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We present a technique for modeling and recognising human activity from moving light displays using hidden Markov models. We
extract a small number of joint angles at each frame to form a feature vector. Continuous hidden Markov models are then trained
with the resulting time series, one for each of a variety of human activity, using the Baum-Welch algorithm. Motion classification
is then attempted by evaluation of the forward variable for each model using previously unseen test data. Experimental results
based on real-world human motion capture data demonstrate the performance of the algorithm and some degree of robustness
to data noise and human motion irregularity. This technique has potential applications in activity classification for gesture-based
game interfaces and character animation.
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1. INTRODUCTION

The interpretation of human motion is a fundamental task
in computer vision. It has received much attention in recent
years with wide applications in surveillance, human com-
puter interaction, and the entertainment industry [1]. In
vision-based interfaces for video games, such as that in [2]
by Decathlete, a player’s gestures and activities are used as
commands for game control instead of pressing buttons on a
keyboard or moving a mouse. In this case, the player’s move-
ments, embedded in video images, must be detected, param-
eterised, and recognised with a sufficient level of accuracy to
allow interaction with an intelligent agent.

On the other hand, generating realistic human motion
remains an open problem in the game industry. Traditional
key-framing methods are extremely labour intensive requir-
ing the manual specification of key poses at specific frames.
Physical simulation seems to be more realistic than key-
framing, but due to the difficulty of modelling the underly-
ing control mechanism, instabilities, and high computation
cost, physics-based animation has not been used with much
success. Recently, performance-based animation has received
much interest [3]. Among these techniques, marker-based
or markerless video-driven animation has shown great po-
tential [4, 5]. Low-level features, such as key-point positions

or joint angles, are used to describe full-body movements.
MPEG-4, a digital video coding and compression standard
primarily used for web-based multimedia applications [6],
utilises feature point data as body animation parameters to
enhance object-based coding that ultimately facilitates data
transmission and storage reduction.

Visual analysis of human motion in video images is a dif-
ficult problem in computer vision research. Though progress
has been made in the last decade [7–9], marker-free video
tracking is still in its infancy in many aspects [1]. Alterna-
tively, marker-based optical motion capture (MoCap) sys-
tems are commercially available and have been widely used
in the animation industry, such as the Vicon 512 [10]. In
this case, motion and structure are presented solely by a
small number of moving light displays (MLDs). Despite the
complex imaging and vision processing for feature detection
from images, we would argue high-level activity recognition
information derived from the low-level feature data, such as
the MLDs, can be coded more efficiently (than the raw Mo-
Cap files) as semantic indexing to enhance human-computer
interaction and animation synthesis. Searching and brows-
ing large MoCap file databases is difficult, if not impossible,
unless each file is hand labelled with a descriptive string, for
example, “run,” “walk,” and so forth. An interesting question,
not only in the context of interaction analysis for computer
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games, is how the categorisation and labelling of such data
might be automated. If a solution capable of differentiating
activities in real-time can be found, then there are also po-
tential applications in interaction representation for games,
with user movements controlling avatar animation. The ac-
curacy of the body animation parameters at one extreme, and
generic activity classes at the other, with network load of a re-
mote server, for example, the deciding factor.

In this study, we concentrate on a high-level activity
recognition task using hidden Markov models (HMMs).
Therefore, our algorithm assumes the availability of feature
point motion data that might be obtained by various meth-
ods and sensors, such as the 3D marker-based optical motion
capture data used here. The rest of this paper is organised as
follows. Section 2 reviews related work on activity recogni-
tion using HMMs. Section 3 describes our choice of feature
vector and the use of HMMs for training and classification in
the general case. Section 4 provides experimental results on
the recognition of human activity. We discuss and conclude
our work in Sections 5 and 6.

2. RELATED WORK

Bobick [11] describes three levels of motion understanding
problem: movement, activity, and action. For the sake of clar-
ity and cross comparison, we adopt the language of that
framework here. The work presented addresses an activity
recognition problem. We require knowledge of the various
movements that form the activities and the temporal proper-
ties of the sequence. We do not attempt to address the ques-
tions of context and domain knowledge that allow for the
description of action.

