INTRODUCTION

Question: How do you feel about Mathematics?
Answer: Maths is the demon that jumped out of the closet and licked me in the face.

(3rd year student, currently training to be a primary teacher)

Demons are abhorrent creatures. They instil fear and are best avoided. Yet mathematics as a demon has managed to ‘lick’ this student. Does this imply that the demon has been tamed and that some kind of affection lies between the student and the subject? Has the student’s own fear of the subject been licked; and, if it has, how were the transitions between fear and friendliness, abhorrence and affection made?

Many transitions are potentially problematic. But for students entering initial training as primary teachers, who so often perceive mathematics as a source of anxiety, the movement between the two locations of learner and teacher seems especially fraught. This exploratory paper marks an attempt at having some appreciation of the various kinds of ‘selfwork’ (Stronach & Maclure, 1997, p. 135) that is undertaken by students when making the move from being a ‘learner of mathematics’ to becoming a ‘teacher of mathematics’. We suggest that for such students ‘identity’ can be seen as a key feature in easing those tensions which lie between the two sites. Subsequently we try to show how particular constructions of the ‘self’ are used to surmount and negotiate hurdles and boundaries. This includes perceived lack in mathematical competence. Our main interest
then is on perceptions of the ‘self’ and how this, in relation to mathematics, is talked about, described and generally theorised. In part, this involves looking at the kinds of emotional baggage that centres on mathematics and which students have collected over a period of time. We are particularly interested in those ways ‘identity’ seems to assist in both accruing and jettisoning this baggage. We also note and discuss how accounts concerning past mathematical experiences are filtered through current perceptual frameworks. It is this crisscrossing between present perceptions of mathematics and the self, memories of mathematics and the self and how together these feed into and help fashion future constructions of the self as ‘teacher of mathematics’ that we attempt to address.

In exploring the uneven territory between being a ‘learner of mathematics’ and a ‘teacher of mathematics’, this paper offers a series of interpretations based on interview transcripts. These interpretations are personal readings and cannot be considered as ‘hard edged analyses’ or indeed ‘authoritative accounts’. Despite this, however, we believe that these readings make tentative steps in increasing our understandings about ‘transitions’.

We begin by situating this study in relation to some existing work on student transitions. This is followed by a more detailed account of how we are perceiving ‘identity’. Finally readings based on interview transcripts are offered. Here our task is to show how ‘identity’ becomes a means for reconciling the past with the present and the future. Our suggestion is that because certain reconciliations have been effected, transitions between the two sites of learner and teacher, are then made possible.

‘TRANSITION’: WHAT THE PAPERS SAY

Research into student transitions can be roughly grouped into two domains; cognitive and affective. In recent years the first arm of this body of literature seems to take its lead from Shulman (1987) with its focus on Pedagogical Content Knowledge (Wilson et al., 1987; Livingston & Borko, 1990; Ball, 1991). Here consolidating and acquiring knowledge and expertise is perceived as a way of moving from the location of learner to that of teacher. Ball (1988, p. 12), for example, believes that a ‘knowledge of mathematics is obviously fundamental to being able to help someone else learn it’. Research into the affective domain meanwhile spans both sociological and phenomenological perspectives. Lortie (1975), for example, who is guided by the former, suggests that student teachers, when at school, have spent time in an ‘apprenticeship of observation’. That is, as school-pupils they have inculcated a range of values, outlooks, practices and processes which work at fashioning perceptions of teacherhood. This point is extended further by Zeichner et al. (1987) who suggest that students’ general philosophies concerned with teaching showed very little signs of change as a consequence of professional training. Similarly, Harel (1994) notes that notions concerned with teaching, particularly the teaching of mathematics, are tacitly formed by the ways students have been taught the subject, prior to college. However, Su’s (1992) research highlights the general influence of school-based experience when training to be a teacher. More specifically, however, it is the, ‘pupils’ reactions, feedback, and performance’ (p. 254) which were seen by the student-
teachers as the most important indicator of their effectiveness in becoming teachers. Meanwhile, other researchers guided by the individual student’s specific perspective (e.g. McNally et al., 1994; Guillaume & Rudney, 1993) indicate how students will cite comfort in personal relations with both staff and pupils as evidence of their final transition to teacher status.

