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Abstract: Sentence similarity measures play an increasingly important role in text-

related research and applications in areas such as text mining, web page retrieval and 

dialogue systems. Existing methods for computing sentence similarity have been 

adopted from approaches used for long text documents. These methods process 

sentences in a very high dimensional space and are consequently inefficient, require 

human input and are not adaptable to some application domains. This paper focuses 

directly on computing the similarity between very short texts of sentence length. It 

presents an algorithm that takes account of semantic information and word order 

information implied in the sentences. The semantic similarity of two sentences is 

calculated using information from a structured lexical database and from corpus 

statistics. The use of a lexical database enables our method to model human common 

sense knowledge and the incorporation of corpus statistics allows our method to be 

adaptable to different domains. The proposed method can be used in a variety of 

applications that involve text knowledge representation and discovery. Experiments on 

two sets of selected sentence pairs demonstrate that the proposed method provides a 

similarity measure that shows a significant correlation to human intuition.  

 

Keywords:  sentence similarity, semantic nets, corpus, natural language processing, 

word similarity 
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1 Introduction 

Recent applications of natural language processing present a need for an effective 

method to compute the similarity between very short texts or sentences [25]. An 

example of this is a conversational agent/dialogue system with script strategies [1] in 

which sentence similarity is essential to the implementation. The employment of 

sentence similarity can significantly simplify the agent‟s knowledge base by using 

natural sentences rather than structural patterns of sentences. Sentence similarity will 

have internet related applications as well. In web page retrieval, sentence similarity has 

proved to be one of the best techniques for improving retrieval effectiveness, where 

titles are used to represent documents in the named page finding task [29]. In image 

retrieval from the web, the use of short text surrounding the images can achieve a higher 

retrieval precision than the use of the whole document in which the image is embedded 

[8]. In text mining, sentence similarity is used as a criterion to discover unseen 

knowledge from textual databases [2]. In addition, the incorporation of short-text 

similarity is beneficial to applications such as text summarization [9], text 

categorization [15] and machine translation [21]. These exemplar applications show that 

the computing of sentence similarity has become a generic component for the research 

community involved in text-related knowledge representation and discovery. 

Traditionally, techniques for detecting similarity between long texts (documents) 

have centred on analysing shared words [36]. Such methods are usually effective when 

dealing with long texts because similar long texts will usually contain a degree of co-

occurring words. However, in short texts word co-occurrence may be rare or even null. 

This is mainly due to the inherent flexibility of natural language enabling people to 

express similar meanings using quite different sentences in terms of structure and word 

content. Since such surface information in short texts is very limited, this problem poses 
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a difficult computational challenge. The focus of this paper is on computing the 

similarity between very short texts, primarily of sentence length.  

Although sentence similarity is increasingly in demand from a variety of 

applications as described earlier in this paper, the adaptation of available measures to 

computing sentence similarity has three major drawbacks. Firstly a sentence is 

represented in a very high dimensional space with hundreds or thousands of dimensions 

[18], [36]. This results in a very sparse sentence vector which is consequently 

computationally inefficient. High dimensionality and high sparsity can also lead to 

unacceptable performance in similarity computation [5]. Secondly some methods 

require the user‟s intensive involvement to manually pre-process sentence information 

[22]. Thirdly once the similarity method is designed for an application domain, it cannot 

be adapted easily to other domains. This lack of adaptability does not correspond to 

human language usage as sentence meaning may change, to varying extents, from 

domain to domain. To address these drawbacks, this paper aims to develop a method 

that can be used generally in applications requiring sentence similarity computation. An 

effective method is expected to be dynamic in only focusing on the sentences of 

concern, fully automatic without requiring users‟ manual work and readily adaptable 

across the range of potential application domains. 

The next section reviews some related work briefly. Section 3 presents a new 

method for measuring sentence similarity. Section 4 provides implementation 

considerations related to obtaining information from knowledge bases. Section 5 shows 

the similarities calculated for a set of Natural Language Processing (NLP) related 

sentence pairs and carries out an experiment involving 32 human participants providing 

similarity ratings for a dataset of 30 selected sentence pairs.  These results are then used 

to evaluate our similarity method. Section 5 concludes that the proposed method 

coincides with human perceptions about sentence similarity. Finally section 6 

summarizes the work, draws some conclusions and proposes future related work. 
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2 Related Work 

In general, there is extensive literature on measuring the similarity between documents 

or long texts [1], [12], [17], [24], but there are very few publications relating to the 

measurement of similarity between very short texts [10] or sentences.  This section 

reviews some related work in order to explore the strengths and limitations of previous 

methods, and to identify the particular difficulties in computing sentence similarity. 

Related works can roughly be classified into three major categories: word co-occurrence 

methods, corpus-based methods, descriptive features-based methods.  

The word co-occurrence methods are often known as the „bag of words‟ method. 

It is commonly used in Information Retrieval (IR) systems [24]. The systems have a 

pre-compiled word list with n words. The value of n is generally in the thousands or 

hundreds of thousands in order to include all meaningful words in a natural language. 

Each document is represented using these words as a vector in n-dimensional space. A 

query is also considered as a document. The relevant documents are then retrieved 

based on the similarity between the query vector and the document vector. This 

technique relies on the assumption that more similar documents share more of the same 

words. If this technique were applied to sentence similarity, it would have three obvious 

drawbacks:  

1) The sentence representation is not very efficient. The vector dimension n is very 

large compared to the number of words in a sentence, thus the resulting vectors 

would have many null components.  

2) The word set in IR systems usually exclude function words such as the, of, an, 

etc. Function words are not very helpful for computing document similarity, but 

cannot be ignored for sentence similarity because they carry structural 

information, which is useful in interpreting sentence meaning. If function words 

were included, the value for n would be greater still. 
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3) Sentences with similar meaning do not necessarily share many words.  

One extension of word co-occurrence methods is the use of a lexical dictionary to 

compute the similarity of a pair of words taken from the two sentences that are being 

compared (where one word is taken from each sentence to form a pair). Sentence 

similarity is simply obtained by aggregating similarity values of all word pairs [28]. 

