properties. FaceGen 3 [31] is the only existing system that we
have found to be similar to ours in functionality. However,
there is not much information available about how this
function is achieved. As far as we know, it is built on [24]
and the face mesh is not divided into different independent
regions for localized deformation. In consequence, editing
operations on individual facial features tend to affect the
whole face.

1.2. Our Approach. In this paper, we present a new method
for interactively generating facial models from user-specified
anthropometric parameters while matching the statistical
properties of a database of scanned models. Figure 1 shows
a block diagram of the system architecture. We use a three-
step model fitting approach for the 3D registration problem.
By bringing scanned models into full correspondence with
each other, the shape variation is represented by using
principal component analysis (PCA), which induces a low-
dimensional subspace of facial feature shapes. We explore
the space of probable facial feature shapes using high-
level control parameters. We parameterize the example
models using the face anthropometric measurements, and
predefine the interpolation functions for the parameterized
example models. At runtime, the interpolation functions
are evaluated to efficiently generate the appropriate feature
shapes by taking the anthropometric parameters as input.
Apart from an initial tuning of feature point positions,
our method works fully automatically. We evaluate the
performance of our method with cross-validation tests. We
also compare our method against optimization in the PCA
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subspace for generating facial feature shapes from constraints
of the ground truth data.

In addition, the anthropometric-based face synthesis
method, combined with our database of statistics for a large
number of subjects, opens ground for a variety of appli-
cations. Chief among these is analysis of facial features of
different races. Second, the user can transfer facial feature(s)
from one individual to another. This allows a plausible
new face to be quickly generated by composing different
features from multiple faces in the database. Third, the user
can adapt the face model to a particular population group
by synthesizing characteristic facial features from extracted
statistics. Finally, our method allows for compression of data,
enabling us to share statistics with the research community
for further study of faces.

Unlike a previous approach [23], we utilize the prior
knowledge of the face shape in relation to the given
measurements to regulate the naturalness of modeled faces.
Moreover, our method efficiently generates a new face with
the desired shape within a second. Our method also differs
significantly from the approach presented in [24, 25] in sev-
eral respects. First, they manually assign the attribute values
to the face shape and devise attribute controls for single
control using linear regression. We automatically compute
the anthropometric measurements for face shape and relate
several attribute controls simultaneously by learning a map-
ping between the anthropometric measurement space and
the feature shape space through scattered data interpolation.
Second, they use a 3D variant of a gradient-based optical
flow algorithm to derive the point-to-point correspondence
between scanned models. This approach does not work well
for faces of different races or in different illumination given
the inherent problem of using static textures. We present a
robust method of determining correspondences that does
not depend on the texture information. Third, their method
tends to control the global face and requires additional
constraints to restrict the effect of editing operations to a
local region. In contrast, our method guarantees local control
thanks to its feature-based nature.

The main contributions of our work are as follows.

(i) A general, controllable, and practical system for face
modeling and editing. Our method estimates high-
level control models in order to infer a particular
face from intuitive input controls. As correlations
between control parameters and the face shape are
estimated by exploiting the real faces of individuals,
our method regulates the naturalness of synthesized
faces. Unspecified parts of the synthesized facial
features are automatically completed according to
statistical properties.

(ii) We propose a new algorithm which uses intuitive
attribute parameters of facial features to navigate face
space. Our system provides sets of comprehensive
anthropometric parameters to easily control face
shape characteristics, taking into account the physical
structure of real faces.

(iii) A robust, automatic model fitting approach for estab-
lishing correspondences between scanned models.

(iv) The automatic runtime synthesis is efficient in time
complexity and performs fast.

The remainder of this paper is organized as follows: Section 2
presents the face data we use. Section 3 elaborates on the
model fitting technique. Section 4 describes the construction
of local shape spaces. The face anthropometric parameters
used in our work are illustrated in Section 5. Section 6
and Section 7 describe our techniques of feature-based
shape synthesis and subregion blending, respectively. After
presenting and explaining the results in Section 8, we present
a variety of applications of our approach in Section 9.
Section 10 gives concluding remarks and our future work.

2. Scanned Data and Preprocessing

We use the USF face database [32] that consists of Cyberware
face scans of 186 subjects with a mixture of gender, race,
and age. The age of the subjects ranges from 17 to 68 years,
and there are 126 male and 60 female subjects. Most of
the subjects are Caucasians (129), with African-Americans
making up the second largest group (37), and Asians the
smallest group (20). All faces are without makeup and
accessories. The laser scans provide face structure data which
contains approximately 180 k surface points and a 360× 524
reflectance (RGB) image for texture-mapping (see Figures
2(a) and 2(b)). We also use a generic head model which
consists of 1.092 vertices and 2.274 triangles. Prescribed
colors are added to each triangle to form a smooth-shaded
surface (see Figure 2(c)).

