Please cite the Published Version

John, Tng C. H., Prakash, Edmond C. and Chaudhari, Narendra S. (2008) Strategic team Al path
plans: probabilistic pathfinding. International Journal of Computer Games Technology, 2008. p.
834616. ISSN 1687-7055

DOI: https://doi.org/10.1155/2008/834616

Publisher: Hindawi Publishing

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/95340/

Usage rights: [c Creative Commons: Attribution 3.0

Additional Information: This is an Open Access article which appeared in International Journal
of Computer Games Technology, published by Hindawi

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)



https://doi.org/10.1155/2008/834616
https://e-space.mmu.ac.uk/95340/
https://creativecommons.org/licenses/by/3.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2008, Article ID 834616, 6 pages
doi:10.1155/2008/834616

Research Article

Strategic Team Al Path Plans: Probabilistic Pathfinding

Tng C. H. John," Edmond C. Prakash,? and Narendra S. Chaudhari’

ISchool of Computer Engineering, Nanyang Technological University, Singapore 639798
2 Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M1 5GD, UK

Correspondence should be addressed to Edmond C. Prakash, e.prakash@mmu.ac.uk

Received 29 September 2007; Accepted 13 December 2007

Recommended by Kok Wai Wong

This paper proposes a novel method to generate strategic team Al pathfinding plans for computer games and simulations using
probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002), in that, a fitness function is
used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The
path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path
plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase
replay values. This work is an extension of our earlier work on team Al: probabilistic pathfinding (John et al., 2006). We explore
ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team Al pathfinding

plans.

Copyright © 2008 Tng C. H. John et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

A popular game with heavy team Al is “Full Spectrum War-
rior” (FSW), a console game on Xbox. This game is a down-
sized version of “Full Spectrum Command” on the PC plat-
form. The game “Full Spectrum Command” is actually a
simulation of the real-world behavior of the US Army. This
game was originally used in the military for leadership train-
ing as well as decision making training. The game includes
real-world army movements such as “bounding” and duck-
ing. The main feature of the game is its team Al The team
Al of the game is actually derived from the real world and
simulates how a real person will behave. The purpose of this
game is to command two teams of soldiers to accomplish a
mission.

Even though it is a great game, one area it can improve
on is the team Al plan. Players may feel that opponents al-
ways appear at the same places after playing repeatedly, as
most team Al plans use A* algorithm or look up tables as
their main pathfinding techniques. These techniques always
produce the same path if the source and destination locations
are the same. On the other hand, Probabilistic is able to pro-
duce variations to the path even if the source and destination
locations are the same.

Replay value can easily be added to the game by creating
variations to the opponent team plans. When the opponents

have different plans, they move differently, thus the players
cannot always predict the opponents’ locations. This work
uses probabilistic pathfinding algorithm to obtain variations
of team Al path plans.

Section 2 talks about related work, existing problem, and
a scenario that strategic team Al path planning can be ap-
plied. Section 3 gives an introduction about team Al and
probabilistic pathfinding. It explains how team Al is created
in [1] by combining different systems. Section 4 describes
the main method of strategic team Al path plan generation.
Section 5 suggests a method that can be used to optimize
this work. Section 6 shows some interesting strategies gener-
ated by this team Al path plan generation method. The final
section, Section 7, comprises conclusion, other applications,
and future suggestions for this work.

2. RELATED WORK

In this paper, team Al pathfinding and team Al plans are the
same. Team Al pathfinding refers to the different paths taken
by teammates to reach a desired place. An example is a team
of enemies enter a room from different doors to trap and
capture the player. Team Al pathfinding plans are popular in
computer games. With good team plan, the game difficulty
level increases, making the game more challenging and helps
to showcase intelligent behavior of the game.


mailto:e.prakash@mmu.ac.uk

International Journal of Computer Games Technology

FiGure 1: Situation without team Al

In this work, we use and extend our earlier work on prob-
abilistic A* pathfinding algorithm [1]. Further readings on
A* pathfinding can be found in [2—4]. Bourg and Seeman
[4] provide other data representation of the A* pathfinding.
A very useful article by Pinter [5] discusses methods to mod-
ify a raw path generated from a path search to form a more
convincing traveling path.

An interesting work by Kamphuis et al. [6] attempts to
simulate tactical pathfinding in urban environments for a
small group of characters for games and simulations. The
characters use tactical information such as road maps and
special locations for pathfinding. This work uses common
A* data structure and a list of gateway points. The tactical
pathfinding [6] algorithm is able to run in real time with the
help of a preprocessing step. For this work to run in real time,
no preprocessing is needed. With optimization, it can even
run more efficiently.