Another extension of word co-occurrence techniques leads to the pattern matching 

methods which are commonly used in conversational agents and text mining [7]. Pattern 

matching differs from pure word co-occurrence methods by incorporating local 

structural information about words in the predicated sentences. A meaning is conveyed 

in a limited set of patterns where each is represented using a regular expression [14] 

(generally consisting of parts of words and various wildcards) to provide generalisation. 

Similarity is calculated using a simple pattern matching algorithm. This technique 

requires a complete pattern set for each meaning, in order to avoid ambiguity and 

mismatches. Manual compilation is an immensely arduous and tedious task. At present 

it is not possible to prove that a pattern set is complete and thus there is no automatic 

method for compiling such a pattern set. Finally, once the pattern sets are defined, the 

algorithm is unable to cope with unplanned novel utterances from human users. 

One recent active field of research that contributes to sentence similarity 

computation is the methods based on statistical information of words in a huge corpus. 

Well known methods in corpus-based similarity are the latent semantic analysis (LSA) 

[10], [17], [18] and the Hyperspace Analogues to Language (HAL) model [5]. Some 

leading researchers in LSA boldly claim that LSA is a complete model of language 

understanding [17]. In LSA, a set of representative words needs to be identified from a 

large number of contexts (each described by a corpus). A word by context matrix is 

formed based on the presence of words in contexts. The matrix is decomposed by 

singular value decomposition (SVD) into the product of three other matrices including 

the diagonal matrix of singular values [19]. The diagonal singular matrix is truncated by 
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deleting small singular values. In this way, the dimensionality is reduced. The original 

word by context matrix is then reconstructed from the reduced dimensional space. 

Through the process of decomposition and reconstruction, LSA acquires word 

knowledge that spreads in contexts. When LSA is used to compute sentence similarity, 

a vector for each sentence is formed in the reduced dimension space, similarity is then 

measured by computing the similarity of these two vectors [10]. Because of the 

computational limit of SVD, the dimension size of the word by context matrix is limited 

to the several hundreds. As the input sentences may be from an unconstrained domain 

(and thus not represented in the contexts) some important words from the input 

sentences may not be included in the LSA dimension space. Secondly, the dimension is 

fixed and so the vector is fixed and is thus likely to be a very sparse representation of a 

short text such as a sentence. Like other methods, LSA ignores any syntactic 

information from the two sentences being compared and is understood to be more 

appropriate for larger texts than the sentences dealt with in this work [18]. 

Another important work in corpus-based methods is Hyperspace Analogues to 

Language (HAL) [5]. Indeed HAL is closely related to LSA and they both capture the 

meaning of a word or text using lexical co-occurrence information. Unlike LSA that 

builds an information matrix of words by text units of paragraphs or documents, HAL 

builds a word-by-word matrix based on word co-occurrences within a moving window 

of a pre-defined width. The window (typically with a width of 10 words) moves over 

the entire text of the corpus. An NN   matrix is formed for a given vocabulary of N 

words. Each entry of the matrix records the (weighted) word co-occurrences within the 

window moving through the entire corpus. The meaning of a word is then represented 

as a 2N dimensional vector by combining the corresponding row and column in the 

matrix. Subsequently a sentence vector is formed by adding together the word vectors 

for all words in the sentence. Similarity between two sentences is calculated using a 

metric such as Euclidean distance. However the authors‟ experimental results showed 
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that HAL was not so promising as LSA in the computation of similarity for short texts 

[5]. HAL‟s drawback may be due to the building of the memory matrix and its approach 

to forming sentence vectors: the word-by-word matrix does not capture sentence 

meaning well and the sentence vector becomes diluted as large number of words are 

added to it. 

The third category of related work is the descriptive features-based methods. The 

feature vector method tries to represent a sentence using a set of predefined features 

[22]. Basically a word in a sentence is represented using semantic features, for example, 

nouns may have features such as HUMAN (with value of human or nonhuman), 

SOFTNESS (soft or hard), and POINTNESS (pointed or rounded). A variation of 

feature vector methods is the introduction of primary features and composite features 

[12], [13]. Primary features are those primitive features that compare single items from 

each text unit. Composite features are the combination of pairs of primitive features. A 

text is then represented in a vector consisting of values of primary features and 

composite features. Similarity between two texts is obtained through a trained classifier. 

The difficulties for this method lie in the definition of effective features and in 

automatically obtaining values for features from a sentence. The preparation of a 

training vector set could be an impractical, tedious and time-consuming task. Moreover, 

features can be well-defined for concrete concepts; however it still is problematic to 

define features for abstract concepts. 

Overall, the aforementioned methods compute similarity according to the co-

occurring words in the texts, and ignore syntactic information. They work well for long 

texts because long texts have adequate information (i.e. they have a sufficient number of 

co-occurring words) for manipulation by a computational method. The proposed 

algorithm addresses the limitations of these existing methods by forming the word 

vector dynamically based entirely on the words in the compared sentences. The 

dimension of our vector is not fixed but varies with the sentence pair and so it is far 
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more computationally efficient than existing methods. Our algorithm also considers 

word order, which is a further aspect of primary syntactic information [1]. 

3 The Proposed Text Similarity Method 

The proposed method derives text similarity from semantic and syntactic information 

contained in the compared texts. A text is considered to be a sequence of words each of 

which carries useful information. The words along with their combination structure 

make a text convey a specific meaning. Texts considered in this paper are assumed to be 

of sentence length.  

Figure 1 shows the procedure for computing the sentence similarity between two 

candidate sentences. Unlike existing methods that use a fixed set of vocabulary, the 

proposed method dynamically forms a joint word set only using all the distinct words in 

the pair of sentences. For each sentence, a raw semantic vector is derived with the 

assistance of a lexical database. A word order vector is formed for each sentence, again 

using information from the lexical database. Since each word in a sentence contributes 

differently to the meaning of the whole sentence, the significance of a word is weighted 

by using information content derived from a corpus. By combining the raw semantic 

vector with information content from the corpus, a semantic vector is obtained for each 

of the two sentences. Semantic similarity is computed based on the two semantic 

vectors. An order similarity is calculated using the two order vectors. Finally the 

sentence similarity is derived by combining semantic similarity and order similarity. 
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Figure 1.  Sentence similarity computation diagram. 