Let each 3D face scan in the database be Si (i = 1, . . . ,M).
Since the number of vertices in Si varies, we resample all
faces in the database so that they have the same number
of vertices all in mutual correspondence. Feature points
are identified semi-automatically to guide the resampling.
Figure 3 depicts the process. As illustrated in Figure 3(a),
a 2D feature mask consisting of polylines groups a set of
86 feature points that correspond to the feature point sets
of MPEG-4 Facial Definition Parameters (FDPs) [33]. The
feature mask is superimposed onto the front-view face image
obtained by orthographic projection of a textured 3D face
scan into an image plane. The facial features in this image
are identified by using the Active Shape Models (ASMs) [34]
and the feature mask is fitted to the features automatically.
The 2D feature mask can be manipulated interactively. A
little user interaction is needed to tune the feature point
positions due to the slight inaccuracy of the automatic facial
feature detection. But this is restricted to slight corrections
of wayward feature points. The 3D positions of the feature
points on the scanned surface are then recovered by back-
projection to the 3D space. In this way, we efficiently define
a set of feature points on a scanned model Si as Ui =
{ui,1, . . . , ui,n}, where n = 86. Our generic model G is already
tagged with the corresponding set of feature points V =
{v1, . . . , vn} by default.

3. Model Fitting

3.1. Global Warping. The problem of deriving full corre-
spondence for all models Si can be stated as: resample the
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Figure 1: Overview of the interactive face shape synthesis system.

(a) (b) (c)

Figure 2: Face data: (a) scanned face geometry; (b) texture-mapped
face scan; (c) generic model.

surface for all Si using G under the constraint that v j is
mapped to ui, j . The displacement vector di, j = ui, j − v j
is known for each feature point v j on the generic model
and ui, j on the scanned surface. These displacements are
utilized to construct the interpolating function that returns
the displacement for each generic mesh vertex:

f(x) =
n∑

j=1

w jφ j
(∥∥∥x − v j

∥∥∥
)

+ Mx + t, (1)

where x ∈ R3 is a vertex on the generic model, ‖ · ‖
denotes the Euclidean norm and φ is a radial basis function.
w j , M and t are the unknown parameters. Among them,
w j ∈R3 are the interpolation weights, M ∈R3×3 represents
rotation and scaling transformations, and t ∈ R3 represents
translation transformation.

Different functions for φ(r) are available [35]. We had
better results with the multi-quadric function φ(r) =√
r2 + ρ2, where ρ is the locality parameter used to control

how the basis function is influenced by neighboring feature
points. ρ is determined as the Euclidean distance to the
nearest other feature point. To determine the weights w j and
the affine transformation parameters M and t, we solve the
following equations:

di, j = f
(

v j
)
|nj=1,

n∑

j=1

w j = 0,
n∑

j=1

wT
j v j = 0. (2)

This system of linear equations is solved using the LU
decomposition to obtain the unknown parameters. Using
the predefined interpolation function as given in (1), we
calculate the displacement vectors of all vertices to deform
the generic model.

3.2. Local Deformation. The warping with a small set of
correspondences does not produce a perfect surface match.
We further improve the shape using a local deformation
which fits the globally warped generic mesh G̃ to the scanned
model Si by iteratively minimizing the distance from the
vertices of G̃ to the surface of Si. To optimize the positions
of vertices of G̃, the local deformation process minimizes an
energy function:

E
(
G̃
)
= Eext

(
G̃, Si

)
+ Eint

(
G̃
)

(3)



International Journal of Computer Games Technology 5

(a) (b) (c) (d) (e)

Figure 3: Semi-automatic feature point identification: (a) initial outline of the feature mask; (b) after automatic facial feature detection; (c)
after interactive tuning; (d) and (e) 3D feature points identified on the scanned model and the generic model.

(a) (b) (c)

Figure 4: Model fitting: (a) deformed generic mesh after model
fitting; (b) scanned model; (e) texture mapping of the deformed
generic mesh.

where Eext stands for the external energy and Eint the internal
energy.