Elsewhere we seek to reconcile the apparent dichotomy between phenomenological and ‘official’ perspectives (Brown et al, 1999). In this paper, however, we shall restrict ourselves to the phenomenological experience of students seeking to reconcile their personal experience of learning and teaching mathematics with the professional frames they need to inhabit.

THE STUDY

Identity should not be seen as a stable entity—something that people have—but as something that they use, to justify, explain and make sense of themselves in relation to other people, and to the contexts in which they operate. In other words, identity is a form of argument. As such it is both practical and theoretical. It is also inescapably moral: identity claims are inevitably bound up with justifications of conduct and belief (Maclure, 1993 a, p. 287, author’s own emphasis).

The notion that ‘identity’ is something people use became a significant research theme. Using interview transcripts, drawn from an ESRC project entitled ‘Primary student teachers understanding of mathematics and its teaching’ (see Brown et al, 1999), the task centred on discerning the ways in which the students chose to describe themselves. So, those ways that the ‘self’ perceived the world, including certain worries concerned with the learning and teaching of mathematics, became in our view central to how such concerns were confronted and addressed (Munby, 1986; Schon, 1979). By taking note of the figurative language that was used by students when talking about themselves, particularly in relation to mathematics, led to us having glimpses into some of their beliefs and orientations about learning and teaching. In some respects, this research echoes that of Kagan’s (1990) who, in seeking to develop alternative ways to evaluate newly qualified teachers’ thinking, focused on their choice of metaphors. These were perceived as reflecting how they characterised: the nature of learning, the teacher’s role in the classroom and the goals of education (Kagan, 1990, p. 423).

In this way beginning teachers’ metaphors gave some insights into how they had filtered and modified their university training.

The idea of identity as being something that is used as a ‘form of argument’, and which moreover, could assist in negotiating the boundary between student and learner, became key in the formation of our research focus. As a consequence, particular attention was paid to those parts of the texts in which the students talked about themselves as ‘learners of mathematics’ and where they foresaw themselves being ‘teachers of mathematics’.
The methodological framework used when analysing the data is loosely derived from both conversational analysis and ethnomethodology. Both these approaches, whilst having certain distinctive characteristics, nevertheless share the view that language, action and knowledge are inseparable (Stubbs, 1983, p.1). Our studies were not undertaken to find the ‘true’ identities of the students, nor were they undertaken to find the ‘truth’ about transition. Rather, our efforts were directed at unearthing those ways notions of self gets talked about and how such notions become the means for negotiating and staking out particular claims, and become ‘theorised in discourse’ (Maclure, 1993 b, p. 377).

Two key foci emerged from our readings of the transcripts; firstly, how students used the past, present and future when accounting for themselves, and secondly, how in describing their past mathematical experiences, it seemed that negative perceptions of self were resituated as positive traits. The paper suggests, that by displacing certain negative perceptions and locating them as a positive term, transitions between the two sites of learner and teacher were then made possible.

This paper is based on four transcripts which were collected during the first round of interviews for the study. Specifically, the body of students that the research focused on were those who were training to be primary teachers and who, as part of their professional brief, would have to teach mathematics. Significantly, whilst all the students that were interviewed held a GCSE mathematics qualification, none had pursued mathematics as an A’ level subject. Nor had any of the students elected to study mathematics as either a first or second subject as part of their university course. The research set out to investigate the ways in which such non-specialist students conceptualise mathematics and its teaching and how their views evolve as they progress through an initial course. In all, 27 students were interviewed and each student was interviewed three times at strategic points during the academic year; at the beginning of the year, whilst on school experience, and at the end of the year. A particular point was made to interview the first year intake before they had received any mathematics education input. Elsewhere, more concise details concerned with methodological procedures are available (Brown et al, 1999, pp. 303-305.)