The following sub-sections present a detailed description of each of the above 

steps. Since semantic similarity between words is used both in deriving sentence 

semantic similarity and word order similarity, we will first describe our method for 

measuring word semantic similarity. 

3.1 Semantic Similarity between Words 

A number of semantic similarity methods have been developed in the previous decade. 

Different similarity methods have proved to be useful in some specific applications of 

computational intelligence [4], [23]. Generally these methods can be categorised into 

two groups: edge counting based (or dictionary/thesaurus based) methods and 

information theory based (or corpus based) methods, a detailed review on word 

similarity can be found in [20], [34].  After extensively investigating a number of 

methods, we proposed a word similarity measure which provides the best correlation to 

human judges for a benchmark word set as reported in [20].  This section summarises 

these research findings. 

Thanks to the success of a number of computational linguistic projects, semantic 

knowledge bases are readily available, some examples being, WordNet [26], Spatial 

Date Transfer Standard [39] and Gene Ontology [38]. The knowledge bases tend to 

consist of a hierarchical structure modelling human common sense knowledge for a 
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particular domain, or in this case general English Language usage (WordNet [26]). The 

hierarchical structure of the knowledge base is important in determining the semantic 

distance between words (see Figure 2 for an example portion). 

entity, something

person, human, …

male,

male person
female,

female person

life form, being …

juvenile,

juvenile person

animal,

beast, …

adult,

grownup

professional,

professional person

educator,

pedagogue

teacher,

instructor

male child,

boy, child

female child, girl,

child, little girl
child, kid,

minor, …

 

Figure 2.  Hierarchical semantic knowledge base. 

Given two words: w1 and w2, we need to find the semantic similarity ),( 21 wws . We can 

do this by analysis of the lexical knowledge base (in this paper we have used WordNet) 

as follows. Words are organised into synonym sets (synsets) in the knowledge base 

[26], with semantics and relation pointers to other synsets. Therefore we can find the 

first class in the hierarchical semantic network that subsumes the compared words. One 

direct method for similarity calculation is to find the minimum length of path 

connecting the two words [30]. For example, the shortest path between boy and girl in 

Figure 2 is boy-male-person-female-girl, the minimum path length is 4, the synset of 

person is called the subsumer for words of boy and girl; while the minimum path length 

between boy and teacher is 6. Thus we could say girl is more similar to boy than 

teacher to boy. Rada et al [30] demonstrated that this method works well on their much 

constrained medical semantic nets (with 15000 medical terms). However this method 

may be less accurate if it is applied to larger and more general semantic nets such as 

WordNet [26]. For example, the minimum length from boy to animal is 4, less than 
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from boy to teacher, but intuitively boy is more similar to teacher than to animal (unless 

you are cursing the boy). To address this weakness, the direct path length method must 

be modified by utilising more information from the hierarchical semantic nets. It is 

apparent that words at upper layers of the hierarchy have more general semantics and 

less similarity between them, while words at lower layers have more concrete semantics 

and more similarity. Therefore the depth of word in the hierarchy should be taken into 

account. In summary, similarity between words is determined not only by path lengths 

but also by depth. We propose that the similarity ),( 21 wws  between words w1 and w2 is a 

function of path length and depth as follows: 

 ),(),( 21 hlfwws   ( 1 ) 

where, l is the shortest path length between w1 and w2, h is the depth of subsumer in the 

hierarchical semantic nets. 

We assume that Equation (1) can be rewritten using two independent functions as: 

 )()(),( 2121 hflfwws   ( 2 ) 

f1 and f2 are transfer functions of path length and depth respectively. We call these 

information sources, of path length and depth, attributes.  

3.1.1 Properties of Transfer Functions 

Values of an attribute in Equation (2) may cover a large range up to infinity, while the 

interval of similarity should be finite with extremes of exactly the same to no similarity 

at all. If we assign exactly the same with a value of 1 and no similarity as 0, then the 

interval of similarity is [0, 1]. The direct use of information sources as a metric of 

similarity is inappropriate due to its infinite property. Therefore it is intuitive that the 

transfer function from information sources to semantic similarity is a non-linear 

function. Taking path length as an example, when the path length decreases to zero, the 

similarity would monotonically increase towards the limit 1, while path length increases 
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infinitely (although this would not happen in an organised lexical database), the 

similarity should monotonically decrease to 0. Therefore, to meet these constraints the 

transfer function must be a non-linear function. The non-linearity of the transfer 

function is taken into account in the derivation of the formula for semantic similarity 

between two words as in the following sub-sections. 

3.1.2 Contribution of Path Length 

For a semantic net hierarchy, as in Figure 2, the path length between two words, w1 and 

w2, can be determined from one of three cases: 

1. w1 and w2 are in the same synset 

2. w1 and w2 are not in the same synset, but the synset for w1 and w2 contain one or 

more common words. For example, in Figure 2, the synset for boy and synset for 

girl contain one common word child. 

3. w1 and w2 are neither in the same synset nor do their synsets contain any common 

words. 

Case 1 implies that w1 and w2 have the same meaning, we assign the semantic 

path length between w1 and w2 to 0. Case 2 indicates that w1 and w2 partially share the 

same features, we assign the semantic path length between w1 and w2 to 1. For case 3, 

we count the actual path length between w1 and w2.  Taking the above considerations 

into account, we set f1(l) in Equation (2) to be a monotonically decreasing function of l: 

 llf  e)(1  ( 3 ) 

where  is a constant. The selection of the function in exponential form ensures that f1 

satisfies the constraints discussed in Section 3.2.1, and the value of f1 is within the range 

from 0 to 1. 
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3.1.3 Scaling Depth Effect 

Words at upper layers of hierarchical semantic nets have more general concepts and less 

semantic similarity between words than words at lower layers. This behaviour must be 

taken into account in calculating ),( 21 wws . We therefore need to scale down ),( 21 wws  

for subsuming words at upper layers and to scale up ),( 21 wws for subsuming words at 

lower layers. As a result, f2(h) should be a monotonically increasing function with 

respect to depth h. We set f2 as: 
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where 0  is a smoothing factor. As  , then the depth of a word in the 

semantic nets is not considered. 