The external energy term Eext attracts the vertices of G̃ to
their closest compatible points on Si. It is defined as

Eext

(
G̃, Si

)
=

NG∑

j=1

ζj
∥∥∥x j − s j

∥∥∥
2
, (4)

where NG is the number of vertices on the generic mesh, x j

is the jth mesh vertex, and s j is the closest compatible point
of x j on Si. The weights ζj measure the compatibility of the

points on G̃ and Si. As G̃ closely approximates Si in the global
warping procedure, we consider a vertex on G̃ and a point
on Si to be highly compatible if the surface normals at each
point have similar directions. Hence, we define ζj as:

ζj =
⎧
⎪⎨
⎪⎩

n
(

x j

)
· n
(

s j
)

if n
(

x j

)
· n
(

s j
)
> 0

0 otherwise,
(5)

where n(x j) and n(s j) are the surface normals at x j and s j ,
respectively. In this way, dissimilar local surface patches are
less likely to be matched, for example, front-facing surfaces
will not be matched to back-facing surfaces. To accelerate the
minimum-distance calculation, we precompute a hierarchi-
cal bounding box structure for Si so that the closest triangles
are checked first.

The transformations applied to the vertices within a
region of the surface may differ from each other considerably,
resulting in a non-smoothly deformed surface. To enforce

local smoothness of the mesh, the internal energy term Eint is
introduced as follows:

Eint

(
G̃
)
=

NG∑

j=1

∑

k∈Ω j

∥∥∥
(

x j − xk
)
−
(

x̃ j − x̃k
)∥∥∥

2
, (6)

where Ω j is the set grouping all neighboring vertices xk that
are linked by edges to x j , and x̃ j and x̃k are the original
positions of x j and xk before local deformation. Including
this energy term constrains the deformation of the generic
mesh and keeps the optimization from converging to a
solution far from the initial configuration.

Minimizing E(G̃) is a nonlinear least-square problem
and optimization is performed using L-BFGS-B, which
is a quasi-Newtonian solver [36]. The optimization stops
when the difference between E at the previous and current
iterations drops below a user-specified threshold. After the
local deformation, each mesh vertex takes texture coor-
dinates associated with its closest scanned data point for
texture mapping. Finally, we reconstruct surface details in a
hierarchical manner by taking advantage of the quaternary
subdivision scheme and normal mesh representation [37].
Figure 4 shows the results of model fitting. Hence, a spatial
correspondence is established by the generated normal
meshes.

4. Forming Feature Shape Spaces

We perceive the face as a set of features. In this work, the
global face shape is also regarded as a feature. Since all
face scans are in correspondence through mapping onto
the generic model, it is sufficient to define the feature
regions on the generic model. We manually partition the
generic model into four regions: eyes, nose, mouth and chin.
This segmentation is transferred to all normal meshes to
generate individualized feature shapes with correspondences
(see Figure 5). In order to isolate the shape variation from
the position variation, we normalize all scanned models with
respect to the rotation and translation of the face before the
model fitting process.

We form a shape space for each facial feature using PCA.
Given the set Γ = {F} of features, let {Fi}i=1,...,M be a set of
example meshes of a feature F, each mesh being associated
to one of the M scanned models in the database. These
meshes are represented as vectors that contain the x, y, z
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Figure 5: Four facial features decomposed from the level 2 normal
mesh.

coordinates of N vertices Fi = (xi1, yi1, zi1, . . . , xiN , yiN , ziN ) ∈
R3N . The average over M example meshes is given by ψ0 =
(1/M)

∑M
i=1Fi. Each example mesh differs from the average by

the vector dFi = Fi − ψ0. We arrange the deviation vectors
into a matrix C = [dF1,dF2, . . . ,dFM] ∈ R3N×M . PCA of
the matrix C yields a set of M non-correlated eigenvectors ψi
and their corresponding eigenvalues λi. The eigenevectors are
sorted according to the decreasing order of their eigenvalues.
Every example model can be regenerated using (7).

Fi(α) = ψ0 +
K∑

j=1

αi jψj , (7)

where 0 < K < M and αi j = (Fi−ψ0) ·ψj are the coordinates
of the example mesh in terms of the reduced eigenvector
basis. We choose the K such that

∑K
i=1λi ≥ τ

∑M
i=1λi, where

τ defines the proportion of the total shape variation (98%
in our experiments). In this model each eigenvector is a
coordinate axis. We call these axes eigenmeshes.

5. Anthropometric Parameters

Face anthropometry provides a set of meaningful measure-
ments or shape parameters that allow the most complete
control over the shape of the face. Farkas [5] describes
a widely used set of measurements to characterize the
human face. The measurements are taken between the
landmark points defined in terms of visually-identifiable or
palpable features on the subject face using carefully specified
procedures and measuring instruments. Such measurements
use a total of 47 landmark points for describing the face.
As described in Section 2, each example in our face scan
database is equipped with 86 landmarks. Following the
conventions laid out in [5], we have chosen a subset of 38
landmarks for anthropometric measurements (see Figure 6).