The four transcripts that feature in this paper were chosen because the students themselves share certain similarities and the transcripts reflect concerns with learning and teaching mathematics. Thus, all four students, one from each year of the course, were women who, when starting the course, were aged between 18 or 19. Three of them had gained a C grade pass at GCSE whilst the fourth had acquired a B. All four had expressed a disliking for mathematics when they were at school and each of the students maintained that they lacked competence in the subject.

REREADING THE TRANSCRIPTS.

The interview began with this question: What is the first thing that comes into your mind when you think of maths?
I know I’m not very good at it....
It’s a way of adding and multiplying and taking away certain things...maths relates to numbers...it’s so big (Yr. 1)

Maths is scary...I’ve always not been wonderful at maths (Yr. 2)

The second year student then expanded on ‘what maths is’:

...numbers, problems, day to day activities. I know maths is involved in more or less everything I do in my life. We talked about that in lectures...there’s the very complicated side of maths...when you’re sat down and doing sums intensely, GCSE, algebra, that sort of thing...but if you’re going back to the roots back to the simplest basic points of maths then its to do with day to day problems and helping you through life..we talked about that...it’s sorting out of things as well as the complicated side of things...organisational skills...sorting washing, blacks and whites...that’s all maths...common factors or differences...that’s maths. I didn't realise this before I came on the course...we’ve unpicked a lot on the course...and it’s made me think maths isn’t just scary numbers on a piece of paper which I used to think.

This student appears to have developed a means of managing mathematics and in part her strategy is as a consequence of college sessions. Mathematics, it would seem, is conceptualised as a series of binary oppositions. On the one hand there is the ‘very complicated side of mathematics’ whilst on the other, there is the ‘simplest basic points’. Using these two polarisations the students’ responses could be presented as follows:

<table>
<thead>
<tr>
<th>complicated maths</th>
<th>simplest basic points</th>
</tr>
</thead>
<tbody>
<tr>
<td>sat down</td>
<td>active</td>
</tr>
<tr>
<td>doing sums</td>
<td>going back to roots</td>
</tr>
<tr>
<td>algebra</td>
<td>day to day problems</td>
</tr>
<tr>
<td>GCSE</td>
<td>helping you through life</td>
</tr>
<tr>
<td>pieces of paper</td>
<td>common factors</td>
</tr>
<tr>
<td>scary numbers</td>
<td>differences in things</td>
</tr>
<tr>
<td></td>
<td>numbers, money</td>
</tr>
<tr>
<td></td>
<td>shopping lists</td>
</tr>
<tr>
<td></td>
<td>grouping of things</td>
</tr>
<tr>
<td></td>
<td>sorting out of things</td>
</tr>
<tr>
<td></td>
<td>organisation</td>
</tr>
</tbody>
</table>

It would seem, that through a process which is captured in the statement, ‘We’ve unpicked a lot of things on this course’ the student makes certain moves. This is a collective move in which she and her year group, together with the college tutor, work together at ‘unpicking’ mathematics so that aspects of it may be valorised. By way of the discursive practices of college mathematics, the student is motivated to leave behind that ‘scary maths’ which is located in and associated with ‘doing sums intensely’. Rather, she
finds herself moving backwards to the ‘roots’ and to the ‘simplest basic points’ in order that she may progress forwards towards teacherhood. And as she travels there is, we believe, a sense of her beginning to collect some of the cultural baggage which has come to be associated with primary mathematics; certain terms, for example, ‘groups’, ‘common factors’, ‘organisation’ signal her entry into the discourse of primary mathematics. In effect, emotional and cognitive shifts are taking place within the self. There are the internal realisations that mathematics both exists - and importantly - can be understood even within mundane activities of everyday life. Simultaneously external changes also occur; she is now beginning to sound like a primary teacher.