In the first application of HMMs to human motion
recognition, Yamato et al. [12] classified a set of 6 different
tennis strokes. They achieve good “familiar person” classi-
fication results (better than 90%) but recognition rates drop
considerably when the test subject is removed from the train-
ing data. This work is also interesting for its use of hidden
states with very short duration; they use 36 states for se-
quences that are between 23 and 70 symbols in length. Wil-
son and Bobick [13] adopt the HMM in their work on ges-
ture recognition. They are able to recognise simple gestures
such as a waving hand. They do not shape the topology of
their state transition matrix, for example, by imposing a left-
to-right structure on their trained HMM, but leave it poten-
tially ergodic. They argue that although gestures may appear
to us as a well defined sequence of conceptual states, they
may appear to sensors as a complex mixture of perceptual
states. This problem is addressed again by Campbell et al.
[14] where the careful selection of features, for example, us-
ing velocity rather than position, results in a feature vector
that approximates a prototypical trajectory through concep-
tual states when plotted out in feature space over time. They
achieve good results classifying a variety of T’ai Chi moves,
but all training and testing data is performed by the same
individual, so the generality of the model is not evaluated.
Bowden [15] shows that extracting a richer high dimensional
feature vector and then performing dimensionality reduction
with principal components analysis can help a model to gen-

eralise, alleviating the “familiar person” requirement. Brand
and Hertzmann [16] introduce stylistic HMMs which specif-
ically address this problem by attempting to recover the “es-
sential structure” of data while disregarding its “accidental
properties” in a separation of structure and style.

Brand [17] highlights shortcomings of HMMs for vision
research, noting that many activities are not well described
by the Markov condition, as they feature multiple interacting
processes. He applies a coupled HMM to the classification
of T’ai Chi movements, describing the interactions between
both hands and shows improved performance over standard
HMMs. Galata et al. [18] use variable length Markov models
in order to dynamically vary the order of the Markov model.
This allows for the consideration of shorter or longer state
histories when analysing training data, facilitating the encod-
ing of activity with correlations at different temporal scales.

Outside of the Markovian frameworks discussed in this
section, other techniques have been successfully employed
for human activity recognition. Section 4 of [1] gives a com-
prehensive review of the various techniques that have been
applied to the action recognition task and a discussion of
their relative merits. In particular, both template matching
and neural networks have received much attention, for ex-
ample, [19, 20], respectively. Template matching techniques
offer low computational complexity and ease of implementa-
tion over state-space approaches such as the HMM. However,
they are typically more sensitive to noise and variation in the
speed of movements [1]. Neural networks have been shown
to be an equally viable approach to human motion classifica-
tion with near identical results to the HMM [21].

In the context of our own research, we are particularly
interested in the HMM for its generative capabilities. The
HMM is good for characterizing not only the spatial but
also the temporal nature of data. Traversing a trained model
gives believable synthetic data. In other work we use this fea-
ture of HMMs to provide predictions of a subject’s move-
ments in a markerless Bayesian tracking scheme. We believe
that although the standard HMM undoubtedly entails con-
sideration of the various shortcomings addressed by the ap-
proaches above, and others, it is still a powerful tool and has
favourable training requirements versus some of its exten-
sions.

3. METHOD

Human kinematic data used in this work was acquired using
a Vicon 512, 3D marker-based optical motion capture sys-
tem. This provides coordinates of markers attached to feature
points on a subject, in the manner of a 3D-MLD system. Fea-
ture points are located on the head, torso, shoulders, elbows,
wrists, hips, knees, and ankles. The data have been analysed
before, with classification achieved by considering the data in
the frequency domain [22].

3.1. Feature extraction

In a sequence of framesm = 1, . . . ,M we select a subset of the
available feature points. These were the markers on the right
shoulder, elbows, wrists, right hip, knees and ankles. Angles
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between right radius and right humerus, both radii, right fe-
mur and right tibia, and both tibia were then calculated.

For example, the angle between the two radii bones may
be calculated from the marker location vectors mRelb, mRwri,
mLelb, mLwri by defining limb vectors lLrad = mLwri − mLelb

and lRrad = mRwri −mRelb. The relationship

|lLrad||lRrad|cosθ = lLrad·lRrad (1)

is then used to determine the angle θ between limbs. In this
way, a feature vector is compiled at each frame (see Figure 1):

fm =

⎛
⎜⎜⎜⎜⎝

θRrad,Lrad

θRhum,Rrad

θRfem,Rtib

θRtib,Ltib

⎞
⎟⎟⎟⎟⎠

, m = 1, . . . ,M. (2)

As limbs are considered relative to one another, the feature
vector should remain consistent for a particular pose regard-
less of the subject’s location in the world coordinate system.
Although the marker data is unavoidably noisy, this type of
feature extraction will provide a tight coupling between con-
ceptual and perceptual states.

