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Abstract 

 
This thesis considered the kinematic factors associated with elite pistol 

shooting performance. The first three studies examined performance in the newly 

introduced modern pentathlon combined event. Study 1 demonstrated that 

shooting performances differed significantly between the combined event and the 

original precision shooting format.  Pistol shooters achieved significantly higher 

scores, and significantly smaller pistol and centre of pressure movements, than 

modern pentathletes in the precision event (p<.05).  No significant differences 

were evident between the groups for combined event shooting (p>.05), 

highlighting that the most successful precision shooters were not guaranteed 

success in the combined event.  Studies 2 and 3 examined how shooting 

performance changed within and between each shooting series. Aiming time did 

not change significantly within any series (p>.05), and so participants experienced a 

similar degree of pistol and centre of pressure movement for each shot, and 

achieved similar scores.  No significant differences were evident in shooting 

performances between each shooting series (p>.05), despite the additional 1 km 

run phases.  Thus, each running phase appeared to have little impact on shooting 

performance.  Individual analysis used in each study highlighted the extent of 

individual variation in shooting performances, and demonstrated that group 

analysis is not sufficient to reflect the performances of individual participants. 

The final two studies examined elite precision shooting performances. 

Study 4 provided a descriptive analysis of torso, shoulder, wrist and pistol 

movement during the final second before the shot.  Participants produced variable 

movement patterns for the upper limb, reflecting the principle of abundancy, in 

order to control the motion of the pistol. The exact patterns varied between 

participants, further supporting the importance of using individual analysis to 

examine pistol shooting performance. Study 5 examined the effects of stance 

position on shooting performance.  Changing stance position produced significant 

differences in the scores achieved by each participant (p<.05). The most effective 

mediolateral and anterior-posterior stance widths, and the mechanisms behind the 

changes in performance, varied between participants. Thus, it was recommended 
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that pistol shooters should examine stance position in greater detail when 

attempting to enhance performance. 
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Chapter One 

Introduction to Pistol Shooting and Outline of the Thesis 

1.1 Modern Pentathlon 

Modern pentathlon is a multi-event sport in which athletes traditionally 

competed in five separate disciplines, incorporating 10 m air pistol shooting, fencing, 

a 200 m swim, horse riding, and a 3 km run. Points were awarded based on 

performance, with a maximum score of 1000 points available per event. Points 

accumulated over the first four events were translated into a time-based handicap at 

the beginning of the 3 km run, meaning that the first athlete to cross the finish line of 

the run event became the overall competition winner. 

In its original format, the modern pentathlon competition began with pistol 

shooting and ended with the 3 km run. However, a rule change introduced in January 

2009 resulted in a merging of these two events. Whilst the fencing, swimming and 

riding events remained the same, a new event, named the combined event, was 

created in which athletes complete the following tasks: 

20 m Run → Shooting Series 1 → 1 km Run → Shooting Series 2 → 1 km Run → 

Shooting Series 3 → 1 km Run 

In this format, prior to further changes in 2013, three shooting series existed 

in place of the previous single round of shooting. During each series athletes were 

permitted a maximum of 70 s in which to hit each of five targets with a single shot 

pistol. If an athlete successfully achieved all five hits within the 70 s time limit, they 

could immediately leave the firing line and proceed to the next running stage. The 

rules have since been modified further, with athletes required to complete four 800 

m running phases interspersed by four 50 s shooting series. Whilst the event has been 

adapted, the concept of shooting accurately following bouts of exercise remains the 

same. The combined event now forms the final event of the modern pentathlon 

competition, and begins with the same style of handicapped start which was 
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previously used for the 3 km run. Thus, the athlete who is the first to complete the 

final running phase of the combined event becomes the overall competition winner. 

1.2 Pistol Shooting 

Pistol shooting, as it takes place in modern pentathlon, has changed 

dramatically following the introduction of the combined event. In its original format, 

pistol shooting was a precision event with a focus on achieving high scores in a 

relatively time-unlimited environment. Athletes were required to complete 20 shots, 

with a maximum of 40 s per shot, at a distance of 10 m from the target. Performance 

was judged on accuracy, with points awarded based on the distance between the 

shot and the centre of the target. A hit directly in the centre of the target resulted in 

a maximum score of 10 points, whilst a hit further from the centre of the target 

achieved a lower score.  Shooting in its original format is termed precision shooting. 

Throughout this thesis both the precision and accuracy of shooting are discussed. 

Accuracy is used to represent the shot location on target; a shot which is closer to the 

centre of the target is more accurate than one which is further from the target 

centre.  Precision refers to the distance between the location of a number of shots on 

the target.  If all shots are located in a similar position on the target, the performance 

is considered precise.  In shooting, this is often referred to as the shot group; a 

smaller shot group represents a more precise performance. 

The introduction of the combined event changed pistol shooting from an 

accuracy to a speed-based event. Consequently, athletes have been faced with the 

challenge of adapting from an event were attention is focused on hitting the centre 

of the target, with few external influences, to an event where attention is focused 

on hitting the target as quickly as possible. This rule change has introduced 

additional external influences, such as the effect of exercise  on  performance  and 

the  awareness of other competitors’ performances. 

Modern pentathletes must now attempt to shoot quickly in order to hit all 

five targets in the shortest time possible. The ability to shoot quickly  is crucial, as an 

athlete can immediately progress to the next running phase as  soon  as  all five hits 
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are achieved. An unlimited number of shots  are  permitted  within  each  70  s  

shooting series, and a  hit  is  considered  successful  regardless  of  the  pellet’s  

position on  the  target.  The distance between the athlete and the target remains at  

10 m, the same as the original precision format, but the target dimensions have 

changed. Athletes now shoot at a target of 5.95 cm diameter, in comparison to the 

precision shooting target, for which the diameter of the 10 ring is just 1.15 cm (Figure 

1.1). The combined event target is the equivalent size of the seven ring on a precision 

target. 

 

 

As the combined event is a relatively new shooting format there is 

limited existing research on the topic. Investigations into performance in this event 

are clearly warranted, with the research of Le Meur, Hausswirth, Abbiss, Baup, and 

Dorel (2010) reporting that combined event performance is more influential on an 

athlete’s final position in the overall modern pentathlon competition than either the 

swimming or fencing events. Thus, maximising combined event performance will not 

only improve an athlete’s chance of success in the combined event, but also in the 

entire modern pentathlon competition. Consequently, an understanding of the 

mechanisms behind a successful combined event performance is critical. The 

research of Le Meur et al.  (2012, 2010) has already gone some way to achieving this. 

In 2010 they compared the performance of 36 elite modern pentathletes competing 

in a World Cup competition, investigating the importance of percentage shooting 

accuracy, time per shot, and running velocity in relation to overall combined event 

time. By assigning athletes to one of three groups based on their event time, it was 

17 cm 

5.95 cm 

Figure 1.1. A comparison of the change in target, from the original precision format 

(left) to the combined event target (right). 
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possible to identify which factors determined a successful combined event 

performance. Neither average running velocity nor the time per shot differed 

significantly between the three groups (p>.05). Instead, athletes who completed the 

combined event in the shortest time required significantly fewer shots to complete a 

shooting series than the athletes in the two less successful groups (p<.05). Thus, it 

appears that shooting accuracy, rather than the speed at which an athlete can run or 

shoot, is most crucial in the combined event. 

The importance of each shooting series in the combined event was 

further emphasised by Le Meur et al. (2012), who investigated the effect of pacing 

strategies within each running phase. Nine elite modern pentathletes completed 

combined  event trials in which the pace of the first two 1 km run phases were 

manipulated.  Three pacing strategies were examined including one fast start 

strategy, where participants completed the first 170 m at 10% faster than their mean 

event speed, and two constant strategies. The first constant strategy was completed 

at 100% of a participants’ mean competition speed, and the second at 105%. Pacing 

had no significant effect on overall combined event time (p>.05) and by increasing 

the pace of the first two 1 km phases, participants took significantly longer to 

complete the third shooting series (p<.05). Thus, any benefits of quicker running 

phases were negated by an increase in shooting time. These findings are valuable, as 

they highlight that shooting performance, albeit modified, remains essential to 

success in modern pentathlon. 

The research of Le Meur et al. (2012, 2010) has undoubtedly produced 

interesting findings regarding the temporal characteristics of performance. It is now 

important to advance this research area by including the effects of the combined 

event on kinematic variables associated with shooting. This will make it possible to 

examine the processes behind a successful combined event shooting performance. 

A strength of the research of Le Meur et al. (2010) is that it has produced findings 

which directly represent the performance of elite athletes under competition 

conditions. Whilst important, this field-based approach cannot produce the more in 

depth analyses that can be undertaken in a laboratory setting. Laboratory-based 

analysis can provide detailed information about shooting performance, such as the 
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exact location of the shot on the target, and the area of the target at which the 

pistol is aimed prior to the shot. The understanding of these processes has 

previously been achieved for both precision pistol (Ball, Best, & Wrigley, 2003; 

Mason, Cowan, & Gonczol, 1990) and rifle shooting (Heimer, Medved, & Spirelja, 

1985; Tang, Zhang, Huang, Young, & Hwang, 2008) events. The majority of these 

studies have identified two main variables that affect performance – gun movement 

and body sway. 

1.3 Outline of the thesis 

This thesis comprises a further 12 chapters which detail the common 

methods of evaluating shooting performance, and also provides a review of the 

literature and includes five research studies which examine different aspects of 

pistol shooting performance.  More information about each chapter is detailed 

below. 

1.3.1 Chapter 2: Common Methods of Evaluating Shooting Performance 

A number of methods have been used as evaluators of shooting 

performance, including shot score and the measurement of pistol and centre of 

pressure movement. These methods will be described in detail in this chapter prior 

to discussing their use, and associated findings, in the literature review. 

1.3.2 Chapter 3: Literature Review 

This chapter provides a detailed, inter-disciplinary, review of current 

shooting literature. Consideration has been given to research that has examined the 

biomechanical factors associated with rifle and pistol shooting performance. 

Physiological factors, for example the effects of exercise on shooting performance, 

are considered in relation to the rifle shooting sport of biathlon. Finally, research 

considering psychological factors, which are also likely to influence shooting success, 

is evaluated. 
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1.3.3 Chapter 4: General Methods for Studies 1 - 3 

The data used for each of the first three studies were collected from the 

same testing sessions, comprising one precision and one combined event trial per 

participant. Detailed descriptions of the methods used in each testing session are 

included in this chapter, and used for reference within the first three research 

studies. 

1.3.4 Chapter 5: Research Study 1 

The first three research studies consider shooting performance in relation to 

the modern pentathlon combined event. The first study was completed following 

the introduction of the combined event.   This examines whether ability level in 

precision shooting influences shooting performance in the combined event, and 

identifies the key kinematic variables associated with combined event shooting 

performance. 

1.3.5 Chapter 6: Research Study 2 

The second study examines shooting performance within each of the three 

shooting series. This study uses intra-series comparisons to identify any effects of 

the time constraints arising from the 70 s time limit by comparing shot score, heart 

rate and kinematic variables within each shooting series. 

1.3.6 Chapter 7: Research Study 3 

The third study investigates the effects of each 1 km running phase on 

shooting performance. Inter-series comparisons compare shot score, physiological 

and kinematic variables between each shooting series. Comparisons are made 

between  the variables that are significantly associated with shot score in each 

series to identify any changes in performance. 

1.3.7 Chapter 8: Change in Research Focus 

The focus of the final two studies changed from combined event to precision 

shooting. This chapter explains the reasons behind this change and details the links 

between the first three combined event-based research studies and the final two 
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precision-based studies. 

1.3.8 Chapter 9: Review of the Literature 

This chapter provides a second literature review detailing the research most 

relevant to the final two research studies. Existing findings concerning movement 

variability and coordination are discussed, in addition to the effects of stance 

position on stability. 

1.3.9 Chapter 10: Pilot Testing – Motion Analysis Systems 

This chapter describes the pilot testing sessions used to ensure that the 

motion analysis system had sufficient accuracy and repeatabilit0y to analyse 

shooting performances. Each testing session, and its corresponding results and 

conclusions, are described. 

1.3.10 Chapter 11: Research Study 4 

The final two studies consider elite precision pistol shooting 

performance. The fourth study produces a descriptive evaluation of elite shooting 

performance, examining the movement patterns produced when shooting and the 

variability of body sway and upper limb and pistol movement. 

1.3.11 Chapter 12: Research Study 5 

The final study investigates the effects of stance position on shooting 

performance. Shot scores, movement patterns and movement variability are 

compared between nine different stance positions to examine the effect of stance 

on shooting success, and to identify the mechanisms behind any changes in scores 

achieved in each stance position. 

1.3.12 Chapter 13: Discussion and Practical Applications 

The final chapter provides a summary of the key findings from each of the 

five studies, and describes the practical applications that arise from each of these 

conclusions. The applications of these findings to the wider population, beyond the 

scope of elite level pistol shooting, are also discussed. 
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Chapter Two 
 

Common Methods of Evaluating Shooting Performance 
 

 
2.1 Assessing Shooting Performance: Shot Score 

 
 

The most common method of quantifying performance in shooting events is  

the use of shot score, which assigns a value to each shot based on the distance of the 

pellet from the centre of the target (Hoffman, Gilson, Westenburg, & Spencer, 1992; 

Pellegrini & Schena, 2005; Tang et al., 2008). Higher scores, to a maximum of 10.9 in 

precision pistol shooting, represent a hit closer to the centre of the  target.  This 

method has been used for a variety of performance comparisons, including 

comparing higher and lower ability shooters, and evaluating the effect of 

interventions on shooting performance. Examples include Tang et al., (2008) who 

used shot score to quantify a participants’ shooting ability, and thus assign each 

participant to either an elite or pre-elite testing group, and Hoffman et al. (1992), 

who used score comparisons to investigate how the performance of a single group of 

shooters varied following different exercise conditions. Shot score is the customary 

method of measuring precision shooting performance, but could also prove useful for 

rapid fire events such as the combined event. Whilst the combined event is not 

concerned with shot score,  an athlete who can consistently shoot close to the centre 

of the target will have an increased margin for error than one who frequently hits the 

edge of the target. 

 
 

2.2 Assessing Shooting Performance: Gun Movement 
 

Another method used to quantify shooting performance, and commonly used 

by researchers, is the measurement of gun movement (Ball et al., 2003; Hoffman et 

al., 1992; Mason et al., 1990). This is usually achieved with an opto-electronic 

shooting system, comprising a frame placed around the target which emits an infra-

red signal, and a sensor which is attached to the barrel of the gun. The position of the 

sensor on the gun in relation to the signals emitted from the target can be recorded 
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before, during, and after trigger pull.   This measurement provides information 

regarding the position of the aim-point of the gun on the target, and how it moves 

throughout the aiming period. During each shot, the optoelectronic shooting system 

can provide specific information relating to performance, including: 

 Shot Score – the distance between the location of the shot and the

centre of the target. Each shot is scored out of a maximum 10.9,

representing a hit directly on the target centre.

 Trace Length (mm) – the total distance moved by the aim-point of the

gun on the target. Measured during the entire time the pistol is aimed

at the target, and can be broken down into time periods, such as 1 s

before the shot, and into horizontal and vertical components. Smaller

trace lengths have  been associated with higher shot scores and

increased performance levels (Mason et al., 1990; Zatsiorsky & Aktov,

1990).

 Triggering (mm) – the movement of the aim-point of the gun on the

target  after trigger release.  This represents the recoil of the gun

following the shot.

 Aiming Time (s) – the time period from when the aim-point of the gun

first aligns with the target to the instance of trigger pull.

 10 Ratio (%) – The percentage of time spent in the 10 ring of the target

whilst aiming.

2.3 Assessing Shooting Performance: Centre of Pressure Movement 

Movement of the centre of pressure is another common measure in 

shooting research, and is often used to represent the amount of body sway produced 

during the aiming period (Ball et al., 2003; Heimer et al., 1985; Mason et al., 1990). 

Body sway is considered important due to the extremely small movements that are 

associated with shooting performances. Any movement from the body can potentially 

be transmitted to the pistol, and ultimately alter the location of the pellet on the 

target (Pellegrini & Schena, 2005). Thus, body sway has the potential to affect the 
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scores achieved for precision shooting, or the difference between a hit or a miss in 

the combined event. 

Maintaining an upright, stable posture during simple standing is a 

demanding task due to the narrow base of support between the feet, and the 

relatively greater height of the body’s centre of mass (Era, Konttinen, Mehto, Saarela, 

& Lyytinen, 1996). Whilst body sway is an inherent part of all movement, including 

quiet stance tasks, pistol shooters exhibit a significantly smaller degree of movement 

than non-shooters (p<.05) (Aalto, Pyykkö, Ilmarinen, Kähkönen, & Starck, 1990). Thus, 

a common consideration for shooting research has been whether the magnitude of 

body sway also differs between shooters of different ability levels. 

A number of methods have been used to record the magnitude and direction 

of movement of the body in shooting. The majority of investigations have used 

centre of pressure movements, recorded by a force platform, as an indicator of body 

sway (Ball et al., 2003; Era et al., 1996; Le Clair & Riach, 1996). Body sway is a general 

term used to describe movement of the centre of mass; “a theoretical point about 

which the body’s mass can be considered to be equally distributed” (Chapman, 2008, 

p.23). Although centre of pressure is commonly used to represent the motion of the

centre  of mass, the two variables are independent. Centre of pressure is calculated 

as the average location of the vertical forces acting downwards onto the force plate 

(Winter, 2005). If an individual were to stand with their weight equally distributed 

under each foot, the centre of pressure location would be located exactly halfway 

between the two feet. 

Movement of the centre of pressure takes place in response to a movement 

of the centre of mass, and is used to restore the balance of the body (Palmieri-Smith, 

Ingersoll, Stone, & Krause, 2002). Consequently, whilst centre of pressure 

movements are not a direct representation of body sway, they are generally 

considered a reliable indicator of body sway motion. For instance, when the centre of 

mass moves anterior to the centre of pressure, the plantarflexor muscles are 

activated to move the centre of pressure forward (Figure 2.1, images 1 and 2). Once 

the centre of pressure moves anterior to the centre of mass, the body experiences 
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posterior sway, and the dorsiflexor muscles are activated to move the centre of 

pressure backwards (Figure 2.1, images 4 and 5). Consequently, the centre of 

pressure and centre of mass are constantly moving, even during quiet stance. 

Greater centre of pressure movements can  therefore be used  to reflect  greater 

centre of  mass movements and  have   been used to represent greater levels of body 

sway (Ball et al., 2003; Era et al., 1996; Nardone, Godi, Grasso, Guglielmetti, & 

Schieppati, 2009). 

The mechanisms behind postural control are determined by the central 

nervous system, although the exact mechanisms behind the maintenance of stability 

are debated in current literature.  Components of the musculoskeletal system, such 

as muscle spindles and golgi tendon organs, provide feedback to the central nervous 

system regarding changes in muscle and tendon length and position (Kistemaker et 

al., 2013).  The information from the proprioceptors is used by the central nervous 

system to control muscle activation in an attempt to slow, or reverse, the direction of 

body sway.  Research suggests this is an anticipatory response, with peaks in muscle 

Figure 2.1. The relationship between movements of the centre of mass and centre 

of pressure during quiet stance (Winter, 2005, p.107). The distance between the 

ankle joint centre and the centre of mass (g) and centre of pressure (p) are also 

shown, in addition to the angular acceleration (α) and angular  velocity  (ω) 

produced for each of the 5 centre of gravity and centre of pressure locations. 

Weight acting from the centre of mass is represented by “W”, while the reaction 

force is marked as “R” and shown originating from the centre of pressure. 
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activity recorded before any changes in muscle length are actually required to 

prevent a loss of stability (Loram et al., 2005).  Whilst this response is adequate to 

maintain a relatively stable position of the body during quiet stance, Mello, Oliveira 

and Nadal (2007) reported that under certain conditions, such as when the muscles 

are fatigued following exercise, these responses could be delayed, resulting in 

increased movements of the centre of mass.   

Numerous research studies have investigated centre of pressure movement in 

sport, exercise, and clinical settings. A number of different parameters can be derived 

from the centre of pressure data recorded using a force plate, and investigators have 

selected the most appropriate variables depending on their aims. Commonly used 

measures of centre of pressure movement are presented in Table 2.1. 
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  Table 2.1 Variables commonly used in the analysis of centre of pressure movement 
and examples of their use in previous shooting and quiet stance research. 

 Definition Authors Main Findings 

 Range Difference between the 
minimum and maximum centre 
of pressure coordinates. 
 

Split into anterior-posterior and 
mediolateral components 

                        Shooting Research: 

Heimer et al. (1985) Greater for lower scoring shots 

Ball et al. (2003) Greater for lower scoring shots 

                    Quiet Stance Research: 

Raymakers, Samson, 
& Verhaar (2005) 

Mediolateral range greater for elderly 
than young participants 

Path 
Length 

Total distance moved by the 
centre of pressure. 
 
Split into anterior-posterior and 
mediolateral components 

                       Shooting Research: 

Era et al. (1996) Greater for novice shooters than elite 

Ball et al. (2003) Greater for lower scoring shots 

Niinimaa & McAvoy 
(1983) 

Increased immediately post-exercise 

                    Quiet Stance Research: 

Bove et al. (2007) Increased for 6 minutes post-exercise 

Noda & Demura 
(2007) 

Increased following fatiguing exercise 

Speed Centre of pressure path length 
divided by the time period over 
which it was recorded 

                      Shooting Research: 

Era et al. (1996) Higher for national shooters than 
elite. 

Hawkins & Sefton 
(2011) 

Not significantly affected by stance 
angle. 

Hawkins (2013) Higher for greater stance widths 

Velocity Total displacement of the centre 
of pressure trace divided by the 
time period over which it was 
recorded. 
 
Split into anterior-posterior and 
mediolateral components 

                     Shooting Research: 

Su, Wu, & Lee 
(2000) 

Higher for novice than experienced 
shooters. 

                    Quiet Stance Research: 

Raymakers et al. 
(2005) 

Higher for elderly than young 
participants 

Derave et al. (2002) Increased for 2 minutes post-exercise. 

Noda & Demura 
(2007) 

Increased following fatiguing exercise 

Area Area of a square enclosing all 
data points of the centre of 
pressure trace 

                   Quiet Stance Research: 

Noda & Demura 
(2007) 

Increased immediately after exercise 

Root 
Mean 

Square 

Square root of the mean squared 
values of centre of pressure path 
length 

                   Quiet Stance Research: 

Noda & Demura 
(2007) 

Increased immediately after exercise 

Standard 
Deviation 

Standard deviation of all centre 
of pressure values in relation to 
the mean location of the centre 
of pressure. 
 

Split into anterior-posterior and 
mediolateral components 

                     Shooting Research: 
Su et al. (2000) Greater for novice than experienced 

shooters 
                  Quiet Stance Research: 
Noda & Demura 
(2007) 

Increased immediately after exercise 
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With multiple parameters available to quantify the level of centre of pressure 

movement, much research has considered which are the most useful and accurate 

methods to represent body sway (Demura, Kitabayashi, & Noda, 2006; Le Clair & 

Riach, 1996; Palmieri-Smith et al., 2002).  The consensus is that each variable 

included in  Table 2.1 is a valid measure to represent body sway, with Palmieri-Smith 

et al. recommending that a combination of variables are used to provide a more in-

depth evaluation of postural control. For instance, range of movement examines the 

amplitude of movement, but relies on two discrete data points to represent 

movement throughout a trial. Other variables, such as path length, analyse centre of 

pressure movement throughout a trial, but do not provide specific information 

about movement amplitude. Le Clair and Riach reported that the optimum time 

periods used for analysis were 20 s and 30 s. These time periods, have limited 

relevance in pistol shooting research, particularly for the combined event where 

time restrictions mean that the aiming period is never more than a few seconds. 

Demura et al. (2006) Le Clair & Riach (1996) and Palmieri-Smith et al. (2002) 

each reported a number of variables that can distinguish between more and less 

stable participants from the general population. Given that elite shooters produce 

significantly smaller levels of movement during quiet stance than non-shooters 

(Aalto et al., 1990; Era et al., 1996; Herpin et al., 2010), there is no guarantee that 

they can distinguish between different ability shooters. Thus, prior to beginning 

research into combined event performance it is important to identify which 

variables have previously been used for shooting analysis, and establish which are 

sufficiently sensitive to determine between different shooters. 
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Chapter Three 

Review of the Literature - Factors Affecting Shooting Performance 

A key focus of previous shooting research has been the identification of the 

factors that are most important to a successful shooting performance. Two methods 

have been used to identify these variables, comparing the performances of different 

participant groups separated by shooting ability, or by comparing the best and 

worst shots for individual participants. By analysing a combination of shot score, gun 

movement and centre of pressure movement, it has been possible to determine 

some of the variables that are key to success in both rifle and pistol shooting events. 

3.1 Rifle Shooting Research 

The effects of rifle movement on shooting success was examined by 

Zatsiorsky and Aktov (1990), who recorded the performances of participants in four 

ability-based groups 1 s and 3 s prior to the shot. The higher ability shooters 

produced smaller movements of the rifle than the lower ability shooters, 

particularly in the final second before the shot. Both horizontal and vertical trace 

lengths were smaller for the higher ability participants. Thus, reducing the 

magnitude of rifle movement was identified as an important method of enhancing 

performance. 

Further comparisons between different ability shooters were made by 

Heimer et al. (1985) and Era et al. (1996). Both studies investigated the associations 

between centre of pressure movement and shot score within a range of rifle 

shooting abilities. Heimer et al. reported minimal mediolateral movements of the 

centre of pressure, but anterior-posterior movement varied greatly between 

participants and in some cases between trials for the same participant, although the 

extent of these variations were not reported. Negative associations were reported 

between centre of pressure movement and shot score, indicating that the shots 

with a greater range of centre of pressure movement resulted in lower scores. Era 
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et al. used different centre of pressure variables to Heimer et al., but came to a 

similar conclusion, as national and novice shooters produced a significantly faster 

speed of movement (p<.001) and greater path length (p<.001) than elite shooters 

during the final 1.5 s before the shot. Elite shooters were also able to significantly 

reduce speed and path length as the instance of the shot approached (p<.05). 

Furthermore, whilst there was a significant difference in centre of pressure 

movement between the best and worst shots for the national and novice shooters 

(p<.05), no significant differences were apparent for the elite shooters (p>.05). 

The research of Heimer et al. (1985) and Era et al. (1996) provides an 

indication of the effects of centre of pressure movement on shooting performance. 

However, fundamental differences exist between rifle and pistol shooting, such as 

stance position and the hold of the gun. Participants in both studies were aiming 

from a distance of 10 m, as is used in pistol shooting, but targets were of a different 

size to those used for either the precision or combined event formats. Consequently, 

whilst the methods and results of rifle shooting research can inform research into 

pistol shooting events, the conclusions are primarily related to rifle shooters and not 

necessarily transferrable to other shooting formats. 

 
 

3.2 Pistol Shooting Research 
 

 
3.2.1 Pistol and Centre of Pressure Movement 

 

Pistol shooting research has followed a similar path to rifle shooting research, 

analysing movements of both the pistol and the centre of pressure. An extension to  

the rifle shooting research is the simultaneous recording of pistol and centre of 

pressure movements to determine how each variable affects shooting performance 

(Ball et al., 2003; Mason et al., 1990). 

In their analyses of 10 m air pistol shooting, Mason et al. (1990) analysed the 

performances of 16 elite and junior shooters, each completing 25 shots, whilst Ball 

et al. (2003) analysed five elite pistol shooters over the course of 20 shots. Mean 

pistol movement over the final second before the shot was greater for those who 
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took part  in Mason’s research (108.9 mm horizontal and 89.2 mm vertical) than 

those used by Ball et al. (76.1 mm horizontal and 70.7 mm vertical). Centre of 

pressure range over  the final second was also greater for Mason’s participants (3.1 

mm and 3.3 mm in the anterior-posterior and mediolateral directions respectively), 

than for those who took part in Ball’s research (1.9 mm and 1.0 mm). These 

differences in performance may be a consequence of the ability of the two groups of 

participants, as higher ability shooters have been associated with greater levels of 

stability (Era et al., 1996; Zatsiorsky & Aktov, 1990). Thus, the group used by Ball et 

al., which was composed of entirely elite shooters, would be expected to produce a 

smaller degree of pistol and centre of pressure movement than the combination of 

elite and junior shooters used by Mason et al. 

In addition to the magnitude of movement produced by pistol shooters, 

Mason et al. (1990) examined which variables were the most influential to shot 

score. Regression analysis used for each pistol and centre of pressure variable 

revealed that horizontal pistol movements had the greatest effect on horizontal 

accuracy,  accounting for 37% of the variability in horizontal shot placement. 

Vertical accuracy was more sensitive to changes in body sway than pistol 

movements, as mediolateral centre of pressure movement accounted for 40% of 

the variability in vertical shot placement, compared to just 13% for vertical pistol 

movements. Thus, whilst both pistol movement and body sway influence pistol 

shooting accuracy, each variable appears to have a greater impact on accuracy in 

one specific direction. 

By incorporating regression into their analysis of shooting performance, 

Mason et al. (1990) highlighted the importance of examining the directional 

components of each movement, rather than simply using the resultant value. This is 

particularly important given that mediolateral centre of pressure movements were 

strongly associated with vertical shot placement, whilst anterior-posterior 

movements were largely unrelated to shooting performance, accounting for only 8% 

of changes in horizontal pistol movement. Thus, a more detailed knowledge of 

shooting  performance can be developed by considering the directional components 

of pistol and centre of pressure movement separately. 
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A final, and important, issue considered by Ball et al. (2003) was the use of 

intra-individual analysis to examine shooting performance. Ball et al. reported that 

the factors affecting shooting accuracy varied greatly between individuals, and so 

both group and intra-individual analysis methods were used to identify whether 

group analysis   was   appropriate    for    investigations    into    pistol    shooting   

performance. Correlations, using group data,  identified  that  shot  score  had  a  

strong, significant, correlation with time spent in  the  10  ring  of  the  target  (r  =  

0.95, p<.05), but no significant correlations  with  either  centre  of  pressure 

movement or movement of the aim point of the pistol (p>.05). In contrast, intra- 

individual analysis revealed that three  of  the  five  participants  experienced  

significant associations between movements of  the  aim  point  of  the  pistol  and  

shot score. Shots with a greater degree  of  pistol  movement  resulted  in  lower  

scores. Despite pistol movements accounting  for  up  to  53%  of  the  variation  in  

shot score for three participants, the other two participants demonstrated no 

significant associations between the same two variables. Centre of pressure 

movements were only significantly associated with score for one participant,  for  

whom positive correlations indicated that sway movements accounted for 46% of 

the variation in score. As such, group analysis masked an  important  aspect  of 

performance for these participants. Furthermore, four participants  were  identified 

with significant correlations  between  body  sway  and  pistol  movements,  despite  

the  non-significant  findings  of  group  analysis.  Thus,  it  seems  that  group  

analysis is not sufficient to represent pistol shooting performance, where  even  

small  variations between individuals can greatly affect success. 

The  findings  of  both  Mason   et   al.   (1990)   and   Ball   et   al.   (2003)   

clearly demonstrate that pistol and centre of pressure movement can significantly 

affect the scores  achieved  when  pistol  shooting.    However,  neither  the  results     

of Mason’s regression analysis, nor the correlations used by Ball et al. accounted for 

100% of the variation in score. Thus, there must be other factors in addition to those 

considered  by  these  studies   which   further   influence   shooting   success.   With  

the exception of Pellegrini and Schena (2005), who  analysed  movements  of  the 

upper limb, there  is  limited existing research considering the additional movements  
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of  the  body  that  take  place   when   shooting.       Future   research   must     

consider other  aspects  of  shooting performance in more detail. This more in-

depth analysis, including Pellegrini and Schena’s analysis of upper limb movement, 

will be examined in more detail in a further literature review, and in the final two 

research studies (Chapters 9 - 12). 

The consensus of the majority of pistol and rifle shooting research is that 

centre of pressure movement has a significant effect on shot score (Mason et al., 

1990; Heimer et al., 1985; Era et al., 1996). In contrast, Ball et al. (2003) reported 

that, at a group level, no significant effects of centre of pressure movement were 

apparent. Ball et al.’s findings may be somewhat limited by the low number of 

participants and their similar levels of ability, as all participants scored between 9.2 

and 10.0 points for every shot. By incorporating shooters of lower ability into the 

analysis, greater evidence of associations between body sway and score may have 

emerged. The difference in findings between those of Ball et al. and the rifle 

shooting research of Era et al. and Heimer et al. highlight the importance of treating 

each shooting event separately when considering the variables which most affect 

performance. 