And what of the third and fourth year students? How did they use notions of ‘identity’? It appeared that the fourth year student also dichotomised mathematics. She polarised the subject as either ‘do-able’ or ‘not do-able’ and where by implication mathematics is subdivided between that which can/cannot be understood. She says: *Simple calculations...adding, subtraction, multiplication and division I can do, no problem. When you get into algebra... I can’t do it...it’s the more complicated things like statistics that frightens me... I love addition because it’s simple. I do things like area, capacity and volume because they’re practical. I liked trigonometry... you were given a question- you had a triangle in front of you and you could see that one of the the sides or one of the bases was going to be longer than the other or whatever so you could work out roughly what it was going to be, whether it was going to be a reasonable answer or completely out of this world...whereas algebra...it doesn’t really mean anything.*

Her response could be arranged as:

<table>
<thead>
<tr>
<th>not do-able maths</th>
<th>do-able maths</th>
</tr>
</thead>
<tbody>
<tr>
<td>complicated algebra</td>
<td>simple basic calculations</td>
</tr>
<tr>
<td>fear</td>
<td>love</td>
</tr>
<tr>
<td>completely out of this world</td>
<td>reasonable answer</td>
</tr>
<tr>
<td>doesn’t mean anything</td>
<td>means something</td>
</tr>
</tbody>
</table>

Meanwhile, the third year student posited the following theory which, so it seemed, helped in explaining her lack of mathematical competence:

Somewhere along the line I just think that I’ve not understood it properly... I personally feel that maths-to know how to do things you have to understand it in you as a person...Sometimes I ponder over it and then I think I should know this anyway.

What is being implied here? Does the student, for instance, conceptualise the learning and understanding of mathematics as occurring along a linear developmental line? So that when she does master a particular problem her success is never read in fulsome terms. Rather, she thinks, ‘I should know this anyway’. That is, she should have learned ‘it’ at some specific or particular point en route to the present. By constraining herself within a particular way of perceiving mathematical knowledge and its development, it would seem that a lack or gap will always exist between herself and the idealised mathematics student, ‘who can understand it in you as a person’.
Echoes of this notion of ‘understanding it in you as a person’ could be found in the transcripts of the other students. There were, of course, variations in the ways that this was expressed. For example, the first year student categorised people as either ‘mathematical sorts of persons’ or ‘arty sorts’. Furthermore, because she defined herself as an ‘arty sort’ she considered that this curtailed her chances from fully understanding mathematics. To quote:

I think if you sat there and learnt and learnt and learnt I still don’t think you could change the way you were. I don’t think you can suddenly become a mathematical sort of person. I mean, I had tutoring for my GCSE and I had a lot of help from my teacher and no matter how much they explain things it still took me a long time... other people got it just like that.

Similarly, the second year student talks about her brother as being able to do mathematics ‘just like that’. He, it seems:

...doesn’t spend hours doing maths, but when he has to do it, it comes, just like that.

What are some of the consequences of these perceptions? What, for example, are the effects of placing oneself in the ‘not-capable’ category? One reverberation, which is highlighted in the third year transcript, is that mathematical achievement is perceived as paradoxical; success is always shadowed by failure - ‘she should have known it anyway’.

Similarly, the fourth year student found the learning of mathematics:

...very, very hard. For some people it just naturally clicks but I have to work and work and work at it (our emphasis).

What are the implications for being ‘teacher of mathematics’ when the student has located herself within the ‘not-capable of mathematics’ category? It would seem that, rather than being perceived as a hindrance, this particular construction appears to become a strong motivating force. Thus, the first year student, who it should be remembered has had no college input, foresees that because she has:

...struggled so much, I think it would benefit me.

She then goes on to map out certain ideas for the teaching of mathematics:

I’d want to give them as much of the basics as I could because I think that would prepare them more... I’d do it very practically. I’d say count these and count these ...what happens when you put them together? I wouldn’t say ‘now add them up’, I’d say, ‘what happens when we move this pile of bricks to this pile?’ How many are there altogether?