In summary, we propose a formula for a word similarity measure as: 

 
hh

hh
lwws
















ee

ee
e),( 21  ( 5 ) 

where ]1,0(],1,0[    are parameters scaling the contribution of shortest path length 

and depth, respectively. The optimal value of α and β are dependant on the knowledge 

base used and can be determined using a set of word pairs with human similarity 

ratings. For WordNet, the optimal parameters for the proposed measure are: =0.2, 

=0.45 as reported in [20]. 

3.2 Semantic Similarity between Sentences 

Sentences are made up of words, so it is reasonable to represent a sentence using the 

words in the sentence. Unlike classical methods that use a pre-compiled word list 

containing hundreds of thousands of words, our method dynamically forms the semantic 

vectors solely based on the compared sentences. Recent research achievements in 

semantic analysis are also adapted to derive an efficient semantic vector for a sentence. 

Given two sentences: T1 and T2, a joint word set is formed: 
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The joint word set T contains all the distinct words from T1 and T2. Since inflectional 

morphology may cause a word to appear in a sentence with different forms that convey 

a specific meaning for a specific context, we use word form as it appears in the 

sentence. For example, boy and boys, woman and women are considered as four distinct 

words and all included in the joint word set. Thus the joint word set for two sentences 

T1: RAM keeps things being worked with. 

T2: The CPU uses RAM as a short-term memory store. 

is 

T = {RAM keeps things being worked with The CPU uses as a short-term 

memory store} 

Since the joint word set is purely derived from the compared sentences, it is 

compact with no redundant information. The joint word set, T, can be viewed as the 

semantic information for the compared sentences. Each sentence is readily represented 

by the use of the joint word set as follows. The vector derived from the joint word set is 

called the lexical semantic vector, denoted by š. Each entry of the semantic vector 

corresponds to a word in the joint word set, so the dimension equals the number of 

words in the joint word set. The value of an entry of the lexical semantic vector, 

ši(i=1,2,...,m), is determined by the semantic similarity of the corresponding word to a 

word in the sentence. Take T1 as an example: 

Case 1: If wi appears in the sentence, ši is set to 1. 

Case 2: If wi is not contained in T1, a semantic similarity score is computed between wi 

and each word in the sentence T1, using the method presented in Section 3.1. 

Thus the most similar word in T1 to wi  is that with the highest similarity score 

ς.  If ς exceeds a preset threshold, then ši = ς, otherwise ši = 0. 

The reason for the introduction of the threshold is two fold. Firstly, since we use 

the word similarity of distinct words (different words) the maximum similarity scores 
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may be very low, indicating that the words are highly dissimilar.  In this case we would 

not want to introduce such noise to the semantic vector. Secondly classical word 

matching methods [1] can be unified into the proposed method by simply setting the 

threshold equal to one. Unlike classical methods, we also keep all function words. This 

is because function words carry syntactic information that cannot be ignored if a text is 

very short (e.g. sentence length). Although function words are retained in the joint word 

set, they contribute less to the meaning of a sentence than other words. Furthermore 

different words contribute towards the meaning of a sentence to differing degrees. Thus 

a scheme is needed to weight each word. We weight the significance of a word using its 

information content [32].  

It has been shown that words that occur with a higher frequency (in a corpus) 

contain less information than those that occur with lower frequencies [24]. The 

information content of a word is derived from its probability in a corpus (see Section 

4.2.2 for details). Each cell is weighted by the associated information )( iwI  and )~( iwI . 

Finally the value of an entry of the semantic vector is: 

 )~()( iii wIwIss 


 ( 6 ) 

where wi is a word in the joint word set, iw~  is its associated word in the sentence. The 

use of )( iwI  and )~( iwI  allows the concerned two words contribute to similarity based 

on their individual information contents. The semantic similarity between two sentences 

is defined as the cosine coefficient between the two vectors: 

 
21

21

ss

ss




sS  ( 7 ) 

It is worth noting that the proposed method does not currently conduct word sense 

disambiguation for polysemous words. This is based on the following considerations. 

Firstly we wanted our model to be as simple as possible and not too demanding in terms 

of computing resources. The integration of word sense disambiguation would scale up 

the model complexity. Secondly existing sentence similarity methods have not included 
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word sense disambiguation. This might be a consequence of the first factor. Thirdly, 

even though the proposed method does not use disambiguation, it still performs well, 

achieving promising results as shown later in our experiments. 

3.3 Word Order Similarity between Sentences 

Let us consider a pair of sentences, T1 and T2, that contain exactly the same words in the 

same order with the exception of two words from T1 which occur in the reverse order in 

T2. For example: 

T1: A quick brown dog jumps over the lazy fox. 

T2: A quick brown fox jumps over the lazy dog. 

Since these two sentences contain the same words, any methods based on “bag of 

words” will give a decision that T1 and T2 are exactly the same. However it is clear for a 

human interpreter that T1 and T2 are only similar to some extent. The dissimilarity 

between T1 and T2 is the result of the different word order. Therefore a computational 

method for sentence similarity should take into account the impact of word order. 

For the example pair of sentences T1 and T2, the joint word set is: 

T = {A quick brown dog jumps over the lazy fox} 

We assign a unique index number for each word in T1 and T2. The index number is 

simply the order number that the word appears in the sentence. For example, the index 

number is 4 for dog and 6 for over in T1. In computing the word order similarity, a word 

order vector, r, is formed for T1 and T2 respectively based on the joint word set T. 

Taking T1 as an example, for each word wi in T we try to find the same or the most 

similar word in T1 as follows. 

1. If the same word is present in T1, we fill the entry for this word in r1 with the 

corresponding index number from T1. Otherwise, we try to find the most 

similar word iw~  in T1 (as described in section 3.2) 

2. If the similarity between wi and iw~  is greater than a pre-set threshold, the entry 

of wi in r1 is filled with the index number of iw~  in T1. 
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3. If the above two searches fail, the entry of wi in r1 is 0. 