Mason et al. (1990) and Ball et al. (2003) produced interesting findings 

regarding the influence of pistol movements and body sway on accuracy in precision 

shooting events. These findings are now less relevant to modern pentathletes 

competing in the combined event. Whilst shooting stance and posture remain 

similar to precision shooting, the format of the two events are fundamentally 

different. Precision shooting places an emphasis on achieving high scores with a 

relatively long period of time in which to shoot, whilst the combined event requires 

athletes to shoot quickly and with little incentive to hit the centre of the target. 

Consequently, research must now focus specifically on the combined event to 

ascertain whether those factors identified as key to success in precision shooting are 

also influential to combined event performance. This will not only highlight which 

variables determine a successful combined event shooting performance, but will 

also establish how the pistol shooting event has been altered by the rule change in 

modern pentathlon. 
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3.2.2 Aiming Time 
 

An additional aspect of shooting performance is the length of time that an athlete 

spends aiming prior to the shot (Chapter 2, section 2.2).  Aiming time reflects the 

time that an athlete spends sighting the position of the pistol in relation to the 

target and, whilst less widely reported than other variables such as pistol movement 

and body sway, it has the potential to influence shooting success. This may become 

increasingly important with the introduction of the combined event, where shooting 

performance is now more focused on speed than accuracy. 

The relationship between the speed and accuracy of a movement has long  

been a topic of interest for research into human movement, primarily focusing on 

pointing movements, rather than shooting performance. Fitts (1954) analysed the 

performance of three groups of participants, each completing one of three accuracy- 

based tasks for which either target size or the distance between two targets was 

manipulated. As target width was increased, thereby decreasing the accuracy  

demands of the task, participants’ speed of movement also increased. More 

recently, Fernandez and Bootsma (2004) and Berrigan et al. (2006) reported similar 

findings in the effects of target size on movement accuracy for pointing tasks. Both 

found that movement time was significantly longer for smaller targets (p<.01), 

Schmidt et al. (1978) attempted to explain these trade-offs between speed and 

accuracy, suggesting that aiming movements are composed of submovements that 

are essential for a successful task outcome. They proposed that these 

submovements are a compromise between a fast, forceful movement to be near the 

target, and smaller, more time- consuming movements used to ensure that the 

movement is accurate. Thus, longer aiming times are required for smaller targets, to 

allow time for both the initial, fast movement and the smaller corrective movements 

to be produced. 

Previous findings indicate that the lower accuracy requirements of the 

combined event should result in a reduction in aiming times. This may have 

important implications for combined event performance, with authors such as 

Beilock et al. (2004) reporting that an increase in time restrictions results in a decline 
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in performance, albeit for a golf-based task. With no prior combined event research, 

however, the question remains as to whether decreased aiming time will greatly 

affect shooting performance. Some research has considered the specific effects of 

aiming time on shooting performance, but not in the combined event. Mason et al. 

(1990) found that aiming time had a significant positive correlation with 

accuracy (p<.05).  Such findings suggest that if aiming time is sufficiently reduced, 

accuracy may be compromised enough so that an athlete achieves fewer hits on 

target, and requires more shots to complete each shooting series. 

More recent research (Goonetilleke, Hoffmann, & Lau, 2009; Scholz, 

Schoner, & Latash, 2000) has produced conflicting findings to those of Mason et al. 

(1990). Scholz et al. analysed the performances of novice shooters, aiming at a 

target of 3.8 cm from  a distance of 3.7 m, and reported no significant correlations 

between movement time and shot success (p>.05). Unlike Mason et al., who 

recorded the time that the pistol was aligned with the target, Scholz et al. analysed 

the time from the onset of movement until the instance of the shot. Goonetilleke et 

al. compared the shooting performances of participants of various ability levels, 

each shooting at a 22.5 cm target at a distance of 2 m. Each participant completed 

seven shots  with  time  periods ranging between 0.5 – 3.0 s, in addition to one 

condition with an unlimited time period. Accuracy increased as aiming time 

increased up until 2 s for experienced shooters, beyond which there were no 

significant changes. It was concluded that experienced shooters do not need more 

than 2 s to view a target before shooting successfully. 

A potential explanation for the contrasting findings of Mason et al. (1990) 

and Scholz et al. (2000) is the lower ability of the participants used by Scholz et al. 

As such, the correlations presented by Scholz et al. were based on whether a shot 

was successful or unsuccessful (a hit or miss on the target). Mason et al.’s 

participants  were capable of consistently hitting the target, and so accuracy was 

examined in more detail by recording shot score. These comparisons suggest that 

aiming time influences the scores achieved in precision shooting, but it may be less 

critical in the combined event where athletes are attempting to hit a larger target. 

This theory is supported by the conclusions of Goonetilleke et al. (2009), whose 
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research was based on a rapid-fire style shooting format. However, both 

Goonetilleke et al. and Scholz et al. used targets of a different size, and at a much 

closer distance than those used for either precision  or combined event shooting. 

Thus, whilst it may be possible for a modern pentathlete to achieve a successful 

shooting performance with a relatively short aiming period, it is yet to be proven. 

Aiming time should therefore be incorporated into the analysis of combined event 

shooting to determine whether it is an important consideration for modern 

pentathletes when training and competing. 

3.3 The Effects of Exercise on Shooting Performance 

Much research has investigated shooting performance in the precision 

format, where shooters compete in a controlled and relatively time-unlimited 

environment. Some has also examined how shooting performance is affected by 

exercise (Hoffman et al., 1992; Niinimaa & McAvoy, 1983), as encountered in 

biathlon, where athletes must attempt to hit targets following phases of cross-

country skiing. This format, involving shooting series interspersed by bouts of 

exercise, is the most similar to that which now exists in modern pentathlon. As such, 

the findings can provide some indication of the effect that each running phase may 

have on shooting performance in the combined event. Niinimaa and McAvoy (1983) 

compared the effect of exercise on body sway between novice shooters, biathletes 

and elite rifle shooters. Centre of pressure movement was recorded for 60 s before 

and immediately after 4 minutes of cycling at an intensity similar to that required for 

biathlon (90% of age-adjusted maximum heart rate). Path length of the centre of 

pressure significantly increased post-exercise for all three participant groups (p<.05), 

indicating that biathletes must shoot with a greater degree of body sway than would 

be encountered during the traditional, precision shooting format. The finding that 

centre of pressure movement increases following exercise has since been further 

supported by other, albeit non- shooting, studies. Noda and Demura (2007) reported 

a significant increase in centre of pressure movement following an ankle plantar-

flexion task designed to induce lower leg muscle fatigue. Such findings suggest that 

the running phases in the combined event have the potential to affect centre of 
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pressure movement, and potentially influence shooting performance. 

Nardone et al. (1997) and Bove et al. (2007) completed similar analyses to  

those of Noda and Demura (2007), but examined the effects of more intense 

exercise. Nardone et al. investigated the effects of exercise mode and intensity on 

centre of pressure movement, reporting that the effects were dependent on both 

the type and intensity of exercise. Centre of pressure path length significantly 

increased following fatiguing treadmill exercise (p<.05), whilst no significant 

differences were recorded following fatiguing exercise on a cycle ergometer (p>.05). 

Non-fatiguing exercise did not result in any significant changes in centre of pressure 

movements for either the treadmill or cycle ergometer (p>.05). Bove et al. recorded 

the time period over which centre of pressure movement returns to a pre-exercise 

level, and found that movements remain significantly greater than baseline values 

for 6 minutes post- exercise. As such, any changes in centre of pressure movement 

are likely to affect modern pentathletes throughout each combined event shooting 

series, which last a maximum of 70 s. 

The effects of exercise on other aspects of biathlon shooting performance 

has been considered by Hoffman et al. (1992). Shooting performances of elite 

biathletes were recorded following cycling trials at different intensities designed to  

recreate those at which an athlete might approach the firing line prior to each 

shooting phase (130 bpm, 150 bpm, 170 bpm and maximum heart rate). Shot score, 

shot group dispersion, number of shots, and rifle stability, were all significantly 

affected by increasing exercise intensity (p<.05). Specifically, an increase in exercise 

intensity resulted in a decrease in shot score and a reduced number of hits on 

target, whilst  shot diameter and movements of the rifle increased. Thus, it was 

suggested that slowing down prior to the start of each shooting phase, thereby 

reducing exercise intensity, could improve a biathlete’s rifle shooting performance. 

Existing biathlon research (Hoffman et al., 1992; Niinimaa & McAvoy, 1983) 

provides an insight into the way a modern pentathletes’ shooting performance may 

be affected following each additional 1 km run phase. There are, however, essential 

differences between rifle and pistol shooting which mean that these findings cannot   
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be directly applied to the combined event. Major distinctions between the two 

modes of shooting are the difference in the hold of the gun and the stance position, 

both of which can affect stability. Furthermore, whilst both events include multiple 

shooting series interspersed by periods of high intensity exercise, the target size and 

distance to the target differ considerably between the two events. Thus, it is 

currently unclear whether exercise has a similar effect on shooting performance in 

the combined event. 

Research to identify whether the effects of exercise on combined event 

shooting performance are similar to those reported for biathlon is clearly 

warranted. This is particularly apparent from the research of Brown, Tandy, Wulf, 

and Young (2013) who investigated the effects of exercise on the pistol shooting 

performance of police officers. Eight participants completed three series of five 

rapid fire shots, both before and immediately after cycling to volitional exhaustion. 

No significant correlations existed between heart rate and either shooting accuracy 

or dispersion of shots on the target (p>.05). It should be noted that participants in 

Brown et al.’s research shot at a human silhouette, and accuracy requirements were 

less than those for the combined event, with shots an average of 65 mm from the 

centre of the shot group. 

3.4 Psychological Considerations 

The development of the combined event has introduced a new format of 

pistol shooting, with biomechanical, physiological and psychological factors, each of 

which have the potential to influence performance. Whilst the main consideration of 

the current research are the biomechanical and physiological variables affecting 

performance, the way in which movement and accuracy can be influenced by 

psychological factors cannot be overlooked. This is particularly important when 

considering the design of the shooting range, which requires athletes to line up in 

order, based on their total points score from the previous three events. Once an 

athlete has completed the five hits required for a series, they immediately leave the 

range and begin the next 1 km run phase.  This means that athletes can be easily  
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aware of how well they are performing in relation to their nearest competitors. A 

potential effect of anxiety on performance can be explained by attentional control 

theory (Eysenck, Derakshan, Santos, & Calvo, 2007), which suggests that anxiety can 

result in a change from goal-focused to stimulus-focused attention, such as an 

increased awareness of other competitors’ performances rather than a focus on the 

shooting task. 

The effect of anxiety specifically on shooting performance was considered by 

Nieuwenhuys and Oudejans (2010, 2011), in their analyses of police officers’ 

handgun shooting performance. Participants completed two shooting tasks, under 

low anxiety and high anxiety conditions, whilst aiming at two targets (28 x 28 cm 

and 12 x 35 cm)  at a distance of 5 m. Both studies reported a significant decrease in 

the percentage of shots which hit the target with the change from low anxiety to 

high anxiety conditions (p<.01). A mental effort scale completed by participants 

under both conditions, revealed that participants perceived that additional effort 

was required in the high anxiety condition. Thus, it seems likely that the extreme 

degree of accuracy required for shooting tasks means that anxiety can have a 

considerable effect on performance. 

The effect of anxiety on shooting performance was further considered by 

Nibbeling, Oudejans, Ubink, and Daanen (2014), who investigated the interactions 

between anxiety and fatigue on rifle shooting performance. Twenty two soldiers 

were separated into two groups, each completing a number of shooting tasks, 

including an accuracy task shooting at two targets (20 x 28 cm and 28 x 28 cm 

diameter) at a distance of 3 m. One group completed each task following a rest 

period, whilst the second completed the tasks following 10 minutes of high intensity 

running. Both groups completed two trials, one under low anxiety and one under 

high anxiety conditions. With an increase in anxiety, participants in the non-fatigued 

group  achieved a significantly lower percentage of hits on target (p<.05), whilst 

there were no significant differences in the percentage of hits for those in the 

fatigued group (p>.05). This indicates that the effects of anxiety on shooting 

performance  are  reduced once exercise has taken place. This was supported by 

Lambourne and Tomporowski (2010) who reported that exercise leads to an 
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improvement in cognitive task performance, and that the increased arousal during 

the time of metabolic recovery can enhance performance. This suggests that any 

negative effects of anxiety on shooting performance could be counteracted by the 

effects of exercise. Consequently, anxiety may have less of a negative influence in 

the second and third series of the combined event, where shooting is preceded by 

the 1 km run phases. 

The findings of previous research concerning the effects of anxiety and 

arousal on performance in shooting and other cognitive tasks (Lambourne & 

Tomporowski, 2010; Nibbeling et al., 2014) are somewhat in contrast to those of the 

biathlon research, which suggests that shooting performance declines following 

exercise (Hoffman et al., 1992). These discrepancies may result from the tasks used 

in each investigation, with Nibbeling et al. selecting a shooting task with lower 

accuracy requirements than is required for biathlon shooting, and Lambourne and 

Tomporowski’s literature review considering cognitive tasks, none of which were 

reported to be in a shooting based environment. Currently, the question remains as 

to whether exercise can significantly affect shooting performance in the combined 

event. 

3.5 Research Aims and Hypotheses 

Previous research has attempted to identify the factors most influential to 

performance in precision shooting (Ball et al., 2003; Mason et al., 1990), but has yet 

to consider pistol shooting as it exists in modern pentathlon. Given that the 

combined event shooting format is likely to present modern pentathletes with 

altered biomechanical, physiological, and psychological demands for success, 

research  into  this area is clearly required. Research should now examine any 

fundamental changes that have occurred as a result of the rule change, and 

investigate the demands of the new shooting format.  The overall aims of the first 

three studies are to: 

(i) identify whether precision shooting ability is related to shooting

performance  in the combined event;
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(ii) identify any changes in shooting performance throughout each 70 s 

shooting series, as the time remaining to complete a series reduces; and 

(iii) determine the effect of successive 1 km running phases on combined 

event shooting performance, where there will be an increasing reliance 

on anaerobic metabolism. 

The first aim is addressed in Study 1, and will be achieved by comparing the 

performances of both modern pentathletes and elite precision pistol shooters. The 

inclusion of elite shooters provides a baseline for precision performance against 

which to compare the modern pentathletes. The criteria for elite pistol shooters was 

athletes who belonged to a national shooting team, and could achieve scores similar 

to those achieved by participants classified as elite shooters in previous research.  

Athletes were selected if they had competed in international shooting competitions 

within the previous year, and were taking part in regular training and competition.  

The scores of the selected participants compared well with the scores achieved by 

elite participants in other research, and so were judged as accurate indicators of 

elite performances (Table 5.5, page 55). Given that the combined event was only 

recently introduced, there are no elite performances against which to compare 

modern pentathletes.  Modern pentathletes were therefore classified as elite if they 

belong to a national modern pentathlon team, or the national development squad.  

By comparing the performance of each group under precision  and  combined  event  

conditions  it  is possible to identify  whether precision shooting ability influenced 

combined event shooting success. Aim two is considered in Study 2 by comparing 

performances within each shooting series, and the final aim is addressed in Study 3, 

performance within each shooting series is compared. More specific objectives are 

detailed in the introduction to each study. The hypotheses that accompany each of 

the overall aims are: 

(i) the variables associated with performance will differ between precision and 

combined event shooting due to the difference  in shooting formats; 

(ii) pistol shooters will achieve significantly higher scores and smaller pistol and 

body movements for both precision and combined event shooting, but both  
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groups will experience significantly decreased scores, and increased pistol and 

centre of pressure movements in the combined event; 

(iii) as the time remaining within a series diminished, shot score and aiming  time 

will reduce significantly, and pistol movements and body sway would increase 

significantly; 

(iv) the variables with significant correlations with shot score will vary between 

participants for all three series. 

(v) shot score will decrease significantly, and pistol movements and body sway will 

increase significantly with each successive shooting series; and 

(vi) the variables associated with performance will differ between each 

successive shooting series. 
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Chapter Four 

General Methods for Studies 1-3 

The first three studies each consider a different aspect of combined event 

shooting performance. Participants were required to complete shooting trials under 

both  precision  and  combined  event  shooting   conditions.   Data   for   Study   1 

were derived from participants'  performances  under  both  shooting  conditions, 

whilst studies two and  three  focused  solely  on  performance  in  the  combined 

event. This chapter describes the participants, tasks, equipment and methods of 

analysis that were common to all three studies. The specific aspects of each 

participants’ data that have been used for analysis are described in more detail 

within Chapters 5 - 7. 

4.1 Participants 

Two groups of participants  completed  both shooting tasks required for 

Study 1; seven modern pentathletes from a national development  squad  (3  male, 

4  female) (mean age 17.3 (± 3.1) years, mass 58.6 (±7.6) kg), and three elite pistol 

shooters (3 female) (mean age 19.3 years (±4.2) years, mass 48.3 (±5.6) kg).  Elite 

pistol shooters were chosen to act as a comparison of elite precision shooting 

performance of a similar age group. A third group, comprising ten  modern 

pentathletes from a different national development  squad,  was  incorporated  into 

the analysis for the second and third studies (3 male,  7  female)  (mean  age  17.4 

(±2.5) years, mass 60.2 (±11.0) kg).  No significant gender differences were apparent 

for shooting performance in the modern pentathlon group, and so data were 

analysed as one group for all modern pentathletes.  To ensure that group analysis 

did not overlook any important gender-related differences, both males and females 

were included in the individual case studies.  Written informed  consent  was 

obtained  from each participant prior to testing and also from participants’ guardians 

for those athletes under 18 years of age. The study was approved by the Manchester 

Metropolitan University research ethics committee. 
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4.2 Tasks 

Testing took place in a shooting range, conforming to International Shooting 

Sport Federation (ISSF) shooting regulations, within the university’s biomechanics 

laboratory.  All participants completed each shooting condition using their own 

pistol (4.5 mm calibre compressed air CO2 single shot air pistol, weighing less than 

1500 g). In both precision and combined event shooting conditions participants 

stood behind a firing line 10 m from the target (Figure 4.1).  A table was positioned 

in front of the firing line on which participants could rest the pistol and any other 

equipment they were using.  Both conditions were designed to simulate 

competition settings as closely as possible. 

Under precision shooting conditions, participants completed 20 shots, 

attempting to achieve the highest score possible. Participants aimed at a standard 

air pistol target (17 cm x 17 cm) and were permitted a maximum of 40 s per shot. An 

opto-electronic target frame was positioned on the target to allow more accurate 

measurement of pistol movement and shot score. The commands “Load”, “Start”, 

and “Stop” were issued in accordance with modern pentathlon precision shooting 

regulations. 

The combined event condition was completed following the sequence of 

events detailed by official pre-2013 modern pentathlon regulations, with the 

addition of blood lactate measurements.  As such, participants completed the 

following tasks: 

Blood lactate (1) → 20 m run phase → Shooting series 1 → 1 km run phase (1) → 

Shooting series 2 → Blood lactate (2) → 1 km run phase (2) → Shooting series 3 → 

Blood lactate (3) → 1 km run phase (3) → Finish 

Each shooting series took place inside the laboratory, and each running 

section was completed on a sports field directly outside the laboratory, composed 

of two circuits of a 500 m route marked on grass (Figure 4.1). The route conformed 

to combined event regulations, although the shape of the course was simpler than 
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those used in many competitions. A combined event target was placed at the end of 

the 10  m shooting range, with the opto-electronic target positioned in front of the 

centre target.  Athletes were therefore required to aim at only one of the five 

targets (5.95  cm diameter) so that pistol movement and shot score could be 

recorded. Once the target was hit, it was reset by pulling a cord attached to the 

target box. Each shooting series lasted a maximum of 70 s and participants 

attempted to hit the centre target five times within that period. Once a participant 

either achieved five hits or reached the 70 s time limit, they immediately left the 

shooting station and progressed to the next running phase of the event as they 

would in competition. 

Running Course 

(500 m per lap) 

Shooting 

Station 
Shooting Direction Target and 

SCATT 

10 
m Force 

Platform 

Blood 
Lactate 

Testing Area

Force 
Platform 

Computer
Video 

Camera 

Figure 4.1. Organisation of the course and laboratory for the combined event trials. 
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4.3 Equipment 

4.3.1 Pistol Movement and Shot Score 

Movements of the aim-point of the pistol were recorded throughout the 

aiming period using a SCATT USB opto-electronic shooting system (SCATT, Moscow), 

linked to SCATT Professional software (version 5.63), operating at 120 Hz. The 

target  was placed in a frame which emitted an infra-red signal (Figure 4.2), which 

was received by a sensor (7.7 cm, mass 30 g) attached to the cylinder of the pistol. 

The position of   the receiver in relation to the signals produced from the target was 

recorded by SCATT Professional software, from which the horizontal and vertical 

position of the aim-point was calculated. Shot score was calculated based on the 

position of the sensor at the instance of trigger pull. 

4.3.2 Centre of Pressure Measurements 

Two AMTI OR6-7-2000 force platforms, each measuring 46.7 x 51.0 cm, 

(Advanced Mechanical Technology, Inc. Massachusetts) were used to record ground 

reaction force data throughout the aiming period of each shot. Each platform 

(hysteresis ± 0.2%, linearity ± 0.2%) was linked through a DataTranslation 3002 A-D 

convertor to an RM Expert 3010 computer, using AMTI Netforce (Version 2.1.0, 

Advanced Mechanical Technology, Inc.) software for data acquisition. Ground 

reaction force data for all shots were sampled at a frequency of 120 Hz. 

For both shooting conditions, participants positioned themselves with one 

Figure 4.2. Set-up of the SCATT frame in front of the combined event target. 
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foot fully on each force plate.  This made little or no change to their normal shooting  

stance. Under precision conditions, participants were requested to step off the force 

plates between each shot so they could be reset, and were given time to reposition 

themselves before the beginning of each subsequent shot. Under combined event 

conditions the force plates were reset between shooting series, immediately prior 

to participants taking up their shooting stance.  Following data acquisition, vertical 

ground reaction force and centre of pressure co-ordinate data from each platform 

was exported through BioAnalysis software (Biosoft Version 2.3.0, AMTI). Centre of 

pressure location was calculated for each force plate throughout the aiming period 

using equations 1.1 and 1.2 in Appendix 1.  Data for the centre of pressure 

equations were derived from each individual force plate, producing centre of 

pressure values for the forces under each foot. Finally, data were entered into 

Microsoft Excel to calculate a single centre of pressure position for the whole body 

during the 1 s prior to each shot (Appendix 1.3). 

A microphone located near to the firing line was used to detect the noise 

from trigger pull. This was amplified to a 9 volt signal, and sent to the A-D convertor, 

where it was recorded as a pulse on the centre of pressure trace. The pulse was used 

to identify the instance of the shot, thus enabling synchronisation of the centre of 

pressure and pistol movement data. In addition, a video camera (Panasonic NV-

GS330, shutter speed 1/125th) was used to provide data for temporal analyses. 

 

4.3.3 Physiological Variable Measurements 
 

Under combined event conditions, fingertip blood lactate (BLa) samples were 

acquired from the fifth digit of the loading hand, and analysed using a YSI 1500 

SPORT Lactate Analyzer (YSI (UK) Limited). Samples were obtained on three 

occasions, as detailed in section 4.2. Activio Sport System (Activio AB, Stokholm), 

version 2.1, wireless heart rate monitors sampling at 1 Hz were used to identify the 

heart rate patterns throughout the event. 
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4.4 Data Analysis 
 

Following data acquisition a number of discrete parameters were selected to 

represent shooting accuracy and movements of the pistol and the centre of 

pressure. These were: 

Accuracy: 

 Shot score.  The distance between the position of the shot and the centre of  

the target (Figure 4.3). Each shot was scored was out of a maximum 10.9, 

representing a hit directly on the centre of the target. 

Pistol movement: 

 Trace Length. The distance (mm) moved by the aiming point of the pistol on  

the target, along the x (horizontal), and y (vertical) axes. Trace length is 

demonstrated in Figure 4.3, represented by the green, yellow, and blue lines. 

Centre of pressure movement: 

 Range of movement (mm) of the centre of pressure along the x 

(mediolateral – perpendicular to the plane of the target) and y (anterior-

posterior – parallel to the plane of the target) axes. Calculated as the 

difference between the maximum and minimum co-ordinates of the centre 

of pressure. 

 Path length (mm) along the x (mediolateral) and y (anterior-posterior) axis. 

Calculated as the total distance travelled by the whole body centre of 

pressure along each axis. 

 

Trace length was selected as a variable that has previously been used to 

accurately discriminate between shooters of different abilities (Ball et al., 2003; 

Mason et al., 1990). The centre of pressure parameters selected to represent body 

sway motion have also been previously used to differentiate between shooters of 

different abilities (Ball et al., 2003; Era et al., 1996; Heimer et al., 1985; Mason et al., 

1990). Range represents the amplitude of sway, indicating the extent of centre of 

pressure movement, and path length provides a measure of the distance travelled 
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by the centre of pressure. The use of both variables examines two aspects of centre 

of pressure movement. For instance, it is possible for two participants to produce 

the same range of movement, but for one to produce a greater fluctuation of 

movement within that range. This additional information would not be apparent if 

only range were selected to  evaluate  centre  of  pressure  movement.    By  

measuring  both  variables  a   more detailed analysis of the movement patterns of 

each participant is possible (Ball et al., 2003). 

For each kinematic variable, data were calculated for 1 s prior to the shot. 

This time period has been used in previous pistol shooting research (Ball et  al., 

2003; Mason et al., 1990), and has been reported as an adequate duration over 

which pistol and centre of pressure variables can differentiate between different 

ability shooters. This time period fits within the 1.5 s stated by Era et al. (1996) in 

which shooters significantly reduce pistol and centre of pressure movements prior to 

the shot.   

Additional variables, representing the temporal aspects of performance were 

obtained from the video and transferred onto an RM Expert 3020 computer (RM, 

UK) using Adobe Premier Pro 6.0 (Adobe, California). The time to complete each 1 

km run and each shooting series (s) were recorded for each participant. 
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Figure 4.3. Output from the SCATT optoelectronic shooting system. 

The white circle indicates the location of the shot on the target. Score is 
determined by the distance between the inner edge of the circle and the centre of 
the target (shown by the white arrow). The closer the circle is to the centre of the 
target, the higher the score. Coloured lines represent the movement of the aim- 
point of the pistol (Green = movement during the entire aiming period; Yellow = 1 s 
prior to trigger pull; Blue = 0.2 s prior to trigger pull; Red = after trigger pull). The 
yellow and blue lines represent trace length. 



37  

Chapter Five 

 
Research Study 1 - Biomechanical Analysis of the Change in Pistol Shooting 

Format in Modern Pentathlon 

 
Published in modified format as: 

Dadswell, C.E., Payton, C., Holmes, P. and Burden, A. (2013). Biomechanical analysis 

of the change in pistol shooting format in modern pentathlon. Journal of Sports 

Sciences, 31 (12), 1294-1301. 

 
 

5.1 Introduction 
 

The first study investigated how modern pentathlon pistol shooting has 

changed between its original, precision shooting format, and the new format of the 

combined event. These comparisons determined whether the most successful  

precision shooters are also the most successful in the combined event. It was also 

possible to determine which variables were most influential to success in the new 

event. Thus, it highlights which aspects of shooting performance modern 

pentathletes should most consider when training for the combined event. Shot 

score, aiming time, pistol movements, and body sway were all considered as 

variables that could influence performance. 

Due to the relatively recent development of the combined event there is, as 

yet, limited research which considers the variables that affect performance.  Le 

Meur  et al. (2010) reported that the most successful combined event athletes were 

significantly more accurate at shooting (p<.05), and completed each shooting series 

more quickly, than the less successful athletes. Neither shot times nor running 

velocity differed significantly between athletes, highlighting the relative  importance  

of shooting accuracy to combined event success. 

The findings of Le Meur et al. (2012, 2010) indicated the importance of 

developing a detailed understanding of combined event shooting performance. 

Previous  precision  shooting  research  (Ball  et  al.,  2003;  Mason  et  al.,  1990)      
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has demonstrated how a kinematic analysis of precision shooting can determine the 

variables, such as pistol and centre of pressure movements, which are key to a 

successful performance. A similar analysis should now be completed for the 

combined event. In addition, comparisons between performance in precision and  

combined event shooting will help determine whether the skills previously 

developed from precision shooting can be directly transferred to the new event. 

An additional consideration for combined event research is the 

individual nature of pistol shooting performance, which has previously been 

reported for precision shooting (Ball et al., 2003). It is currently unclear whether the 

same degree  of individual variation is evident in combined event shooting, and thus, 

when attempting to identify the variables most important to performance, both 

group and intra-individual analysis should be considered. 

Given the importance of pistol shooting in the combined event, further 

analysis of the variables most associated with a successful shooting performance is 

required. This should examine whether the variables that were previously 

determined as most influential to precision shooting, are equally important to 

shooting performance in the combined event. The two objectives of this study, 

designed to meet the aims outlined in Chapter 3 (Section 3.5), are to: 

(i) determine whether the key kinematic variables associated with 

precision shooting performance correspond with those associated 

with combined event performance; and 

(ii) identify whether precision shooting ability affects shooting 

performance in the combined event. 

To achieve the first objective, correlations are performed between shot score, 

aiming time, pistol movements, and centre of pressure movements to identify any 

variables associated with success in either event. The second objective is achieved 

by comparing participants’ shooting performances under precision and combined 

event conditions. Comparisons are also made between the performances of modern 

pentathletes and elite pistol shooters to identify whether the athletes with the 

greatest  precision  shooting  ability  are also  the  most  successful  in  the combined 
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event.  The hypotheses to accompany each objective are: 

(i) the variables associated with performance will differ between precision and

combined event shooting due to the difference  in shooting formats; and

(ii) pistol shooters will achieve significantly higher scores and smaller pistol and

body movements for both precision and combined event shooting, but both

groups will experience significantly decreased scores, and increased pistol

and centre of pressure movements in the combined event.

5.2 Methods 

5.2.1 Participants 

Seven participants from the first modern pentathlon group and three pistol 

shooters comprised the two participant groups for this study. More information for 

each group is provided in the General Methods chapter (Chapter 4, section 4.1). 

Written consent was obtained from all participants prior to testing, and the study 

was approved by the Manchester Metropolitan University research ethics 

committee. 

5.2.2 Tasks 

Each participant completed trials under both precision and combined event 

conditions. The format of both conditions are detailed in the General  Methods 

chapter (Chapter 4, section 4.2). The combined event trials required participants to 

complete the entire event as they would in competition, but data were only 

analysed from the first series of combined event shooting. This made it possible to 

assess changes in performance solely due to the change in shooting format, without 

the additional effects that could be introduced by the 1 km run phases between 

each series. 

5.2.3 Data Analysis 

Shot score, aiming time and trace length were recorded from the SCATT 
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optoelectronic shooting system, and centre of pressure range and path length 

were obtained from the AMTI force plates. Horizontal and vertical trace lengths 

were used to represent pistol movement, whilst centre of pressure range and path 

length were used to represent body sway movements. More detail on each variable 

is provided in the General Methods chapter (Chapter 4, section 4.4). Correlations 

were performed between each variable to identify any significant associations 

between kinematic variables and shot score. 

Due to small sample sizes, data were found to violate the assumptions of 

parametric tests, demonstrating a non-normal distribution and heterogeneity of 

variance. Consequently, non-parametric tests were selected for the statistical 

analysis of all dependent variables. The performances of the two participant groups, 

under  both shooting conditions, were compared using a Mann-Whitney U test. A 

Wilcoxon test was performed for each participant group to identify any changes in 

performance between precision and combined event shooting. For all comparisons,  

any  value below p<.05 was considered statistically significant. 

Spearman’s Rank Order Correlation Coefficients were used for data from 

both shooting conditions to determine the strength of any associations between 

variables. Correlations were performed using both group median data and data from 

selected participants to determine how well the group median reflected individual 

performances. Due to the high number of correlations between score and the six 

kinematic variables, Bonferroni corrections were used, and p<.007 considered 

statistically significant. 

 
 

5.3       Results 
 

Shot score, aiming time, and movements of the pistol and the centre of 

pressure compared between the two participant groups, and between the two 

shooting conditions are presented in Tables 5.1 and 5.2 respectively. 