3.2. Hidden Markov models

A hidden Markov model can be used to model a time series
such as the one derived in the last section. This approach as-
sumes that the underlying system is a Markov process, where
the system’s state at any timestep m is assumed to depend
only on its state at m − 1. A standard Markov model is de-
scribed by a set of states and a set of transition probabili-
ties between these states. The state of the system is allowed
to evolve stochastically and is directly observable. This ap-
proach may be extended with the introduction of a hidden
layer between state and observer. Each state emits an ob-
servable symbol from an alphabet common to all states, ac-
cording to some probability distribution over that alphabet
(see Figure 2). This describes a system where both the evolu-
tion of the system and the measurement of that evolution are
stochastic processes. In our own application HMMs are an
appropriate tool as they allow us to handle both the natural
variability in a human’s performance of a particular activity
and also the error of our sensors in estimating their move-
ment.

In order to analyse experimental data using an HMM,
we must train HMMs to represent a set of training data and
then evaluate the probability that subsequent test data sets
were produced by that model. In this way, we may classify a
set of N distinct test activities using N HMMs. An HMM λ is
specified by parameters S, Ai j , Ai, pi(f), where

(i) S = {s1, . . . , sN} is the set of hidden states;
(ii) the N ×N matrix, Aij , is the probability of a transition

from state i to state j;
(iii) Ai is the probability of a sequence starting in state i;
(iv) pi(f) is the probability of observing feature vector f

while in state i; the emission probability is modelled by
a single multivariate Gaussian pi(f) = N (f ;µi;Σi) =
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Figure 1: An example of the time series f for a walking subject.
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Figure 2: An example of a 3-state HMM with each state emitting a
1D feature vector f .

exp{−1/2(f − µi)
T/
√

(2π)D|Σi|} with mean µi, covari-
ance Σi, and D the dimensionality of f (see Figure 3).

Sections 3.3 and 3.4 give an overview of the use of contin-
uous HMMs with single multivariate Gaussian observation
functions for training and classification.

3.3. Training

Given a feature vector sequence F = {f1, . . . , fM}, we require
the set of model parameters that maximise the probability
that the data is observed. This problem cannot be solved an-
alytically, but by making estimates of the initial model pa-
rameters and applying Baum-Welch reestimation, a form of
expectation maximisation, iteration is guaranteed towards a
local maximum in p(F | λ) across the space of models. Al-
though p(F | λ) may contain a number of critical points,
running the algorithm to convergence from a number of
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Figure 3: θRfem,Rtib versus θLfem,Ltib with 5 states.

different estimated initial conditions generally results in a
good estimate of the global maximum [23].

The Baum-Welch algorithm requires calculation of the
forward and backward variables for the data set F. The for-
ward variable for a state i at time m is the total probability of
all paths through the model that emit the training data up to
time m, {f1, . . . , fm} and finish in state i:

αm,i = pi
(

fm
) N∑

j=1

αm−1, jAji, (3)

where α1,i is calculated using the distribution Ai, that is,
Aipi(f1). Similarly, the backward variable for a state i at time
m is the total probability of all paths from state i that emit the
rest of the training data {fm+1, . . . , fM}:

βm,i =
N∑

j=1

βm+1, j p j
(

fm+1
)
Aij , (4)

where βM,i = 1. At any time m, the value αm,iβm,i gives the
total probability of all paths through the model that produce
the data F and pass through state i at time m. Furthermore,∑N

i=1αm,iβm,i is constant for all m and gives the probability of
the sequence F given λ, or p(F | λ). We can use these re-
sults to calculate the probability that the model was in state
si when feature vector fm was observed, given all the data:

γm,i =
αm,iβm,i

αm,iβm,i
(5)

with which we can estimate the parameters of the Gaussian
emission function p(f) associated with each state i:

µi =
∑M

m=1γm,ifm∑M
m=1γm,i

,

Σi =
∑M

m=1γm,i
(

fm − µi
)(

fm − µi
)T

∑M
m=1γm,i

,

(6)

these are the first two maximisation steps.

In order to reestimate the matrix Aij , we must consider
the probability that a transition from state i to state j oc-
curred between timesteps m− 1 and m:

ξm,i j = p
(
qm = s j , qm−1 = si | F, λ

) = αm−1,iAi j p j(fm)βm+1, j

p(F | λ)
,

(7)

where qm is the active hidden state at time m. This is the to-
tal probability of all paths through the model which emit
{f1, . . . , fm−1} and pass through state i at m − 1 (given by
αm−1), multiplied by the transition-emission pair i transi-
tions to j, j emits fm, multiplied by the total probability of
all paths from state j that emit the remainder of the training
data {fm+1, . . . , fM} (given by βm, j), as a fraction of all paths
through the model that emit the data.