3. PREVIOUS WORK

This section is an introduction to team AI: Probabilistic
pathfinding. The detail implementation and algorithm can
be found in [1]. Team AI can be shown to exist if teammates
coordinate to trap or capture an opposite team. Figure 1
shows a situation when team Al is not enabled. The enemy
teammates find the shortest path to capture the player.

Figure 2 shows a situation with team Al enabled. The en-
emy teammates surround, trap, and capture the player.

Probabilistic is a modified version of A* algorithm with
an addition ability to generate different paths controlled by a
probability variable. The variable controls how different the
paths differ from the shortest path. The paths may not be the
shortest, but they are one of the shorter paths. In general, if
the variable is 0, then probabilistic pathfinding will behave
exactly the same as a usual A* pathfinding. If the variable is
set to 1, it will always produce a different path that is not the
shortest. For more details refer to [1]. Figure 3 below shows
an example of an enemy character following different paths
to pursuit the player character.

Ficure 3: Different paths generated by probabilistic pathfinding.

Notice that there are light grey squares in Figures 1, 2, and
3. They are actually the gateways of the map. Gateway is nar-
row path in the environment that opens up to a bigger path
before and after the gateway. That is, a gateway is a narrow
link between two spaces. Figure 4 illustrates a gateway.

A blackboard messaging system is developed in [1] to
facilitate communications between characters of a team. In
short, blackboard is a place for characters to “write” use-
ful information and let other teammates read it. After every
teammate read, the message is deleted by the message writer.
Figure 5 shows the concept of a blackboard.

Putting together probabilistic pathfinding, gateways in-
formation, and message system, we achieved what is shown
in Figure 2, the complete working team Al in [1].

4. PATHPLAN GENERATION

In this section, we illustrate the method used to generate
high quality team AI path plans. The main idea is to test the
team Al path plans with a fitness function. The fitness will



Tng C. H. John et al.

- Unmovable area

Movable area

- Gateway

FiGure 4: Illustration of a gateway.

I want to
informB...

=
A get
message

Blackboard

A post
message

B post
message

B get
message

I want to
know A ...

Entity B

Ficure 5: Different paths generated by probabilistic pathfinding.

determine whether the team plan is good enough. If the qual-
ity is bad, a new team Al path plan search will be conducted.
Figure 6 shows the flow chart for path plan generation.

This idea is mainly inspired by genetic algorithms [7],
where a fitness function is used to test the quality of the
genes combination. The genes combination is formed based
on its parents, some manipulation, and some randomness.
The better the quality of the combination of genes is, the
higher chance it will survive. The bad quality gene combina-
tions get eliminated. Team AI path plan works the same way.
Different path plans are generated by probabilistic pathfind-
ing. Treat each path plan as a combination of genes. A fitness
function is used to test path plan. If it is not good enough, it
will be eliminated. A new search will be conducted. The cycle
repeats until a satisfactory quality path plan is obtained.

A fitness test can be a simple function that calculates the
distance between two characters. For example in a game, it

Probabilistic!
pathfinding
generates
path plans

Fitness High quality
test path plans

Fail

FIGURE 6: Path plan generation flow chart.

F1GURE 7: Path with overlapping regions.

is not acceptable for two teammates to get too near to each
other or their paths overlap. An alternative could be for the
team to explore a bigger area of the map to gain resources
and familiarize with the terrain. It all depends on the game
play. Therefore, the fitness test for such a path plan will fail
if two teammates get too close to each other. Fitness test can
also be constraints of the team path plan.

Figure 7 shows a team path plans that are not acceptable
because of overlap paths.

The path of the bottom-right enemy character follows the
shortest path to the player. With team Al enabled, that bot-
tom two characters have to trap the player through different
entrances. However, due to overlap paths constraint, the path
plan is discarded. A new path plan is conducted and shown
in Figure 8. By comparing the plan shown in Figure 7 and
Figure 8, the team path plan in Figure 8 is better than that of
Figure 7 according to overlap constrains.

The following are three ways to test the team paths with
the fitness function. They are illustrated below.

4.1. [Iterative test

The fitness test is conducted after the whole team found its
path. If the fitness test fails, a new path plan search will
be conducted. However, the old path plan is saved. This is
to prevent the system from doing too many searches and
slow down the game. The user can specify a number of
maximum searches to perform. If the maximum number of
searches is reached, the path plan with the highest fitness
will be selected. The user may also choose to terminate the



International Journal of Computer Games Technology

FiGure 8: Path without overlap.

Path QualityPathPlanForWholeTeam() {
Path pathOfWholeTeam;
do {
pathOfWholeTeam = null;
While(TeamPathPlanNotComplete()) {
pathOfWholeTeam + =
ProbabilisticPathForOne();
t
} while(FitnessTest(pathOfWholeTeam)==fail);
Return pathOfWholeTeam;
}

ALGORITHM 1

search once a path plan passed the first fitness test. This
method is efficient if the fitness test seldom fails on path
plans. This method is the easiest and fastest to implement.
No modification is needed for probabilistic pathfinding gen-
eration algorithm. No modification is needed for team path
planning. The exact algorithm is already shown in Figure 6.
Algorithm 1 shows the pseudo code algorithm.