5.3.1    Shot Score 

 

Median shot score varied between each of the 20 shots under precision 
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conditions, particularly for the modern pentathletes (Figure 5.1). With the exception 

of shot 5, the pistol shooters achieved consistently higher scores than the modern 

pentathletes. Both groups produced median scores greater than 8.0 for all shots, 

demonstrating that participants were capable of consistently hitting a combined 

event target, the equivalent of scoring 7.0 or higher on a standard precision target. 

Pistol shooters achieved significantly higher scores than modern 

pentathletes under precision conditions (p<.05) (Table 5.1), with median scores of 

9.7 (IQR 0.9)  and 8.8 (IQR 1.7) points respectively. Scores were significantly lower 

for both groups when changing from precision to combined event shooting (p<.05) 

(see Table 5.2), with median scores of 8.0 (IQR 2.3) and 7.7 (IQR 1.9) for pistol 

shooters and modern pentathletes respectively (Figure 5.2). Whilst pistol shooters 

achieved marginally higher scores in the combined event, the difference between 

groups became non-significant (p>.05) (Table 5.1). 

5.3.2 Aiming Time 

Under precision conditions, modern pentathletes spent longer aiming 

than pistol shooters for the majority of shots (Figure 5.3). Median aiming time 

was 6.1 s  (IQR 1.9) for modern pentathletes and 5.1 s (IQR 3.9) for pistol 

shooters, although this difference was non-significant (p>.05) (see Table 5.1). 

Both groups experienced significantly shorter aiming times with the 

change from precision to combined event conditions (p<.05) (Table 5.2). 

Median aiming time decreased by 3.4 s for modern pentathletes, and by 3.7 s 

for pistol shooters (Figure 5.4), and differences between the two groups 

remained non- significant (p<.05). 
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Figure 5.1. Median shot scores for each group under precision shooting conditions. 

Shot Number 



Figure 5.2. Median shot score (± IQR) under precision and combined event conditions. Bars represent all shots 
in the precision condition and the first combined event shooting series. 
Shot score is presented as the median group value for modern pentathletes, and the median  individual 
score for each pistol shooter. 

* significant difference between shooting conditions (p<.05)

** significant difference between modern pentathletes and pistol shooters (p<.05)
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Figure 5.3. Median aiming time per shot for each group under precision shooting conditions. 
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* significant difference between shooting conditions (p<.05)

** significant difference between participant groups (p<.05)

Figure 5.4. Median aiming time (± IQR) under precision and combined event conditions. Bars represent all 

shots in the precision condition and the first combined event shooting series. 
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5.3.3 Pistol Movements 

Median horizontal and vertical pistol movements in the final second before 

the shot were significantly greater for modern pentathletes than pistol shooters 

under precision conditions (p<.05) (Table 5.1). For the majority of shots, both groups 

produced greater vertical pistol movements than horizontal pistol movements; a 

trend which was particularly evident for modern pentathletes (Figure 5.5). 

Horizontal and vertical trace lengths were significantly greater under 

combined event than precision conditions for both groups (p<.05) (Table 5.2). 

Median horizontal trace length under precision and combined event conditions was 

115.8 (IQR 18.5) mm and 281.9 (IQR 120.2) mm respectively for modern 

pentathletes, and 71.2 (IQR 28.8) mm and 190.4 (IQR 52.2) mm respectively for 

pistol shooters (Figure 5.6). Whilst the difference between groups was greater for 

the combined event than precision shooting, the greater magnitude of movement 

experienced in the combined event meant that the difference between groups 

became non-significant (p>.05) (Table 5.1). Median vertical pistol movements under 

precision and combined event conditions were 132.8 (IQR 29.7) mm and 209.5 (IQR 

72.1) mm respectively for modern pentathletes, and 71.3 (IQR 28.8) mm and 209.3 

(IQR 50.6) mm for pistol shooters. Differences between groups were again non-

significant under combined event conditions (p<.05) (Table 5.1). 
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Figure 5.5. Median horizontal and vertical trace lengths for each group under precision shooting 
conditions
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Figure 5.6. Median trace lengths (± IQR) under precision and combined event conditions. Bars represent all shots 

in the precision condition and the first combined event shooting series. 
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5.3.4 Centre of Pressure Movements 

Both anterior-posterior and mediolateral range were significantly greater for 

modern pentathletes than pistol shooters, under precision conditions (p<.05) (Table 

5.1). This was particularly apparent for anterior-posterior range, which was greater 

for modern pentathletes than pistol shooters for all but two shots (Figure 5.7). 

Anterior- posterior and mediolateral path length were also greater for modern 

pentathletes  than pistol shooters for most shots, under precision conditions (Figure 

5.8), but the differences between groups were non-significant (p>.05). 

Modern pentathletes’ centre of pressure range movement was significantly 

greater under combined event than precision conditions, (p<.05) (Figure 5.9) (Table 

5.2). Mediolateral range was 3.6 (IQR 0.7) mm and 5.8 (IQR 0.8) under precision and 

combined event conditions respectively.  Anterior-posterior range was 2.7 mm (IQR 

0.8) and 4.6 (IQR 2.8) mm respectively.  Mediolateral range was significantly greater 

for the combined event than precision shooting for pistol shooters (p<.05) (Table 

5.2), with a range of 8.0 (IQR 4.0) mm and 2.6 mm (IQR 1.1) respectively.  Anterior-

posterior range was greater, but not significantly, for the combined event than 

precision shooting, with a range of 4.1 (IQR 6.3) and 1.4 (IQR 0.7) mm respectively. 

Differences between participant groups became non-significant in the combined 

event (p>.05) (Table 5.1). 

Anterior-posterior and mediolateral path length were greater for both groups 

in the combined event than precision shooting (p<.05) (Table 5.2). Mediolateral 

path length recorded for the modern pentathletes was significantly greater under 

combined event than precision conditions (p<.05) (Table 5.2), at 66.1 (IQR 23.0) mm 

and 75.7 (IQR 28.2) mm respectively (Figure 5.10).  Differences in anterior-posterior 

path length were non-significant (p>.05). Differences in both mediolateral and 

anterior-posterior path length between the two conditions were non-significant for 

pistol shooters (p>.05).  Differences between the participant groups were non-

significant under combined event conditions (p>.05) (Table 5.1). 
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Figure 5.7. Median mediolateral and anterior-posterior centre of pressure range for each group under 

precision shooting conditions. 
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under  precision shooting conditions. 
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Figure 5.9. Median centre of pressure range (± IQR) under precision and combined event conditions for both participant 
groups. Bars represent all shots in the precision condition and the first combined event shooting series. 
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Figure 5.10. Median centre of pressure path length (± IQR) under precision and combined event conditions for both 
groups.  Bars represent all shots in the precision condition and the first combined event shooting series. 
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Table 5.1. Statistical comparisons between the shooting performances of each 
participant group within each shooting condition. 

Shooting Condition Precision Combined Event 

Statistic (U) p Statistic (U) p 

Aiming Time 33.0 0.12
3

28.0 0.055 

Score 8.0 0.00
3

6.0 0.571 

Pistol Movement 

Horizontal Trace Length 24.0 <.001 2.0 0.071 

Vertical Trace Length 53.0 <.001 5.0 0.286 

Centre of Pressure Movement 

Mediolateral Range 10.0 0.03
8

2.5 0.060 

Anterior-Posterior Range 5.0 0.00
6

8.5 0.488 

Mediolateral Path Length 16.0 0.17
2

3.0 0.083 

Anterior-Posterior Path Length 7.0 0.01
5

5.0 0.190 

Table 5.2. Statistical comparisons of participants’ shooting performances between 
precision and combined event shooting conditions. 

Modern 

Pentathletes 

Pistol 

Shooters 

Statistic 

(T) 

p Statistic (T) p 

Aiming Time 0 <.001 0 0.008 

Score 2 <.001 0 0.016 

Pistol Movement 

Horizontal Trace Length 0 <.001 0 0.008 

Vertical Trace Length 0 <.001 0 0.008 

Centre of Pressure Movement 

Mediolateral Range 0 0.004 0 0.016 

Anterior-Posterior Range 0 0.004 0 0.016 

Mediolateral Path Length 0 0.004 0 0.016 

Anterior-Posterior Path Length 8 0.098 0 0.016 
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5.3.5 Correlations between Score, Aiming Time, Pistol Movement and 

Centre of Pressure Movement 

Group analysis of precision shooting identified no significant correlations 

between score and aiming time or movements of the pistol or centre of pressure for 

either group. Intra-individual analysis revealed some significant correlations that 

were not apparent from the group–based comparisons. Kinematic variables were 

significantly associated with score for three participants (one modern pentathlete 

and two pistol shooters) (Table 5.3). 

Under combined event conditions, group analysis did not produce any 

significant correlations between score, and aiming time or kinematic variables. 

Intra- individual analysis identified only one participant with any significant 

correlations (Table 5.3). This participant produced significant correlations with score 

in both  events, but the significant associations were with vertical pistol movement 

for precision shooting, and aiming time for the combined event. 

Table 5.3. Significant intra-individual correlations with shot score under 
precision and combined event conditions (p<.007).  R2 values are included 
in brackets. 

MP = Modern pentathletes; Pistol = Pistol Shooters 

Event Group Participant Aiming 
Time 

Vertical Pistol 
Movement 

Mediolateral 
Path Length 

Precision MP 3 .713 (0.51) 

Pistol 2 -.373 (0.14) 

3 .592 (0.35) 

Combined 
Event 

MP 3 .778 (0.60) 

5.3.6 Correlations between Pistol and Centre of Pressure Movements 

Under precision conditions, no significant correlations were identified 

between pistol and centre of pressure movement for either group. Intra-individual 

analysis identified  significant  correlations  for  one  modern  pentathlete  and  all 



56 

three   pistol shooters (Table 5.4), each of which contrasted with the non-significant 

findings of group analysis. 

Group analysis of the combined event revealed no significant correlations 

between pistol and centre of pressure movements for modern pentathletes, whilst 

pistol shooters produced significant correlations between horizontal pistol 

movement and mediolateral range (rs=0.886, p<.01, R2=0.78). Intra-individual 

analysis identified one modern pentathlete with significant correlations between 

pistol and centre of pressure movement (Table 5.4), and in contrast to the group 

result, no significant correlations were identified for pistol shooters. 

Whilst few significant correlations were identified for either event, a greater 

number were apparent for precision shooting. This was particularly noticeable for 

the pistol shooters, each of whom demonstrated at least one significant correlation 

under precision conditions, but none when shooting in the combined event. No 

participant from      either      group      produced      significant      correlations      in 

both   events. 
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Table 5.4. Significant intra-individual correlations between pistol movement and centre of pressure range and path length under both 

shooting conditions (p<.07). R2 values are included in brackets. 

Pistol 
Movement 

Vertical 

Participant Mediolateral 

Range 

Anterior-posterior 

Path Length 

Group Mediolateral Anterior-posterior 

Precision Modern 
Pentathletes 

-.899 (0.81) -.899 (0.81) 

Pistol 
Shooters 

Horizontal .438 (0.19) 

Combined Modern 
Event Pentathletes 

2 .522 (0.27) 

3 .575 (0.33) .404 (0.16) 

Vertical 1 .424 (0.18) 

Horizontal 3 .929 (0.86) 

5
7
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Table 5.5. Comparisons with average shot scores achieved for previous precision 

pistol shooting research. MP = Modern Pentathletes; Pistol = Pistol Shooters 

5.4 Discussion 

An objective of this study was to identify which kinematic variables were 

most closely associated with shooting performance in the combined event, and 

determine any similarities with precision shooting performance. A further objective 

was to identify whether precision shooting ability could transfer to success in the 

combined event. Comparisons between the shooting performances of modern 

pentathletes and pistol shooters examined whether the pistol shooters, who had 

the greatest precision shooting ability, also achieved greater success when shooting 

in the combined event. 

Scores achieved by the pistol shooters under precision conditions compared 

well with those recorded for other elite groups used in previous pistol shooting 

research (Table 5.5), supporting their status as an elite shooting group. Modern 

pentathletes scored lower than both the pistol shooters in the current study, and 

other elite groups (Ball et al., 2003; Mason et al., 1990; Pellegrini & Schena, 2005), 

but higher than groups previously identified as less skilled shooters (Pellegrini & 

Schena, 2005; Tang et al., 2008) (Table 5.5). 

 
 

Current 
Study 

Mason et al. 
(1990) 

Ball et al. 
(2003) 

Pellegrini & Schena 
(2005) 

Tang et al. 
(2008) 

MP Pistol 
Elite and 

Junior 
Elite 

More 
Skilled 

Less 
Skilled 

Elite 
Pre- 
elite 

8.8 9.7 9.0 9.7 8.8 7.9 9.3 8.3 

To achieve the first objective, both group and intra-individual correlations 

were used to quantify the strength of associations between shot score and aiming 

time, pistol movements and centre of pressure movements. Group correlations 

revealed only one significant association, between horizontal pistol movement and 

mediolateral range for pistol shooters in the combined event. This correlation was 
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not demonstrated by any pistol shooter when using individual analysis,  highlighting 

how group analysis cannot fully reflect any individual’s shooting performance. This 

was particularly evident for the pistol shooters, for whom group analysis identified 

no significant correlations between pistol and centre of pressure movement for 

precision shooting, despite each participant displaying at least one significant 

correlation. The magnitude of the correlations between each variable differed 

between each participant, supporting the findings of Ball et al. (2003) that 

correlations vary in both strength and direction between participants for precision 

shooting. This  also  reinforces the statements of Scholes, McDonald and Parker 

(2012) that the use of a group average produces a mythical average participant that 

does not fully reflect any individual’s responses to a particular task. Consequently, 

the outcomes of intra- individual analysis were considered most appropriate when 

identifying the key variables affecting a shooting performance. 

When shooting under combined event conditions, only one participant 

demonstrated any significant correlations with score, and as such, no single variable 

could be identified as most influential to success in the combined event. Two pistol 

shooters produced significant correlations between score and mediolateral path 

length. One of these correlations was negative, suggesting that score decreases as 

centre of pressure movement increases, whilst the other was positive. These 

opposing correlations have different consequences for the way in which participant 

can interpret the effect of body sway on performance. Thus, in both precision and 

combined event shooting, athletes cannot follow one optimal model of technique as 

a method of improving shooting success. This supports the conclusions of Chow, 

Davids, Hristovski, Araújo, and Passos (2011), Davids, Glazier, Arújo, and Bartlett 

(2003) and Langdown, Bridge, and Li (2012) that athletes should not attempt to 

replicate another individual’s technique, but should instead devise their own 

movement strategies to achieve a successful task outcome. 

Given the highly variable correlations between participants, and considering 

that none of the variables analysed accounted for anywhere near 100% of the 

variance in shot score, it is clear that variables other than those analysed here must 

also influence shooting success. One consideration is the position of the aim point 
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on the target before the shot.      An athlete who centres the aim point on the 10 

zone is more likely to hit a combined event target, than another with movement 

centred on the 7 zone, near to the edge of the target. 

In addition to shot score, correlations between the pistol and centre of 

pressure varied considerably between participants. Body sway accounted for 

between 16% and 81% of the variance in pistol movement for precision shooting, 

and 86% for the combined event. Furthermore, significant correlations were not 

evident for all participants. This supports the concept of a more complex method of 

controlling the pistol than the simple transfer of centre of pressure movements 

through the body to the pistol, ultimately affecting score (Ball et al., 2003; Pellegrini 

& Schena, 2005).  Whilst some significant correlations between pistol and centre of 

pressure movements were expected, it is unsurprising that these associations were 

low. Between  the centre of pressure at ground level and the hand holding the pistol 

there are many other potential sources of movement throughout the body. Whilst 

small, the effect of these movements on the location of the aim-point on the target 

could be considerable. For example, Pellegrini and Schena investigated the role of 

upper limb movements when shooting, and reported that vertical movements of the 

arm increased from proximal to distal segments. This suggests that each successive 

joint from the shoulder to the wrist introduces more movement to the system that 

will ultimately affect movement of the pistol. Furthermore, Arutyunyan, Gurfinkel, 

and Mirskii (1968) reported that pistol movement was not determined solely by 

postural stability, but  was further influenced by the compensatory actions of the 

joints of the upper limb. Upper limb movements will only be represented by minimal 

changes in the location of the centre of mass and therefore centre of pressure. Such 

findings demonstrate that whilst centre of pressure movement has some impact on 

performance for most athletes, it is not the only variable to influence pistol 

movement and shot score. As such, it cannot reflect the full extent of the 

movements produced when pistol shooting. 

Correlations between the kinematic variables and score highlighted the 

individual nature of pistol shooting.   No participants produced the same significant 

correlations for both conditions, indicating that the combined event has placed new 
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demands on athletes’ shooting performance. These findings imply that experience in 

one event does not guarantee success in the other, indicating the importance of 

combined event specific training.  The absence of matching correlations between the 

two events suggests that the first hypothesis, that the variables significantly 

associated with score would differ between the two shooting formats, was correct. 

However, with a limited number of significant correlations in either event, this 

cannot be guaranteed.  A potential explanation for the limited number of 

correlations was the low number of participants, particularly for the pistol shooter 

group. To provide more support for the first hypothesis, future combined event 

research would therefore benefit from a greater number of participants.  This will 

increase the potential to identify any variables commonly associated with score or 

pistol movement. Cohen (1988) advises that to achieve the recommended statistical 

power of 80% with the participant numbers used in this research (10), large effect 

sizes of 0.70 are required. The correlations both in this research, particularly for the 

precision shooting condition, and in a previous investigation (Ball et al., 2003) were 

of medium or low strength, for which over 60 participants are recommended in 

order to achieve 80% statistical power. Effect sizes recorded for the combined event 

trials were higher than those recorded for precision shooting and so participant 

numbers greater than 30 are recommended for research focusing exclusively on 

shooting in the combined event. However, these numbers are very difficult to 

achieve when focusing on elite participants, and so, despite the advantages of 

attaining the recommended number of participants, researchers should ensure that 

they do not compromise results by including less experienced participants to inflate 

group size. 

This study produced varied results in relation to previous studies (Ball et al., 

2003; Mason et al., 1990; Scholz et al., 2000). Correlations between shot score and 

aiming time are in agreement with Scholz’s pistol shooting research, which reported 

weak correlations between the two variables. In contrast, Mason et al. stated that 

score increased as participants spent longer aiming. These differences in results may 

have arisen from the differences in shooting conditions. Mason et al. investigated 

precision shooting performance, whilst Scholz et al. introduced time constraints 
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more similar to those used in the combined event condition. Contrasting findings to 

those of Mason et al. may also have arisen from their greater range in participants’ 

shooting ability. The difference in precision shooting ability between the modern 

pentathletes and pistol  shooters in the  current study was  reduced by analysing 

each participant group separately. If  all  data  from  the  two  groups  were 

combined,   a  significant correlation between aiming time and score was evident. 

The extent of the associations between pistol movements and score were 

not as great as those previously reported by Mason et al. (1990). The differences 

could again arise from the greater variation in the ability of their participants. 

Results were more closely in agreement with Ball et al. (2003) who reported that the 

strength of correlations between pistol movements and score varied between 

participants. This individual aspect of performance is something that will have been 

supressed by the group analysis methods used by Mason. 

5.4.1 Group comparisons: effect of precision shooting ability on 

combined event performance 

Within each shooting condition, the performances of pistol shooters and 

modern pentathletes were compared to identify whether the greater precision 

shooting ability of the pistol shooters was also evident in their combined event 

performances. The difference in precision ability was evidenced by the significantly 

higher scores, and smaller pistol and centre of pressure movements of the pistol 

shooters compared to modern pentathletes. With the change to combined event 

conditions, both groups experienced significantly decreased scores, which were up 

to 2.0 points lower than all previous precision results (Table 5.5). 

When precision shooting, pistol movements and range of centre of pressure 

movement recorded for the pistol shooters were again comparable with elite 

shooters (Table 5.6). Modern pentathletes produced a similar degree of movement 

to the elite and junior shooters used by Mason et al. (1990). These comparisons 

support the findings of previous research which demonstrated that greater ability 
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Table 5.6. Comparisons with average pistol and centre of pressure movement 

recorded for previous precision pistol shooting research. 

shooters produce smaller gun movements (Zatsiorsky & Aktov, 1990), and 

established that greater centre of pressure movements are associated with greater 

gun movements and lower average scores (Ball et al., 2003; Era et al., 1996; Heimer 

et al., 1985). With the significant changes in performance recorded for the combined 

event, pistol and centre  of  pressure  movements  for  both  groups  were  greater 

than  all previous precision findings, including results for unskilled shooters 

(Pellegrini & Schena, 2005; Tang et al., 2008). 

 
 

Current Study Mason et al. 
(1990) 

Ball et al. 
(2003) 

Modern 
Pentathletes 

Pistol 
Shooters 

Elite and 
Junior 

Elite 

Pistol Movement 

Horizontal Trace Length 
(mm) 

115.8 71.2 108.9 76.1 

Vertical Trace Length (mm) 132.8 71.3 89.2 70.7 

Centre of Pressure 
Movement 

Mediolateral Range (mm) 

3.6 2.6 3.1 1.0 

Anterior-Posterior Range 
(mm) 

2.7 1.4 3.3 1.9 

The change in performance when shooting in the combined event led to the 

rejection of the second hypothesis, which predicted that pistol shooters would  

produce significantly higher scores, and smaller pistol and centre of pressure 

movements than modern pentathletes, in both events. Whilst the pistol shooters 

demonstrated the anticipated higher performance levels when precision shooting, 

there were no notable differences between the performances of the two groups in 

the combined event. Moreover, mediolateral centre of pressure movement was 

actually greater for the pistol shooters than for the modern pentathletes under 
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combined  event conditions. These similarities in performance under combined 

event conditions demonstrate that ability in precision shooting does not directly 

transfer to the skills required to succeed in the combined event. 

5.4.2 Event comparisons: effect of changing from precision to combined 

event shooting 

Under combined   event   conditions, scores were significantly lower and 

pistol movement and body sway were significantly greater, than for precision 

shooting. Thus, the third hypothesis was accepted, emphasising the different 

performance requirements of the combined event in comparison to precision 

shooting. This is unsurprising given that the change in shooting format has resulted 

in an increase in target size, meaning that success is now determined by achieving 

any score above 7.0, significantly lower than all precision scores. The combination of 

an increase in target size and the altered task requirements to simply hit the target, 

rather than aim for the centre, means that athletes are now able to shoot more 

quickly with less consideration given to exact shot placement or the reduction of 

body sway or pistol movement. Thus, some accuracy may have been sacrificed to 

increase shooting speed; something which is demonstrated by the significant 

reduction in aiming time in the combined event. 

With a greater emphasis on the speed of shooting, and with the change in 

target size, a reduction in accuracy in comparison to precision shooting is almost 

inevitable. Previous research has described the trade-off between speed and 

accuracy during human movements (Berrigan et al., 2006; Duarte & Freitas, 2005; 

Fernandez & Bootsma, 2004), consistently reporting that tasks with a greater target 

size are associated with faster movements. This increase in movement speed has 

important consequences for accuracy, with Beilock, Bertenthal, McCoy, and Carr 

(2004) stating that performance declines when participants are instructed to 

complete a movement at higher speeds. It should be noted that this decrement in 

performance was only evident for novice, and not experienced athletes. Thus, the 

speed-accuracy relationship may become a lesser consideration once a modern 

pentathlete becomes accustomed to the format of the combined event. 
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The speed-accuracy trade off, as identified by Fitt’s Law (Fitts, 1954) means 

that whilst precision shooters must use slow movements to achieve sufficient 

accuracy, athletes in the combined event where shot placement is less crucial, can 

afford to produce faster movements. Whilst the degree of accuracy required for the 

combined event is lower than that required for precision shooting, the speed-

accuracy trade off must remain an important consideration. Le Meur et al. (2010) 

reported that the most successful combined event athletes have the shortest 

event times due to greater shooting accuracy, and not because of quicker aiming or 

1 km run times. Increased accuracy meant that athletes achieved five hits in fewer 

shots, and could progress to the next running phase sooner than those who were 

less accurate. Thus, minimising aiming time may in fact be detrimental to 

performance. These findings suggest that the less successful combined event 

athletes need to determine the appropriate level of trade-off between accuracy and 

speed. 

The relationship between speed and accuracy goes some way to explaining 

the considerable performance differences between precision and combined event 

shooting. It also presents modern pentathletes with the decision over what degree 

of accuracy should be compromised in favour of speed. It is important to recognise 

that the relationship between speed and accuracy has been reported to change with 

experience (Elliott, Hansen, & Mendoza, 2004). Aiming tasks are generally assumed 

to have two components; an initial high velocity movement to move towards the 

target, and a second set of corrective submovements which control the exact 

positioning on the target (Helsen, Elliott, Starkes, & Ricker, 2000). When learning a 

task, an individual tends to undershoot a target and require a greater number of 

submovements. As they become more rehearsed the initial movement tends to end 

closer to the target, and the corrective process appear to become quicker. Thus, 

once athletes become more accustomed to the combined event, it should be 

possible for participants to shoot more quickly than the times reported here and still 

achieve sufficient accuracy. 

An additional consequence of the increased emphasis on speed of shooting 

in the combined event is a potential change in shooting technique. Typically, 
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precision shooters use a technique of aiming high and moving the pistol down onto 

the target. However, overshooting a target increases the length of time required for 

a movement. Additional movement is required, as to correct an overshoot more 

distance must be covered to reach the target, and the limb must overcome the zero 

inertia associated with the turning point to move the pistol back down onto the 

target (Elliott et al., 2004). With the introduction of the combined event, and the 

need to shoot at greater speeds, many athletes may now favour a technique of 

aiming below, and moving the aim point up on to the target. Research is yet to 

consider the change in aiming technique, and evidence is currently anecdotal. 

Nevertheless, a change in    technique may go some way to explaining why the pistol 

shooters, who were the most successful precision shooters in this study, were not 

the most successful combined event athletes. 

The relationship between speed and accuracy is widely reported, and so the 

difference in scores achieved between the two shooting events was unsurprising. 

The significant decrease in aiming time under combined event conditions can also 

explain the significant increase in centre of pressure movements. Era et al. (1996) 

reported that elite precision shooters significantly reduced the speed and magnitude 

of body sway during the final 1.5 s prior to a shot. The considerably shorter time 

spent aiming in the combined event now means that there is less time available to 

reduce these movements. This was particularly evident for pistol shooters, who 

produced a median aiming time of 1.4 s, demonstrating that they spent less time 

aiming at the target than they would normally spend just on reducing body sway 

when shooting in the precision event. 

Pistol shooters were significantly more successful than modern pentathletes 

under precision conditions, but there were no clear performance differences 

between groups when shooting in the combined event. This demonstrates a 

considerable change to the shooting event in modern pentathlon, with the 

implication that an athlete who was previously successful at precision shooting is not 

guaranteed success in the combined event without specific training. It is important 

to acknowledge that the differences in performance may also be related to 

participants’ experience in each event. All pistol shooters had taken part in precision 
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shooting for a longer period of time than the modern pentathletes, whereas neither 

group had any prior experience of shooting in the combined event. 

Future research should consider similar performance comparisons  once 

athletes have become more familiar with combined event shooting. This would 

establish whether the ability demonstrated in precision shooting also becomes 

apparent in the combined event following training. Additional associations between 

score and kinematic variables may also become apparent with greater experience. 

Research could also establish the differences in performance between combined 

event shooters of different abilities. This has already been achieved for precision 

shooting (Ball et al., 2003; Mason et al., 1990), and could provide an indication of 

the performance characteristics that modern pentathletes must aim to achieve in 

order to be successful. 

5.5 Conclusion 

This study attempted to identify the performance implications of the 

introduction of the combined event to modern pentathlon. Intra-individual 

correlations highlighted that whilst pistol movements and body sway can both 

influence shot score, the strength of each association can vary between individuals. 

Both the magnitude and direction of each correlation varied between precision and 

combined event shooting, clearly emphasising the different performance 

requirements for the two events. This is further supported by the absence of any 

significant difference when comparing the performances of modern pentathletes 

and pistol shooters under combined event conditions. Ability in precision shooting 

does not guarantee a similar level of success when shooting in the combined event. 

This has important implications, as athletes who were successful under the old rules 

must now find ways to adapt to the new demands of combined event shooting in 

order to remain successful in modern pentathlon. 
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Chapter Six 

Research Study 2 - The Effect of Time Constraints on Combined Event Pistol 

Shooting Performance 

Published in modified format as: 

Dadswell, C.E., Payton, C., Holmes, P. and Burden, A. (2015). The effect of time 

constraints and running phases on combined event pistol shooting performance. 

Journal of Sports Sciences, 16, 1 – 7. 

6.1 Introduction 

The first study compared the performance requirements of precision and 

combined event shooting to identify whether the skills acquired in the original 

shooting event would transfer to those required for the combined event. This 

analysis, whilst providing a clear comparison between the two events, did not 

evaluate any changes in performance within each 70 s shooting series. This is an 

important consideration, given the increased time pressures which are placed on 

athletes when shooting in the combined event in comparison to the relatively time-

unlimited environment of precision shooting. This chapter examines how 

performance varies within each series, with particular consideration given to 

whether performance alters as the time remaining to achieve five hits on target 

diminishes. 

The effect of imposing time constraints on accuracy-based tasks has already 

been examined (Berrigan et al., 2006; Fernandez & Bootsma, 2004; Fitts, 1954; 

Schmidt et al., 1978). The consensus is that faster movements are accompanied by a 

reduction in accuracy, indicating that if athletes attempt to shoot more quickly as 

the time remaining within a series diminishes, they may become less accurate and 

achieve fewer hits on target. Much of this research has examined performance 

during pointing tasks, which do not demand the same degree of accuracy as pistol 

shooting. Thus, the findings cannot be directly applied to the combined event, but 

can still indicate how shooting performances may be affected by the greater speeds 
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at which modern pentathletes may choose to shoot. 

Findings from Study 1 demonstrate that modern pentathletes must now 

shoot with a significantly reduced aiming time in comparison to the previous rules. 

Research suggested that the faster an athlete shoots, the less accurate the 

performance, but the current findings give no indication as to how fast movements 

can be before accuracy is compromised. Furthermore, whilst previous studies have 

analysed accuracy, there are crucial differences between pointing tasks and pistol 

shooting. Research is required to identify how the time spent aiming can specifically 

affect a combined event shooting performance. Study 2 will examine the extent to 

which aiming time varies within each series of the combined event, and whether 

the difference between the quickest and the slowest shots is enough to affect the 

degree of accuracy. Study 1 provided clear evidence that the variables most 

influential to shooting performance in series one vary between participants. This 

study will examine whether these individual aspects of performance are continued 

through series two and three. The specific objectives of  this study are to: 

(i) identify how heart rate, shot score, aiming time, pistol movements,

and centre of pressure movement change within each shooting

series; and

(ii) identify the kinematic variables most closely associated with

shooting performance within each of the three shooting series.

To achieve the first objective, each variable is compared between the first 

six shots within each series. Any significant differences indicate adaptations in 

performance as the time remaining to achieve five hits diminishes. To achieve 

the second objective, correlations are performed between each variable to 

identify the variables significantly associated with shot score. The  hypotheses 

to accompany each of these objectives are: 

(i) as the time remaining within a series diminished, shot score and

aiming time will reduce significantly, and pistol movements and

body sway will increase significantly; and
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(ii) the variables with significant correlations with shot score will vary

between participants for all three series.

6.2 Methods 

6.2.1 Participants 

The participants whose performance was analysed for Study 1 were also 

used for this study. This included the first modern pentathlon group and the pistol 

shooter group. Additional participants from the second modern pentathlon group 

identified in the General Methods chapter (Chapter 4, section 4.1) were 

incorporated into the analysis. In Study 1, neither accuracy nor pistol or centre of 

pressure movement differed significantly between the modern pentathletes and 

pistol shooters, and so data were analysed as one group for all participants. 

6.2.2 Tasks 

Each participant completed a combined event task designed to replicate 

competition conditions, the full format of which is detailed in the General Methods 

chapter (Chapter 4, section 4.2). Data from all three shooting series were analysed 

to identify any performance changes within each series. Activio heart rate monitors 

were used to demonstrate how heart rate varied between the beginning and end of 

each series. Aiming time, shot score and pistol movement data were all obtained 

from the SCATT optoelectronic shooting system (Chapter 2, section 2.2). Centre of 

pressure range and path length data were recorded using the AMTI force platform 

(Chapter 2, section 2.3). Definitions of each variable are in the General Methods 

chapter (Chapter 4, section 4.4). 