By summing over the total number of state transitions,
we get the expected number of transitions from i to j:

Ei j =
M∑

m=2

ξm,i j , (8)

as the expectation step. The final maximisation step is then

Aij =
Ei j∑N
j=1Ei j

. (9)

This process can then be iterated, with (6), and (9) providing
the new estimate for λ, until some convergence criteria is met.
Ai may also be reestimated as γ1,i although this is not done in
this approach.

3.4. Classification

We can use the definition of the forward variable α in order
to calculate the likelihood of a sequence of feature vectors
given a particular set of model parameters. For a set of test
data G = {g1, . . . , gM} and model λ = {S,Aij ,Ai, pi(g)},

p(G | λ) =
N∑

i=1

αM,i. (10)

Therefore, if an HMM is trained for each activity we are in-
terested in recognising, we can evaluate the likelihood that
unseen test data was emitted by each of the models and clas-
sify data as belonging to the model most likely to have pro-
duced it.

4. RESULTS

A set of 6 subjects were recorded performing 6 periodic ac-
tivities using the Vicon system. These were walking on the
spot, running on the spot, one-footed skipping, two-footed
skipping, and two types of star jump. Each activity was per-
formed by at least 3 individuals. Each sequence was divided
into two halves, each of between 5 to 12 seconds at 60 fps.
One half was used for training, the other retained for testing.
Although the fact that the motions are periodic is useful as
it negates the need to segment the training data, this is not
a requirement of the approach. All of the steps described in
Sections 4.1 and 4.2 were performed using the HMM Tool-
box for Matlab [24].
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Table 1: Classification of human activities.

λJump1 λJump2 λRun λSkip1 λSkip2 λWalk

GJump1 17/20 3/20 0/20 0/20 0/20 0/20

GJump2 0/20 20/20 0/20 0/20 0/20 0/20

GRun 0/15 0/15 15/15 0/15 0/15 0/15

GSkip1 0/15 1/15 0/15 12/15 2/15 0/15

GSkip2 0/20 0/20 0/20 0/20 20/20 0/20

GWalk 0/15 0/15 0/15 0/15 0/15 15/15

4.1. Activity training

A feature vector was extracted at each frame as described in
Section 3.1. This vector was then extended to contain a finite
difference estimate of Δfm made using the previous timestep,
that is, Δfm ≈ fm− fm−1. This is helpful in resolving ambigui-
ties such as intersections in the feature vector trajectory, thus
reducing the number of states that represent a junction in
feature space. It is analogous to a second order HMM, where
the previous state as well as current state have an effect on the
next transition, thus encapsulating extra “history” in each
state of a first order HMM. Each of the activities was rep-
resented by 30 states. As in [12] this is a relatively large num-
ber considering that each activity has a period of approx-
imately one second. Emitting consecutive conceptual state
vectors from the mean point of each state will produce al-
most identical poses. However, a large number of states helps
the initial clustering and provides good results even if it is not
intuitively appealing [25].

Initial estimates of the state means and covariance ma-
trices were found by K-means clustering [26]. The transition
matrix was initially estimated randomly (with each row ofAij
summing to 1) and the prior Ai set with every value equal to
1/N , where N is the total number of states. Ai was not rees-
timated in order that test data could begin at any point dur-
ing the activity unit with no probabilistic penalty. The transi-
tion probabilities and state means and covariances were rees-
timated using no more than 20 iterations of the Baum-Welch
update equations of Section 3.3.

4.2. Activity classification

Each subject’s test data for each activity was tested separately.
Feature vectors were again extracted at each frame to build
up a set of observations G. p(G | λ) was then calculated
5 times for each test sequence, the Baum-Welch algorithm
having been allowed to reconverge to a newly estimated set
of parameters λ each time. Table 1 summarises the classifica-
tion results for each batch of activity test data against each
trained model. For cross comparison, the forward variable
is calculated over the first 2.5 seconds of each test sequence
(M = 150 in (10)). Classification results are concentrated on
the diagonal and no misclassifications are made for 4 of the
activities. In the cases of Jump1 and Skip1, all off-diagonal
classifications are due to just one test sequence in each batch,
with all other sequences being correctly classified. Further
discussion of these results is given in Section 5. Using the
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Figure 4: Forward variable for one subject’s test walking sequence
for all activity models as a function of the number of frames (m).

HMM Toolbox for Matlab, evaluation of p(G | λ) typically
takes between 0.05 to 0.08 seconds, facilitating real-time cal-
culation of p(G | λ) for the 6 HMMs.