Farkas [5] describes a total of 132 measurements on the
face and head. Instead of supporting all 132 measurements,
we are only concerned with those related to five facial
features (including global face outline). In this paper, 68
anthropometric measurements are chosen as shape control
parameters. As an example, Table 1 lists the nasal measure-
ments used in our work. The example models are placed in
the standard posture for anthropometric measurements. In
particular, the axial distances correspond to the x, y, and
z axes of the world coordinate system. Such a systematic
collection of anthropometric measurements is taken through
all example models in the database to determine their
locations in a multi-dimensional measurement space.

6. Feature Shape Synthesis

From the previous stage we obtain a set of examples of each
facial feature with measured shape characteristics, each of
them consisting of the same set of dimensions, where every
dimension is an anthropometric measurement. The example
measurements are normalized. Generally, we assume that an
example model Fi of feature F has m dimensions, where each
dimension is represented by a value in the interval (0,1].
A value of 1 corresponds to the maximum measurement
value of the dimension. The measurements of Fi can then be
represented by the vector

qi =
[
qi1, . . . , qim

]
, ∀ j ∈ [1,m] : qi j ∈ (0, 1]. (8)

This is equivalent to projecting each example model Fi into a
measurement space spanned by the m selected anthropomet-
ric measurements. The location of Fi in this space is qi.

With the input shape control thus parameterized, our
goal is to generate a new deformation of the facial feature by
computing the corresponding eigenmesh coordinates with
control through the measurement parameters. Given an
arbitrary input measurement vector q in the measurement
space, such controlled deformation should interpolate the
example models. To do this we interpolate the eigenmesh
coordinates of the example models and obtain smooth range
over the measurement space. Our feature shape synthesis
problem is thus transformed to a scattered data interpolation
problem. Again, the RBFs are employed. Given the input
anthropometric control parameters, a novel output model
with the desired shapes of facial features is obtained in
runtime by blending the example models. Figure 7 illustrates
this process. Our scheme first evaluates the predefined RBFs
at the input measurement vector and then computes the
eigenmesh coordinates by blending those of the example
models with respect to the produced RBF values and pre-
computed weight values. Finally, the output model with the
desired feature shape is generated by evaluating the shape
reconstruction model (7) at those eigenmesh coordinates.
Note that there exist as many RBF-based interpolation
functions as the number of eigenmeshes.

The interpolation is multi-dimensional. Consider a
Rm → R mapping, the interpolated eigenmesh coordinates
aj(·) ∈ R, 1 ≤ j ≤ K at an input measurement vector
q ∈Rm are computed as

aj
(

q
) =

M∑

i=1

γi jRi
(

q
)

for 1 ≤ j ≤ K , (9)

where γi j ∈R are the radial coefficients andM is the number
of example models. Let qi (1 ≤ i ≤ M) be the measurement
vector of an example model. The radial basis function Ri(q) is
a multi-quadric function of the Euclidean distance between
q and qi in the measurement space:

Ri
(

q
) =

√∥∥q− qi
∥∥2 + ρ2

i for 1 ≤ i ≤M, (10)

where ρi is the locality parameter used to control the
behavior of the basis function and determined as the
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Figure 6: Head geometry with anthropometric landmarks (green dots). The landmark names are taken from [5].

Table 1: Anthropometric measurements of the nose.

Landmarks Measurement Name Landmarks Measurement Name

mf-mf Nasal root width n-pm Nasal bridge length

al-al Nose width aI-pm Ala surface length

sbal-sbal Alar base width al-sn Alar point-subnasale length

sbal-sn Nostril floor width n-pm Inclination of the nasal bridge

sn-pm Nasal tip protrusion sn-prn Inclination of the columella

en-se Nasal root depth aI-pm Inclination of the alar-slope line

en-se Nasal root slope n-se-pm Nasofrontal angle

aI-pm Ala length al-pm-al Ala-slope angle

al-mf Nasal bridge angle se-pm-sn Nasal tip angle

n-sn Nose height pm-sn-ls Nasolabial angle

Euclidean distance between q and the closest other example
measurement vector.

The jth eigenmesh coordinate of the ith example model,
ai j , corresponds to the measurement vector of the ith
example model, qi. Equation (9) should be satisfied for qi
and ai j (1 ≤ i ≤M):

ai j =
M∑

i=1

γi jRi
(

qi
)

for 1 ≤ j ≤ K. (11)

The radial coefficients γi j are obtained by solving this linear
system using an LU decomposition. We can then generate
the eigenmesh coordinates, hence the shape, corresponding
to the input measurement vector q according to (9).