6.2.3 Data Analysis 

Each shooting series was analysed separately, to compare how each variable 

changed between the beginning and the end of a series. The format of the combined 

event allows athletes to take an unlimited number of shots in their attempts to 
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achieve five hits within the 70 s time limit. As such, participants took a varied 

number of shots within each series (Series one: 5 – 11 shots; Series two: 6 – 11 

shots; Series three: 6 - 11 shots). Statistical analysis was therefore based on the first 

six shots in  each series to ensure that data were appropriate for group comparisons. 

In addition  to group statistical analysis, data from selected participants were plotted 

to determine how closely the group median reflected individual performances, and 

whether this varied between the participants who required fewer than, or greater 

than, the six shots used for group analysis. 

Due to small sample sizes, data were found to violate the assumptions of 

parametric tests. The Kolmogorov-Smirnov test reported that data differed 

significantly from a normal distribution, and Levene’s test revealed heterogeneity of 

variance. Thus, non-parametric statistical tests were selected for intra-series 

comparisons of group medians for each dependent variable. Wilcoxon tests 

compared maximum and minimum heart rate within each series, and Friedman’s 

ANOVA tests were used to identify any significant changes in aiming time, shot 

score, pistol movements and centre of pressure movements between the first six 

shots within each series. One participant who required only 5 shots in series one 

was excluded from group analysis to ensure that the data used for each shot was 

produced from the same group. For all comparisons, p<.05 was considered 

statistically significant. Wilcoxon Tests using Bonferroni corrections were used for 

post hoc analysis of any significant results, with p<.016 considered statistically 

significant. 

In addition to identifying changes in performance within each series, 

Spearman’s Rank Correlation Coefficients were used to identify any significant 

associations between shot score, aiming time, and pistol and centre of pressure 

movements. In Study 1 the variables that were significantly correlated with score 

differed between participants, and so both group and intra-individual  correlations 

were used. Due to the high number of correlations between score and the six 

kinematic variables, Bonferroni corrections were used, and p<.007 considered 

statistically significant. 
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6.3 Results 

6.3.1 Heart Rate 

Each participant experienced similar heart rate patterns throughout the 

event (Figure 6.1), which increased during each 1 km run phase then significantly 

decreased within each shooting series (p<.05) (Table 6.1). In series one, heart rate 

increased at the beginning of a series, and decreased towards the end. In series two 

and three maximum heart rate occurred at the start of a series, and minimum heart 

rate was recorded at the end, immediately prior to beginning the next running 

phase. 

Figure 6.1. Heart rate from one participant throughout the combined event. This 
pattern is representative of the heart rate pattern for all participants. 
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Table 6.1. Intra-series comparisons of group median heart rate within each shooting 
series (IQR in brackets). 

Series 1 Series 2 Series 3 

Heart Rate 
(bpm) 

Minimum 112 (+ 39) 153 (+ 28) 150 (+ 25) 

Maximum 142 (+ 15) 181 (+ 13) 185 (+ 9) 

T 0  (p<.001) 0  (p<.001) 0  (p<.001) 

6.3.2 Shot Score, Temporal and Kinematic Variables 

Shot score, aiming time, pistol movements and centre of pressure 

movements were each compared between the first six shots within each shooting 

series. Results of these comparisons are presented in Table 6.2. 

Table 6.2. Comparisons between the first six shots within each shooting 

series for all dependent variables. 

Series 1 Series 2 Series 3 

Dependent Variable 2 p value  2 p value  2 p value 

Score 7.61 0.268 3.83 0.574 9.59 0.088 

Aiming Time 4.95 0.422 2.12 0.833 9.53 0.09 

Pistol Movement 

Horizontal Trace Length 0.76 0.985 4.57 0.495 1.62 0.917 

Vertical Trace Length 4.47 0.513 2.19 0.848 0.67 0.990 

Centre of Pressure Movement 

Mediolateral Range 6.51 0.260 5.07 0.408 3.81 0.577 

Anterior-posterior Range 1.74 0.884 5.02 0.413 5.75 0.331 

Mediolateral Path Length 3.09 0.685 4.37 0.498 5.06 0.409 

Anterior-Posterior Path 
Length 

5.39 0.370 3.59 0.610 8.75 0.119 



74 

Median aiming time did not change significantly within any of the three 

shooting series (Table 6.2). The difference between the shortest and longest time 

spent aiming was 0.3 s, 0. 5 s, and 0.4 s for series one, two, and three respectively 

(Figure 6.2). Each shot was completed within 0.9 s - 1.5 s (Figure 6.2), and in series 

three, whilst not significant, there was a progressive decrease in median shot time 

between shot 1 (1.3 s) and shot 4 (0.9 s). Although the group median indicated little 

change within any series, individual data showed greater changes, with up to 4.3 s 

between the longest and shortest aiming time for individual participants.

Shot Number 

Figure 6.2. Median aiming time for shooting series 1, 2, and 3. 
IQR shots 1 - 6: Series 1 (1.5; 1.2; 0.4; 1.4; 1.1; 0.8) 

2 (1.1; 0.8; 0.9; 1.1; 0.5; 1.4) 
3 (1.2; 0.9; 0.8; 0.7; 1.5; 1.6) 

No significant changes in shot score were recorded within any of the three 

shooting series (Table 6.2), and there was no evidence of a pattern towards decreasing 

scores as the series progressed (Figure 6.3). This was particularly evident in series 

three where, despite the progressive decrease in aiming time between shots 1 and 4, 

there was no corresponding decline in the scores achieved. Instead, score fluctuated 

between successive shots, with a range of 1.7, 1.1 and 2.6 points for series one, two, 

and three respectively. No series had median scores consistently above 7.0; the score 

that represents a hit on the target. 
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Shot Number 

Figure 6.3. Median shot scores achieved for shooting series 1, 2 and 3. 
IQR shots 1 - 6: Series 1 (1.1; 4.5; 2.9; 2.7; 4.1; 3.2) 

2 (3.1; 3.2; 3.6; 4.2; 3.1; 3.9) 
3 (3.1; 2.9; 3.7; 3.1; 2.8; 2.5) 

Neither horizontal nor vertical pistol movement changed significantly 

within  any series (Table 6.2). Whilst non-significant, both movement 

components varied greatly between shots.  Horizontal pistol movement range 

was 30.7 mm, 59.9 mm, and 

56.7 mm within series one, two, and three respectively (Figure 6.4a). More 

variation was evident for vertical pistol movements, with a range of 50.6, 80.3 

and 57.6 mm in each successive series (Figure 6.4b). 
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Figure 6.4a. Median horizontal pistol movement in shooting series 1, 2, and 3. 
IQR shots 1 - 6: Series 1 (176.3; 173.1; 123.1; 157.8; 172.3; 117.8) 

2 (151.5; 340.9; 199.9; 168.2; 177.3; 78.4) 
3 (135.0; 36.9; 120.7; 118.0; 198.8; 127.6) 
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Neither centre of pressure range nor path length changed significantly between shots 

for either anterior-posterior or mediolateral movements (Table 6.2). Although non-

significant, both movement components varied within each series (Figures 6.5a and 

6.5b). The greatest mediolateral movement was produced at the end of each series, 

with a range of 2.3, 2.0 and 2.2 mm within each successive series (Figure 6.5a). Greater 

variation was evident for anterior-posterior movement, of 1.9, 4.7 and 3.7  mm, 

although no patterns were evident for when the greatest or smallest movements were 

produced. 
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Figure 6.4b. Median vertical pistol movement in shooting series 1, 2, and 3. 

IQR shots 1 -6: Series 1 (84.9; 61.1; 78.1; 120.3; 126.3; 95.5) 
 2 (131.6; 161.5; 188.8; 183.0; 217.9; 121.3) 
 3 (139.2; 36.9; 120.7; 118.0; 198.8; 127.6) 
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Figure 6.5a. Median mediolateral range for shooting series 1, 2, and 3. 

IQR shots 1 - 6: Series 1 (4.8; 3.8; 3.8; 2.7; 5.1; 3.8) 
2 (4.2; 7.5; 4.2; 5.6; 6.5; 7.8) 
3 (1.2; 3.4; 3.4; 3.3; 5.5; 6.7) 
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Mediolateral path length in series one also showed variation within each 

series, and was more variable in series two and three (Figure 6.6a). The range in 

path length within a series was greater for mediolateral movements (7.9 mm, 15.6 

mm, and 11.9 mm) than anterior-posterior movements (3.2 mm, 5.9 mm, and 5.0 

mm) (Figure 6.6b) for all series.
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Figure 6.5b. Median anterior-posterior range for shooting series 1, 2, and 3. 

IQR shots 1 - 6: Series 1 (4.5; 8.2; 5.2; 2.9; 4.6; 3.5) 
  2 (5.2; 5.2; 5.5; 7.0; 5.8; 3.3) 
  3 (9.7; 6.0; 4.2; 4.1; 3.7; 6.0) 
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Figure 6.6a. Median mediolateral path length for shooting series 1, 2, and 3. 

IQR shots 1 - 6: Series 1 (30.3; 15.9; 22.0; 28.2; 22.2; 19.9) 
  2 (23.9; 40.9; 19.1; 21.7; 48.6; 38.3) 
  3 (33.7; 26.0; 25.6; 29.0; 13.7; 24.9) 
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Participant 1 (Shots in each series: 5; 6; 11) 

Series 1, 2 and 3 were each completed before the 70 s time limit, in 26 s, 28 s 

and 68 s respectively.  Aiming times for this participant varied considerably between 

shots, ranging from 0.7 to 3.8 s (Appendix 2.1a). This variability was greater than 

that recorded for the group median, even in series one where this participant was 

most successful. Shot scores also varied more than indicated by the median, and 

were higher than the group value for series two and three. Pistol movements were 

more varied, and  mostly greater than the median for series one and three, but were 

similar to the median in series two. Some differences were also evident for centre of 

pressure movements (Appendix 2.1b), such as mediolateral range which showed 

little resemblance to the group median in series two. Path length results were more 

aligned to the group result than any other variable. 

6.3.3.1 Participant 5 (Shots in each series: 7; 6; 6) 

Each series was completed within the 70 s limit, in 56 s, 49 s and 47 s for 

series 1, 2 and 3 respectively.  Aiming times and shot scores in each series were 

more aligned to the group median than those recorded for participant 1 (Appendix 
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Figure 6.6b. Median anterior-posterior path length for shooting series 1, 2, 
and 3. IQR shots 1 -6: Series 1 (9.5; 7.3; 8.0; 8.9; 4.8; 5.3) 
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2.2a).  The time spent   aiming was also less variable, ranging between just 0.3 and 

1.0 s for series two. Greater differences were evident between pistol movements 

and the median, particularly for horizontal pistol movements in series one and two, 

and vertical movements in series one and three. Centre of pressure movements 

were often similar to the group result (Appendix 2.2b), particularly for mediolateral 

and anterior-posterior range, for which only one shot in each series deviated greatly 

from the median. Mediolateral path length was similar to the median in series two 

and three, whilst anterior-posterior path length was consistently greater than the 

group result. 

6.3.3.2 Participant 14 (Shots in each series: 11; 11; 11) 

Participant 14 did not achieve five hits in any of the three series, and so each 

series lasted the full 70 s.  Aiming times varied more between shots than the group 

median, particularly during series one and two (Appendix 2.3a). Score varied greatly 

between shots, particularly in series two, where scores ranged between 0.0 and 8.1 

points. Pistol movement was consistently greater than the median, and centre of 

pressure movements were all more variable than the median (Appendix 2.3b). 

Intra-individual performance comparisons clearly demonstrate differences 

between the group median and individual participant performances. An important 

finding is that none of the three participants produced the expected changes in 

score alongside changes in aiming time, such as reduced scores with shorter aiming 

times.   As such, the group data does reflect individual performance to some extent, 

but cannot fully reflect all unique aspects of a performance. 

6.3.4 Correlations with Shot Score 

When correlations were performed using group data, no variables were 

significantly associated with score in any series (p>.007). Thus, all further analysis 

centred on intra-individual correlations. Few participants demonstrated significant 

correlations between kinematic variables and score. Aiming time produced a 

significant positive correlation with score for one participant in series one 
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(Participant 3: r .778, p<.007), whilst another participant experienced a significant 

negative correlation between the same variables in series two (Participant 9: r -

.882, p<.007).  Two other participants presented significant negative correlations 

between score and horizontal trace length in series three (Participant 8: r -.970, 

p<.007; Participant 10: r -.753, p<.007). Each variable accounted for between 57% 

and 88% of the changes in score, but no other participants demonstrated any 

significant correlations. No centre of pressure variables produced any significant 

associations with score. 

6.3.5 Correlations between Pistol and Centre of Pressure Movements 

Only four participants were identified with significant correlations 

between pistol and centre of pressure movements in any series (Table 6.3). One 

(participant 3) produced a positive correlation between horizontal pistol movement 

and anterior-posterior path length in series one. Two participants (5 and 16) 

experienced significant correlations within series one and three. For participant 5, 

vertical pistol movements were significantly associated with anterior-posterior 

range  in series one, and with mediolateral range in series three. For participant 16, 

significant correlations were between vertical pistol movements and anterior-

posterior range in series one, and between vertical pistol movements and both 

mediolateral and anterior-posterior range in series three. Anterior-posterior 

movement was more commonly associated with changes in pistol movement, and 

although the correlations reported were high, accounting for between 49% and 97% 

of the variation in pistol movement, correlations only achieved significance for a few 

participants (3, 5, 16 and 14). 
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Table 6.3. Significant intra-individual correlations between pistol and centre of 

pressure movements for each series (p<.013).  R2 values are included in brackets. 

Mediolateral Anterior-posterior 

Series 

Pistol 

Movement Participant Range Range Path Length 

1 Vertical 5 -.886 (0.78) 

16 -.838 (0.70) 

Horizontal 3 ..929 (0.86) 

3 Vertical 5 .986 (0.97) 

16 -.800 (0.64) -.767 (0.59) 

Horizontal 14 .700 (0.49) 
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6.4 Discussion 

The first objective of this study was to identify any changes in shooting 

performance within each series as the time remaining to achieve five hits gradually 

diminished. To achieve this objective, shot score, aiming time and pistol and centre 

of pressure movements were compared between the first six shots within every 

shooting series. 

The first hypothesis, that scores would reduce, and pistol and centre of 

pressure movement would increase as the time remaining in a series diminished, 

was rejected. The time remaining to complete a series appeared to have little 

impact on shooting performance, with no significant changes in either aiming time, 

score, pistol movement or centre of pressure movement within any series. This was 

particularly evident from the individual analysis (Figures 6.7a - 6.9b) as some 

participants’ performances varied between successive shots, with no predictable 

change between the start and end of a series.  This first hypothesis was based on 

the assumption that as the time remaining to achieve five hits reduced, participants 

would shoot more  quickly, thereby reducing aiming time and leaving less time to 

complete any aiming routines. Elite shooters reduce the amount of movement over 

the final second before  a shot (Era et al., 1996), and so it was expected that 

decreased aiming times within a series would leave less time for reductions in pistol 

and centre of pressure movement to take place. However, with no evidence of 

decreased aiming time, the participants in the current study were able to reduce 

pistol and centre of pressure movements to a comparable degree for every shot. 

This was unsurprising for some participants, such as participant 1, who required less 

than 30 s to complete a series.  With considerable time remaining in each series, this 

participant would not be expected to demonstrate great changes in aiming times. 

Others, such as participant 5 who completed each series in 47 s – 56 s and 

participant 14 who required the full 70 s for each series, were expected to show a 

greater change in aiming time as the pressure to complete a series increased. 

However, intra-individual analysis demonstrated that the anticipated reduction in 

aiming time was not apparent even for those participants who were shooting until 
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the series time limit.  Consistent aiming times also meant that there were no 

negative effects of the speed-accuracy trade-off, as discussed in Study 1. 

Shooting performance did not appear to be greatly affected by the 

significant changes in heart rate within each shooting series. In series 2 and 3 this 

potentially reflects the effect of exercise on anxiety. Nibbeling et al. (2014) stated 

that exercise can counteract the negative effects of anxiety on performance, 

indicating that the high heart rates recorded at the beginning of each shooting 

series would not necessarily hinder shooting performance. A different heart rate 

pattern was evident in series one, where heart rate increased during the beginning 

of the series.  Oudejans and Pijpers (2010) stated that an increase in heart rate can 

potentially reflect a response to anxiety. According to attentional control theory, 

anxiety can result in a change in attention (Eysenck et al., 2007) which can 

potentially be detrimental to performance. Consequently, future research should 

examine the specific effects of each exercise phase on performance by comparing 

shooting performances between each of the three shooting series. 

The second objective of this study was to determine which kinematic 

variables are most closely associated with shot score, thereby identifying the 

variables that athletes must consider when training for the combined event. Few 

significant associations were identified with score for any series and, as such, no 

variables were identified as a key influence to combined event shooting success. In 

addition  to limited correlations with score, few correlations between the 

movements of the pistol and centre of pressure achieved significance. This provides 

further support to the findings of Study 1 that there must be other performance 

variables not considered here, such as body movement and the location of the aim 

point on the target, which must also influence performance. This also supports 

findings from previous research (Arutyunyan et al., 1968; Ball et al., 2003; Mason et 

al., 1990; Pellegrini & Schena, 2005; Tang et al., 2008). 

Findings meant the second hypothesis, that the variables associated 

with score would differ between participants, was accepted. For instance, 

participants 5 and 16 both produced significant correlations between vertical pistol 
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movement and mediolateral centre of pressure range in series three. An increase in 

centre of pressure movement was accompanied by an increase in pistol movement 

for participant 5, but a decrease  in pistol movement for participant 16. Thus, whilst 

participant 5 experienced greater pistol movement when body sway increased, 

participant 16 appears to counteract this increase in sway by reducing the amount 

of pistol movement. These unique aspects of performance are masked by the use of 

group analysis, and could be important to individuals. Understanding these 

individual performance traits could be particularly important for the less successful 

participants, for whom understanding how their performances differ from the 

better participants could provide crucial information in the ways in which they can 

improve.  The individual nature of shooting was further demonstrated by the 

performances of the four participants selected as case studies. The changes in each 

variable within each series differed between participants, even when two 

participants completed a series in the same number of shots. This further supports 

the conclusions of both Study 1 and previous research (Ball et al., 2003; Mason et 

al., 1990) that pistol shooting performance varies considerably between individuals. 

Thus, the importance of using individual analysis when investigating pistol shooting 

performance is clear. 

Individual analysis has highlighted how one variable can greatly 

influence performance for one participant, but have either no effect, or the reverse 

effect, for others. It is clear that simply promoting one technique as a method of 

enhancing combined event performance would provide few benefits to the majority 

of modern pentathletes. This supports the findings of Chow et al. (2011), Davids et 

al. (2003) and Langdown et al. (2012), who suggest that athletes must develop their 

own technique to create a successful performance, rather than recreate the 

movement strategies of others. Furthermore, whilst aiming time, pistol, and centre 

of pressure movements were not strongly correlated with score for most 

participants, consistency of technique could be as important as the magnitude of 

movement. This is particularly apparent in Figures 6.8a, where the pistol movement 

for participant 5, who required only 6 or 7 shots to complete each series, was less 

variable between shots than for participant 1, who required between 5 and 11 shots 
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for each series, and participant 14 who took 11 shots in every series. Thus, 

consistency of performance may be influential to shooting success. Further research 

should consider whether a more consistent performance could help enhance 

success when shooting. 

This study revealed the limited effect of time pressures on shooting in 

the combined event, but it should be acknowledged that there were some 

limitations. Whilst all participants had experience in pistol shooting, some had no 

prior experience of shooting in the combined event format. Potentially with further 

experience, an athlete’s performance could change, including their response to the 

time restrictions associated with combined event shooting. However, although not 

reported here, results for only those participants with experience of the combined 

event were also considered.     No  variable  changed  significantly  within  any 

series,  supporting the findings for all participants. An additional consideration 

should be the success of other athletes during competition, something which could 

have a considerable impact in the combined event. The testing format required 

participants to shoot whilst standing on force plates, meaning that each participant 

had to complete the  trial  individually, albeit with a large audience that included the 

experimenters, coaches and other participants. All other technical aspects of the 

event were identical to those in competition, but future research in which 

participants compete alongside other athletes would be useful to investigate direct 

competition effects. A final  consideration is the format of the shooting series, which 

means that whilst some participants took up to 11 shots to complete a series, most 

only required between six and eight. Thus, only six shots were used for analysis. 

Future research in which participants take a greater number of shots using the 

combined event shooting format could increase the likelihood of uncovering 

correlations between different variables. This would further enhance the 

understanding of the factors most critical to combined event shooting success. This 

would, however, require consideration of an appropriate method in which to 

maintain validity. 
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6.5 Conclusion 

Shooting performance did not change significantly between the first six 

shots within any shooting series. The consistent aiming times produced throughout 

a series meant that participants could produce a similar degree of pistol and centre 

of pressure movement, and achieve similar shot scores, for every shot. Few 

significant correlations were identified between score, pistol movement and centre 

of pressure, and the few correlations that achieved significance varied between 

participants. Thus, intra-individual analysis is essential when developing methods of 

enhancing performance for modern pentathletes. Future research is now 

recommended to investigate additional factors affecting combined event shooting, 

and to determine the speed at which modern pentathletes can shoot before 

accuracy is compromised. Understanding this trade-off between speed and accuracy 

will help to reduce the amount of time spent in each shooting series. 
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Chapter Seven 

Research Study 3 - The Effect of Running Phases on Combined Event Pistol Shooting 

Performance 

7.1 Introduction 

Studies 1 and 2 considered two important issues related to combined event 

pistol shooting; the change in performance requirements in comparison to the 

previous precision shooting format, and the effect of the time restrictions 

associated with each 70 s shooting series. An additional issue, which provides a clear 

distinction between the combined event and other pistol shooting formats, is the 1 

km running phases between each shooting series. Given that biathlon is the only 

other sport with these specific requirements, there is currently little information 

available to modern pentathletes concerning how their shooting performances may 

change in the second and third shooting series. 

Whilst limited research has considered the effect of exercise on shooting 

performance, a greater deal of consideration has been given to the effect of fatigue 

on centre of pressure movements. Nardone et al. (1997), and Bove et al. (2007) 

both reported that centre of pressure movement during quiet stance significantly 

increased following fatiguing treadmill and cycling exercise (p<.05). Thus, exercise 

clearly has the potential to affect body sway in the combined event. Bove et al. also 

indicated that centre of pressure movements remain significantly greater than 

baseline values for up to six minutes post-exercise. As each combined event 

shooting series lasts a maximum of 70 s, these findings indicate that modern 

pentathletes may have to develop the  skills to shoot with significantly increased 

centre of pressure movements for the duration of series two and three. However, 

the tasks used to induce fatigue and the quiet stance tasks are different to the 

running phases and shooting series that are completed in the combined event. 

Research needs to identify whether the combined event running phases produce a 

similar effect on centre of pressure movement, and how this may influence shooting 

success. 
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Some research has considered performance in biathlon (Hoffman et al., 

1992; Niinimaa & McAvoy, 1983), which is of a similar format to the combined 

event, with shooting series interspersed by bouts of exercise. Niinimaa and McAvoy 

reported that mediolateral and anterior-posterior path length significantly increased 

following exercise (p<.05), providing further support to the notion that modern 

pentathletes may experience increased body sway when shooting in series two and 

three of the combined event. Hoffman et al. (1992) reported that shot score 

significantly reduced and shot dispersion and rifle movements significantly 

increased following exercise (p<.05). Given that biathlon is based on rifle shooting, a 

similar effect of exercise on combined event shooting performance is not 

guaranteed. Thus, research must investigate the specific effects of exercise on 

combined event performance. 

Study 1 considered the effect of biomechanical variables on shooting 

performance in the first series of the combined event. The effects of each running 

phase on performance in each of the three shooting series has yet to be examined. 

Therefore, the specific objectives of this study are to: 

(i) identify any changes in score, aiming time, pistol movement and

centre of pressure movement between each shooting series; and

(ii) identify whether the variables most closely associated with

performance differ between each shooting series.

In order to achieve the first objective, median shot score, aiming time, pistol 

movements and centre of pressure movement are compared between each 

shooting series. Comparisons are made for both group median data and  individual 

participant data. The second objective is based on the outcome of the correlations 

presented in Study 2. Any participants who produced significant correlations in 

more than one series will be selected, and comparisons made between the variables 

that are most strongly associated with score and pistol movement. 

There are two hypotheses to accompany these objectives: 

(i) shot  score  will decrease  significantly,  and pistol  movements and body
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sway will increase significantly with each successive shooting series; and 

(ii) the variables associated with performance will differ between each

successive shooting series.

7.2 Methods 

7.2.1 Participants 

The performances of the same nineteen participants who took part in Study 

2 were analysed, comprising those from the first modern pentathlon group, second 

modern pentathlon group and the pistol shooter group (Chapter 4, section 4.1). 

With the exception of the blood lactate values recorded following the third shooting 

series, there were no significant differences between the three groups for any of the 

physiological, temporal or kinematic variables in any series (p>.05). Consequently, in 

accordance with Study 2, data were analysed as one group for all participants. 

7.2.2 Tasks 

The order of events undertaken by each participant were as detailed in the 

General Introduction (Chapter 4, section 4.2), with data from all three shooting 

series used for analysis. Data were derived from the same trials as those used for 

Study 2, where participants ran 20 m, then completed alternating 70 s shooting 

series and 1 km running phases. Participants were instructed to complete each 

running phase  at a  pace similar to that which they would use in competition. 

7.2.3 Data Analysis 

Score, aiming time, and pistol and centre of pressure movement was 

compared between each of the three shooting series. Additional comparisons were 

made for any participant who was identified in Study 2 with significant correlations 

between variables in more than one series. These comparisons were used to 

identify any changes  in the  variables  which  had the  strongest  associations  either 
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with score or pistol movement. Aiming time, shot score and pistol movement were 

obtained from the SCATT optoelectronic shooting system, and centre of pressure 

range and path length were recorded from the AMTI force platform. Explanations of 

how  each  variable was recorded are in the General Methods chapter (Chapter 4, 

section 4.4). 

Heart rate was recorded throughout each trial, using an Activio Sport System 

wireless heart rate monitor. This demonstrated how heart rate changed between 

each running and shooting series. Three fingertip blood lactate samples were 

obtained, one at the beginning of the event, and two others immediately following 

completion of the second and third shooting series. Blood lactate concentration was 

used to indicate the reliance on anaerobic metabolism throughout the event. Each 

sample was taken from the 5th digit of the loading hand, and analysed using a YSI 

1500 SPORT Lactate Analyzer. 

Due to small sample sizes, data were found to violate the assumptions of 

parametric tests. The Kolmogorov-Smirnov test reported that data differed 

significantly from a normal distribution, and Levene’s test revealed heterogeneity of 

variance. Non-parametric statistical tests were therefore used for the inter-series 

comparisons of group medians for each dependent variable. Wilcoxon tests were 

used for the comparison of maximum and minimum heart rate within each series, 

and Friedman’s ANOVA was used to compare median group aiming time, shot score, 

pistol movement, and centre of pressure movement between each series. For all 

comparisons, any value below p<.05 was considered statistically significant. 

7.3  Results 

Both heart rate and blood lactate changed significantly throughout the 

combined event. Despite these changes, no temporal or kinematic variables 

changed significantly between series (Table 7.1). 
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7.3.1 Physiological Variables 

Maximum and minimum heart rates were significantly greater for the second and third 

shooting series compared to series one (p<.016) (Table 7.1). No significant differences were 

recorded between series two and three, despite the 1 km running phase that separated the 

two series. Between the final two series, maximum heart  rate increased by only 4 bpm and 

minimum heart rate decreased by 3 bpm.  Despite  no significant changes in 1 km run time 

(p>.05), blood lactate concentration significantly increased between each series (p<.016), rising 

from 1.1 mmol.L-1  prior    to series  one,  to  5.9  mmol.L-1   and  6.7  mmol.L-1   at  the  end  of 

series  two  and   three respectively. 

7.3.2 Shot Score, Temporal and Kinematic Variables 

No significant changes were recorded for aiming time between any series  (Table 7.1), 

as the group median decreased by just 0.1 s between successive series. Shot score also 

changed little, and non-significantly between series, with only  0.2 points separating each 

series’ median score.  The median scores achieved in each  series ranged between 7.0 and 7.2, 

due to a high number of shots that scored below the success criteria of 7.0 points. IQR 

increased with each successive series as the success of participants varied more widely in series 

two and three. 

Neither horizontal nor vertical pistol movements changed significantly between series 

(Table 7.1). Some, albeit non-significant changes were evident as horizontal pistol movements 

decreased by 44.6 mm between series one and two, and increased by 20.2 mm between series 

two and three. Opposite changes were recorded for vertical pistol movement, which increased 

between series one and two (42.3 mm) and decreased between series two and three (16.4 

mm). 

None of the centre of pressure variables changed significantly between series (Table 

7.1). Although non-significant, median range of movement varied by 1.2 mm and 1.1 mm for 

mediolateral and anterior-posterior range, respectively. Some change was evident for 

mediolateral and anterior-posterior path length, which varied by 4.5 mm and 2.2 mm 

respectively.
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Median group values (± IQR) 

Series 1 Series 2 Series 3 2 p 

Maximum Heart 
Rate (bpm) 

142 (15.5) * 181 (13.0) 185 (9.3) 18.1 <.001 

† † † 
Minimum Heart 
Rate (bpm) 

112 (39.0) *   153 (28.5) 150 (25.5) 12.8 .002 

Blood Lactate 
(mMol.L-1) 

1.1 (1.3) * 5.9 (2.6) * 6.7 (2.8) 26.5 <.001 

Aiming Time 
(s) 

1.4 (0.1) 1.3 (0.1) 1.2 (0.1) 5.3 .070 

Shot Score 7.2 (0.5) 7.0 (0.6) 7.2 (1.3) 0.9 .711 

Pistol Movement (mm) 

Horizontal Trace 
Length 

272.6 (16.9) 227.9 (21.1) 248.2 (42.0) 2.2 .403 

Vertical Trace 
Length 

238.5 (16.8) 280.9 (31.1) 264.4 (13.3) 5.6 .062 

Centre of Pressure Movement (mm) 

Mediolateral Range 5.4 (0.7) 6.4 (0.9) 5.2 (0.8) 0.8 .714 

Anterior-posterior 
Range 

5.8 (0.4) 6.5 (1.6) 5.4 (0.6) 1.1 .607 

Mediolateral Path 
Length 

56.1 (13.1) 55.1 (13.9) 59.6 (18.4) 0.5 .866 

Anterior-posterior 
Path Length 

17.5 (7.2) 18.8 (7.6) 19.7 (9.5) 4.8 .098 

7.3.3. Intra-Individual Performance Analysis 

The format of the combined event meant that not all participants completed the series 

in the six shots used for statistical comparisons in Table 7.1. Individual data from four 

participants were plotted to identify any performance changes for participants who 

experienced varied levels of success when shooting.  Data for these

Table 7.1. Comparisons of dependent variables between each shooting series. 

† = significant reduction in heart rate within series (p<.05) 
* = significant difference between series (p<.016)
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same four participants will be presented for every variable to represent any 

individual changes in performance. 

Aiming time demonstrated some variations between participants (Figure 

7.1a). With the exception of participant 14, participants spent a marginally longer 

time aiming in series one than series two or three. Only one participant (participant 

8) demonstrated the anticipated decrease in aiming time with each successive

series, with a decrease of 1.5 s. Aiming time changed little for other participants, 

particularly participant 14, for whom there was only a difference of 0.4 s between 

series. 

Individual analysis demonstrated greater variations in score than was 

implied  by the group median (Figure 7.1a). This was particularly apparent for 

participant 1, who required only five shots to complete series one in comparison to 

11 shots in series three. Median scores for this participant were greater than 9.0 for 

series one, but below the 7.0 criteria for success in series three. Participant 14 also 

demonstrated the expected decline in each series, whilst participant 5 produced a 

similar pattern to the group median. 

Pistol movement differed considerably between group and individual 

analysis (Figure 7.1a). The group result indicated that a decrease in horizontal  pistol 

movement was accompanied by an increase in vertical pistol movement, whereas 

each of the four participants produced either an increase or a decrease in both 

movement components (Figure 7.3). Only one participant (participant 1) produced 

the same change between series as the group median for horizontal movements, 

and none demonstrated the same pattern for vertical movements. 