Having applied the above procedure, the word order vectors for T1 and T2 are r1 and r2 

respectively. For the example sentence pair, we have: 

r1 = {1  2  3  4  5  6  7  8  9} 

r2 = {1  2  3  9  5  6  7  8  4} 

Thus a word order vector is the basic structural information carried by a sentence. The 

task of dealing with word order is then to measure how similar the word order in two 

sentences is. We propose a measure for measuring word order similarity of two 

sentences as: 
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That is, word order similarity is determined by the normalised difference of word order. 

The following analysis will demonstrate that Sr is an efficient metric for indicating word 

order similarity. To simplify the analysis, we will consider only a single word order 

difference, as in sentences T1 and T2. 

Given two sentences: T1 and T2, where both sentences contain exactly the same 

words and the only difference is that a pair of words in T1 appears in the reverse order in 

T2. The word order vectors are: 

}{ 11 mkjj aaaa  r  for T1 

}{ 12 mkjj bbbb  r   for T2 

aj and aj+k are the entries for the considered word pair in T1 , bj and bj+k are the 

corresponding entries for the word pair in T2 , k is the number of words from wj to wj+k . 

From the above assumptions, we have: 

iba ii   for i=1, 2, …, m except kjji  ,  

jba kjj    

kjba jkj   

rrr  21  
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then: 
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We can also derive the same formula for a sentence pair with only one different word at 

the kth entry.  For the more general case with a more significant difference in word 

order or a larger number of different words, the analytical form of the proposed metric 

becomes more complicated (which we do not intend to present in this paper). The above 

analysis shows that Sr is a suitable indication of word order information. Sr equals 1 if 

there is no word order difference. Sr is greater or equal to 0 if word order difference is 

present. Since Sr is a function of k, it can reflect the word order difference and the 

compactness of a word pair. The following features of the proposed word order metric 

can also be observed. 

1. Sr can reflect the words shared by two sentences. 

2. Sr can reflect the order of a pair of the same words in two sentences. It only 

indicates the word order, while it is invariant regardless of the location of the 

word pair in an individual sentence. 

3. Sr is sensitive to the distance between the two words of the word pair. Its value 

decreases as the distance increase. 

4. For the same number of different words or the same number of word pairs in a 

different order, Sr is proportional to the sentence length (number of words), its 

value increases as the sentence length increases. This coincides with intuitive 

knowledge, that is, two sentences would share more of the same words for a 

certain number of different words or different word order if the sentence length 

is longer.  

Therefore the proposed metric is a good one for indicating the word order in terms of 

word sequence and location in a sentence.  
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3.4 Overall Sentence Similarity 

Semantic similarity represents the lexical similarity. On the other hand, word order 

similarity provides information about the relationship between words: which words 

appear in the sentence and which words come before or after other words. Both 

semantic and syntactic information (in terms of word order) play a role in conveying the 

meaning of sentences. Thus the overall sentence similarity is defined as a combination 

of semantic similarity and word order similarity: 
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where 1  decides the relative contributions of semantic and word order information 

to the overall similarity computation. Since syntax plays a subordinate role for semantic 

processing of text [11],  should be a value greater than 0.5, i.e., ]1,5.0( . 

4 Implementation Using Semantic Nets and Corpus Statistics 

Two databases were used in the implementation of the proposed method, namely 

WordNet [26] and the Brown Corpus [3]. This section provides a brief description of 

these two databases and then presents the search in the lexical taxonomy and the 

derivation of statistics from the corpus. 

4.1 The Databases 

WordNet is an on-line semantic dictionary - a lexical database, developed at Princeton 

by a group led by Miller [26]. The version used in this study is WordNet 1.6 which has 

121,962 words organised in 99,642 synonym sets. WordNet partitions the lexicon into 

nouns, verbs, adjectives, and adverbs. These sets of words are organised into synonym 

sets, called synsets. A synset represents a concept in which all words have a similar 

meaning. Thus words in a synset are interchangeable in some syntax. Knowledge in a 

synset includes the definition of these words as well as pointers to other related synsets. 
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The Brown Corpus [3] comprises of 1,014,000 American English words and was 

compiled at the Brown University for standard texts in 1961.   

In this study, WordNet is the main semantic knowledge base for the calculation of 

semantic similarity, while the Brown Corpus is used to provide information content. 

4.2 Obtaining Information Sources 

The implementation of semantic similarity measures consists of two sub-tasks 

concerning preparation of the information sources that are used in the formation of the 

semantic and word order vectors. Firstly, a search of the semantic net is performed for 

the shortest path length between the synsets containing the compared words and the 

depth of the first synset subsuming the synsets corresponding to the compared words 

[20]. Secondly, the calculation of the necessary statistical information from the Brown 

Corpus is performed. 

4.2.1 Search in WordNet  

Synsets in WordNet are designed in a tree-like hierarchical structure ranging from many 

specific terms at the lower levels to a few generic terms at the top. The lexical hierarchy 

is connected by following trails of superordinate terms in “is a” or “is a kind of” (ISA) 

relations. To establish a path between two words, each climbs up the lexical tree until 

the two climbing paths meet. The synset at the meeting point of the two climbing paths 

is called the subsumer, a path connecting the two words is then found through the 

subsumer. Path length is obtained by counting synset links along the path between the 

two words. The depth of the subsumer is derived by counting the levels from the 

subsumer to the top of the lexical hierarchy. If a word is polysemous (i.e., a word 

having many meanings), multiple paths may exist between the two words. Only the 

shortest path is then used in calculating semantic similarity between words. The 

subsumer on the shortest path is considered in deriving the depth of the subsumer. Most 

previous similarity measures only use the shortest path length from this ISA search. It is 
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commonly accepted that other semantic relations also contribute to the determination of 

semantic similarity. One important such relation is part-whole (or HASA) relation. Thus 

we also search for HASA relations in WordNet in obtaining the shortest path length as 

did [20], [34]. In addition, a mechanism is used to deal with the following exceptional 

case, i.e., words not contained in WordNet. If the word is not in WordNet, then the 

search will not proceed and the word similarity is simply assigned to zero. A warning 

message on validity of the similarity is prompted to the user. Alternatively, this problem 

could be solved if the missing word exists in another lexical database through 

knowledge fusion [34]. 