7. Subregion Shape Blending

After the shape interpolation procedure, the surrounding
facial areas should be blended with the deformed internal
facial features to generate a seamlessly smooth face mesh.
The position of a vertex xi in the feature region F after
deformation is x′i . Let V denote the set of vertices of the
head mesh. For smooth blending, positions of the subset
VF = V \ VF of vertices of V that are not inside the
feature region should be updated with deformation of the

facial features. For each vertex x j ∈ VF, the vertex in each
feature region that exerts influence on it, xFki , is the one of
minimal distance to it. It is desirable to use geodesic distance
on the surface, rather than Euclidean distance to measure
the relative positions of two mesh vertices. We adopt an
approximation of the geodesic distance based on a cylindrical
projection which is preferable for regions corresponding to a
volumetric surface (e.g., the head). The idea is that distance
between two vertices on the projected mesh in the 2D image
plane is a fair approximation of geodesic distance. Thus, xFki
is obtained as:

∥∥∥x j − xFki

∥∥∥
G
≈ min{i|i∈VF}

∥∥∥x∗j − x∗i
∥∥∥, (12)

where x∗i and x∗j are the positions of vertices on the projected
mesh, and ‖ · ‖G denotes the geodesic distance. Note that
the distance is measured offline in the original undeformed
generic mesh. For each non-feature vertex x j , its position is
updated in shape blending as:

x′j = x j +
∑

F∈Γ
exp
(
− 1
α

∥∥∥x j − xFki
∥∥∥
G

)∥∥∥x′Fki − xFki
∥∥∥, (13)

where Γ is the set of facial features and α controls the size of
the region influenced by the blending. We set α to 1/10 of
the diagonal length of the bounding box of the head model.
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Figure 7: Generating a new facial feature shape by blending exam-
ple models through interpolation of their eigenmesh coordinates.

(a) (b)

Figure 8: Synthesis of the nose shape: (a) Without shape blending,
the obvious geometric discontinuities around the boundary of the
nose region impair realism of the synthesis to a large extent. (b)
Using our approach, the geometries of the feature region and
surrounding areas are smoothly blended around their boundary.

Figure 8(b) shows the effect of our shape blending scheme
employed in synthesizing the nose shape.

8. Results

Our method has been implemented in an interactive system
with C++/OpenGL, where the user can select facial features
to work on interactively. A GUI snapshot is shown in
Figure 9. Our system starts with a mean model which is
computed as the average of 186 meshes of the RBF-warped
models and textured with the mean cylindrical full-head
texture image [38]. Our system also allows the user to select
the desired feature(s) from a database of pre-constructed
typical features, which are shown in the small icons on the
upper-left of the GUI. Upon selecting a feature from the
database, the feature will be imported seamlessly into the
displayed head model and can be further edited if needed.
The slider positions for each of the available feature in the
database are stored by the system so that their configuration
can be restored whenever the feature is chosen. Such a
feature importing mode enables coarse-to-fine modification
of features, making the face synthesis process less tedious. We
invited several student users who naturally lack the graphics
professional’s modeling background to create face models
using our system. The laymen appreciated the intuitiveness
and continuous variability of the control sliders. Table 2
shows the details of the datasets.

Figure 9: GUI of our system.

Table 2: Details of the data used in our system. M is the number of
examples, N is the number of mesh vertices (the number of original
dimensions equals 3N), K is the number of reduced dimensions
of the PCA space, and m is the number of anthropometric control
parameters.

Full head Eyes Nose Mouth Chin

M 186 186 186 186 186

N 16192 2914 1782 2105 643

K 34 23 26 20 18

m 16 13 20 12 7

Figure 10 illustrates a number of distinct facial shapes
synthesized to satisfy user-specified local shape constraints.
Clear differences are found in the width of the nose alar
wings, the straightness of the nose bridge, the inclination
of the nose tip, the roundness of eyes, the distance between
eyebrows and eyes, the thickness of mouth lips, the shape
of the lip line, the sharpness of the chin, and so forth. A
morphing can be generated by varying the shape parameters
continuously, as shown in Figures 10(b) and 10(c). In
addition to starting with the mean model, the user may also
select the desired head model of a specific person from the
example database for further editing. Figure 11 illustrates
face editing results on the models of two individuals for
various user-intended characteristics.

In order to quantify the performance, we arbitrarily
selected ten examples in the database for the cross valida-
tion. Each example has been excluded from the example
database in training the face synthesis system and its shape
measurements were used as a test input to the system. The
output model was then compared against the original model.
Figure 12 shows a visual comparison of the result. We assess
the reconstruction by measuring the maximum, mean, and
root mean square (RMS) errors from the feature regions of
the output model to those of the input model. The 3D errors
are computed by the Euclidean distance between each vertex
of the ground truth and synthesized model. Table 3 shows the
average errors measured for the ten reconstructed models.