Centre of pressure movements provided a further indication of individual 

variation in performance (Figure 7.1b). No participant produced the same change in 

mediolateral range between series as the group median. Two (participants 1 and 5) 

followed the same pattern as the group result for anterior-posterior range. The 

other two participants (8 and 14) produced the opposite results to the group, as 

anterior- posterior path length decreased between series one and two, and 

increased between series two and three. 
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Greater changes were also evident for individual analysis of path length in 

comparison to the group median (Figure 7.1b). Participants 8 and 14 produced 

greater changes between series than participants 1 and 5, particularly for anterior-

posterior path length which increased by 24.4 and 9.2 mm for participants 14 and 8 

respectively. 
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Figure 7.1a Intra-individual analysis of median aiming time, shot score and pistol movements for selected participants. 

Number of shots required for series 1, 2 and 3 respectively were: 

Participant 1: 5 \ 6 \ 11 Participant 5: 7 \ 6 \ 6 

Participant 8: 8 \ 8 \ 10 Participant 14: 11 \ 11 \ 11 



Series 1 Series 2 Series 3 

Participant Number 

Figure 7.1b Intra-individual analysis of median centre of pressure movements for selected participants. 

Number of shots required for series 1, 2 and 3 respectively 
were: Participant 1: 5 \ 6 \ 11 Participant 5: 7 \ 6 \ 6 
Participant 8: 8 \ 8 \ 10 Participant 14: 11 \ 11 \ 11 
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7.3.4    Intra-Series Correlations 

Two participants produced significant negative correlations between score and 

horizontal trace length in series three (Participant 8: r -.970 p<.007; Participant 10:    r -

.753, p<.007). A third participant produced a significant negative correlation with aiming 

time in series two (Participant 9: r -.882, p<.007). Whilst each variable accounted for 

between 57% and 88% of the changes in score, the same correlations did not achieve 

significance in any other series for these participants. Furthermore, none of the remaining 

16 participants demonstrated any significant correlations. With these limited numbers of 

significant correlations it was not possible to determine any changes between series in the 

variables that were most influential to performance. 

7.4 Discussion 

This objective of this study was to identify any changes in shooting  performance 

between each of the three series. Neither score, pistol movement nor centre of pressure 

movement changed significantly between series, leading to a rejection of the first 

hypothesis. Thus, despite an increasing reliance on anaerobic metabolism throughout the 

event, shooting performance remained similar. Whilst these findings fail to support the 

hypothesis, they do support the research of Le Meur et al. (2010) who reported no 

significant change in shooting success or time per shot for any series in the combined event 

(p>.05). As such, shooting performance following 1 km series running appears similar to 

performances achieved following only 20 m of running. 

A potential explanation for the similarities in shooting performance across the three 

series is the increase in arousal associated with exercise. In their analysis of fatigue and 

shooting performance, Nibbeling et al. (2014) reported that an increase in arousal has the 

potential to reduce the effect of anxiety. Thus, in the combined event an increase in 

arousal may be sufficient to counteract any decrements in performance resulting from 

exercise-induced fatigue. Factors that may have produced anxiety, and potentially reduced 

performance in series one, may therefore prove less influential to performance in series 

two  and three.   Analysis of the heart rate trace  indicates that this effect may be present. 

In Study 2 (Chapter 6, Figure 6.1), heart rate increased during the beginning of series one, 
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which can indicate the presence of anxiety (Oudejans & Pijpers, 2010). This pattern was not 

apparent in series two and three, where heart rate gradually reduced between the 

beginning and end of each series. As such, it appears that the negative effects of pre-

competition anxiety may be similar, or greater, than the negative effects of exercise. In 

series one, modern pentathletes should consider the psychological aspects of performance, 

such as methods to reduce anxiety, in addition to the biomechanical and physiological 

aspects of the event. For instance, Oudejans and Pijpers (2010) reported that training with 

mild anxiety can help maintain high performance levels when under high levels of anxiety, 

such as during competition. Techniques to enhance shooting performance in series one 

should therefore be a consideration for future research. 

A second implication of the similarities between series is that, when developing 

shooting technique, shooting training in isolation could be effective in addition to combined 

run and shoot training. Training without the need to replicate the entire event is not only 

more simple, but would also enable modern pentathletes to focus solely on the demands of 

shooting, without additional considerations such as pacing strategies that are associated 

with each running phase. Determining  effective  methods of developing shooting technique 

is essential, as greater shooting accuracy, not running performance, has been suggested to 

determine the most successful athletes (Le Meur et al., 2010). Many shots taken by 

participants in the current study missed the target, meaning that athletes who can shoot 

accurately will have a considerable advantage over many of their competitors. Combined 

run and shoot training will also remain important to allow athletes to become accustomed 

to other aspects of the event such as the transition between each phase. 

A particularly important outcome from this study is the contrast between the 

current findings and those which have investigated biathlon performance (Hoffman et al., 

1992). Biathlon appears to be the shooting event most similar to the combined event, and 

yet, analysis of the combined event revealed a considerably different effect of exercise on 

shooting performance. Hoffman et al. reported that following exercise, shot score and rifle 

stability significantly decreased, whilst shot dispersion and centre of pressure movements 

significantly increased (p<.05). These findings were used to inform the first hypothesis. 

However, this effect was not present when analysing the performances of participants in 

the current research, demonstrating the unique performance requirements of the 
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combined event. 

The contrasting findings with previous research indicate that reducing exercise 

intensity immediately prior to shooting, as used by biathletes, may not be an effective 

strategy in the combined event. This may be unsurprising, given the different methods of 

hold for a pistol and a rifle, with the rifle more susceptible to other physiological changes 

such as heart rate. The reduced effects of exercise on pistol shooting were highlighted by 

Brown et al. (2013) who reported that, in pistol shooting, heart rate was not significantly 

correlated with either shooting accuracy or precision. Thus, it seems likely that reducing 

running speed prior to shooting, similar to biathlon, would not enhance shooting 

performance. This statement is supported by the finding that shooting performance was 

not better in series one, prior to the 1 km running phases. Consequently, modern 

pentathletes must now develop their own strategies when attempting to enhance shooting 

performance, rather than relying on the strategies of other, seemingly similar, events. 

Each running phase had a limited effect on both shooting performance and on 

movement of the centre of pressure. The non-significant changes in centre of pressure 

movement were particularly surprising and in contrast to both the first hypothesis and the 

findings of previous research (Bove et al., 2007; Hoffman et al., 1992; Nardone et al., 1997; 

Niinimaa & McAvoy, 1983). Research has reported significant increases in path length 

following both cycling (Niinimaa & McAvoy, 1983) and treadmill (Bove et al., 2007; 

Nardone et al., 1997) exercise. It should be acknowledged that neither Bove et al. or 

Nardone et al.’s research was based on shooting performance, instead recording 

movement during quiet stance. The demands of combined event shooting are likely to be 

sufficient to destabilise the centre of pressure, even after minimal exercise, beyond that 

which is required for these quiet stance tasks. This effect was apparent in Study 1 (Chapter 

5), which found a significant increase in centre of pressure movement when changing from 

precision to combined event shooting (p<.05).  Thus, as movement is already elevated in 

comparison to more simple stance tasks, any additional increases following exercise may 

be less pronounced. 

An additional explanation for the differences between the findings of the current 

research and previous studies is the methods used to quantify fatigue. Nardone et al. (1997) 

compared non-fatigued exercise trials, where heart rate was below 60% age-adjusted 
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maximum, with fatigued trials at 93% of the  maximum.  Whilst the maximum heart rate 

reported by Nardone was similar to that recorded for modern pentathletes in series three, 

the minimum heart rate was lower than that recorded in any of the three series in the 

current research. Even in series one, prior to which participants had only completed 20 m of 

running, minimum heart rate was 69% of age-adjusted maximum. Thus, the smaller changes 

in heart rate between each shooting series in comparison to the non-fatigued and fatigued 

trials used by Nardone et al. may explain why exercise had less of an effect on centre of 

pressure movement for modern pentathletes. 

A key consideration throughout this research series has been whether group 

analysis is an appropriate method of analysing shooting performance. This was investigated 

by comparing the group results with the performance of four participants selected as case 

studies. Only one participant produced the expected decline in score with each series, 

whilst two demonstrated the predicted increase in pistol movements and anterior-posterior 

path length. The same increase was not evident for the other centre of pressure variables. 

Thus, neither group nor individual analysis provided clear support for the anticipated 

changes in shooting performance following each 1 km run phase. 

The individual data, whilst not providing any clear support for the hypotheses, did 

support the need for intra-individual analysis of shooting performance (Ball et al., 2003; 

Mason et al., 1990). The performance of some participants varied little between series, 

consistent with the findings of group analysis. None of the selected participants displayed 

the same change between series as the group median for all dependent variables. This was 

particularly evident for shot score. For instance, participant 5 maintained relatively 

consistent scores across each series, ranging between 7.5 and 8.2 points. Participant 1 

demonstrated less consistency, with a decline of 1.1 and 1.4  points with each successive 

series. With the exception of vertical pistol movements and mediolateral centre of pressure 

range, at least one of the four participants produced the same pattern between series as 

the group median for each variable. However, the highly individual nature of combined 

event pistol shooting means that the group median will rarely reflect each individual’s 

response to the shooting task. Consequently, coaches should be cautious when applying the 

findings from purely group-based analyses. 

This study has revealed, for the first time, the limited effect of each running phase 
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on combined event shooting performance. There are limitations which could be built on to 

further enhance the understanding of performance in the event. Participants all provided 

blood lactate samples at specific stages during the event, but none completed VO2 max tests 

prior to testing. This  additional  information  would have provided an insight into the 

intensity at which each participant was performing, allowing more detailed comparisons 

with previous research. Quantifying the intensity at which each participant was completing 

each running phase would also provide a greater understanding of the non-significant 

changes in shooting  performance between series. Statistical limitations also made 

comparisons of correlations between series difficult. Correlations were restricted to six 

shots within each series, meaning that the critical value required to achieve significance was 

high (0.881 for p<.007). Future research which allowed participants a greater number of 

shots would decrease the critical value, thereby increasing the likelihood of uncovering 

correlations in each series. As mentioned in Study 2 (Chapter 6), this would require 

consideration of an appropriate method to maintain validity. Also described in Study 2 was 

the inability to recreate the effects of competitor’s performances owing to the use of force 

platforms as part of the testing procedure. Thus, the influence of competitors on 

performance would be an interesting topic for future research. 

7.5  Conclusion 

This study has clearly highlighted that the sequence of running phases that form 

part of the combined event do not significantly influence shooting performance. These 

similarities in shooting performance throughout the event have potential implications for 

training, with the possibility that shooting training in isolation may be effective in addition 

to the complete event format. The  findings also highlight  the need for modern 

pentathletes to consider other factors, such as the effects of anxiety on performance in 

series one. The combined event clearly has unique performance requirements in 

comparison to other shooting disciplines, such as biathlon. Consequently, modern 

pentathletes must establish unique methods to enhance shooting success. This is important 

if athletes wish to enhance not only  their  combined event, but also overall competition 

performance. Few correlations were identified for each series, suggesting that there must 
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be other variables which further influence combined event shooting performance. Future 

research should consider the effects of other aspects of technique on success in each 

shooting series. Finally, whilst both group and individual analysis failed to support the 

hypotheses it was clear that group analysis alone is not sufficient to reflect the 

performances of all individuals. 
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Chapter Eight 

Change in Research Focus: Combined Event to Precision Shooting 

The first three studies have considered pistol shooting performance as it exists 

in the combined event of modern pentathlon. This research has provided four main 

conclusions: 

(i) combined event performance differs significantly from precision

shooting. As such, modern pentathletes who were previously successful

in precision shooting are not guaranteed a similar degree of success in

the combined event without additional training;

(ii) the time constraints associated with each 70 s shooting series did not

significantly affect shooting performance. Thus, athletes maintain

consistent shooting performances from the beginning of a shooting

series to the end where there is progressively less time to achieve five

hits on target;

(iii) the 1 km running phases that separate each shooting series did not

significantly affect shooting performance. This suggests that anxiety prior

to the beginning of the event has a negative effect on shooting

performance in series one. An additional implication of the similarities in

shooting performance between each series is that shooting training in

isolation may be beneficial in addition to recreating the entire combined

event; and

(iv) pistol shooting performance varied considerably between individual

participants. Thus, reliance on group average data when investigating

elite shooting performance is not recommended. Instead, intra-individual

methods of analysis must be used.

These studies have provided a more detailed understanding of shooting 

performance in the combined event. They have also identified that there must be 

other variables in addition to pistol and centre of pressure movement that influence 

performance,  as  demonstrated  by  the  small  number  of  significant correlations 
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between kinematic variables and score. Consequently, more detailed analysis of 

technique is required, such as that which can be offered by motion analysis systems. 

The first three studies utilised analysis methods that have been used in previous 

investigations of pistol shooting performance, such as force platforms and 

optoelectronic shooting systems. These methods provide information  on  the 

outcomes of performance but do not consider how these movements, such as 

centre of pressure and pistol movement, are generated. There are many potential 

sources of movement between the centre of pressure below the feet and the pistol 

in the hand. More detailed investigations of these movements will make it possible 

to develop a more in-depth understanding of the difference between a more or less 

successful shooting performance. By increasing the understanding of the 

mechanisms behind a successful performance, research can become more applied, 

and useful to athletes  and coaches who wish to achieve the high levels of stability 

that have been associated with elite level shooting performances. 

When designing the final two studies for this thesis, issues arose with the 

availability of elite modern pentathletes for testing. Furthermore, additional 

modifications to the format of the combined event, with a change to four 50 s  

shooting series and four 800 m run phases, meant that athletes were still adapting 

to the new demands placed on them (Figure 8.1). To address these issues the focus 

of the final two studies was modified to analyse the performances of elite precision, 

rather than combined event shooters. 

With the change in participants, there was a clear change in the focus of this 

research, from the quick movements associated with combined event shooting to 

the highly accurate and controlled sport of precision shooting. Study 1 has identified 

the significant differences which exist between these two shooting formats, but key 

themes are maintained between the first three and the final two studies that form 

this thesis. The final two studies investigated the movements that are responsible 

for pistol movement, thus building on the centre of pressure and pistol movements 

that were recorded in the first three studies. Studies 1 - 3 have each stated that 

there are many potential sources of movement between the centre of pressure 

under the feet and the hand holding the pistol.  It is therefore important to examine 
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movement when shooting in more detail to understand how a shooting 

performance is created. Whilst this will be determined for precision shooting in the 

final two studies, the measurement techniques and methods of analysis have the 

potential for future use in the combined event. 

Another of the conclusions from the first three studies was that individual 

analysis is essential for the analysis of elite shooting performance. This is 

particularly  important for precision shooting where the smallest movements can 

affect success. As such, individual analysis will be a key theme throughout Studies 4 

and 5. 

Precision Shooting 

 20 shots

 Maximum 40 s per shot

 No running phases

Shooting Format Change: Combined Event Introduced 

 Unlimited shots (aim to hit 5 targets)

 Maximum 70 s per series

 3 x shooting series interspersed by 3 x 1 km run phases

 No running phases

Pre-2008 

2008 - 2012 

2013 - Current 

Combined Event 

 Laser shooting introduced

Combined Event Rule Change 

 Unlimited shots (aim to hit 5 targets)

 Maximum 50 s per series

 4 x shooting series interspersed by 4 x 800 m run phases

 No running phases

2012 

Figure 8.1. Timeline of modifications to the pistol shooting event in modern 
pentathlon, from the original precision event to the combined event in its 
current format. 
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Chapter Nine 

Review of the Literature – Movement Variability, Coordination and Stance 
Position 

In the comparisons of combined event shooting in the first three studies, 

discrete methods of analysis were used as a method of quantifying performance. 

Discrete measures, such as range and standard deviation, use single values taken 

from a kinematic series of data to represent an entire movement. These measures 

have commonly been used in previous research (Fleisig, Chu, Weber, & Andrews, 

2009; Kao, Ringenbach, & Martin, 2003; Owings & Grabiner, 2004) as they provide a 

simple method of representing movement variability at key points within a task 

(Bartlett, Wheat, & Robins, 2007). Within shooting, variables such as trace length of 

the pistol can provide information regarding the outcome of the shooting task, and 

how it varies either between participants, or different shots. Whilst there are 

benefits of using discrete analysis, the use of one value to represent an entire trial 

can often oversimplify the data. The shape of a kinematic curve can indicate how a 

particular movement is accomplished (Preatoni et al., 2013) and so discrete analysis 

can discard potentially important information related to the temporal and spatial 

aspects of a performance. This is an important aspect of sports biomechanics if 

research is to become more applicable to athletes and coaches. For instance, rather 

than  stating  that elite pistol shooters produce smaller pistol and centre of pressure 

movements than lower ability shooters, it would be more useful to explain how 

these movements are achieved. 

Recent motor control research has identified two continuous aspects of 

performance, movement variability and movement coordination, which are 

considered to greatly influence the success of a performance (Bartlett et al., 2007; 

Preatoni et al., 2013). This review will describe the theories associated with 

movement variability and coordination, including examples of their use in previous 

research. 
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9.1 Movement Variability 

When an individual performs a movement, their level of success often varies 

from one repetition to the next. Despite repeated practice, even elite athletes 

cannot perfectly replicate a movement between trials (Davids et al., 2003; Preatoni 

et al., 2013). These inconsistencies when replicating an action are termed 

movement variability, and are an inherent aspect of human movement (Lakie, 2010; 

Latash, Scholz, & Schöner, 2002). By understanding movement variability it is 

possible to understand, and potentially influence, the success of a particular task. 

For this reason the study of movement variability has become a popular topic within  

biomechanics and motor control research. 

Investigations into movement variability and its effect on task performance 

began with the work of Bernstein (1967). Bernstein’s research was the first analysis 

of movement variability, reporting that every attempt made by an individual to 

replicate  a movement resulted in a marginally different motor output. These 

inconsistencies were termed “repetition without repetition” (Bernstein, 1967 as 

cited in Stergiou & Decker, 2011, p. 1), and signalled the beginning of the 

development of motor variability theories. This section of the literature review 

explains how the perception  of movement variability and the methods used to 

measure it have changed  over recent years. It also outlines the findings of previous 

research, and explain how they have proved useful both to athletes attempting to 

improve sports performance and to individuals in the wider population. Finally, it 

highlights the current gap in the  literature regarding the effects of movement 

variability on pistol shooting performance. 

9.1.1 Developments in the Theory of Movement Variability 

Movement variability analysis considers two aspects of a task; outcome and 

performance variability (Horan, Evans, & Kavanagh, 2011; Preatoni et al., 2013). 

Outcome variability examines how the outcome of a task, such as reaching for and 

grasping an object, varies between attempts. Performance variability reflects how 

the performance of a task, such as the movements of the body that influence 
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the task outcome, vary between trials (Preatoni et al., 2013). In pistol shooting, 

outcome variability reflects aim point movement, or the location of shots on the 

target, whilst performance variability concerns the movements of the body and 

upper limb which  can influence the movement of the pistol, and hence the aim 

point on the target. 

Research has traditionally considered the variability associated with reaching 

and balance tasks in elderly and disabled populations (Black, Smith, Wu, & Ulrich, 

2007; Cirstea & Levin, 2000; Darling, Cooke, & Brown, 1989; Levin, 1996). More 

recently, research has begun to consider the effects of movement variability on elite 

sports performance, where a greater understanding of the mechanisms behind a 

successful performance could greatly enhance success (Preatoni et al., 2013; Tucker, 

Anderson, & Kenny, 2011; Wilson, Simpson, van Emmerik, & Hamill, 2008). This is 

particularly important in precision sports such as pistol shooting where, at a distance 

of 10 m, a change in pistol angle of just 0.033o  is sufficient to move the aim point of 

the pistol from the centre of the ten ring to the border of the nine. The consensus 

within previous literature is that success in a particular task is reflected by a small 

degree of outcome variability, but there has been greater debate about the 

contribution of performance variability to the success of a task. 

The impact of performance variability on task outcome has been addressed 

by multiple authors for various activities including pointing tasks (Domkin, Laczko, 

Djupsjöbacka, Jaric, & Latash, 2005), and sport-specific tasks such as sprinting 

(Bradshaw, Maulder, & Keogh, 2007), baseball pitching (Fleisig et al., 2009) and the 

golf swing (Langdown et al., 2012).  Initially, variability was considered as noise 

within  a movement system that must be reduced in order to improve performance 

in accuracy-based tasks (Newell & Corcos, 1993). Under these circumstances,  the 

amount of performance variability should be equal to the variability of the task 

outcome (Preatoni et al., 2013). More recently, research has considered that whilst a 

high degree of variability could be detrimental to performance, some variability 

could be evidence of a functional movement system which is able to adapt to the 

constraints of a changing environment (Black et al., 2007; Wilson et al., 2008).  In 

this situation,  the amount of performance variability should be greater than the 
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variability of the task outcome. 

9.1.2 Early movement variability theories: Variability as noise 

Bernstein (1967) first considered the effects of movement variability on task 

outcome, using the movements produced by blacksmiths when striking a chisel with 

a hammer. By recording the position of light bulbs placed on the hammer and on 

each joint in the upper limb it was established that there was little variation in the 

movement of the hammer between strikes, whilst much greater variability was 

apparent for the movements of the upper limb. It was therefore suggested that 

more than one movement pattern could result in the same successful task outcome. 

Based on these findings, Bernstein concluded that the movements produced for 

each joint of the upper limb were not controlled independently, but instead 

controlled as part of a wider system which interacts to produce a successful task 

outcome. Bernstein introduced the theory of motor redundancy in an attempt to 

explain how such  complex movements can be controlled. This theory proposed that 

there are many more degrees of freedom available to the human movement system 

than are necessary to complete a task. Thus, when learning a task, an individual 

must reduce movement variability by initially ‘freezing out’ some of the degrees of 

freedom. Each degree of freedom is then gradually released until the individual 

reaches a state of control where they can consistently accomplish a specific task. 

Arutyunyan, Gurfinkel and Mirskii, (1968; 1969) compared the movement 

variability of novice and elite pistol shooters to provide a clearer indication of how 

individuals mastered the degrees of freedom in order to succeed at a task. 

Arutyunyan et al. (1968) reported that novice shooters produced a greater 

dispersion of pistol movement across the target than experienced shooters, and 

that this dispersion decreased with practice. The explanation for this change in 

performance was provided by their subsequent work in 1969, which analysed 

movements of the wrist and shoulder in addition to the pistol. Experienced shooters 

produced  greater  coordination between the movements of the shoulder and the 

wrist, and between the wrist and the pistol, than the novice shooters. The author 

used these findings to suggest  that  elite shooters  must  have  a greater mastery of 
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the degrees of  freedom than novice shooters, thus providing further support for 

Bernstein’s principle of redundancy. 

9.1.3 Changes in movement variability theories: Functional variability 

The principles of mastering the degrees of freedom for a specific task, and 

the decrease in task outcome variability between novice and elite performers are 

central to current movement variability theories. However, there is a clear 

distinction  between the original theories and more recent ideas when considering 

the function of movement variability. Whilst movement variability was originally 

viewed as noise (Arutyunyan et al., 1969; 1968; Bernstein, 1967), more recently it 

has been reported as a functional aspect of movement, which could instead 

facilitate performance. Bartlett, Wheat and Robins (2007) suggest that variability 

may represent the ability of a movement system to adapt to changes in the 

environment, or to errors in other components within the system. It should be 

acknowledged that variability is only considered functional to a degree, beyond 

which it can still be detrimental to performance (Langdown et al., 2012). 

A second difference between original and more recent theories of movement 

variability is the method by which movements are thought to be controlled.  

Bernstein’s (1967) theory of motor redundancy assumes that an individual freezes 

any degrees of freedom that are not necessary to achieve a particular task. Recent 

research instead promotes the concept of motor abundancy, which suggests that the 

central nervous system takes advantage of the numerous solutions available for 

movement coordination. This allows the production of multiple movement patterns, 

each of which result in a successful outcome of the task (Preatoni et al., 2013). The 

theory of abundancy is based on the principle that any movement is controlled by 

interactions between the movements of a system of joints or segments. An 

individual can alter the movement produced for any joint in that system (e.g. in the 

upper limb when pistol shooting) to respond to any changes in the output from the 

other the joints within that system. Thus, the variability of each joint could be high, 

as each compensates for any changes in movement to ensure that the variability of 

the task outcome can remain low. 
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Since the change in perspective towards functional variability, there has 

been an increase in research considering the impact of movement variability on 

activities in both  daily  life  and sporting activities. In  their  analysis  of 

novices  learning to ski, Vereijken, van Emmerik, Whiting and Newell (1992) 

measured the three dimensional kinematics of the hip, knee and ankle to identify 

how the degrees of freedom were progressively released through the stages of 

learning. The  movement recorded at each joint increased with practice, leading 

the authors to propose that an increase in task success was achieved by increasing 

movement variability. More recently, Button et al. (2003) examined movement 

variability between basketball players of different abilities, comparing elbow and 

wrist angles at the moment of ball release for a free throw. Higher skilled 

participants demonstrated greater variability at each joint than the lower skilled 

participants. The greater variability for the more skilled players was used as an 

example of the compensatory actions of each joint, ultimately used to decrease the 

variability of ball release, and increase the likelihood of a successful shot. 

Whilst research has considered movement variability in sports such as 

basketball which require a greater amount of movement, none has yet considered 

movement variability in elite pistol shooting. Some has examined movement 

variability for pointing tasks, for which the accuracy and stability constraints are 

more similar to those required for shooting than the previous examples from sports 

performance (Domkin et al., 2005; Domkin, Laczko, Jaric, Johansson, & Latash, 2002; 

Kim et al., 2012; Tseng, Scholz, Schöner, & Hotchkiss, 2003). Much of this research 

has used the uncontrolled manifold hypothesis (UCM) as a more detailed theory to 

evaluate variability. Introduced by Scholz and Schoner (1999), the UCM proposed 

that research should not just consider the amount of variability, but also how much 

of the variability recorded is actually functional to performance. For instance, whilst 

van Emmerik et al. (1992) and Button et al. (2003) reported that variability 

increased with increasing skill level, there was no way to determine whether this 

had a positive effect on performance. 

In their development of the UCM hypothesis, Scholz and Schoner (1999) 

suggested that for any task outcome (e.g. a specific location of the aim point on the 
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target  for pistol  shooting),  joint  angles  can  be separated  into two  subspaces. 

One subspace represents the combinations of joint angles that do not affect the 

task outcome (e.g. the aim point on the target remains in the same location), and 

the second represents any other combinations of joint angles that alter the task 

variable (e.g. the aim point moves to a different location on the target). Any 

combination of angles in the first subspace, often termed goal-equivalent variance, 

represent functional variability, whilst combinations in the second subspace, termed 

non-goal equivalent variance, represent variability that is potentially detrimental to 

performance. 

Tseng et al. (2003) and Kim et al. (2012) both used the UCM hypothesis to 

investigate variability associated with pointing to targets of different sizes.  Both 

groups recorded the movements of a number of body markers to determine how 

variability changed as target size increased. Tseng et al. reported that, for each 

target, goal-equivalent variance was significantly greater than non goal-equivalent 

variance; meaning that most of the movement produced during the pointing tasks 

represented functional variability of the motor system, rather than noise that 

negatively affects performance.  Kim et al. reported that the more difficult tasks 

resulted in an increase  in goal-equivalent variance. As the increased variability 

remained within the goal- equivalent subspace, there was no corresponding decline 

in performance. These findings provide support for the theory that movement 

variability can represent an attempt to enhance performance, rather than a lack of 

control, and should be considered as functional, rather than detrimental to 

performance. 

The UCM provides a detailed understanding of variability at discrete points in 

a movement, but it does not examine how variability changes over time. A 

continuous analysis of movement variability can be achieved with the use of mean 

and standard deviation plots, as shown in Figure 9.1. Domkin et al. (2005; 2002) and 

Kruger et al. (2011) each used these plots to illustrate how the variability of upper 

limb joint movements changed throughout a movement. Kruger et al. found that 

variability increased towards the middle of the task, then decreased near the end of 

the movement. Thus, they concluded that control of reaching movements is more 
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effective for the second half of a reaching action. In contrast, Domkin et al. found 

variability  to  decrease  throughout  a  pointing  task,  and  from  pre-test  to  post-

test conditions. Domkin et al. also used the UCM to quantify variability, but there 

were no clear effects of practice on goal-equivalent and non-goal equivalent 

variance.  Thus,  the authors suggested that the UCM cannot detect the effects of 

practice if it occurs quickly, and over a limited number of trials. 

Figure 9.1. Continuous methods of analysing variability, allowing 

comparisons of pre-trial and post-trial performance for one participant. 

Dashed lines represent average angle, and vertical bars represent 

standard deviation (Domkin et al., 2002). 

The application of the UCM hypothesis, and the use of mean and standard 

deviation plots, have both been shown as effective methods of quantifying 

variability. Each has the potential to be applied when investigating the role of 

movement variability in pistol shooting performances (Kim et al., 2012; Krüger, 

Eggert, & Straube, 2011; Scholz & Schöner, 1999; Tseng et al., 2003). The UCM can 

provide detailed information regarding the degree of functional variability produced 

by elite shooters, and could also provide a comparison of the degree of functional 

variability between more and less successful shots (i.e. a shot scoring 10 points 

compared to one scoring 8). A disadvantage of the UCM is that whilst it could 

quantify variability at the instance of the shot, it would not examine variability 

throughout the aiming period. Mean and standard deviation plots provide a more 

continuous analysis of performance, and can examine how the variability of upper 

limb movements change throughout the final second to achieve a consistently 

successful performance. These plots therefore  provide an appropriate method of 
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analysis for investigations into the effects of variability on pistol shooting 

performances. 

 9.1.4 Movement Coordination 

The analysis of movement variability has identified that the performance of a 

particular task can vary and still result in a successful task outcome. It cannot, 

however, identify the specific movements, such as shoulder abduction and 

adduction or wrist flexion and extension, that were used to control the outcome. 

This aspect of analysis is termed movement coordination, and refers to the 

movement patterns which can be used to complete a particular skill (Preatoni et al., 

2013). Little research has considered how movement is coordinated in pistol 

shooting, but the coordination of movement in both target pointing tasks and other 

sports skills have been investigated (Hwang & Wu, 2006; Steven Morrison & Newell, 

2000; Vereijken, Emmerik, Whiting, & Newell, 1992). 

Much existing coordination research has used cross-correlations to examine 

the degree of similarity between the movements of different joints or segments of 

the body, to provide a more detailed understanding of how movement is controlled 

(Chiu & Chou, 2012; Vereijken et al., 1992; Winter, Patla, & Prince, 1998). Cross-

correlations compare how two signals change over a specific time period, and uses a 

value between -1 and +1 to quantify the degree of similarity of these signals. When 

analysing human movement, a high positive cross-correlation reflects two 

movements that are highly similar, such as if a participant produces horizontal 

shoulder flexion and wrist flexion concurrently during a task. A high negative cross-

correlation reflects two opposing movements, such as if a participant produces 

horizontal shoulder flexion and wrist extension. A cross-correlation near to 0.0 

reflects two movements that show few similarities, and thus a change in one 

movement is not reflected by a change in another. For example, horizontal flexion of 

the shoulder accompanied by wrist movements that alternated between flexion and 

extension would result in a low cross- correlation. 

Cross correlations are often used to identify the coordination between 
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different joints, often termed a movement synergy. A synergy is based on the 

principle that, instead of controlling the movement of each independent joint in a 

system, the central nervous system allows the co-variation of each of the joints in 

order to achieve a successful task outcome (Scholz et al., 2000; Tseng et al., 2003). 

An increase in movement about one joint, which could negatively influence the 

outcome variable, is accompanied by a decrease in movement, or an opposing 

movement, at another. For instance, in pistol shooting an increase in movement at 

the shoulder could have a negative effect on the location at which the pistol is 

pointing at the target. If this is counteracted by a reduced, or opposite, movement at 

the wrist then the location of the pistol should remain constant. A more effective 

synergy is generally considered representative of a more adaptable performance 

(Chiu & Chou, 2012; Hwang & Wu, 2006; Keogh, Morrison, & Barrett, 2004). 

As part of their analysis of skill learning using ski apparatus, Vereijken et al. 