4.3. Confusion matrices

In the framework outlined in [2], a key aspect of any ges-
ture based interface is its speed in determining a user’s activ-
ity. Although p(G | λ) may be calculated in real-time, any
approach is limited by the need for sufficient data to sta-
bilise the results of the forward variable evaluations. Deter-
mining this data requirement is key to quantifying the level
of latency introduced to game play by a gesture based in-
terface. Figure 4 shows the forward variable evaluated using
one subject’s test walking sequence for each activity model
as a function of the number of frames taken as input (m).
p(GWalk | λRun) caused arithmetic overflow at m = 2 and is
not plotted. Walking is not correctly established as the most
likely activity untilm = 4 and jumping temporarily overtakes
it for m = 27, 28, 29. Walking subsequently remains the most
likely interpretation.
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Table 2: Classification of two-footed skipping activity versus data segment length.

λJump1 λJump2 λRun λSkip1 λSkip2 λWalk

M = 2 0.0114 0.0193 0.0000 0.0386 0.9277 0.0000

M = 4 0.0089 0.0114 0.0000 0.0309 0.9495 0.0000

M = 8 0.0017 0.0017 0.0000 0.0017 0.9950 0.0000

M = 16 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

M = 32 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

M = 64 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

In order to determine how quickly reliable classification
may take place across the activity cycle, each training se-
quence was divided into smaller segments for evaluation with
the forward variable. Segment lengths of 2, 4, 8, 16, 32, and
64 frames were used and all possible continuous segments
of this length tested, with data segments allowed to overlap,
thus maximising the number of classification problems con-
sidered. The classification results are used to form a confu-
sion matrix for each activity. The confusion matrix for the
two-footed skipping activity is shown in Table 2. A correct
classification rate of greater than 99% is achieved with a seg-
ment size of 8 frames, equivalent to 0.13 seconds of data.

5. DISCUSSION

The learned transition matrices Aij were strongly focused on
just a few columns per row. As in [15], no effort was made
to number the states meaningfully, for example, in chrono-
logical order. However, it would suggest that even though
no topology shaping was attempted, Baum-Welch training
found a natural left-to-right type structure for the HMM
where each state may be self-referential, or may transition
to a handful of nearby (in terms of the feature space) states.
This supports the claim that the feature vector achieves a
tight level of coupling between the conceptual and percep-
tual states.

Classification between the broad activity types (run,
walk, skip, jump) was reliable, but subtle changes in the ac-
tivity proved harder to classify. For example, the confusion
between the two star jumps and one-footed and two-footed
skipping seen in the first and fourth row of Table 1 respec-
tively. These activities were only misclassified for one indi-
vidual’s test sequence in each case, and in the case of skipping
we believe this to be due to a lack of training data for that
subject, causing Baum-Welch training to overfit to the other,
longer sequences. However, in the case of the star jumping,
the similarity between the two activities, in terms of the fea-
ture vector we extract, may mean they are unsuitable for in-
clusion in a gesture interface as a pair. Included separately,
they do not pose a problem.

The compilation of confusion matrices demonstrated
that classification was feasible with the consideration of only
small amounts of data. The reduction of segment length pro-
duced remarkably little spread in the distribution across ac-
tivity columns of the matrix. Balancing the tradeoff between
accuracy and latency in a gesture based interface is an appli-

cation dependent decision, but confusion matrices compiled
in this way should facilitate such development decisions.

Although the models performed well when the individual
concerned formed part of the training group, performance
worsened significantly when they were removed. Only run-
ning on the spot and walking on the spot were consistently
recognised. This drop in performance is broadly in line with
previous findings, for example, [12]. The resulting models
may have failed to recover “underlying structure” due to the
high level of variation between training data. Alternatively,
they may have suffered from overfitting to what is a small
set of training data and an impoverished representation of
the activity. In either case, a larger number of people in the
training set should improve results.

6. CONCLUSIONS

We have described a technique for classifying human activi-
ties with HMMs. In this baseline study, buffered marker data
obtained from a MoCap system were successfully used for
human activity analysis in real-time. These results demon-
strate the proposed method remains a candidate for feature-
based on-line recognition tasks in gesture based games.

Although MoCap data is used here, the doubly stochastic
nature of the HMM should allow for the use of less invasive,
but more noisy, markerless tracking techniques. The HMM
may provide a way of interpreting complex user input avail-
able from a new generation of computer game input devices,
providing a more natural and engaging user experience. This
type of high level semantic description of a person’s move-
ments could also be incorporated into object based coding
schemes such as body animation parameters, as an activity
index for decoders.
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