International Journal of Computer Games Technology 9

(a)

(b) (c)

Figure 10: (a) New faces synthesized from the average model (leftmost) with global and local shape variations. (b) and (c) Face shape
morphing (left to right in each example).

(a) (b)

Figure 11: Feature-based face editing on the models of two individuals. In each example, the original model is shown in the top-left.

(a) (b)

Figure 12: Comparison of an original model (left in each view) and
synthesized model (right in each view) in cross validation.

The errors are given using both absolute measures (/mm)
and as a percentage of the diameter of the output head model
bounding box.

We compare our method against the approach of opti-
mization in the PCA space (Opt-PCA). Opt-PCA performs
optimization to estimate weights of the eigen-model (7). It
starts from the mean model on which the anthropometric
landmarks are in their source positions. The corresponding
target positions of these landmarks are the landmark posi-
tions on the example model. We then optimize the mesh

shape in the subspaces of facial features using the downhill
simplex algorithm such that the sum of distances between
the source and target positions of all landmarks is minimized.
Table 4 shows the comparison between our method and Opt-
PCA. Opt-PCA produces a large error since the number of
landmarks is small and it is not sufficient to fully determine
weights of the eigen-model. Opt-PCA is also slow since there
are many PCA weights to be optimized iteratively.

Our system runs on a 2.8 GHz PC with 1 GB of RAM.
Table 5 shows the time cost of different procedures. At run-
time, our scheme spends less than one second in generating
a new face shape upon receiving the input parameters.
This includes the time for the evaluation of RBF-based
interpolation functions and for shape blending around the
feature region boundaries.

9. Applications

Apart from creating plausible 3D face models from users’
descriptions, our feature-based face reconstruction approach
is useful for a range of other applications. The statistics of
facial features allow analysis of their shapes, for instance,
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Table 3: Cross validation results of our 3D face synthesis system.

Eyes Nose Mouth Chin

Average max. 3.85 (0.91%) 2.55 (0.84%) 2.86 (0.94%) 4.46 (1.06%)

Average mean 2.57 (0.57%) 1.62 (0.38%) 2.04 (0.49%) 2.25 (0.53%)

Average RMS 3.62 (0.86%) 2.23 (0.53%) 2.84 (0.67%) 3.14 (0.74%)

Table 4: Comparison of our method with the optimization approach. Each value is an average of ten trials with different example models.

Opt PCA Our method

Eyes Nose Mouth Chin Eyes Nose Mouth Chin

Mean error (mm) 2.83 3.27 3.84 6.65 2.57 1.62 2.04 2.25

Time (s) 34.8 21.5 23.5 5.3 0.4 0.5 0.4 0.3

Table 5: Time consumed for different processes of system
implementation. For some processes (in italic), the time spent
per example is shown. Notation: time consumed in interactive
operation (TI), time consumed in automatic computation (TA).

Process TI TA

Offline processing

Feature point identification 3–5 minutes 6 seconds

Global warping N/A 2 seconds

Local deformation N/A 4 minutes

Multi-resolution model generation N/A 5 seconds

Computing eigenmeshes by PCA N/A 2 hours

Computing eigenmesh coordinates N/A 0.5 seconds

Computing anthropometric measurements N/A 0.2 seconds

LU decomposition N/A 2 minutes

Runtime

Feature shape synthesis N/A 0.6 seconds

to discern differences between groups of faces. They also
allow synthesis of new faces for applications such as facial
feature transfer between different faces and adaptation of the
model to local populations. Moreover, our approach allows
for compression of 3D face data, facilitating us to share
statistics with other researchers to allow the synthesis and
further study of high-resolution faces.

9.1. Analyzing the Shape of Facial Features. As the first
application, we consider analysis of the shape of facial
features. This is useful for classification of face scans. We wish
to gain insight into how facial features change with personal
characteristics by comparing statistics between groups of
faces. We calculate the mean and standard deviation statistics
of anthropometric measurements for each facial feature of
different groups. The morphometric differences between
groups are visualized by comparing the statistics of each
facial feature in a diagram. We follow this approach to study
the effects of race and gender.