(1992) used cross-correlations to examine movement coordination between the hip, 

knee and ankle angles. Cross-correlations between all three angles were high when 

first learning the task, and decreased with practice, which the authors interpreted 

as the control of each segment becoming increasingly independent. This conclusion 

was  in contrast to more recent research which suggests that lower correlations 

represent compensatory actions of each joint, and a more adaptable performance 

rather than independent control (Chiu & Chou, 2012; Hwang & Wu, 2006; Steven 

Morrison & Newell, 2000). An example of this contrasting viewpoint, promoting an a 

adaptable performance, can be seen in the research of Chiu and Chou (2012) who 

examined the effects of age on coordination between the lower limb joints when 

walking at different speeds. The magnitude of cross-correlations between the hip 

and knee was significantly higher for elderly than younger participants, regardless of 

walking speed. These findings were used to suggest that a reduction in gait function 

was associated with a reduced ability to modify the timings of hip and knee 

movement, making the elderly less able to adapt gait patterns. 

Interactions between each of the upper limb joints when pointing was 

examined by Keogh et al. (2004) who used cross-correlations to quantify the degree 

of coupling between the upper limb segments as participants aimed at a target over 
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a period of 30 s. Higher cross-correlations were used to represent a greater coupling 

between segments. The highest cross-correlations were recorded between the 

finger and the hand (r = 0.71),  and the upper arm and forearm  (r = 0.48).         An 

increase in coupling was also found to be accompanied by an increase in upper limb 

tremor. Thus, a more flexible performance resulted in reduced tremor, and 

potentially enhanced the task outcome. 

Morrison and Newell (2000) and Hwang and Wu (2006) each investigated 

how coordination of the upper limb segments was affected by the amount of 

support provided to the upper limb, and the speed of movement, respectively. 

Morrison and Newell reported correlations between the finger and the hand of 

between r = 0.61 –0.71 when the limb was not supported, similar to those reported 

by Keogh et al. (2004). Furthermore, smaller movements of the index finger were 

produced when the forearm and hand were unsupported than when it was 

supported. Hwang and Wu found that an increase in movement speed resulted in 

lower cross-correlations, and  therefore a weaker coupling between the forearm, 

hand and finger. Findings led both groups of authors to conclude that a synergy must 

exist, in which the wrist plays a crucial role in allowing compensatory movements 

between the hand and the forearm ultimately resulting in a stable task outcome. 

The findings of previous research (Hwang & Wu, 2006; Keogh et al., 2004; 

Morrison & Keogh, 2001; Steven Morrison & Newell, 2000) can indicate the 

movements that may be most important to shooting performance, and should be 

investigated in future shooting research. The degree of accuracy required for these 

pointing tasks were considerably less than that required for precision shooting, and 

tasks did not include the additional mass of the pistol that shooters must also 

control. Thus, research needs to examine movement coordination specifically in 

pistol shooting to determine how a successful performance is produced. 

Currently only Pellegrini et al. (2005) has investigated movement 

coordination in shooting. The movements of thirteen pistol shooters, with markers 

placed on the neck, shoulder, elbow, wrist and pistol were recorded throughout the 

aiming period. Discrete correlations were performed between successive markers 
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(neck – shoulder, shoulder – elbow, elbow – wrist, wrist – pistol) to compare the 

horizontal and vertical movements over the final second before the shot. High 

correlations were produced between the movements of the upper limb that were 

responsible for horizontal   pistol motion, leading the authors to conclude that the 

trunk, arm and pistol all move as one segment. Correlations between the 

movements responsible for vertical pistol motion were more varied, suggesting that 

control of vertical pistol movement is more complex than the method of controlling 

horizontal movement. The use of discrete correlations mean that shooting research 

has yet to examine the temporal or directional aspects of performance that can be 

obtained from the use of cross-correlations. Future research should investigate how 

pistol shooters coordinate body sway and upper limb in the time immediately 

preceding the shot. This additional information will make it easier  for athletes and 

coaches to understand the variables which are most crucial to success in a sport 

which requires such extreme levels of accuracy and precision. 

9.2 Stance Position 

The analysis of movement variability and coordination can provide a detailed 

understanding of how an elite shooting performance is produced. These movements 

are likely to be beyond the degree that a shooter could consciously control if they 

wish to enhance performance, and so other changes in performance that could 

influence the amount of variability and coordination must be examined. One 

potential method  is to adapt the stance position used when shooting, which seems 

important, given that in precision shooting there are few external influences on 

performance. Stance position has currently received little attention in previous 

literature, but more studies have examined its effects on stability in quiet stance 

tasks. This section of the review will outline what is currently known about stance 

position and stability both in quiet stance tasks and in pistol shooting. 

The most common theme in stance position research has been the effect of 

stance width on centre of pressure and centre of mass movement during quiet 

stance tasks (Day, Steiger, Thompson, & Marsden, 1993; Goodworth & Peterka, 
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2010; Henry, Fung, & Horak, 2001; Hwang, Huang, Cherng, & Huang, 2006; Kirby, 

Price, & MacLeod, 1987; Winter et al., 1998). Kirby et al. (1987) investigated the 

effects of changing mediolateral stance width (0 – 45 cm) on centre of pressure 

displacement, and Goodworth and Peterka (2010) compared centre of mass 

displacement for different stance positions (5 – 31 cm). Both studies reported that 

wider stance widths resulted  in greater mediolateral stability, but did not report the 

effects on anterior-posterior movement. 

The effects of stance position were considered in more detail by Winter et al. 

(1990) and Day et al. (1993) who investigated how mediolateral stance width 

affected both mediolateral and anterior-posterior stability. Winter et al. used three 

stance widths (approximately 14, 28 and 42 cm), and quantified stability by the 

range of movement of centre of pressure and centre of mass movements. Day et al. 

compared five stance widths (0 cm, 4 cm, 8 cm, 16 cm and 32 cm), and measured 

the standard deviation of the movements of the centre of pressure, and of various 

body markers (shoulders, hips, knees and ankles). Both studies reported that greater 

mediolateral stability was observed for wider stance widths, supporting the findings 

previously reported (Goodworth & Peterka, 2010; Kirby et al., 1987; Winter et al., 

1998). More conflict exists regarding the effects of mediolateral stance width on 

anterior-posterior stability. Winter et al. reported that anterior-posterior 

movements did not differ significantly with changes in stance width, whilst Day et al. 

found that anterior- posterior stability was significantly greater for wider stance 

widths. 

Less research has investigated how anterior-posterior stance width can affect 

stability. Kirby et al. (1987) incorporated the effects of anterior-posterior  stance 

widths on centre of pressure displacement into their analysis. Five stance positions 

were compared with the right foot either in line with (0 cm), or placed in front or 

behind the left foot (10 cm and 30 cm). In contrast to the effects of mediolateral 

stance position, greater stability was observed for the narrower (0 - 10 cm) stance 

widths. This effect was observed for both mediolateral and anterior-posterior 

stability, highlighting the potential importance of anterior-posterior stance position 

to shooting performance. The effects of mediolateral and anterior-posterior stance 
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widths were considered separately, and so any interactions between the two 

positions were not considered. 

Previous stance position research has demonstrated clear effects of stance 

position  on  stability,  but  the  effects  of  stance  width  on  movement  variability 

and coordination have yet to be considered. The findings of Hwang et al. (2006), who 

investigated the effects of stance stability on movement coordination during a 

pointing action, indicate why these comparisons are important. Hwang et al. used 

cross- correlations to compare the coupling of upper limb segments between 

unilateral (single leg) and bilateral (both legs) stance positions. Higher correlations, 

and thus greater coupling between the movements of the upper limb, were 

observed for the less stable stance position. Consequently, less stable stance 

positions may lead to a less adaptable performance which may result in a less 

consistent task outcome. Thus, the effects of stance position on variability and 

coordination is an important topic within pistol shooting. Comparisons between 

unilateral and bilateral stance positions are very different to those between different 

stance widths. As such, it remains to be seen whether changing mediolateral or 

anterior-posterior foot position can affect movement coordination. 

Whilst previous research has examined the effects of stance width on 

stability during quiet stance tasks, there is currently only one investigation into 

these effects specifically for pistol shooting (Hawkins & Sefton, 2011). Hawkins and 

Sefton examined the effects of changing stance position on the stability of the pistol 

and centre of pressure for 12 nationally ranked pistol shooters who each completed 

ten shots using five different mediolateral stance widths (30 cm, 45 cm, 60 cm, 75 

cm and 90 cm). Centre of pressure stability was greatest in the narrowest stance 

position (30 cm), as demonstrated by significantly decreased centre of pressure 

speed and path length (p<.05). Stability of the pistol was significantly lower for the 

75 cm and 90 cm widths (p<.05). The greater stability recorded for narrower stance 

positions was in contrast to the findings previously reported for the quiet stance 

tasks (Day et al., 1993; Goodworth & Peterka, 2010; Kirby et al., 1987; Winter et al., 

1998). These contrasting findings may be a result of the stance widths selected for 

analysis, which were greater for Hawkins and Sefton than for most of the previous 
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research. The widest stance positions used by Goodworth and Peterka and Day et al. 

were 31 cm and 32 cm respectively, which are similar to the narrowest stance 

position (30 cm) used by Hawkins and Sefton. Such comparisons suggest that 

stability increases until stance width is approximately 30 cm, and then decreases for 

wider stances. 

Given the differences between quiet stance tasks and precision shooting, 

research should now investigate the effects of stance position specifically on 

shooting performance. Comparisons have yet to be made for the effects of anterior-

posterior stance width on performance. Research should examine how a range of 

stance widths similar to those used when pistol shooting affect stability, and 

whether any changes in stability are sufficient to influence shooting success. Finally, 

research needs  to  examine the effects of stance position on movement variability 

and coordination to determine the mechanisms behind a more or less successful 

stance position. 

9.3 Research Aims and Hypotheses 

Previous research has examined movement coordination and variability in quiet 

stance tasks, but has yet to examine how movement is controlled in pistol shooting. 

Understanding the mechanisms behind a successful shooting performance is 

important if athletes wish to further enhance success. With the exception of 

Hawkins & Sefton (2011), there is currently little evidence about the effects of 

stance position on shooting performance, and so research should consider whether 

adapting stance  width is a potential method of influencing movement coordination 

and variability, and ultimately improving performance. The overall aims of the final 

two studies were to: 

(i) identify the patterns of movement coordination and variability that

are associated with a successful precision pistol shooting

performance; and

(ii) examine how changing stance position can affect shot score and

patterns of movement coordination and variability.
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The first aim is addressed in Study 4, and was achieved by analysing the 

performances of elite precision pistol shooters as they completed shots as they 

would in training and competition. The second aim is examined in Study 5, and was 

achieved by modifying participants’ stance positions and comparing the 

performances between each of these new stance positions. More specific objectives 

will be presented in the introduction to each study.  The hypotheses that accompany 

the overall aims were: 

(i) movement patterns of the upper limb will vary between shots, as a

numberof different movement strategies could result in a similar location of

the aim-point on the target;

(ii) movement variability would be greater for the movements of the torso

and the upper limb than for the pistol;

(iii) wider mediolateral and anterior-posterior stance widths would improve

shooting performance in comparison to narrower stance widths;

(iv) movement patterns would be more consistent for the least successful

stance positions; and

(v) the most successful stance positions would be characterised by greater

variability of upper limb movements and smaller variability for the

pistol.
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Chapter Ten 

Pilot Testing – The Use of Motion Analysis Systems in Pistol Shooting 

10.1 Suitability of the Motion Analysis System 

The final two studies require an in-depth analysis of precision pistol shooting 

performance. Precision shooting requires extremely high levels of accuracy 

(Pellegrini & Schena, 1990) and any attempts to record movement during the event, 

and identify its subsequent effect on performance, must therefore be achieved using 

high resolution motion analysis techniques. A common method of motion analysis 

used in both sport and exercise research is a three dimensional motion analysis 

system which tracks the movement of reflective markers positioned at various 

anatomical sites on the body. Such analysis has been shown to be effective for a 

number of activities, such as walking (Chiu & Chou, 2012), the golf swing (Tucker et 

al., 2011), and aiming tasks (Tseng, Scholz, & Schöner, 2002). With the exception of 

Pellegrini et al. (2005),  research has yet to provide a more in-depth analysis of pistol 

shooting performance using similar methods. 

10.1.1 Testing Criteria 

The tasks that have commonly been analysed in previous research are 

associated with movements of greater magnitude than those necessary for precision 

shooting. Thus, it was necessary to ensure that the procedure used in the final  two 

studies would provide accurate and highly repeatable measurements of the 

exceptionally small movements produced by pistol shooters. The accuracy of a 

system refers to how closely the measurements it produces reflect that which is 

produced in reality (Windolf, Götzen, & Morlock, 2008), and the repeatability of 

measurements reflects how much the systems’ measurements vary between trials 

(Feng & Max, 2014). To ensure that the system was appropriate for testing the 

following three criteria had to be met before testing could begin: 

1. a system that could consistently record every marker within the capture
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area; 

2. a system with sufficient resolution to distinguish between a stationary marker

and a marker placed on a participant completing a shooting task. There should

also be minimal variation between the movements recorded for a number of

stationary marker trials to ensure that measurements are highly repeatable;

and

3. a system which could be synchronised with an optoelectronic shooting system

without the two systems producing interference.

10.1.2 Pilot Testing 1 – Vicon 360 

Initially, a Vicon 360 infra-red motion analysis system (Vicon, UK), which 

consisted of eight infra-red cameras with a sampling rate of 120 Hz was used for 

data collection. The opto-electronic shooting system used in studies 1 - 3 (SCATT, 

Russia) was again used to record the position of the aim-point of the pistol on the 

target. A number of pilot testing sessions were completed using this initial set-up in 

order to develop a procedure which would meet each of the three testing criteria. 

Two conditions, one participant and one control, were used to examine the 

accuracy of the motion analysis system. In each condition, the position of three 

markers placed on the pistol (on the butt of the grip, the side of the cylinder and the 

end of the cylinder) was recorded. In the participant condition an experienced pistol 

shooter completed 15 shots to the best of their ability, and in the control condition 

the pistol was fixed to a tripod. This procedure was used to ensure that the system 

could differentiate between the movements of a pistol shooter and the movements 

recorded for a stationary marker, which would represent noise. 

Following refinement over a number of preliminary pilot testing sessions, the 

procedure was able to meet the first two testing criteria. All three markers placed 

on the pistol were recorded consistently, matching criteria one. The range of 

movement produced for markers in the stationary trial was smaller than the range 

produced in  the participant trial, thus also meeting criteria two. Issues were 

encountered when attempting to meet the final criteria, as the motion analysis and 
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optoelectronic shooting systems would not record simultaneously without the infra-

red emissions from  each  system  producing  interference.   Consequently,  the 

shooting  system was replaced with an alternative system that did not experience 

interference when used with Vicon (Noptel Sport II; Noptel, Finland). By changing 

the optoelectronic shooting system, all three criteria were satisfied. Once all three 

criteria were met, the performances of five elite pistol shooters were recorded and 

analysed. 

10.1.3 Pilot Testing 2 – Vicon MX 

Following testing of five elite pistol shooters, an updated version of the 

motion analysis system became available to use as part of the testing procedure. 

The  updated, Vicon MX motion analysis system (Vicon, UK) comprised fourteen T-

Series, 16 megapixel, infra-red cameras (Vicon, UK) and two Bonita 720c video 

cameras (Figure 10.1). Each camera was linked to a Dell Precision T1650 computer, 

operating Vicon Nexus software (Vicon, UK), and sampling at 120 Hz for data 

acquisition. 

Figure 10.1. Laboratory set-up for the Vicon MX system including the motion analysis, 
force platform and opto-electronic shooting systems. 
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With the modified hardware, it was important to ensure that the testing 

procedure still satisfied the three criteria required for testing, and so pilot testing 

procedures similar to those detailed for the Vicon 360 system were completed. The 

movements of the same participant who took part in previous pilot testing sessions 

were compared to those recorded for markers placed on a skeleton and the pistol. A 

greater number of markers were used, to more closely recreate the number that 

would be recorded during testing, positioned on the spine (C7), upper limb 

(shoulder, elbow, wrist and hand) and pistol. 

For each condition, two angles (shoulder and wrist) that would be used as 

part of the analysis for studies 4 and 5 were calculated. Each angle, measured in 

milliradians (mRad) (1 milliradian = 1/1000th radian), was calculated from the 

coordinates of three markers (Shoulder: C7, shoulder and elbow markers; Wrist: 

elbow, wrist and hand markers). All markers were consistently recorded, thus 

matching the first criteria. To ensure that the system met the second criteria, range 

of movement produced over 1 s was compared between the participant and 

stationary marker trials, to ensure that the system was accurate. Standard deviation 

over ten trials was also analysed to ensure measurements were highly repeatable. 

In reality, no movement occurred in the stationary, skeleton trials and so both range 

and standard deviation should be close to zero.  The maximum range of movement 

recorded for  the skeleton trials (0.015 mRad) (Table 10.1) indicated a high degree 

of accuracy. The accuracy of the system was further reflected by the comparisons 

between skeleton and participant trials, where range of motion and standard 

deviation were consistently greater for the participant trials (Table 10.1). This was 

most evident for vertical wrist movement which was 3.04 - 3.21 mRad in the 

participant trials, compared to just 0.002 – 0.010 mRad for the skeleton. Standard 

deviation for the skeleton trials was 0.005  and 0.003 mRad for vertical shoulder and 

wrist movement respectively, indicating a high degree of repeatability of 

measurements. Thus, the updated motion analysis system satisfied the second 

criteria by consistently distinguishing between markers used in participant and 

stationary trials. Interference between the motion analysis system and the SCATT 

opto-electronic  system remained,  and  so the Vicon  MX motion  analysis  system 
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was used in conjunction with the Noptel shooting system to ensure that the third 

criteria was also met. 

Table 10.1. Range of the movement for shoulder and wrist angles recorded for 

participant and skeleton (stationary marker) trials. Range of movement over 1 s is 

displayed for two trials in each condition. Red highlighted text denotes  the 

greatest movement over the four trials, and grey represents the smallest 

movement. For the system to meet the second criteria, only skeleton trials should 

be highlighted grey. 

10.1.4 Pilot Testing 3 – Vicon 360 and MX Comparisons 

With the change in motion analysis system, it was important to investigate 

whether the original system used to record the performances of the first five 

participants produced a comparable level of accuracy and repeatability. Thus, an 

additional pilot testing session was designed in which both Vicon systems recorded 

simultaneously as a single pistol shooter completed ten  shots.  Reflective  markers 

were placed in the locations detailed for pilot testing in section 10.1.3, and once the 

participant was ready to shoot, an additional marker was placed within the capture 

area. The appearance of this single marker on the recordings from both Vicon 

systems meant that the timings of each system could be synchronised, allowing for 

comparisons between the movements recorded during the final second before the 

shot. 

To determine whether the two systems had a comparable degree of accuracy 

and repeatability, the range of movement of the shoulder and wrist was compared 

between the same two shooting trials and standard deviation was compared across 

Vertical range of movement 
(mRad) 

Horizontal range of 
movement (mRad) 

Shoulder Wrist Shoulder Wrist 

Participant Trial 1 2.35 3.04 3.58 2.06 

Participant Trial 2 0.51 3.21 1.73 2.75 

Skeleton Trial 1 0.015 0.010 0.012 0.004 

Skeleton Trial 2 0.002 0.002 0.001 0.009 

NB: mRad = 1/1000th radian 
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ten trials. The range of movement measured by the original 360 system was 

consistently greater than that recorded by the new MX system (Table 10.2). This was 

most evident for vertical range of movement of the wrist, as measurements 

produced by the original system were over eight times that measured by the new 

system in trial two. The standard deviation over the ten shots was lower for the new 

MX system, indicating greater repeatability of measurements. For instance, the 

standard deviation of vertical shoulder and wrist movements were 1.05 and 0.94 

mRad for the MX system in comparison to 1.73 and 2.92 mRad for the 360 system. 

Thus, whilst both systems could meet criteria two, and differentiate between a 

stationary trial and a participant shooting, the lower resolution of the original 360 

system meant that it could not measure the movements produced when shooting to 

the same level of accuracy or repeatability as the new system. 

To determine the extent to which the reduced accuracy recorded by the 

original 360 system affected the interpretation of results, cross-correlations were 

performed between the movements recorded for consecutive markers (shoulder – 

wrist and wrist – pistol) over a 1 s period (Table 10.3). In trial one, cross-correlations 

between the movements recorded for the horizontal wrist and pistol markers were 

negative from both systems. In trial two, cross-correlations between the 

movements recorded by the 360 system indicated that there was little similarity 

between the vertical movements of the wrist and the pistol (r = -.364). In contrast, 

the cross- correlations of movements recorded by the new MX system suggest that 

movements of the wrist and pistol are very similar (r = .916). These differences 

would lead to drastically different conclusions about the role of wrist movement 

when controlling motion of the pistol. 

Whilst the original 360 system would provide sufficiently accurate and 

repeatable data for activities that involve a greater degree of movement, or a 

smaller capture volume, the exceptionally fine movements produced for pistol 

shooting were beyond that which it could accurately measure. This means there is 

the potential for  the wrong  interpretation  of  results  when  using  the  360 

analysis  system.  Given these findings, a decision was made that the data recorded 

for the five participants using the original 360 system could not be analysed in 
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studies 4 and 5. 

Table 10.2. Range of movement recorded for shoulder and wrist angles during the 

same trials by Vicon 360 and Vicon MX systems. Range of movement over 1 s is 

displayed for the same two trials for each system. Red highlighted text denotes the 

greatest movement over the four trials, and grey represents the smallest 

movement. 

NB: mRad = 1/1000th radian 

Table 10.3. Cross-correlations between each angle recorded during the same trials 

by Vicon 360 and Vicon MX systems. 

10.2 Methodological Issues: Noptel Shooting System 

To determine the accuracy of the optoelectronic shooting system, cross- 

correlations were used to compare the movement of the markers placed on the 

pistol, as  measured  by the  Vicon  MX  system,  with the movement  of the  aim 

point  on the target, as measured by Noptel. Cross-correlations between the 

movement of  the pistol marker and the movement of the aim-point over 20 shots 

Vertical (mRad) Horizontal (mRad) 

Shoulder Wrist Shoulder Wrist 

Trial 1: Vicon 360 3.25 8.92 3.88 15.99 

Trial 1: Vicon MX 1.08 2.13 1.08 2.86 

Trial 2: Vicon 360 6.60 11.29 7.59 10.34 

Trial 2: Vicon MX 1.27 1.27 1.73 2.76

Vertical Horizontal 

Shoulder - 
Wrist 

Wrist – 
Pistol 

Shoulder - 
Wrist 

Wrist – 
Pistol 

Trial 1: Vicon 360 -.326 -.493 .415 -.545 

Trial 1: Vicon MX -.912 -.364 -.191 -.662 

Trial 2: Vicon 360 -.140 -.296 -.365 -.547 

Trial 2: Vicon MX .986 .916 -.288 -.158 
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ranged between -.835 to .746 and -.539 to .857 for horizontal and vertical 

movements respectively. Thus, issues with the Noptel system meant that the 

horizontal and vertical components of movement were not accurately recorded. 

Previous research which has examined movements of a hand-held laser pointer on a 

target, have reported cross-correlations of between .68 to .77 between the 

movement of the hand and the laser movement on the target (Keogh et al., 2004). 

Consequently, the Noptel optoelectronic shooting system was not considered 

sufficiently accurate to represent the movements of the pistol on the target when 

shooting. As a result, studies 4 and 5 examined the movement of the pistol, but were 

not able to examine the subsequent movement of the aim-point on the target. 
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Chapter Eleven 

Research Study 4 - Movement Coordination and Variability of Elite Precision Pistol 

Shooting 

11.1 Introduction 

To date, the majority of pistol shooting research has considered the 

outcomes of a shooting performance, such as movements of the pistol and centre of 

pressure (Ball et al., 2003; Mason et al., 1990). Limited research has examined the 

sources of each movement, such as motion of the torso or the upper limb. By 

incorporating these additional aspects of analysis it will be possible to determine the 

mechanisms behind a successful precision shooting performance, and consequently 

enhance performance in an event where precision and accuracy are vital to success. 

Only two studies have examined body movements when shooting in detail, 

beginning with Arutyunyan (1969) who found a high degree of coordination 

between movements of the shoulder and wrist, and the wrist and pistol. Pellegrini et 

al. (2005) built on these findings, reporting high correlations between the upper limb 

movements that affected horizontal position of the pistol, and lower correlations 

between the movements that affected vertical pistol movement. This led Pellegrini 

et al. to conclude that the upper limb moves as one segment when controlling 

horizontal pistol movements, but that the method of controlling vertical pistol 

movements is more complex. 

Pellegrini et al. (2005) generated a more detailed understanding of pistol 

shooting performance than was previously achieved from the analysis of centre of 

pressure and pistol movement. Their analysis was based on  discrete  correlations 

which demonstrated a strong linear association between the movements of each 

segment, but did not assess the temporal aspects of performance, such as the 

change in movement during the final second before the shot. This is a common 

limitation of discrete analysis methods (Bartlett et al., 2007; Preatoni et al., 2013), 

and has led to an increase in the popularity of continuous methods of analysis to 
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evaluate  performance.  Such methods of analysis may have an important role in the 

study of exceptionally small movements such as those associated with pistol 

shooting. Research should now build on Pellegrini et al.’s findings by using 

continuous methods to analyse movement of the torso and upper limb, and identify 

the movements that are most closely associated with the movements of the pistol. 

As yet, few studies have attempted to describe the variables that influence 

movement of the pistol. Researchers have considered the movements associated 

with other precision-based tasks, such as pointing to a target (Kim et al., 2012; 

Latash, Aruin, & Zatsiorsky, 1999; Tseng et al., 2002). Two popular concepts within 

the literature are the existence of synergies within a movement system, and the 

principle of motor abundancy. Research into movement synergies has 

demonstrated  that, rather than producing one consistent output, the segments 

that make up a movement system work concurrently to ensure that a task is 

completed accurately (Gorniak, Duarte, & Latash, 2008; Latash et al., 1999; Preatoni 

et al., 2013). This means that there are many movement strategies that can be used 

to achieve the same task outcome (Tseng et al., 2002). Thus, whilst pistol shooters 

are attempting to achieve a highly consistent performance, it is likely that more 

than one movement pattern can  be used to ensure that the aim point of the pistol 

remains in the same location. Research should now investigate the movement 

patterns that are produced in pistol shooting, and the extent to which any patterns 

vary both within and between shooters. Any group tendency towards a particular 

movement pattern would indicate  a successful strategy to control movements of 

the pistol. 

The principle of motor abundancy is related to the concept of movement 

synergies, and suggests that variability of the components within a movement 

system are often high to ensure that the variability of the task outcome remains low 

(Gorniak et al., 2008; Scholz & Schöner, 1999; van Beers, Haggard, & Wolpert, 2004). 

This pattern has been observed for a wide range of skills, from gross movements 

such as sprinting (Bradshaw et al., 2007), to highly repetitive tasks such as the golf 

swing (Langdown et al., 2012) and pointing tasks (Tseng et al., 2002). In pistol 

shooting this pattern should be represented by high variability of upper limb 
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movements, and low  variability  in  pistol  position. Research  should  examine 

whether  this  pattern  is displayed by elite pistol shooters, or whether there are 

other strategies which result in a successful shooting performance. 

There is currently a limited understanding of the movements and processes 

behind a successful precision shooting performance. Thus, the current research will 

produce a detailed kinematic analysis of the movements produced in the final 

second before a shot. The objectives of this research, designed to meet the overall 

aims detailed in Chapter 9 (Section 9.4) are to: 

(i) examine the movement patterns of the torso and upper limb to

identify the movements which are most closely associated with

motion of the pistol;

(ii) quantify the movement variability of the torso, upper limb and pistol

to identify how performance variability influences the variability in

pistol position; and

(iii) identify any movement patterns or variability that are common to all

participants.

Analysis of movement coordination and variability will help to develop a more 

detailed understanding of the way in which pistol movement is created and 

controlled. This will help to identify whether there are any performance 

characteristics common to all participants, thus determining key traits of an elite 

shooting performance. The hypotheses to accompany these three objectives are: 

(i) movement patterns of the upper limb will vary between shots, as a

number of different movement strategies could result in a similar

location of the aim-point on the target;

(ii) movement variability will be greater for the movements of the torso

and the upper limb than for the pistol;
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11.2 Methods 

11.2.1 Participants 

Ten elite female pistol shooters (mean age 28.4 ± 10.2 years, mass 67.3 ±7.7 

kg) with an average pistol shooting experience of 9.5 (± 3.3) years completed the 

shooting task. Throughout all testing sessions participants used the equipment with 

which they would normally compete (shooting shoes, training/competition pistol; 

4.5 mm calibre compressed air CO2 single shot air pistol, weighing less than 1500 g). 

Written informed consent was obtained from all participants prior to testing, which 

was approved by the Manchester Metropolitan University research ethics 

committee. 

11.2.2 Tasks 

Testing took place in a specially designed shooting range within the 

University’s Biomechanics Laboratory which met all ISSF shooting regulations. 

Participants stood behind a firing line 10 m from the target (Figure 11.1), with a 

table placed in front of the line on which participants rested the pistol, pellets, and 

any other equipment they were using. Each participant had an unlimited time 

period in which to  complete twenty live fire shots, aiming at a standard air pistol 

target (17 cm × 17 cm), and attempting to achieve the highest possible score.

Bonita Video 

Cameras 

Force 

Platforms 

Target with 

Noptel 

Vicon Infra-red 

Cameras 

Figure 11.1.  Laboratory set-up including motion analysis (Vicon), force platform 

(AMTI) and opto-electronic shooting (Noptel) systems. 
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11.2.3 Data Collection 

11.2.3.1 Body Movement and Centre of Pressure Measurements 

A Vicon MX motion analysis system (Vicon, UK) recorded the three-

dimensional coordinates of 14 reflective spherical markers (14 mm diameter) 

positioned at various landmarks on the body and pistol. Each body marker was 

positioned according to common locations recommended for use with the Vicon 

system (Davis III, Ounpuu, Tyburski, & Gage, 1991; Kadaba et al., 1989) (Figure 11.2) 

(Table 11.1). Two additional markers were included to capture the movement of the 

pistol (Figure 11.3). These were: 

Pistol 1 (right side of the cylinder, in front of the trigger); 

Pistol 2 (end of the cylinder of the pistol). 

Each marker was positioned to aid analysis of pistol movement without 

obscuring the participants’ vision or shooting technique. To record each of the 

nineteen markers, 14 T-Series infra-red cameras (Vicon, UK) and two Bonita 720c 

video cameras were positioned around the perimeter of the laboratory.  Cameras 

were linked to a Dell Precision T1650 computer, operating Vicon Nexus software 

(Vicon, UK), sampling at 120 Hz for data acquisition. 

Two AMTI OR6-7-2000 force platforms (Advanced Mechanical Technology, 

Inc. Massachusetts), each measuring 46.7 × 51.0 cm were used to record ground 

reaction force throughout the aiming period of each shot. A Data Translation 3002 

12-bit A-D converter linked the platforms to the same computer which recorded the

body marker position data. Vicon Nexus software recorded kinetic data and body 

marker co- ordinate data simultaneously, both sampled at 120 Hz. Nexus software 

also calculated centre of pressure location from the ground reaction force data for 

each force platform. To enable synchronisation of the data with the shot, a 

microphone was positioned close to the pistol. The output from the microphone was 

represented as a voltage pulse on an additional channel. Participants positioned 

themselves with one foot fully on each force plate whilst shooting; this required no 

change to their normal shooting stance. 
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Figure 11.2. Placement of the full body marker set for a right handed shooter, 

adapted from the 37 locations specified by the Vicon Plug-in Gait model (Davis III 

et al., 1991; Kadaba et al., 1989). 

Figure 11.3. Placement of the additional markers on the pistol, and a participant 

shooting with the body and pistol marker set. 
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Table 11.1. Definition of marker placement abbreviations presented in Figure 11.2. 

Abbreviation Full Name Location 

RFHD; 

LFHD 

Right forehead; 

Left forehead 

Either side of the forehead, above the 

temples. 

RBHD; 

LBHD 

Right backhead; 

Left backhead 

Either side of the back of the head, in 

line with the forehead markers. 

C7 
C7 of the vertebral 

column 

Spinous process of the seventh cervical 

vertebrae. 