4.2.2 Statistics from the Brown Corpus 

The probability of a word w in the corpus is computed simply as the relative frequency: 
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where N is the total number of words in the corpus, n is the frequency of the word w in 

the corpus (increased by 1 to avoid presenting an undefined value to the logarithm). 

Information content of w in the corpus is defined as: 
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so ]1,0[I .  

4.3 Illustrative Example: Similarities for a selected sentence pair 

To illustrate how to compute the overall sentence similarity for a pair of sentences, we  

provide below a detailed description of our method  for two example sentences: 

T1: RAM keeps things being worked with. 

T2: The CPU uses RAM as a short-term memory store. 

The joint word set is: 
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T = {RAM keeps things being worked with The CPU uses as a short-term 

memory store} 

Semantic vectors for T1 and T2 can be formed from T and corpus statistics. The process 

of deriving semantic vectors for T1 is shown in Table 1. 

 
 RAM keeps things being worked with The CPU uses as a short-term memory store 

RAM 1            0.8147 0.8147 

keeps  1             

things   1     0.2802 0.4433      

being    1           

worked     1          

with      1         

               

š 1 1 1 1 1 1 0 0.2802 0.4433 0 0 0 0.8147 0.8147 

Weight I(RAM) 

I(RAM) 

I(keeps) 

I(keeps) 

I(things) 

I(things) 

I(being) 

I(being) 

I(worked) 

I(worked) 

I(with) 

I(with) 

I(The) 

I(The) 

I(CPU) 

I(things) 

I(uses) 

I(things) 

I(as) 

I(as) 

I(a) 

I(a) 

I(short-term) 

I(short-term) 

I(memory) 

I(RAM) 

I(store) 

I(RAM) 

Table 1. The process for deriving the semantic vector. 

In the table, the first row lists words in the joint word set T, the first column lists 

words in sentence T1 and all words are listed in order as they appear in T and T1. For 

each word in T, if the same word exists in T1, the cell at the cross point is set to 1. 

Otherwise the cell at the cross point of the most similar word is set to their similarity 

value or 0, dependent on whether the highest similarity value exceeds the pre-set 

threshold which was set to 0.2
1
 in our experiments. For example, the word memory is 

not in T1, but the most similar word is RAM, with a similarity of 0.8147. Thus, the cell 

at the cross point of memory and RAM is set to 0.8147 as it exceeds the threshold of 0.2. 

All other cells are left empty. The lexical vector š is obtained by selecting the largest 

value in each column. The last row lists the corresponding information content for 

weighting the significance of the word. As a result, the semantic vector for T1 is: 

s1={0.390  0.330  0.179  0.146  0.239  0.074  0  0.082  0.1  0  0  0  0.263  0.288} 

In the same way, we get: 

                                                
1
 Empirically derived threshold, word similarity values of less than 0.2 are intuitively 

too dissimilar.  This value may change for semantic nets other than WordNet.  



24 

s2={0.390  0  0.1  0  0  0  0.023  0.479  0.285  0.075  0.043  0.354  0.267  0.321} 

From s1 and s2, the semantic similarity between the two sentences is Ss=0.6139. 

Similarly the word order vectors are derived as: 

r1={1  2  3  4  5  6  0  3  3  0  0  0  1  1} 

r2={4  0  3  0  0  0  1  2  3  5  6  7  8  9} 

and thus Sr=0.2023. 

Finally the similarity between sentences “RAM keeps things being worked with” 

and “The CPU uses RAM as a short-term memory store” is 0.5522, using 0.85 for 
2
. 

This pair of sentences has only one co-occurrence word RAM, but the meaning of the 

sentences is similar. Word co-occurrence methods would result in a very low similarity 

measure [24], while the proposed method gives a relatively high similarity. This 

example demonstrates that the proposed method can capture the meaning of the 

sentence regardless of the co-occurrence of words. 

5 Experimental Results 

Although a few related studies have been published, there are currently no suitable 

benchmark datasets (or even standard text sets) for the evaluation of sentence (or very 

short text) similarity methods.  Building such a dataset is not a trivial task due to 

subjectivity in the interpretation of language, which is in part due to the lack of deeper 

contextual information.  Thus the construction of a suitable data set would require a 

large-scale psychological study over a cross-section of (the common) language speakers 

so as to include different cultural backgrounds.  Such a large study is outside the scope 

of this paper but in order to evaluate our similarity measure a preliminary data set of 

sentence pairs was constructed with human similarity scores provided using 32 

participants (this will form part of a larger future study).  These sentences all consist of 

dictionary definitions of words and so a further dataset of non-definitive sentences was 

                                                

2
 Empirically derived value through experiments on sentence pairs. 
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produced from the NLP literature. Currently no human similarities for this second 

dataset exist so it is left to the reader to judge our algorithm's performance for each of 

these sentence pairs.  

Our similarity method requires three parameters to be determined before use: a 

threshold for deriving the semantic vector, a threshold for forming the word order 

vector, and a factor  for weighting the significance between semantic information and 

syntactic information. All parameters in the following experiments were empirically 

found using a small set of sentence pairs, evidence from previous publications [20][11] 

and intuitive considerations as follows. Since syntax plays a subordinate role for 

semantic processing of text, we weighted the semantic part higher, 0.85 for . For the 

semantic threshold, we considered two aspects: to detect and utilise similar semantic 

characteristics of words to the greatest extent and to keep the noise low. This requires us 

to use a semantic threshold which is small, but not too small. Using a small threshold 

allows the model to capture sufficient semantic information distributed across all of the 

words. However too small a threshold will introduce excessive noise to the model 

causing a deterioration of the overall performance. A similar consideration applied to 

the word order threshold, but we used a higher value. For the word order vector to be 

useful the pair of linked words (the most similar words from the two sentences) must 

intuitively be quite similar, as the relative ordering of less similar pairs of words 

provides very little information. Based on these considerations, we first chose some 

starting values for the three parameters and then identified the appropriate values using 

the selected sentence pairs. In this way we empirically found 0.4 for word order 

threshold, 0.2 for semantic threshold and 0.85 for . 