Whilst the third year student would:
Try to understand where the children were coming from and where they got their ideas from to start with... and I would ...break things down step by step rather than everything just seem like taught as a whole

The fourth year student, so it would seem, credits the university course with helping her make the transition from ‘learner’ to ‘teacher’:

...And it was kind of, ...we are going to teach you how to learn this the same way that children will and that gives you a very good understanding of how the children learn maths as well... you’ve been through that same process as you are going to teach the children and you know what to expect and you know broad outcomes of what might happen

From this, we offer the following speculative thoughts: it would appear that for the fourth year student, shifts in locations including that between being ‘learner of mathematics’ and being ‘teacher of mathematics’ is not a linear process. In order to take on the future role as a teacher, the student feels that within the context of college mathematics sessions, she is repositioned as ‘the child’. As ‘the child’ she can then attend to the ‘basics’ and the ‘simplest points of maths’ and in so doing she can leave behind all those negative aspects of mathematics. Upon entering school as a teacher she will be able to demonstrate that she is indeed a teacher; she will, for example, be able to control, organise and structure the primary classroom (see Brown et al, 1999, p. 313). But when it comes to the teaching of mathematics, internally she will be in many ways ‘the child’ and it is this imaging of herself that will provide her with the confidence in order to teach.

It seemed to us, when rereading the scripts, that because of their own struggle with mathematics, the students were therefore determined to deliver the subject in terms other than their own experiences. As teachers, they will learn from their own gaps, omissions and lack in the subject. In effect, they will take all those things that in the past they have perceived as preventing them from developing mathematical competence and they will assert the authority of the ‘opposition’. So the students did not, it seemed, want to become ‘mathematical’ types; rather, they appeared to draw strength from being the Other to this construct (Walkerdine, 1990, p. 62). And it would appear college helps to strengthen this persona:

...I didn’t enjoy it because it was ... complicated, ...intense, difficult, hard, didn’t like it , boring...so I thought from that well, ... the children I was going to be teaching , I don’t want them to be taught like that so I’ve been thinking about different ways of teaching which has come form University, they’ve helped in saying practical sessions, relating it to the home, ... you use maths every day in everything that I never thought of... washing, sorting out, organisational skills, variation in things, differences in things, common factors in things like three people have got brown hair, that’s maths, it’s relating it to just people. It doesn't have to be difficult like I did at GCSE to be able to understand maths, so I thought I like this approach, I enjoy it, it’s easy to relate to, it’s not tedious, it’s interesting... went on my school experience... did a practical approach and it worked so therefore I’ve got confidence, I know what works, I know I have to go into everything
thoroughly before I teach but as long as I make it interesting, don’t let the children lose it, get bored, then it should be O.K. (Yr. 2)

CONCLUDING THOUGHTS

Our readings should be regarded as tentative explorations but which nevertheless can work at focusing attention on the significance of identity and its relationship to transitional journeys. So, for the students we have met in this article, in order to succeed, mathematics must feature ‘in the ‘genes’” (be part of your identity, make-up). It either just ‘clicks’ or it doesn’t. If you are an ‘arty person’, any current success in mathematics tends to be shadowed by the failures of the past and in this way, future experiences with mathematics are always prescribed. The non-specialist trainee teacher, destined to include mathematics in her professional repertoire, appears to be wedded to the failed pupil, but seeks to revoke those characteristics of mathematics classrooms that are associated with failure. In some measure, this means declining to assume the identity of ‘a mathematical sort of person’ frequently pathologised in the figures of the mathematics teachers assembled from the past.

We end by offering a caricature of the journey made by the students: First, mathematics as a demon is powerful and through various ways it subjugates the student and fills them with fear and loathing. But, in jumping out of the closet, mathematics is ‘outed’. It is removed from the dark and abstract underworld and in the light it’s possible to see mathematics’ softer side. This aspect of mathematics, besides being fun, is also basic and practical. In fact, maths is so friendly, besides letting it lose with children, you can if you are so inclined, let it lick you.

ACKNOWLEDGEMENT

This paper reports on the Primary Student Teacher’s Understanding of Mathematics and its Teaching project funded by the Economic and Social Research Council, project number R000222409. The research team would like to express its gratitude for this support.

REFERENCES