RSHO; 

LSHO 

Right shoulder; 

Left shoulder 

Right and left shoulders, placed on the 

acromio-clavicular joint. 

RELB* Right elbow Lateral epicondyle of the humerus. 

RWRA*; 

RWRB*

Right wrist A; 

Right wrist B 

Lateral aspect of the wrist joint when in 

the anatomical position. 

Medial aspect of the wrist joint, placed 

on the lateral epicondyle of the ulna. 

RFIN*
 Right finger 

Dorsum of the hand, below the second 

metacarpal. 

LHEE*
 Left heel 

On the heel of the left shoe, over the 

calcaneus. 

N.B. Marker positions as used for right handed  participants.  All  markers 
highlighted with’*’ were the opposite for left handed participants (e.g. right elbow 
marker replaced with left elbow marker). 

Following data acquisition, three-dimensional marker co-ordinate data, 

vertical ground reaction force data and centre of pressure co-ordinate data were 

exported from Vicon Nexus software to Microsoft Excel (Microsoft Excel 2010, 

Microsoft ,USA). The centre of pressure for the whole body was calculated by 

combining the ground reaction force and centre of pressure data from each force 

platform. This procedure was identical to that previously reported for studies 1-3 

(Chapter 4, section 4.3.2). Centre of pressure and marker co-ordinate data were 

both reduced to only include information for the final second preceding the shot. 
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11.2.3.2 Pistol Movements and Shot Location 

Pistol movements were recorded using a Noptel-ST 2000 Sport II shooting 

system (Noptel, Finland), operated using NOS4 software (Noptel, Finland) recording 

at 67 Hz, a frequency pre-determined by the software. The Noptel system 

comprised an infra-red transmitter and receiver unit attached to the pistol which 

recorded the position of the unit in relation to reflectors fixed to the target (Figure 

11.4). By recording the position of the transmitter in relation to the target it was 

possible to determine the location of the aim-point of the pistol on the target. Shot 

scores were recorded based on the position of the pellet on the target, in 

accordance with ISSF regulations. 

11.2.4 Data Analysis 

Shot score, used to measure shooting accuracy, was recorded directly from 

the target, to a maximum of 10.9. Shot dispersion, measured as the horizontal and 

vertical spread of the shot group, was recorded from the target and used to assess 

shooting precision. A greater shot dispersion reflected a wider distribution of shots 

on the target, and thus low repeatability in the location of the shots. Trace length, 

used to represent pistol movement, was recorded over the final second before the 

shot, and calculated as the distance (mm) moved by the aim point of the pistol on 

the target along the X (horizontal) and Y (vertical) axes. 

Reflectors 

positioned for 

use with Noptel 

system. 

Standard 10 m air pistol 

precision target. 

   Target frame to aid 

reflector positioning. 

Figure 11.4. Set up of Noptel-ST 2000 Sport II required to record pistol movement. 
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Two variables, centre of pressure range (mm) and path length (mm), were 

selected to represent centre of pressure movement over the final second before the 

shot, in accordance with previous shooting research (Ball et al., 2003; Mason et al., 

1990).  Both variables were calculated using the same method as previously 

reported  in studies 1-3 (Chapter 4, section 4.4). To aid comparisons between centre 

of pressure movement and pistol movement, each direction of centre of pressure 

movement was analysed in relation to the equivalent direction of pistol movement 

across the target (Figure 11.5). Mediolateral movement reflected motion along a 

plane perpendicular to the target. This movement takes place in the same plane as 

vertical pistol movement, and thus has the potential to influence vertical motion of 

the pistol. Anterior-posterior movement represented motion across a plane parallel 

to the target. This movement takes place in the same plane as horizontal pistol 

movement, with the potential to influence the horizontal motion of the pistol across 

the target. 

A number of angles, chosen to reflect the movements important to pistol 

shooting, were selected for the analysis of body movement. Each angle was 

calculated based on the arrangement of a combination of either two or three 

reflective body markers (Table 11.2), and was either a relative joint angle (Shoulder, 

Wrist, Pistol), or an absolute angle representing body sway (Mediolateral and 

Anterior-Posterior Torso Sway). 

 
 
 

Anterior-posterior 
centre of pressure 

movement 

Mediolateral 
centre of pressure 

movement 

Shooting 
Direction 

Figure 11.5. Centre of pressure movement in relation to the target. 
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Movements were grouped into two categories based on the plane in which 

they  took  place.    One  category  included  the  movements  that  took  place  along 

a vertical plane running between the target and the pistol, and thus had the 

potential to influence vertical motion of the pistol (Figure 11.6). The second 

category included the movements that took place along a horizontal plane, with the 

potential to influence horizontal motion of the pistol (Figure 11.6). The movements 

that were included in each category, and the terms which will be used to describe 

each movement, are presented in Table 11.2. All angles were converted from 

degrees to milliradians (mRad),  a  popular  convention  to  measure  angles  within 

shooting.  One  mRad is equivalent  to  1/1000th radian.  The  equations  used  to 

calculate each angle are presented in Appendix 3. 
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Table 11.2. The combination of markers required to calculate each angle, and descriptions of the movements produced 

when each angle either increases or decreases. 

Plane of 

Movement 

Vertical 

(perpendicular 

to target) 

Movement Description 

Horizontal 

(parallel to 

target) 

* Angles used to represent body   sway.
+ Angle in relation to line drawn in a vertical plane, perpendicular to the target, from the left heel marker.
◆ Angle in relation to line drawn in a horizontal plane, parallel to the target, from the left heel marker.

1
40 

Angle 

Mediolateral Torso+ 

Marker 1 

C7 

Marker 2 

Left Heel 

Marker 3 

Horizontal+ 

Increase in Angle 

Sway away from target 

Decrease in Angle 

Sway towards target 

Shoulder C7 Shoulder Elbow Adduction Abduction 

Wrist Elbow Mid-Wrist Hand Ulnar deviation Radial deviation 

Pistol Floor Pistol 1 Pistol 2 Downwards tilt Upwards tilt 

Anterior-posterior Torso* C7 Left Heel Horizontal+ Posterior sway Anterior sway 

Shoulder C7 Shoulder Elbow Horizontal extension Horizontal flexion 

Wrist Elbow Mid-Wrist Hand Extension Flexion 

Pistol Floor Pistol 1 Pistol 2 Pans right Pans left 
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Figure 11.6. Angles and torso sway (a) in a vertical plane, perpendicular to the 
target, and (b, c) in a horizontal plane, parallel to the target. 

X    Location of body markers 

• Angle in relation to line
drawn horizontal to heel
marker

X 

X 

• 

(c) Anterior-
posterior torso 

Heel Horizontal 

C7 

Horizontal 

Plane of 
the target 

Pistol 2 X X X X X X 
Shoulder 

Elbow 

Wrist Pistol 1 C7 

Hand 

Mediolateral torso angle, and shoulder, wrist and 
pistol angles in a vertical plane, perpendicular to the 
target. 

• X

X
 

X
 

X
 

X
 

X
 

X
 

C7 

Shoulder 

Elbow 

Wrist 

Pistol 2 

Pistol 3 

(b) Shoulder, wrist and pistol angles in a
horizontal plane, parallel to the target 
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11.2.5 Statistical Analysis 

Data did not meet parametric assumptions, and transformations were 

performed. Comparisons were made between the natural log transformation and 

Log10 transformation to determine which was the most effective to allow the data 

to meet parametric assumptions, but still closely reflect performance. The Log10 

transformation is a more powerful test to reduce positively skewed data, but the 

exceptionally small changes in each variable meant that the results did not closely 

reflect performance (Figure 11.7a). As such, the natural log was selected as the most 

effective way to transform the data (Figure 11.7b). Even following transformation, 

some data sets did not meet parametric assumptions, and so with the exception of 

cross-correlations, non-parametric tests were selected. In the absence of a non- 

parametric equivalent for cross-correlations, each test was performed using the 

transformed data sets, in an attempt to use data that met the parametric 

assumptions as closely as possible. 

Figure 11.7a. Comparisons between original data recorded for the wrist, and the 

effects of the Log10 transformation. 
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Cross-correlation analysis was used to compare the changes in different 

joint angles over the final second before the shot. Cross-correlations assess the 

degree of similarity between two curves (Stergiou, 2004), and can be used to assess 

the coordination between different joints or body segments (Davids, Bennett, & 

Newell, 2006). The use of this technique made it possible to understand how 

movement is transferred through the torso and upper limb to the pistol, and 

ultimately determine the movements that are likely to have the greatest influence 

on shooting outcome. Cross-correlations were performed between each of the 

movements that could affect horizontal pistol motion, and between each of the 

movements that could affect  vertical pistol motion. This method can provide 

coaches and athletes with more practical information concerning the way in which 

a successful shooting performance  is generated. 

An additional aspect of cross-correlation analysis was the comparison 

between movement patterns of the centre of pressure and torso sway. Anterior-

posterior movement path of the centre of pressure was correlated with anterior-

posterior torso sway, and mediolateral centre of pressure path was correlated with 

mediolateral torso sway. These comparisons made it possible to identify how 

accurately the changes in centre of pressure movement actually reflect movements 

of the body when shooting. 

Figure 11.7b. Comparisons between original data recorded for the wrist, and the 

effects of the Natural Log transformation. 
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Maximum, minimum and median range of movement (±IQR) over the twenty 

shots provided a discrete analysis of the degree to which each movement changed 

over the final second. Range of movement was quantified for every angle for each of 

the twenty shots, and the median value was calculated.  Maximum and minimum 

range of movement were used to represent the shot with the greatest and smallest 

range of movement respectively. This provided a clear comparison of the degree of 

movement produced for the torso, upper limb and pistol, and how this differed for 

horizontal and vertical movements. 

Performance variability was assessed by breaking the final second into 0.008 

s time periods.  The median angle and the IQR across the twenty shots was 

calculated  for each time period, with the IQR used to quantify variability across the 

twenty shots. Two aspects of performance variability were considered; positional 

variability and movement variability, examples of which are provided in more detail 

below (Figures 11.8 and 11.9). 

Positional variability represented how closely each angle was reproduced 

over the twenty shots, indicating how well participants could recreate their shooting 

position. As an example, the shoulder angles produced by one participant over the 

twenty shots are demonstrated in Figure 11.8(a). The median angle for each 0.008 s 

time period over the final second before the shot was calculated, and plotted in 

Figure 11.8(b). To examine how much shoulder movement varied from the median 

over the twenty shots, IQR was also plotted as error bars for each 0.008 s period 

(Figure 11.8b). This was used to represent positional variability, and how it varied 

throughout the final second. Whilst positional variability provided a clear indication 

of the changes in a participants’ body orientation between shots, the degree of 

variability far exceeded the range of movement of each angle over the final second. 

As such, it was not possible to identify the changes in movement pattern, such as an 

increase or decrease in angle, prior to the shot (Figure 11.8). 

To incorporate movement variability into the analysis it was essential to 

reduce the positional variability between trials. To achieve this, the median angle 

was calculated for the first 0.008 s time period, and the data from each    shot was 
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adjusted to begin at the median start angle. The median adjusted angle and IQR 

were plotted, which made it possible to identify how closely participants recreated a 

movement pattern between shots (Figure 11.9). 

To aid comparisons between the degree of variability produced for the torso, 

upper limb and pistol, the median variability over the final second was also calculated. 

This represented the median of the IQR values across each of the 0.008 s values within 

the final second. For instance, median variability of the shoulder in Figure 11.9 is 0.99 

mRad 

a 

b 

Figure 11.8.  a) Vertical shoulder angle recorded over 20 shots for one participant, 

and b) median angle (shown in red) (± IQR) included as a measure of positional 

variability.  mRad = 1/1000th radian. 

0
.0

 
0
.0
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3304 

3303 

3302 

3301 

3300 

3299 

3298 

Figure 11.9. a) Adjusted vertical shoulder angle over 20 shots 

for one participant, and (b) median adjusted angle (shown in 

blue) (± IQR) included as a measure of movement variability.  

mRad = 1/1000th radian. 
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11.3 Results 

11.3.1 Shot score and Shot Dispersion 

The success of each participant varied considerably, with a range of 12 

points between the highest and lowest scores achieved (Table 11.3). In addition to 

the variation in scores, both horizontal and vertical dispersion of the shot groups 

increased between the highest and lowest scoring participants. Participant 4, who 

achieved the highest score, had the smallest horizontal and vertical shot dispersion 

of all participants. This was particularly apparent for horizontal shot dispersion, 

which was 8 mm smaller than for any other participant. Horizontal shot dispersion 

was between 8 mm – 12 mm greater than vertical dispersion for three participants 

(Table 11.3). Only participant 5, who had the lowest score, produced a greater 

degree of vertical than horizontal shot dispersion. 

Table 11.3 Total score and horizontal and vertical shot dispersion achieved by 

each participant over 20 shots. 

Score 
(maximum 200) 

Shot Dispersion (mm) 
Participant Number 

Horizontal Vertical 

4 189 26 26 

1 187 34 26 

3 184 35 26 

2 179 45 33 

5 177 34 39 

11.3.2 Movement Coordination 

Cross-correlations were used to compare torso sway and movements of the 

shoulder, wrist and pistol over the final second before the shot. Correlations were 

performed for each of the twenty shots to identify how the changes in torso sway 

and upper limb movement over the final second compared to the changes in 

movement of the pistol.  Cross-correlations compare how two signals change over 

time, from which  a value between -1 and +1 is produced to quantify the degree 
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of similarity between the signals.  A positive correlation reflects two movements 

that are highly similar (e.g.  if the shoulder and elbow both flex synchronously the 

final second before the shot), and a negative correlation reflects two movements 

that are highly similar, but take place in opposing directions (e.g. if the shoulder 

flexion mirrors the elbow extension) (Figure 11.10). A correlation close to 0.0 

reflects two movements that show few similarities as they change over time (e.g. 

the shoulder flexes, whilst the wrist flexes then extends). This analysis was used to 

determine the movement  patterns responsible for control of horizontal and vertical 

pistol movements. 

11.3.2.1 Centre of Pressure Movement and Torso Sway 

To examine the effectiveness of using centre of pressure movement to 

represent body sway in pistol shooting, Pearson’s correlations were performed 

between centre of pressure variables and torso sway. Neither  centre  of  pressure 

range nor path length were significantly correlated with torso sway (p>.05). Cross- 

correlations between the path of the centre of pressure and torso sway during the  

final second of every shot were low, with an average across participants of .16 (±.51) 

and .04 (±.38) for anterior-posterior sway and mediolateral sway movements 

respectively. 

11.3.2.2 Torso Sway and Pistol Movement 

Comparisons were made between anterior-posterior torso sway and 

horizontal movements of the pistol. As shown in Figure 11.10, high positive 

correlations would indicate that torso sway contributed to pistol movement, whilst 

high negative correlations would indicate that torso sway counteracted, and 

produced opposing movements, to the pistol. 
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Table 11.4. Mean cross-correlations (± SD) between movements of the torso and the 

pistol over the 20 shots. 

All participants produced negative cross-correlations between anterior- 

posterior torso sway and horizontal movements of the pistol (Table 2).  These  

opposing movements, as demonstrated in Figure 11.10(b), suggest that the upper 

limb counteracted torso sway in an attempt to maintain a consistent position of the 

pistol on the target. Each participant produced anterior sway accompanied by the 

pistol panning right across the target for some shots, and posterior sway 

accompanied by the pistol panning left for others. For instance, participant 1 

produced anterior sway in 5 shots and posterior sway in the other 15, whilst 

participant 4 produced anterior sway for 12 shots and posterior sway for 8. 

Participant 

1 2 3 4 5 

Anterior-posterior -.89 (.16) -.89 (.15) -.30 (.65) -.72 (.35) -.87 (.22) 

Mediolateral -.00 (.80) .16 (.71) .72 (.32) -.18 (.36) .21 (.74) 

a Positive Cross-Correlation b 

Negative Cross-Correlation 

-1

Figure  11.10. Example  movements  that  would  produce  (a)  positive  and    (b) 

negative correlations between anterior-posterior torso sway and horizontal pistol 

movement. 
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a 

Figure 11.11. Example movements that would produce (a) positive and 

(b) negative correlations between mediolateral torso sway and vertical

pistol movement.

Mediolateral torso sway was compared to vertical movements of the pistol. 

Examples of a positive correlation, produced if torso sway contributes to pistol 

movement, and a negative correlation, produced if torso sway counteracts pistol 

movement, are presented in Figure 11.11. 

Cross-correlations between mediolateral sway and vertical pistol movement 

varied more over the twenty shots than those for anterior-posterior sway and 

horizontal pistol movements. Average cross-correlations over the twenty shots were 

low for participant 1 and participant 4 (Table 11.4). For participant 4 this was a result 

of consistently low cross-correlations between mediolateral sway and vertical pistol 

movement, suggesting that torso sway had little effect on vertical pistol motion. The 

low mean value recorded for participant 1 was a result of a wide variation in 

correlations, ranging between .96 and -.92. Only participant 3 produced a strong 

relationship between the two movements, with positive correlations produced for 

all shots. Thus, for 17 shots the torso swayed away from the target, and the pistol 

tilted upwards, and for 3 shots the torso swayed towards the target and the pistol 

tilted down (Figure 11.11a). 

b 
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If movements of the pistol were caused by torso sway alone, high positive 

cross-correlations would be expected between torso sway and pistol  movement. 

These results were not apparent for control of horizontal pistol movements, and 

only one participant displayed this pattern for control of vertical pistol movements. 

Thus, other movements must be involved, justifying comparisons between upper 

limb movements to determine additional methods of controlling pistol movement. 

11.3.2.3 Control of Horizontal Pistol Movement 

A potential cause of the opposing movements between anterior-posterior 

torso sway and horizontal pistol movement is the motion of the shoulder, 

specifically horizontal flexion and extension. If negative cross-correlations are 

produced between the torso and the shoulder, then the arm will move in the 

opposite direction to torso sway, as shown in Figure 3a. Assuming that the wrist 

does not produce further corrective movements, then the pistol will also move in 

the opposite direction to torso sway, resulting in the negative cross-correlations 

that were observed between the torso and the pistol. 

Only participant 1 produced a consistent pattern between anterior-posterior 

torso sway and shoulder movement. Positive cross-correlations indicated that 

movements of the shoulder complimented torso sway, as anterior torso sway was 

accompanied by horizontal flexion of the shoulder in 8 shots, and posterior torso 

sway was accompanied by horizontal extension in the other 12 shots.   No clear 

a b 

Figure 11.12. Example movements that would produce (a) negative and (b) 

positive correlations between anterior-posterior torso sway and shoulder 

horizontal flexion-extension. 
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Table 11.5. Mean cross-correlations (± SD) between anterior-posterior torso sway, 

shoulder and wrist movement and horizontal pistol movements. 

movement patterns were produced for the other participants, as cross-correlations 

varied between every shot (Table 11.5). Furthermore, many cross-correlations were 

low, indicating that horizontal flexion and extension was independent of the 

direction of torso sway. 

None of the comparisons between anterior-posterior torso sway and 

shoulder movements fully explained the opposing movements of the torso and 

pistol. Thus, the most likely source of the opposing movements between the torso 

and pistol is the wrist. This was clear for participant 1, for whom movements of the 

wrist counteracted shoulder movement and complimented movements of the pistol 

in all twenty shots (Table 11.5). For instance, in the 8 shots where anterior torso 

sway was accompanied by horizontal shoulder flexion, wrist extension was 

produced so that the pistol panned right across the target. 

Participant  

1 2 3 4 5 

Torso – 
Shoulder .81 (.27) -.01 (.85) .14 (.77) .28 (.73) -.27 (.82) 

Shoulder - 
Pistol -.70 (.27) .26 (.81) -.17 (.73) .06 (.90) .33 (.77) 

Shoulder - 
Wrist -.62 (.40) -.05 (.64) -.28 (.62) -.40 (.60) .07 (.83) 

Wrist - 
Pistol .67 (.26) .18 (.64) .09 (.76) .05 (.62) .20 (.69) 

No other participant produced a single, consistent movement pattern for all 

shots. Participant 4 experienced an interaction between the shoulder and the wrist, 

resulting in two movement patterns, reflected by the low average correlations in 

Table 11.5. In 14 shots the shoulder complimented torso sway (.81 ±.19), and was 

counteracted by movements of the wrist, and in the other 6 shots the shoulder 

counteracted torso sway (-.69 ±.30) and the wrist complimented shoulder 

movement.  Thus, adapting the movement patterns of the upper limb meant that 
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horizontal pistol movement remained opposite to anterior-posterior torso sway 

(Table 11.4). 

For participant 2, the opposing movements between anterior-posterior torso 

sway and horizontal pistol movements could be explained for 10 shots where 

shoulder movement counteracted torso sway (Torso and Shoulder: -.76 ±.27; Torso 

and    Pistol:.84 ±.22). The cause of the opposing sway and pistol movements were 

less clear for  the other 10 shots where shoulder movement complimented torso 

sway. Correlations between the shoulder and wrist, and the wrist and the pistol, 

varied between every shot. 

Cross-correlations between the torso, upper limb and pistol varied between 

every shot for participants 3 and 5 (Table 11.5). Thus, there were few clear patterns 

to explain how horizontal movements of the pistol were controlled. Whilst opposing 

movements were produced between anterior-posterior torso sway and horizontal 

pistol movement for participant 5 (Table 11.4), the correlations between the torso 

and upper limb varied between every shot. Cross-correlations between torso sway, 

upper limb movement and horizontal pistol movement varied between every shot 

for participant 3. Consequently, there was no clear evidence for the way in which 

either participant controlled horizontal movements of the pistol. 

11.3.2.4 Control of Vertical Pistol Movement 

Cross-correlations between mediolateral torso sway and vertical pistol 

movement varied between shots for most participants. Thus, movements of the 

upper limb must play an important role in controlling vertical pistol movements. 

First, shoulder abduction and adduction were compared to mediolateral torso sway. 

If positive cross-correlations are produced then the arm will move in the same 

direction to torso sway, such as sway away from the target and shoulder abduction 

(Figure 11.13). Negative cross-correlations represent opposing movements of the 

torso and shoulder, such as sway away from the target and shoulder adduction. 
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Table 11.6. Mean cross-correlations (± SD) between mediolateral torso sway, 

shoulder and wrist movement and vertical pistol movements. 

Most participants produced negative cross-correlations between 

mediolateral torso sway and shoulder abduction-adduction (Table 11.6) indicating 

that the shoulder generally counteracted mediolateral torso sway. Thus, opposing 

movements of the torso and shoulder maintained a consistent position of the upper 

arm. For each participant, the opposing movements were mostly reflected by sway 

away from the target accompanied by shoulder adduction, particularly for 

participant 1 for whom all 20 shots followed this pattern. Participant 3 was one of 

the only participants to experience  sway towards the target accompanied by 

shoulder abduction, although in only 3 of the 20 shots. 

 
 

   Participant 1 2 3  4 5 

Torso – 
Shoulder -.86 (.25) -.93 (.07) -.73 (.35) -.04 (.78) -.96 (.05) 

Shoulder - 
Pistol -.06 (.64) .33 (.66) -.69 (.24) -.51 (.36) -.11 (.73) 

Shoulder - 
Wrist -.03 (.77) -.22 (.82) -.71 (.34) .02 (.65) .09 (.78) 

Wrist - 
Pistol .13 (.64) .15 (.62) .68 (.28) .07 (.64) -.22 (.62) 

a b 

Figure  11.13.  Example  movements  that  would  produce  (a)  positive  and    (b) 

negative correlations between mediolateral torso sway and shoulder abduction- 

adduction. 
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Adduction and abduction of the shoulder explained neither the positive 

cross- correlations between torso sway and vertical pistol movement for participant 

3, nor how vertical pistol movement was controlled for the other participants (Table 

11.6). Thus, the most likely additional source of vertical pistol movement was 

through radial and ulnar deviation of the wrist. Negative cross-correlations between 

shoulder and wrist movements produced for participant 3 indicated that wrist 

deviation counteracted shoulder movement (Table 11.6). In the 17 shots where 

shoulder adduction was produced the wrist produced radial deviation. This, 

alongside positive correlations between the wrist and pistol for all 20 shots, 

demonstrated the important role of wrist movements in maintaining the positive 

correlations between mediolateral torso sway and vertical pistol movements. 

Shoulder abduction and adduction played a more important role in 

controlling the pistol than mediolateral torso sway for participant 4. The shoulder 

counteracted vertical pistol movements (Table 11.6), resulting in shoulder adduction 

and upwards  tilt of the pistol for 16 shots, and shoulder abduction and downwards 

tilt of the pistol for 4 shots. These opposing movements were primarily attributed to 

deviation of the wrist. The low average correlations between the wrist and the 

shoulder, and the wrist and the pistol reported in Table 4 were a result of two 

movement patterns produced  by the wrist. In 11 shots the wrist counteracted 

shoulder movements (-.57 ±.34) and complimented movements of the pistol (.58 

±.40). In the other 9 shots, the wrist complimented shoulder movement (.56 ±.36), 

and counteracted movement of the pistol (-.40 ±.33). Each of the 9 shots involved 

shoulder adduction, ulnar deviation and upwards tilt of the pistol. 

Cross-correlations between the movements of the upper limb varied 

between every shot for the three other participants (1, 2 and 5). Thus, no consistent 

effects of upper limb movement on vertical movements of the pistol were identified. 

11.3.3 Range of Movement 

Comparisons of the movements affecting horizontal pistol motion 

demonstrated  that,  with  the  exception  of  participant  4,  range  of  movement 

was greater for the pistol than for anterior-posterior torso sway or the upper limb 
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(Figure 11.4). Range of movement of the pistol was between two and seven times 

greater  than that recorded for the torso.  For example, horizontal pistol range of 

movement  for participant 1 was 3.50 mRad, compared to 1.15 mRad for torso 

sway. Participant 3 produced a greater relative increase between the torso (0.37 

mRad) and pistol (2.61 mRad) than any other participant. Participant 4, who 

achieved the highest score, produced a smaller range of horizontal pistol movement 

than any other participant (1.69 mRad). Two participants (1 and 5) produced the 

smallest range of movement at the shoulder, and another (participant 2) produced 

the smallest range of movement  for the wrist. 

Comparisons of the movements affecting vertical pistol motion 

demonstrated that all participants produced the smallest range of movement for 

mediolateral torso sway (Figure 11.14). Range of movement of torso sway was 

between two to five times smaller than range of vertical pistol movement. For 

example, participant 1’s vertical pistol movement and torso sway ranges were 0.31 

and 1.49 mRad respectively. In contrast to horizontal pistol movements, participant 

4 who achieved the highest score, produced a greater range of vertical pistol 

movement than any other participant (2.15 mRad).
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◆ Median range of movement I IQR Maximum and minimum range of movement 

Participant 1 Participant 2 

Participant 3 Participant 4 Participant 5 

Figure 11.14. Range of movement produced by each participant over 20 shots (mRad = 1/1000th radian). 
H represents movements compared to horizontal pistol movement (anterior-posterior torso sway, shoulder horizontal 
flexion/extension, wrist flexion/extension). 
V represents movements compared to vertical pistol movement (mediolateral torso sway, shoulder abduction/adduction, wrist 
radial/ulnar deviation). 
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11.3.4 Performance Variability 

Performance variability relates to how closely a performance is reproduced 

over the twenty shots and was examined using two variables, positional variability 

and movement variability. 

- Positional variability, measured over the final second, examines how

closely an angle is reproduced over the twenty shots.  For example:

 zero positional variability = the wrist angle is the same for every

shot (e.g. a participant produces the same wrist angle throughout

the final second of every shot);

 moderate positional variability = the wrist angle is similar, but not

identical, for every shot (e.g. a participant produces wrist angles

between 2000 – 2050 mRad throughout the final second of every

shot);

 high positional variability = the wrist angle is different throughout

the final second before the shot (e.g. a participant produces a

variety of wrist angles, ranging between 2000 - 3000 mRad).

- Movement variability compares how the movement produced at a

particular joint changes over the final second before a shot, and how

similar the change in movement is between the 20 shots.  For example:

 low movement variability = in each of the 20 shots, a pistol shooter

progressively flexes the wrist throughout the final second;

 moderate movement variability = a participant produces a different

degree of wrist flexion over the final second in each of the 20 shots;

 high movement variability = a participant produces wrist flexion for

some shots, and wrist extension for others.

Examples of how each variable was calculated were provided in the methods 

section (Chapter 11, section 11.2.5). 

11.3.4.1 Control of Horizontal Pistol Movement 

Positional variability was smaller for anterior-posterior torso sway than for 
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any movements of the upper limb or pistol, indicating that the angle of the 

torso was closely recreated between shots (Appendix 3.2a – 3.6a). The amount of 

variability exhibited by the upper limb and pistol varied more between participants. 

For two participants (1 and 5), positional variability decreased from proximal to 

distal  (Appendix 3.2a and 3.6a), ensuring that it was smallest for the pistol (Table 

11.7). Participants 4 and 3 also produced the greatest degree of positional variability 

for movements of the shoulder (Appendix 3.4a and 3.5a), but the smallest variability 

for the wrist. Participant 2 produced one of the most unique patterns of positional 

variability (Appendix 3.3a), which was high for both the wrist and the pistol (Table 

11.7). Variability of the shoulder was smaller than for any other participant, 

representing the most predictable positioning of the upper arm across the twenty 

shots. 

Participant 

1 2 3 4 5 

Anterior-posterior torso 
sway 

5.2 8.3 6.4 7.8 5.0 

Shoulder abduction- 
adduction 

41.5 13.0 30.8 51.1 14.8 

Wrist flexion- 
extension 

14.1 24.9 6.4 6.9 10.1 

Horizontal pistol 
movement 

9.5 21.6 19.9 15.6 7.8 

Movement variability was smaller for anterior-posterior torso sway than 

horizontal pistol movements for all participants, and increased closer to the 

instance of the shot (Appendix 3.2c – 3.6c). This represented different sway 

patterns used across the twenty shots, such as anterior sway for some shots and 

posterior sway for others. Movement variability of the upper limb for participants 1 

and 5 increased from proximal to distal (Table 11.8). Participants 3 and 2 also 

produced the greatest variability for the pistol, but smallest variability for the wrist 

(Appendix 3.3c and 3.4c). Participant 4 achieved the highest score of all participants, 

Table 11.7. Average positional variability over the final second before the shot 
(mRad) for movements used to control horizontal movements of the pistol. 



160 

Table 11.8. Average movement variability over the final second before the shot 

(mRad) for movements used to control horizontal movements of the pistol. 

and produced the smallest degree  of  horizontal  pistol  movement  variability 

(Table  11.8).  Pistol variability decreased in the final 0.2 s before the shot (Appendix 

3.5c), a pattern that was not observed for any other participant. 

 
 

Participant 

1 2 3 4 5 

Anterior-posterior torso 
sway 

0.7 1.3 0.5 1.1 0.8 

Shoulder abduction- 
adduction 

0.7 1.2 1.2 1.0 1.2 

Wrist flexion- 
extension 

1.0 0.8 1.1 1.8 2.2 

Horizontal pistol 
movement 

3.3 3.0 1.9 1.4 2.3 

11.3.4.2 Control of Vertical Pistol Movement 

Positional variability of mediolateral torso sway was smaller than variability 

of the shoulder and wrist, but greater than that of the pistol for most participants 

(Appendix 3.2b – 3.6b). Torso sway variability was smaller than all other 

movements for participant 2. The movements of the upper limb and the pistol that 

produced  either the greatest, or the smallest, degree of variability differed 

between participants. For instance, participants 3, 4 and 5 each experienced a 

decrease in variability from proximal to distal (Table 11.9). This was particularly 

apparent for participant 4, for whom average positional variability decreased by 34 

mRad between the shoulder and the wrist. Participants 1 and 2 both produced the 

greatest variability for the wrist, and smallest variability for the pistol. Despite both 

showing the same pattern of variability, pistol variability for participant 2 was over 

four times greater than that recorded for participant 1 (Table 11.9). 

All participants produced a smaller degree of movement variability for 

mediolateral torso sway than for any movement of the upper limb and pistol (Table 

11.10). Torso variability remained consistently low throughout the final second, 
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indicating that a similar pattern of sway was produced for each of the twenty 

shots.  Variability of the upper limb increased, albeit marginally from proximal to 

distal for participants 1 and 2, resulting in the greatest movement variability 

produced for the pistol (Appendix 3.2d and 3.3d). In contrast, the pistol was the 

least variable for participants 4 and 5, and the greatest degree of movement 

variability was produced  for the wrist (Appendix 3.5d and 3.6d). Participant 3 

produced a smaller degree of variability than any other participant for all upper 

limb movements, with greatest variability recorded for the shoulder (Appendix 

3.4d). 