4.2, Step test

Algorithm 2 shows the pseudo code of the step test.

The fitness test is conducted at every segment of the path.
This is the extreme opposite end of iterative test. On selection
of the next node (using probability pathfinding search), if it
does not pass the fitness test, another node will be chosen in-
stead. This method is good if iterative test always fails and the
number of characters is small. As opposed to iterative test,
modification is needed for probabilistic pathfinding genera-
tion algorithm. The fitness test function has to be included
into the probabilistic pathfinding algorithm.

4.3. Progressive test

The test will be conducted after each character found its
path. This is a middle solution between the iterative test

Path QualityPathPlanForWholeTeam () {
Path pathOfWholeTeamSoFar = null;
While (TeamPathPlanNotComplete ()) {
pathOfWholeTeamSoFar + =
ProbabilisticPathForOne (pathOfWholeTeamSoFar);
}
Return pathOfWholeTeamSoFar;
}
Path ProbabilisticPathForOne (Path
pathOfWholeTeamSoFar) {
Path currentMemberPath = null;
Path temp = null;
do {
currentMemberPath += selectANextNode ();
do {
temp = pathOfWholeTeamSoFar +
currentMemberPath.selectADifferentNode ();
} while (FitnessTest(temp) == fail);
} while
(currentMemberPath.SearchNotComplete ())
return currentMemberPath;

}

ALGORITHM 2

Path QualityPathPlanForWholeTeam () {
Path pathOfWholeTeamSoFar = null;
Path temp = null;
Path memberPath = null;
do {
do {
memberPath = ProbabilisticPathForOne ();
temp = pathOfWholeTeamSoFar + memberPath;
} while (FitnessTest(temp) == fail)
pathOfWholeTeamSoFar += memberPath;
} while (TeamPathPlanNotComplete ());
Return pathOfWholeTeamSoFar;

ALGORITHM 3

and the step test Table 1. It is based on each character. Af-
ter each character has found its path, the fitness test will
be performed. If the test fails, the character will choose an-
other path. This is the best method if the iterative test and
step test always fail. Modification needs to be made to team
path planning. Fitness test is conducted per character (see
Algorithm 3).

5. OPTIMIZATION

Fitness testing should be cheap if it does not involve cal-
culation of huge set of constraints and variables. The load
of this system comes from A* pathfinding. This means that
all optimization techniques applicable to A* pathfinding are
here. A common optimization technique for A* pathfinding



Tng C. H. John et al.

TaBLE 1: Summary fitness function test.

Methods Advantage

Best for cases

Iterative test Easiest and fastest to implement
Progressive test

Step test

A general solution that can solve most cases

Guaranteed to have a solution if it exists

Many high quality solutions

Fitness test mostly passes

Average solution

In the middle of iterative test and step test
Few high quality solutions

Fitness test mostly fails

FiGgure 9: Combine force strategy.

is search by parts so that the A* search execution is spread
out over many frames.

6. ANALYSIS OF STRATEGIES

One useful feature of this team AI path plan generation
method is to generate various useful strategies. These strate-
gies can be applied to first person shooting team games as
Al opponents or enemies. With such interesting strategies,
the replay value of the game increases. The difficulty level in-
creases and it becomes more challenging for player to defeat
the enemies. This section analyzes interesting strategies gen-
erated.

Figure 9 shows the combined force strategy. In this par-
ticular strategy, it is the reverse. Joining teammates together
synergized the power of the enemy team and increased the
chance of success for eliminating the player. From Figure 9,
the enemies join forces along the way and attack the player
together in a single path. The fitness function to such a plan
is to test the path before the destination (the player posi-
tion) and ensure that before the destination all three team-
mates must be together. This is the first constraint. This fit-
ness function will eliminate plans that do not combine forces
before they encounter the player. The second constraint con-
trols can be how early the teammates must combine their
forces before they encounter. The earlier they meet the higher
chance of success in their mission. For this example, the sec-
ond constrained fitness function is not tested. As long they

F1cure 10: Trap strategy.

are able to meet before encountering the player, it is a good
strategy.

Figure 10 shows a trap strategy. It is the reverse strategy
of Figure 9. In this case, the team may have higher chance
of success for killing the player. The trap strategy aims to
trap the player at different directions. As far as possible, this
means that the enemy teammates should not have overlap
paths. So there are two constrained fitness functions for this
example. The first constraint means, as far as possible, that
the teammates must not encounter the player in the same
direction. In general, use the pigeonhole theorem [8]. Num-
ber of teammates in same direction cannot be greater than
teammates divided by number of directions. This is to ensure
equal distribution of teammates in each direction. The sec-
ond constraint is to avoid crossing paths of the teammates.
This is to create higher chance of search space if the player
escapes somewhere else.