5.1 Selected NLP Sentences 

Sentence pairs in Table 2, were selected from a variety of papers and books on natural 

language understanding. It can be seen that the similarities in the table are fairly 

consistent with human intuition. One obvious exception to this is the first pair of 
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sentences in which the word „bachelor‟ has been replaced with a phrase „unmarried 

man‟.  As our technique compares words on a word-by-word basis, such multiple word 

phrases are currently missed, although similarities are found between the word pairs: 

bachelor-man and bachelor-unmarried. In addition, there is a big difference in 

similarity between examples 6 and 14, which only differ in the type of fruit involved 

(apple vs orange). This difference is the consequence of neglecting multiple senses of 

polysemous words as stated in Section 3.2. Orange is a colour as well as a fruit and is 

found more similar to another word on this basis. Word sense disambiguation may 

narrow this difference and it needs to be investigated in future work. 

 

Sentence Pair Similarity Sentence Pair Similarity 

1. I like that bachelor. 

I like that unmarried man. 0.561 
2. I have a pen. 

Where do you live? 0 

3. John is very nice. 

Is John very nice? 0.977 
4. Red alcoholic drink. 

A bottle of wine. 0.585 

5. It is a dog. 

That must be your dog. 0.739 
6. Red alcoholic drink. 

Fresh orange juice. 0.611 

7. It is a dog. 

It is a log. 0.623 
8. Red alcoholic drink. 

An English dictionary. 0 

9. It is a dog. 

It is a pig. 0.790 
10. Dogs are animals. 

They are common pets. 0.738 

11. I have a hammer. 

Take some nails. 0.508 
12. Canis familiaris are 

animals. 

Dogs are common pets. 

0.362 

13. I have a pen. 

Where is ink. 0.129 
14. Red alcoholic drink. 

Fresh apple juice. 0.420 

15. A glass of cider. 

A full cup of apple juice. 0.678 
16. I have a hammer. 

Take some apples 0.121 

Table 2. Similarities between selected sentence pairs. 

5.2 Experiment with Human Similarities of Sentence Pairs 

In order to evaluate our similarity measure, we collected human ratings for the 

similarity of pairs of sentences following existing designs for word similarity measures.  

The participants consisted of 32 volunteers, all native speakers of English educated to 

graduate level or above. We began with 65 noun word pairs whose semantic similarity 
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was originally measured by Rubenstein and Goodenough [35].  This data has been used 

in many experiments in the intervening years, its properties are well-known and it has 

shown stability when re-rated with new groups of participants. The frequency 

distribution of the data exhibits a strong bias, however, with two-thirds of the data 

falling in the upper and lower quarters of the similarity range. A specific subset of 30 

pairs has been used, which reduces bias in the frequency distribution [6], [27]. 

5.2.1 Materials 

We began with the set of 65 noun pairs from Rubenstein & Goodenough and replaced 

them with their definitions from the Collins Cobuild dictionary [37]. Cobuild dictionary 

definitions are “…written in full sentences, using vocabulary and grammatical 

structures that occur naturally with the word being explained.” The dictionary is 

constructed using information from a large corpus, the Bank of English, which contains 

400 million words.  Where more than one sense of a word was given we chose the first 

noun sense in the list. Two of the definitions were modified. The noun “Smile” was 

simply defined in terms of the verb “to smile.” We substituted a phrase from the verb 

definition into the noun definition to form a usable sentence. There are some similar 

problems where one noun is defined in terms of another e.g. Automobile/Car, 

Cord/String, and Grin/Smile. As each of these combinations is used in the data set we 

have not made any substitutions in the definitions.  The definition of “Bird” was split 

over three short sentences. We considered all to contribute to a distinctive definition so 

we combined them as phrases in a single, longer sentence. 

Two of the word pairs have definitions that are genuinely virtually identical, 

Rooster/Cock and Midday/Noon.  The complete sentence data set used in this study is 

available at http://www.docm.mmu.ac.uk/STAFF/D.McLean/SentenceResults.htm 
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5.2.2 Procedure 

The participants were asked to complete a questionnaire, rating the similarity of 

meaning of the sentence pairs on the scale from 0.0 (minimum similarity) to 4.0 

(maximum similarity), as in Rubenstein & Goodenough [35]. Each sentence pair was 

presented on a separate sheet.  The order of presentation of the sentence pairs was 

randomised in each questionnaire.  The order of the two sentences making up each pair 

was also randomised.  This was to prevent any bias being introduced by order of 

presentation. The participants were asked to complete the questionnaire in their own 

time, and to work through from start to end in a single sitting. A rubric was provided 

which contained linguistic anchors for the five major scale points 0.0, 1.0, 2.0, 3.0, 4.0 - 

taken from a study by Charles [6].  This is important because, according to Charles it 

yields "psychometric properties analogous to an interval scale.” It is common practice in 

similarity measurement to use statistics such as mean, standard deviation and Pearson 

product-moment correlation.  All of these require the data to be measured on an interval 

scale or better.  Use of the linguistic anchors reconciles these otherwise conflicting 

requirements. 

Each of the 65 sentence pairs was assigned a semantic similarity score calculated 

as the mean of the judgments made by the participants.  The distribution of the semantic 

similarity scores was heavily skewed towards the low similarity end of the scale. 

Following a similar procedure to Miller and Charles [27] a subset of 30 sentence pairs 

was selected to obtain a more even distribution across the similarity range. This subset 

contains all of the sentence pairs rated 1.0 to 4.0 and 11 (from a total of 46) sentences 

rated 0.0 to 0.9 selected at equally spaced intervals from the list. These can be seen in 

Table 3, all human similarity scores are provided as the mean score for each pair and 

have been scaled into the range [0..1], for comparison with our method's similarity 

measure (algorithm similarity measure). 
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R&G 
No. 

R&G  
Word  
Pair 

Human 
Similarity 
(Mean) 

Algorithm  
Similarity 
Measure 

R&G 
No. 