Race. To investigate how the shape of facial features changes
with race, we compare three groups of 18–30 year-old Cau-
casian (72 subjects), Mongolian (18 subjects), and Negroid
(26 subjects) which are divided almost equally between the

genders. The group statistics are shown in Figure 13, colored
with blue, green, and red, respectively. It shows that the
Caucasian nose is narrow, the Mongolian nose is medial, and
the Negroid nose is wide. The statistics indicate a relatively
protruding, narrow nose in Caucasian. The Mongolian nose
is less protruding and wider, and the Negroid nose has the
smallest protrusion. The nasal root depth and nasofrontal
angle are the largest for the Caucasian, exhibiting significant
differences compared with the smaller Negroid and smallest
Mongolian values. This suggests the high nasal root in
Caucasian and relatively flat nasal root in Negroid and
Mongolian. Significant differences among the three races are
also found in inclination of the columella and nasal tip angle,
indicating the hooked nose in Caucasian and the snub nose
in Mongolian and Negroid.

For the eyes, the main characteristics of the Caucasian
group are the largest eye fissure height, the smallest intercan-
thal width and eye fissure inclination angle. These suggest
that the Caucasian eyes typically have larger openings with
horizontally aligned inner and external eye corners. The
Mongolian group has the largest intercanthal width, and
the greatest inclination in the shortest eye fissure and the
smallest eye fissure height, which indicate the relatively small
eye openings separated in a large horizontal distance with
positions of the inner eye corners lower than those of the
external ones. Blacks have the largest eye fissure length and
binocular with, which denote the relatively wide eyes in this
group.

As shown in Figure 13(c), many measurements of the
mouth of Negroid (e.g., mouth width, upper and lower lip
height, upper and lower vermilion height) are the largest
among the three races. They are significantly different from
those in Caucasian or Mongolian group. Mongolian has the
relatively narrow mouth and thin lips. In Caucasian the skin
portion of the upper and lower lips and their vermilion
height are the smallest. However, the proportions of the
upper and lower lip heights in the three races reveal the
similarity.

From statistics illustrated in Figure 13(d), the Negroid
chin has the characteristics of a long vertical profile dimen-
sion and small width. The smallest value of inclination of
the chin from the vertical and the largest mentocervical
angle also indicates a less protruding chin for Negroid. In
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Figure 13: Comparison of statistics of facial feature measurements between races (blue, green and red for groups of Caucasian, Mongolian
and Negroid, resp.). Each facial feature: statistics of the distance measurements (top) and statistics of the angular measurements (bottom).

Mongolian, the chin is the widest among the three races.
The smallest chin height is found in Caucasian. Also, the
chin of Caucasian is slightly wider than that of Negroid, but
markedly narrower than that of Mongolian.

Gender. To study the effect of gender, we compare in
Figure 14 18–30-year-old Caucasian females (35 subjects, in
red) to Caucasian males of the same age group (37 subjects,

in blue). The change of the shape of facial features from
females to males is different in character from that of the
change between varying racial groups. The larger values
of most distance measurements of the nose indicate that
males have wide alar wings and wide, long nose bridge.
The value of the nasal root depth is also indicative of high
upper nose bridge of the male subjects. In females, the nose
bridge and alar are narrower; the nose tip is sharper and
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Figure 14: Comparison of statistics of facial feature measurements between genders (females in red and males in blue). Each facial feature:
statistics of the distance measurements (top) and statistics of the angular measurements (bottom).

more protruding. In addition, the vertical profile around the
junction of the nose bridge and the anterior surface of the
forehead in females is flatter, which is suggested by the larger
nasofrontal angle. The inclination of the nose bridge and
columella reveals the similarity in two genders.

Regarding anthropometric measurements of the eyes,
males have the larger intercanthal width and binocular
width, which imply that their eyes are more separated with
regard to the sagittal plane (vertical plane cutting through
the center of the face). The width of the eye fissure of males



International Journal of Computer Games Technology 13

(a) (b) (c) (d) (e) (f)

Figure 15: Transfer of facial features. We start with a source model (a) and synthesize facial features of the eyes (c), nose (d), mouth (e) and
chin (f) on it by coercing the shape parameters to match those of two example faces (b).

is slightly larger than that of females, whereas the heights
of the eye fissure of two genders are similar. Males also
have the large height of the lower eyelid. In females, the
height of the upper eyelid and distance between eyebrows
and eyes are larger. Another characteristic of females is the
large inclination of the eye fissure.

Most distance measurements of the mouth in the male
group are larger in both genders, as shown in Figure 14(c).
This suggests that males have a much wider mouth with the
large skin portion of the upper and lower lips. However,
the vermilion heights of the upper and lower lips in two
groups reveal the similar thickness of the lips in two genders.
The differences exhibited in the angular measurements are
indicative of more protruding lips and convex lip line of the
female subjects.