Figure 11 shows a similar strategy as in Figure 10. How-
ever, a third fitness constraint is applied. The third constraint
is the minimum distance away from the path of teammates.
This is the explore and trap strategy . No doubt, the main ob-
jective of the teammates is to trap and capture the player in
different directions and paths. In addition, the enemy team-
mates have a secondary objective to explore a wider area of
the map. This will facilitate their future plans, actions, or op-
erations. From Figures 10 and 11, with an additional fitness
function, the path generated is different. A secondary objec-
tive can be included with additional constraints.



International Journal of Computer Games Technology

FIGURre 12: Combine and split trap strategy.

Figure 12 shows the most interesting strategy. One of the
teammates follows the path of another teammate. To make
analysis easier, the enemy teammate right of the player is
known as E1 and the enemy teammate on top of E1 will be
E2. In this situation, the map can be full of land mines. For
every grid path that a character moves, it needs to remove all
the landmines and make sure it is safe to travel before it can
proceed to the next grid. E1 is ahead of E2 to the player. E2
tries to follow the path of E1 because in that case, E2 does not
need to waste effort removing all landmines. This is the first
constrained fitness function, which is try to overlap paths if
they are along the way.

This is also a trap strategy because all teammates trap
the player from different directions. This should be the sec-
ond constraints. That is, all teammates should try to trap the
player in different directions.

Using these two constrained fitness functions, a very nice
strategy is generated from the team Al path plan method.
The teammates know what they are doing. They work to-
gether and save effort for removing landmines. When they
are near to the player, they split their ways to trap the player.

7. CONCLUSION

This paper proposes a new method inspired by genetic algo-
rithm to generate interesting and high quality path plans for
team AL Probabilistic pathfinding is used for path search and
blackboard architecture is used for communication between
teammates. The path generation algorithm runs in real time
without any preprocessing. Only the standard graph data and
a list of gateway points are needed for the A* search. Control-
lable randomness allows the path generation to be tuned eas-
ily. The dynamic generation of path plans adds replay value
to games. In addition, interesting path plans generated from
this method are able to showcase the Al intelligences of the
game which is a good selling point for games.

This strategic path plan generation method can apply to
other applications that involve path searching. It is best for
applications that have many solutions. A good example is
traffic control system or GPS system. Such systems can plan
the path of vehicles to avoid congestion. Congestion condi-
tion is used as constraints for fitness test to fail. For exam-
ple, a congestion condition can be that the number of vehicle
traveling along a road must be less than a maximum number.
Another good application is goal planning with many differ-
ent ways of achieving the goals. This path plan generation
method can generate good quality path plans to achieve the
goals. A real example is a mission-based game where there are
many ways to solve a mission. Choosing a good plan to solve
the mission can bring out the intelligence of game characters.

The path plan generated using this method is by trial and
error. Generate a path, test it, and discard it if it is not good
enough. A future step to go from here is to generate path
plans by functions or heuristic. An example is to add a fitness
function as a heuristic function to the probability pathfind-
ing algorithm. With the fitness heuristics function, the path
plans generated will always be good. This will prevent all the
wasteful discards of low quality path plans.

REFERENCES

[1] T. C. H. John, E. C. Prakash, and N. S. Chaudhari, “Team Al:
probabilistic pathfinding,” in Proceedings of the International
Conference on Game Research and Development, vol. 223 of
ACM International Conference Proceeding, pp. 191-198, Perth,
Australia, December 2006.

[2] S. Rabin, AI Game Programming Wisdom 2, Charles River Me-
dia, Hingham, Mass, USA, 2004.

[3] M. Buckland, Programming Game AI by Example, Wordware,
Plano, Tex, USA, 2005.

[4] D. M. Bourg and G. Seeman, AI for Game Developers, O’Reilly,
Sebastopol, Calif, USA, 2004.

[5] M. Pinter, “Gamasutra,” http://www.gamasutra.com/features/
20010314/pinter_01.htm.

[6] A. Kamphuis, M. Rook, and M. H. Overmars, “Tactical path
finding in urban environments,” 2005, http://www.cs.uu.nl/
centers/give/movie/index.php.

[7] S. 7. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, Englewood Cliffs, NJ, USA, 2002.

[8] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper
Saddle River, NJ, USA, 2nd edition, 2000.


http://www.gamasutra.com/features/20010314/pinter_01.htm
http://www.gamasutra.com/features/20010314/pinter_01.htm
http://www.cs.uu.nl/centers/give/movie/index.php
http://www.cs.uu.nl/centers/give/movie/index.php

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