R&G  
Word  
Pair 

Human 
Similarity 
(Mean) 

Algorithm  
Similarity 
Measure 

1  Cord 
smile 

0.01 
 

0.33 51 Glass 
tumbler 

0.14 0.65 

5  Autograph 
shore 

0.01 0.29 52 Grin 
smile 

0.49 0.49 

9  Asylum 
fruit 

0.01 0.21 53 Serf 
slave 

0.48 0.39 

13  Boy 
rooster 

0.11 0.53 54 Journey 
voyage 

0.36 0.52 

17 Coast 
forest 

0.13 0.36 55 Autograph 
signature 

0.41 0.55 

21 Boy 
sage 

0.04 0.51 56 Coast 
shore 

0.59 0.76 

25 Forest 
graveyard 

0.07 0.55 57 Forest 
woodland 

0.63 0.70 

29 Bird 
woodland 

0.01 0.33 58 Implement 
Tool 

0.59 0.75 

33 Hill 
woodland 

0.15 0.59 59 Cock 
rooster 

0.86 1.00 
 

37 Magician 
oracle 

0.13 0.44 60 Boy 
lad 

0.58 0.66 

41 Oracle 
sage 

0.28 0.43 61 Cushion 
pillow 

0.52 0.66 

47 Furnace 
stove 

0.35 0.72 62 Cemetery 
graveyard 

0.77 0.73 

48 Magician 
wizard 

0.36 0.65 63 Automobile 
car 

0.56 0.64 

49 Hill 
mound 

0.29 0.74 64 Midday 
noon 

0.96 1.0 

50 Cord 
string 

0.47 0.68 65 Gem 
jewel 

0.65 0.83 

Table 3. Sentence data set results. 

5.2.3 Results and Discussion 

Our algorithm's similarity measure achieved a reasonably good Pearson correlation 

coefficient of 0.816 with the human ratings, significant at the 0.01 level . However, a 

further factor should be taken into consideration, what is the best performance that 

could be expected from an algorithmic measure under this particular set of experimental 
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conditions? An upper bound was set in a comparative study of word similarity 

techniques by calculating the correlations between individual participants and the group 

using leave-one-out resampling [32], then finding the mean. In a similar manner, we 

calculated the correlation coefficient (Correlation r) for the judgements of each 

participant against the rest of the group and then took the mean.  The results are 

presented in Table 4. 

 
 Correlation r  Comment 

Algorithm Similarity 

Measure 

0.816 With average of all participants, 

significant at 0.01 level 

Mean of all participants 0.825 Standard Deviation 0.072  

Worst participant 0.594  

Best participant 0.921  

Table 4. Similarity correlations. 

If we take the performance of the typical human, 0.825 as the upper bound then it 

reasonable to say that our similarity measure is performing well at 0.816, within the 

constraints of the experiment. 

Comparing the word-pair ratings from Rubenstein and Goodenough with the 

corresponding sentence-pair ratings from our technique (Table 3), it is apparent that 

people perceive the semantic similarities of words differently from their definitions. 

Inspection of the word-pair vs sentence-pair for the full data set reveals a clear and 

regular non-linear relationship, further discussion of which is beyond the scope of this 

paper. 

It is worth giving some consideration to the skew in the frequency distribution of 

the data set.  The Rubenstein and Goodenough data has a frequency bias towards the 

extremes (high and low ends of the similarity scale) of the word-pair data set and 

suggested that participants may react differently to numerically equal intervals on the 

similarity scale.  It has been postulated in word similarity studies, that participants take 

an accommodating approach by selecting the most similar sense of a polysemous word, 

artificially inflating the semantic similarity rating for some word pairs. We argue that 
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sentences carry their own context with them, largely disambiguating any polysemous 

words they contain to specific senses.  Evidence supporting this comes from the 

Glass/Tumbler pair. This was scored 3.45 as a word pair in the Rubenstein & 

Goodenough trials and 0.55 as a sentence pair in our trials. This is consistent with the 

word pair judges interpreting Glass as an item to drink out of, whereas the definition in 

the sentence pair is of the substance glass. Similarly the Magician/Wizard pair was 

scored 3.21 as a word pair and 1.42 as sentence pair, this is consistent with the word 

Magician being interpreted as a practitioner of magic, whereas the sentence definition 

covers the “conjurer” sense. Finally it is worth noting that the Cord/String, 

Automobile/Car and Grin/Smile pairs were rated about halfway between minimum and 

maximum similarity, indicating that participants did not automatically substitute the 

semantic content of the second definition into the first. 

6 Conclusions 

This paper presented a method for measuring the semantic similarity between sentences 

or very short texts, based on semantic and word order information. Firstly, semantic 

similarity is derived from a lexical knowledge base and a corpus. The lexical knowledge 

base models common human knowledge about words in a natural language, this 

knowledge is usually stable across a wide range of language application areas. A corpus 

reflects the actual usage of language and words. Thus our semantic similarity not only 

captures common human knowledge, but it is also able to adapt to an application area 

using a corpus specific to that application. Secondly, the proposed method considers the 

impact of word order on sentence meaning. The derived word order similarity measures 

the number of different words as well as the number of word pairs in a different order. 

The overall sentence similarity is then defined as a combination of semantic similarity 

and word order similarity. Considering the view that word order plays a subordinate role 

for interpreting sentence meaning, we weight word order similarity less in defining the 

overall sentence similarity. To evaluate our similarity algorithm, we collected a set of 
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sentence pairs from a variety of articles and books in computational linguistics. An 

initial experiment on this data illustrates that the proposed method provides similarity 

measures that are fairly consistent with human knowledge. Next we constructed a data 

set of 30 sentence pairs using a dictionary definition for each of the Rubenstein and 

Goodenough word pairs [35]. The sentences were rated by human participants as a 

benchmark for comparison with our method which performed well on this data set.   

Further work will include the construction of a more varied sentence pair dataset 

with human ratings and an improvement to the algorithm to disambiguate word sense 

using the surrounding words to give a little contextual information. Currently 

comparison with some of the other algorithms discussed is very difficult due to a lack of 

any other published results on sentence similarities (a benchmark data set) and a variety 

of problems in re-implementing these algorithms for this domain.  These include the 

substantial amount of parameters which must be manually set and the definition of 

features.   
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