The diagram in Figure 14(d) shows that the chin of males
is characterized by large size in three dimensions (width,
height and depth) due to the large underlying mandible.
The greater inclination angle of the chin and smaller
mentocervical angle also indicate a relatively protruding chin
in males compared to that of females.

9.2. Facial Feature Transfer. In the applications of creating
virtual characters for entertainment production, sometimes
it is desirable to adjust the face so that it has certain facial
features similar to those of a particular person. Therefore, it is
useful to be able to transfer desired facial feature(s) between
different human subjects. One might wish, given a database
of example faces, to select a face or multiple faces to which to
adjust facial features.

Our high-level facial feature control framework allows
the transfer of desired facial features from example faces to
a source model in a straightforward manner. We can alter the
feature of the source model with a feature-adjustment step
which coerces the anthropometric measurement vector to
match that of the target feature of an example face. The new
shape of the selected feature is reconstructed on the source
model and can be further edited if needed.

Figure 15(a) shows the source model which is the approx-
imation of an example 3D scan using the deformed generic
mesh. Figures 15(c) to 15(f) show the results of matching the
shape measurements of the features of this model to those
of two example faces shown in Figure 15(b). The synthesis
keeps global shape of the source model, while transferring
features of the target subject to the source subject. With
decomposition of the face into local features, typical features
of different target faces can be transferred in conjunction
with each other to the same source model. Figure 16 shows a
composite face built from facial features of four individuals.

9.3. Face Adaptation to Local Populations. Adapting the
model to local populations falls neatly into our framework.
The problem of automatically generating a population is
reduced to the problem of generating the desired number
of plausible sets of control parameters. It is convenient to
generate each parameter value independently as if sampled
from the Gaussian normal distribution with its mean and
variance. The generated control parameter values both
respect a given population distribution, and—thanks to the
use of interpolation in the local feature shape spaces—
produce a believable face. The examples of this process are
shown in Figure 17.

9.4. Face Data Compression and Dissemination. For the face
synthesis based on a large example data set, the ability to
organize examples into database, compress, and efficiently
transmit them is a critical issue. The example face meshes
used for this paper are restricted from being transmitted in
their full resolution because of their dense-data nature. In
our method, we take advantage of the fact that the objects
under our consideration are of the same class and that
they lie in correspondence to compress data very efficiently.
Instead of storing instances of geometry data for every
example, we adopt a compact representation obtained by
extracting the statistics with PCA, which are several orders of
magnitude smaller than the original 3D scans. This accounts
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Eyes Nose

Mouth

(a) (b) (c)

Chin

Figure 16: Facial features of four example faces (b) in our database are transferred to the source model (a) to generate a novel composite
face (c).

(a) (b) (c) (d) (e) (f)

Figure 17: Adapting the face to population groups: (a) average face; (b), (c) and (d) synthesized faces with the ethnicity of Caucasian,
Mongolian and Negroid, respectively; (e) and (f) synthesized male and female faces, respectively.

for the space gain from M times the dimensionality of
high-resolution 3D scans (hundreds of thousands), to K
(K ≤ M) times the dimensionality of an eigenmesh (several
thousands), with M and K being the number of examples
and eigenmeshes respectively. For all faces, we also make
available the statistics of facial feature measurements within
different population groups. These statistics along with the
eigenmeshes should make it possible for other researchers
to investigate new applications beyond the ones described in
this paper.

10. Conclusion and Future Work

We have presented an automatic runtime system for gener-
ating varied, realistic face models. The system automatically
learns a statistical model from example meshes of facial
features and enforces it as a prior to generate/edit the face
model. We parameterize the feature shape examples using
a set of anthropometric measurements, projecting them
into the measurement spaces. Solving the scattered data

interpolation problem in a reduced subspace yields a natural
face shape that achieves the goals specified by the user.
With an intuitive slider interface, our system appeals to both
beginning and professional users, and greatly reduces the
time for creating natural face models compared to existing
3D mesh editing software. With the anthropometrics-based
face synthesis, we explore a variety of applications, including
analysis of facial features in subjects with different races,
transfer of facial features between individuals, and adjusting
the apparent race and gender of faces.

The quality of the generated model depends on the model
priors. Therefore, an appropriate database with large number
and variety of the faces must be available. We would like to
extend our current database to incorporate more 3D face
examples of Mongolian and Negroid races as well as to
increase the diversity of age. We also plan to increase the
number of facial features to choose from. To improve the
system interface, we would like to integrate the “dragging”
interaction mode which allows for directly choosing one or
more feature points of a facial feature and then dragging
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them to the desired positions to generate a new facial shape.
This involves updating multiple anthropometric parameters
in one step and results in large scale changes.
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