Participant 

1 2 3 4 5 

Mediolateral torso 
sway 

4.2 14.9 3.1 7.3 5.0 

Shoulder flexion- 
extension 

9.5 22.3 18.8 50.3 16.1 

Wrist radial-ulnar 
deviation 

11.4 35.2 12.3 15.6 15.8 

Horizontal pistol 
movement 

3.5 15.2 2.5 2.9 4.2 

Table 11.10. Average movement variability over the final second before the shot 

(mRad) for movements used to control vertical movements of the pistol. 

Participant 

1 2 3 4 5 

Mediolateral torso 
sway 

0.1 0.2 0.2 0.5 0.2 

Shoulder flexion- 
extension 

0.7 1.0 0.7 1.4 0.9 

Wrist radial-ulnar 
deviation 

0.7 1.0 0.6 1.9 5.1 

Horizontal pistol 
 movement 

0.8 1.3 0.6 1.1 0.8 

Table 11.9. Average positional variability over the final second before the shot 

(mRad) for movements used to control vertical movements of the pistol. 
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11.4 Discussion 

The objectives of this study were to examine the movement  patterns 

associated with elite shooting performances and to quantify the degree of variability 

produced for the torso, upper limb and pistol. This was achieved by analysing the 

performances of elite precision pistol shooters as they completed shots as they 

would in training or competition. 

11.4.1 Shot Score 

Each participant was selected based on their status as an elite or high level 

pistol shooter. No participant had any previous experience of shooting in the 

university laboratory, or shooting when using the Vicon motion analysis system. 

Scores, however, were similar to those achieved in official shooting competitions 

near to the time of testing (Appendix 3.7), and so the testing format was not 

considered to have a detrimental effect on performance. Performances in testing 

sessions were therefore considered a fair representation of performance in training 

and competition. 

11.4.2 Centre of Pressure Movement in Relation to Torso Sway 

No significant correlations were identified between range of movement of 

the centre of pressure and either anterior-posterior or mediolateral torso sway.  This 

finding was unexpected given the popularity of using centre of pressure movement 

to represent body sway within both shooting literature (Ball et al., 2003; Era et al., 

1996; Hawkins & Sefton, 2011; Hawkins, 2013; Mason et al., 1990) and other, 

stability-based, research (Bove et al., 2007; Hwang et al., 2006; Nardone et al., 2009; 

Noda & Demura, 2007). 

A potential explanation for the differences between centre of pressure 

movement and torso sway may be the small degree of movement which exists 

during the final second before a shot. Previous research has examined the accuracy 
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of force platforms, and their suitability for stability analysis (Chockalingam, Giakas, & 

Iossifidou,2002; Gill & O’Connor, 1997; Middleton, Sinclair, & Patton, 1999). 

Chockalingam et al. (2002) assessed the AMTI force platform used in the current 

research, and reported that the accuracy of the estimates increased as the vertical 

force applied to the platform was increased. To achieve centre of pressure estimates 

within 3 mm  standard deviation of the actual centre of pressure location, vertical 

force had to exceed 90 N. The forces associated with shooting stance are greater 

than the 90 N threshold, but the centre of pressure movements are considerably 

smaller than the 3 mm accuracy accepted by Chockalingam. In the current study, 

anterior-posterior standard deviation of the centre of pressure varied between just 

0.14 – 0. 94 mm, and mediolateral movement ranged between 0.15 – 0.54 mm. 

Thus, analysis of centre of pressure movement may not be sufficient to represent 

movements in elite shooting, where movement is significantly smaller than that 

recorded for the general population (Aalto et al., 1990; Era et al., 1996; Herpin et al., 

2010). Furthermore, both Chockalingam and Middleton et al. (1999) stated that the 

accuracy of the centre of pressure estimation is reduced at the edge of a force 

platform compared to when the feet are positioned on the centre. The current 

research required participants to shoot using their current stance position, and so it 

was not possible to move a participants’ foot further from the edge of the force 

platform without potentially affecting their shooting performance. This may have 

further attributed to the low correlations between centre of pressure movement 

and torso sway. 

The few similarities identified between centre of pressure movement and 

torso sway further highlight the importance of using more detailed analysis 

methods when examining elite shooting performances. This finding supports the 

conclusions of  studies 1 – 3 that other movements must influence a shooting 

performance, and helps to explain the low correlations reported between centre of 

pressure and pistol movement in the first three studies. These low correlations 

justify the analysis of torso and upper limb movements that were the focus of this 

research. 

Two aspects of torso and upper limb movement were analysed, movement 
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coordination and performance variability. Movement coordination, analysed using 

cross-correlations, investigated the movement patterns used to control motion of 

the pistol.       Multiple movement patterns are suggested to be  an example of a 

successful movement synergy, which enable individuals to adapt a performance and 

achieve a successful task outcome (Domkin et al., 2005; Tseng et al., 2002). 

Performance variability, composed of positional and movement variability, was used 

to investigate how the movements of the torso, upper limb and pistol differed 

between shots. Variability has commonly been used to reflect the principle of 

abundancy (Tseng et al., 2002). Motor abundancy proposes that the motor system 

takes advantage of the numerous possible movement solutions in order to produce 

a successful task outcome (Domkin et al., 2005; Tseng et al., 2002), and suggests 

that this provides further evidence of a successful synergy between the movements 

used to complete a task. Practically, this means that variability of the system can be 

high to ensure that task outcome variability remains low (Davids et al., 2003; 

Domkin et al., 2005; Scholz et al., 2000; Scholz & Schöner, 1999; Tseng et al., 2002). 

In pistol shooting, motor abundancy should be reflected by a high degree of 

positional variability of torso sway and upper limb movements, and a small degree 

of variability for the pistol. Throughout this section, coordination and variability will 

be considered in relation to the concepts of movement synergies and motor 

abundancy. 

11.4.3 Movement Coordination 

Anterior-posterior torso sway was important to horizontal movements of the 

pistol for most participants, as the pistol consistently moved in the opposite 

direction to which the body was swaying. These opposing movements aid pistol 

shooters in maintaining a consistent position of the pistol on the target, and were 

produced through a coordination of the movements of the shoulder, wrist and 

pistol.  The specific coordination patterns differed between every participant. For 

instance, participant 1 produced a consistent performance, as the wrist moved in 

the opposite direction to both torso sway and movements of the shoulder during 

every shot. Other participants, particularly participants 3 and 5, produced more 
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flexible movement patterns for which cross-correlations varied between every shot. 

The existence of multiple movement patterns when shooting supports the 

conclusions of previous motor control  research  that  a flexible  performance  can 

be used to produce a consistent task outcome (Gorniak et al., 2008; Tseng et al., 

2002). It does not fully support the pistol shooting research of Pellegrini and Schena 

(2005) who suggested that the trunk, arm and body move as one rigid segment. The 

contrasting results may arise from different methods of statistical analysis used in 

each study. The current research used cross-correlations to compare the movement 

patterns of the torso, upper limb and pistol throughout the final second of every 

shot, whilst Pellegrini et al. used discrete correlations between the neck, shoulder, 

wrist and pistol to compare how the magnitude of movement changed between 

shots.  Discrete  methods, such as those used by Pellegrini et al. are useful to 

examine whether a change in one movement is likely to lead to changes in another, 

but cannot examine more detailed information such as the temporal and spatial 

aspects of performance (Chiu & Chou, 2012; Hamill, Haddad, & McDermott, 2000; 

Preatoni et al., 2013). For instance, the markers recorded by Pellegrini et al. 

produced a similar change in the magnitude of movement between shots, but each 

marker could have been moving in different directions. Consequently, discrete 

analysis, with no supplementary continuous methods, cannot fully determine how a 

shooting performance is produced. The findings of the current research support 

Pellegrini et al.’s conclusions concerning the close associations between torso and 

pistol movement, but also offer additional information regarding the direction of 

movement and the strategies used to maintain pistol position on the target. 

The association between mediolateral torso sway and vertical pistol 

movement was less consistent than that reported between anterior-posterior sway 

and horizontal pistol movement. Thus, it appears that upper limb movements play a 

more important role than torso sway in controlling vertical movements of the pistol. 

The use of different strategies to control vertical pistol movement provides support 

for Pellegrini et al. (2005) that the movements used to control the vertical position 

of the pistol are more complex than those used to control horizontal position. 

Consequently, whilst most pistol shooters could benefit from adapting patterns of 
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anterior-posterior sway if they are attempting to influence horizontal pistol 

movement, controlling the amount of mediolateral sway may be less critical to 

performance.The less important role of mediolateral sway to pistol movement is 

unsurprising, given the exceptionally small ranges of movement that were 

produced. Median range of movement was between 0.23 mRad and 1.22 mRad 

smaller than anterior-posterior torso sway. Such differences, which would be almost 

unnoticeable  in most activities that require a greater magnitude of movement, can 

have a considerable impact on 10 m pistol shooting performance. In pistol shooting, 

a movement of just 0.033 mRad is sufficient to move the aim point of the pistol 

from the centre of the target to the edge of the 10 ring. Thus, the effects of 

mediolateral torso sway on pistol movement will be considerably smaller than the 

effects of anterior- posterior torso sway. 

The variability in upper limb coordination, both between different 

participants and within each participants’ performance, mean that it was not 

possible to identify a single movement which was most influential to either 

horizontal or vertical pistol movement. Instead, pistol movement appears to be 

determined by interactions between a multi-joint system composed of the torso and 

movements of the upper limb. Thus, the first hypothesis that movement patterns 

would vary between shots, was accepted.  This is consistent with the reports of 

existing motor control research concerning the concept of flexibility within the 

movement system (Domkin et al., 2005; Preatoni et al., 2013; Tseng et al., 2002). 

Tseng et al. (2002) highlighted how flexibility must exist even in repetitive skills such 

as shooting, stating that whilst a repetitive movement should, theoretically, only 

require one movement solution, there will always be factors that affect 

performance. Each factor has the potential to cause a change in the output of 

individual components of the system, and in response other components must alter 

their output to ensure that a stable task outcome is achieved. Factors affecting 

shooting performance could include small changes in stance position between shots, 

muscle fatigue throughout the course of a shooting competition, and the noise that 

is an inherent characteristic of a biological system. Thus, it is  unsurprising that most 

participants required more than one movement pattern to achieve a consistently 
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high level of performance. 

A common finding throughout this research was the unique strategies used 

by each   participant   to  control  pistol  movement.     This  was   particularly 

evident  for participant 3 for whom mediolateral torso sway was consistently 

accompanied by upwards motion of the pistol, whilst the association between 

anterior-posterior torso sway and horizontal pistol movements varied between 

every shot. Thus, unlike the other participants, mediolateral sway was more 

important to performance. This finding, alongside the different patterns of upper 

limb coordination experienced by each participant highlights that there are multiple 

methods in which to achieve a world-class shooting performance. This further 

promotes the importance of intra- individual analysis when investigating elite 

shooting performances (Ball et al., 2003; Bartlett et al., 2007; Mason et al., 1990). 

Scholes et al. (2012) who stated that taking the average performance of a number of 

participants results in a mythical average participant that does not fully reflect any 

individual’s responses to the task. This conclusion is particularly relevant to pistol 

shooting. Given that each participant displayed different patterns of movement 

coordination to control pistol movement, it would be impossible for the group 

average to accurately reflect each participants’ performance. 

Further evidence of the individual nature of elite shooting performances was 

provided by the analysis of the upper limb coordination of participants 1 and 3. 

Whilst most participants produced flexible movement patterns, participants 1 and 3 

each produced one consistent pattern for the movements affecting horizontal and 

vertical pistol motion respectively. Despite not demonstrating the patterns that are 

typically thought to reflect an effective synergy, (Tseng et al. 2002), participants 

achieved the second and third highest scores respectively. This finding has two 

potential implications; either it provides further evidence that there is more than 

one way to achieve a world-class performance, or it indicates that these participants 

could further enhance performance if they are able to increase the number of 

movement patterns during the final second before the shot. Whilst the flexibility of 

a movement pattern is not necessarily something that can be consciously 

controlled, it could be modified by other methods, such as changing stance position. 
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Hwang et al. (2006) reported that, in less stable stances, coupling of the upper limb 

joints increases, resulting in a less flexible   movement   system.     Thus,   by 

changing   stance   position   and potentially increasing stability, the synergy 

between the upper limb movements may be enhanced, resulting in a more stable 

position of the aim point on the target. 

11.4.4 Performance Variability 

Positional variability of anterior-posterior torso sway was small, as each 

participant closely recreated the position of the torso between shots. Greater 

variability was evident for the upper limb and pistol, indicating that the position of 

the shoulder, wrist and pistol were adapted for each of the 20 shots. Variability was 

not always smaller for the pistol than for the upper limb. This led to a rejection of 

the second hypothesis, and does not fully represent the pattern anticipated by the 

principle of abundancy. This reflects the different coordination patterns used by 

each participant to control the horizontal movement of the pistol.  Individual 

movement strategies  were again apparent, particularly when comparing the 

performances of participants 1 and 3 who achieved similar scores, (187 and 184 

respectively), and similar horizontal shot distributions (34 mm and 35 mm). Despite 

these apparent similarities, participant 1 experienced the greatest changes to the 

position of the shoulder and wrist, whilst participant 3 made the majority of 

adjustments with changes to the position of the shoulder and the pistol, with a 

minimal contribution from the wrist.  The  similar success of these participants, 

despite the differences in performance, provide support for Chow et al. (2011), 

Langdown et al. (2012) and Davids et al. (2003), who suggested that athletes should 

not attempt to replicate another individual’s technique, and should instead devise 

their own movement strategies that will result in a successful task outcome. This 

again supports the need for individual analysis of elite sports performance (Ball et 

al., 2003; Mason et al., 1990; Preatoni et al., 2013; Scholes et al., 2012). 

Movement variability of anterior-posterior torso sway increased over the 

final second before the shot, indicating that sway patterns were altered nearer to 
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the instance of trigger pull. Given the strong association between torso sway and 

pistol movement, adapting torso sway may be essential to determine the location of 

the aim point on the target.        Movement variability was greater for the pistol than 

the upper limb for four participants, allowing for fine adjustments in position to 

ensure accurate placement of the shot. Previous research has commonly reported 

that movements are made of two components; a gross, primary submovement used 

to move the limb towards the target, and secondary, fine, submovements which are 

used to correct any errors in position and enhance accuracy (Dounskaia, Wisleder, & 

Johnson, 2005; Khan & Franks, 2003). The greater movement variability recorded for 

the pistol is therefore likely to reflect a variety of submovements used to correct any 

errors in the location at which the pistol is aiming. 

Participants demonstrated some common traits for the variability of 

movements affecting vertical motion of the pistol.  Positional variability was smaller 

for the pistol than the torso and upper limb, demonstrating the pattern typically 

associated with the principle of abundancy (Davids et al., 2003; Domkin et al., 2005; 

Latash, 2000; Scholz & Schöner, 1999; Tseng et al., 2002). This pattern reflected that 

anticipated by the third hypothesis. The relatively small variation in pistol position 

indicates that the flexible movement patterns that were previously identified by the 

analysis of movement coordination produced an effective synergy to control pistol 

movement. 

Movement variability was smaller for mediolateral torso sway than the 

upper limb or pistol, reflecting the findings from the analysis of movement 

coordination that each participant consistently swayed away from the target in the 

final second before the shot. The greatest degree of movement variability was 

recorded for the pistol for some participants and for the wrist for others. This 

indicates that the submovements used to control the vertical position of the aim 

point on the target varied between participants. These findings again highlight that 

there are a number of methods to achieve a successful performance. 

Analysis of performance and movement variability provided further evidence 

of the different strategies used to control horizontal and vertical movements of  the 
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pistol. All participants demonstrated the characteristics of abundancy for 

movements affecting vertical pistol motion, but only two (participants 1 and 5) 

produced the same characteristics for control of horizontal pistol movement. 

As such, the principle of abundancy, and the ability to successfully create a synergy 

between the angles of the upper arm, plays a critical role in the vertical placement 

of shots on the target. The submovements used to make fine changes to pistol 

position were more important for controlling horizontal pistol movement, as 

movement variability was greater for most movements affecting horizontal than 

vertical movements of the pistol. 

This research has provided an insight into the multiple methods that are used 

to produce a successful shooting performance. There are limitations to the study 

that should be acknowledged. Participants were required to step off the force 

platform between each shot to allow for zeroing. This potentially allowed 

participants  to  change stance position between shots; something that could 

potentially affect the degree of positional variability. To minimise this effect, foot 

position was marked onto each force plate prior to the first shot. Participants were 

also shooting in a laboratory environment to which they were not accustomed and 

did not provide the pressures associated with competition. Scores achieved during 

testing were, however, similar to those achieved in previous shooting competitions, 

and so the testing environment was not considered detrimental to performance. 

Future research should now consider the ways in which movement strategies can be 

modified. As previously discussed, the exceptionally small degree of movement 

associated with elite precision shooting may be beyond the magnitude that can be 

consciously controlled. There is still potential to modify other aspects of 

performance, such as stance position, which may have a resultant impact on 

coordination and variability.  A further consideration for future research is the 

importance of other variables, such as velocity of centre of pressure motion, to elite 

shooting performances.  Positional and movement variability were analysed in the 

current research, in accordance with the majority of previous shooting research 

which has focused on variables such as range and path length.  Future research 

should examine how other variables also contribute to a successful shooting 
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performance. 

11.5 Conclusion 

This research has provided a descriptive analysis of the movements 

associated with elite precision pistol shooting. Horizontal pistol movements occurred 

in the opposite direction to anterior-posterior torso sway for most participants, 

whilst mediolateral torso sway was less influential to performance. Movement 

patterns of  the upper limb were more varied, indicating a high degree of flexibility 

within the movement system. Thus, it appears that elite pistol shooters have 

developed effective synergies to produce a highly consistent task outcome.  When 

controlling vertical pistol motion, positional variability was greater for upper limb 

movements than the pistol, demonstrating the characteristics of motor abundancy. 

The same pattern was not evident for horizontal pistol movements. Instead, a higher 

degree of movement variability indicted that secondary submovements were used 

to make fine adjustments to the position of the pistol. Analysis of movement 

coordination and variability both revealed a high level of individual variation, 

highlighting that there are multiple ways in which to achieve an elite level shooting 

performance. It is recommended that future research now considers how other 

aspects of shooting, such as stance position, can influence movement coordination 

and variability, and potentially further enhance precision shooting performance. 
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Chapter Twelve 

Research Study 5 - The Effects of Stance Position on Elite Precision Pistol 

Shooting Performance 

12.1 Introduction 

Previous shooting research has established some of the mechanisms behind 

a successful shooting performance, but has yet to consider the methods that 

shooters could use to modify technique and potentially enhance performance. In a 

sport where movement of just 0.016o is enough to reduce a point score (Zatsiorsky & 

Aktov, 1990), and athletes are regularly separated by less than a point in 

competition, an understanding of methods that can enhance performance is clearly 

important. 

Currently, only Hawkins and Sefton (2011) have considered how modifying 

technique could influence pistol shooting performance. When shooting in a range of 

stance positions, between 30 cm - 90 cm, stability of the pistol was significantly 

reduced when stance widths exceeded 75 cm, and centre of pressure movement 

was smallest for the narrowest, 30 cm, stance position. Thus, existing research 

suggests that pistol shooters should adopt a narrower stance width to increase 

postural stability and shooting performance. These findings are in contrast to 

existing pistol shooting manuals, which recommend that shooters should adopt a 

stance of shoulder width or greater (Leatherdale & Leatherdale, 1995; National Rifle 

Association of America, 2008; Yur’yev, 1985). For most people, this stance width 

would exceed the 30 cm recommended by Hawkins and Sefton. 

The research of Hawkins and Sefton (2011) provides a basis from which 

future research can further develop an understanding of the effects of shooting 

stance on performance. Whilst this provides an indication of the effects of 

mediolateral stance width on shooting performance, it does not consider the effect 

of changing anterior- posterior foot position. Furthermore, the stance positions 

selected by Hawkins and Sefton were all greater than 30 cm. Thus, there is no 

current evidence for the effects  of narrower mediolateral stance widths on 



173 

performance. 

Currently, research has considered the effects of stance position on pistol 

and centre of pressure stability, but not how changing stance width affects either 

shot score or the movements of the torso and upper limb. Examining these effects 

of stance position is an extension to the analysis performed in Study 4, and can 

determine which stance positions produce the highest scores alongside the 

mechanisms, such as changes in movement patterns and variability, which are 

behind any changes in performance. Recent research suggests that more variable 

movement patterns tend to result in a more successful task outcome (Preatoni et al., 

2013; Scholz & Schoner., 1999).  This is in conflict to the original theory which 

proposed that movement patterns should be highly repeatable in order to achieve 

success (Arutyunyan et al., 1969; 1968; Bernstein, 1967).  This research will 

therefore identify whether the most successful shooting performances are 

associated with more variable movement patterns of the upper limb, as suggested 

by recent research.  This information will provide coaches and athletes with a more 

detailed understanding of why manipulating the stance position may improve 

performance. 

Finally, research has yet to examine the effects of stance position on 

shooting performance for individual participants, with current group-based findings 

suggesting that a mediolateral stance width of 30 cm is optimal for performance 

(Hawkins & Sefton, 2011). Given that the first three studies of this thesis 

consistently highlighted the individual nature of pistol shooting performance, the 

optimal stance position is  also likely to vary between individuals. Thus, the effects 

of stance position on  individual performances must also be examined. 

Given the limited existing knowledge on the effects of stance position on 

shooting performance, the final study will now consider this topic in greater detail. 

There are two objectives for this research, which are to: 

(i) identify the most effective mediolateral and anterior-posterior stance

widths, based on analysis of shot scores; and

(ii) identify the effect of changes in stance position on movement
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patterns and movement variability. 

There are three hypotheses to accompany these objectives: 

(i) wider mediolateral and anterior-posterior stance widths will

improve shooting performance in comparison to narrower stance

widths;

(ii) the movement patterns of the most successful stance positions will

be more variable; and

(iii) the  most  successful  stance  positions  will be  characterised  by greater

variability of upper limb movements and smaller variability for the pistol.

12.2 Methods 

12.2.1 Participants 

The same participants completed each shooting task as those who took part 

in Study 4; ten elite female pistol shooters (mean age 28.4 ± 10.2 years, mass 67.3 

±7.7 kg), with an average pistol shooting experience of 9.5 (± 3.3) years. Throughout 

all testing sessions participants used the equipment with which they would normally 

compete (shooting shoes, training/competition pistol; 4.5 mm calibre compressed or 

CO2 single shot air pistol, weighing less than 1500 g). Written informed consent was 

obtained from all participants prior to testing, which was approved by the 

Manchester Metropolitan University research ethics committee. 

12.2.2 Tasks 

Testing took place in the shooting range within the University’s Biomechanics 

Laboratory as previously detailed for Study 4 (Chapter 11, section 11.2.3). Each 

participant completed nine stance position conditions, each of which consisted of 

ten live fire shots. Each condition used a combination of one mediolateral (Current, 

Wide or Narrow), and one anterior-posterior (Current, Foot in Front and Inline) 

stance width (Table 12.1), which was manipulated by altering the position of a 
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participants’ rear foot, whilst the front foot remained in the current stance position 

(Figure 12.1). Each stance was a variation on the participants’ existing stance 

position recorded for Study  4 (Chapter 11, section 11.2.2), and so the exact width of 

each position varied between participants. This was particularly evident for 

mediolateral stance width, for which there was a range of 18 cm between 

participants. 
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Table 12.1. The combination of stance positions used to create the nine stance 

conditions completed by each participant. 

* Current Current stance positions are taken from shots 11 – 20 recorded for Study 4. 

1 

2 

Mediolateral Stance Width 

Current 

Current 

Anterior-Posterior Stance Width 

Current* 

Foot in Front 

3 Current Inline 

4 Narrow Current 

5 Narrow Foot in Front 

6 Narrow Inline 

7 Wide Current 

8 Wide Foot in Front 

9 Wide Inline 

S

t

a

n

c

e

W

i

d

t

h 

 
 

 

S 

Stance 
Width 

Figure 12.1. Mediolateral and anterior-posterior stance widths used to create the 
nine stance positions 

Mediolateral: Current = participant’s existing stance width; Wide = 25% wider than the 
current stance; Narrow = 25% narrower than the current stance. 
Anterior-posterior: Current = participant’s existing stance width; Foot in Front = rear foot 
100% further forwards than the distance recorded in the current stance; Inline = rear foot 
100% further back than the distance recorded in current stance. 

Stance 
Width 

Shooting 
Direction 

Mediolateral Stance Widths – Current, Wide and Narrow 
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The order in which trials were completed was randomised for each 

participant to reduce any potential learning or fatigue effects. Prior to beginning 

each trial, participants were asked to complete a minimum of ten practice shots in 

order to become familiar with each modified position. Once familiarisation was 

completed, participants had an unlimited time period in which to complete the ten 

live fire shots. Participants aimed at a standard air pistol target (17 cm × 17 cm), 

and attempted to achieve the highest possible score. Testing procedures were 

identical to those used during Study 4 (Chapter 11, section 11.2.2). 

Table 12.2. Current and modified stance widths used for each participant. 

Stance Width (cm) 

Mediolateral stance width Anterior posterior stance width 
Participant 

Current Narrow Wide Current 
Foot in 
Front 

Inline 

1 24.0 18.0 30.0 2.0 4.0 0.0 

2 20.0 15.0 25.0 2.0 4.0 0.0 

3 22.5 16.9 28.1 5.0 10.0 0.0 

4 28.0 21.0 35.0 -3.5 0.0 -7.0

5 38.0 28.5 47.5 2.0 4.0 0.0

12.2.3 Data Collection 

The experimental set-up was identical to that previously detailed for Study 4 

(Chapter 11, section 11.2.3), using the Vicon MX motion analysis system (Vicon, UK) 

to accurately record the position of nineteen reflective spherical markers whilst 

participants were completing each shot. Pistol movement was recorded by the 

Noptel shooting system (Noptel-ST 2000 Sport II; Noptel, Finland), and shot score 

was recorded directly from the target to a maximum of 10.9. The position of 

participants’ feet was marked with tape at the beginning of each stance condition 

to ensure that participants remained in the same position for all ten shots. 
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12.2.4 Data Analysis 

Shot score, used to measure shooting accuracy, was recorded from the 

target, to a maximum of 10.9. To reduce the effect of any sighting errors, shot score 

was calculated from the centre of the shot group, and not the centre of the target. 

Shot dispersion, measured as the horizontal and vertical spread of the shot group 

(mm),  was measured directly from the target and used to assess shooting precision. 

Movements of the torso, shoulder, wrist and pistol were analysed over the 

final second before the shot using the same methods as those reported in Study 4 

(Chapter 4, section 11.2.4). Discrete analysis of performance was provided from the 

range of movement, and continuous analysis analysed movement patterns, 

examined using cross-correlations, and movement variability, quantified by the 

median angle and IQR throughout the final second. 

12.2.5 Statistical Analysis 

Data did not meet parametric assumptions, as previously reported for Study 

4 (Chapter 11, section 11.2.5), and so with the exception of cross-correlations, non- 

parametric tests were selected. Spearman’s Rank correlations were used to 

compare the order in which participants completed each trial and the scores 

achieved. These comparisons were used as an indication of whether a learning 

effect had taken place throughout the duration of the testing session. 

Performance in each stance position was analysed for the group as a whole 

and for individual participants. A Friedman’s ANOVA compared the scores achieved 

in each stance position, and the range of movement produced for the torso, upper 

limb and pistol. Any results of p<.05 were considered statistically significant. 

Significant results were accompanied by post hoc Wilcoxon tests with Bonferroni 

corrections, and any results less than p<.01 were considered significant. 

Two participants (1 and 3) were selected as examples for analysis of the 

movement patterns and performance variability produced in the highest and lowest 

scoring stance positions. The  three  lowest  scoring  stance  positions achieved
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significantly lower scores than the top two stance positions for participant 1, and 

the two most successful stance positions produced significantly higher scores than 

all other stance positions for participant 3. 

Cross-correlations were used to compare the movement patterns produced 

in the highest and lowest scoring stance positions. This identified the degree of 

similarity between the movements produced for the torso, upper limb and pistol 

over the final second before the shot. Each correlation followed the procedure 

detailed in Study 4 (Chapter 11, section 11.2.4), with correlations for the movements 

affecting horizontal and vertical pistol movement analysed separately. 

Performance variability was again quantified using positional variability and 

movement variability, as detailed in Study 4 (Chapter 11, section 11.2.4). Any 

differences in the degree of variability produced for the torso, upper limb or pistol 

were used to indicate changes in performance between a more, or less, effective 

stance position. 

12.3 Results 

12.3.1 Shot Score – Group Analysis 

Changing stance position had a significant effect on the scores achieved by 

the group (2 (8) = 34.93, p<.05), and surprisingly, the lowest score was achieved 

when participants used their Current stance position (Table 12.3). The combination 

of Current and Foot in Front stance positions was the most successful, producing 

significantly higher scores than those achieved in five of the other eight stance 

positions (ranging from Current Inline: T = 196, p = .000, r = -0.63 to Narrow Current: 

T = 485.5, p = .001, r = 0.28). Two other stance positions, Narrow Foot in Front and 

Narrow Inline, also produced significantly higher scores than other stances  (Table 

12.3). 
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Table 12.3 Total group scores achieved when using each stance position. 

Participant numbers in brackets denote the position in which each participant 

achieved their highest score. 

Rank 
Mediolateral 

stance width 

Anterior-posterior 

stance width 
Score 

1 (Participant 4) Current Foot in Front 496.5 

2 (Participant 1) Narrow Foot in Front 492.2 

3 (Participant 5) Narrow Inline 489.6 

4 (Participant 3) Wide Current 489.2 

5 Narrow Current 486.2* 

6 (Participant 2) Wide Foot in Front 484.6*♦

7 Wide Inline 480.8*†
 

8 Current Inline 479.4*♦†
 

9 Current Current 477.0* 

* significantly different to Current Foot in Front stance position (p<.007)
◆ significantly different to Narrow Foot in Front stance position (p<.007)
†   significantly different to Narrow Inline stance position (p<.007) 

12.3.2 Shot Score – Individual Analysis 

Individual analysis revealed a significant effect of stance position on shot 

score for all participants (Table 12.4). The highest score could not be attributed to a 

particular stance position (Current, Narrow or Wide), but with the exception of 

participant 1, all participants produced their highest score using a mediolateral 

stance width of between 25.0 and 28.5 cm. Optimal anterior-posterior stance width 

varied more between participants, and some achieved both their highest and 

lowest scores using the same position. The effects of stance position will now be 

reported for each participant. 

Scores achieved by participant 1 varied by 8.8 points between the  highest 

(102.7 points) and lowest (93.4 points) scoring stance positions (Appendix 4.1). The 

difference in score between stances was considerably greater than the variation 

within each stance position, which ranged between 0.8 – 2.9 points. Both the 

highest and lowest scores were achieved when using the Foot in Front anterior-

posterior width, and score was significantly increased simply by changing 

mediolateral stance width (6 cm decrease) from Current to Narrow.   The lowest 
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scoring position produced   greater horizontal and vertical shot distribution than 

the highest scoring stance, by 11 mm and 14 mm respectively. 

Table 12.4. Statistical comparisons between the scores achieved in each of 

the nine stance positions. Any values below p<.05 indicated a significant 

difference between the scores achieved in the highest and lowest scoring 

stances. 

Participant 2 p value 

1 37.95 <.001 

2 35.44 <.001 

3 48.44 <.001 

4 36.66 <.001 

5 51.12 <.001 

Scores for participant 2 varied by 13.5 points between the highest (102.2 

points) and lowest (88.7 points) scoring stance positions (Appendix 4.2). Scores 

achieved within each stance position ranged between 1.8 – 2.3 points, again 

smaller than the difference between stance positions. The lowest score was 

achieved using  the Current stance position, in agreement with the findings of 

group analysis. The highest score was achieved with a Wide Foot in Front stance, 

which reduced horizontal and vertical shot distribution in comparison to the lowest 

scoring stance by 29 mm and 8 mm, respectively. 

Manipulating stance position produced a difference of 7.8 points for 

participant 3, whilst the variation within each stance was between 1.1 – 2.0 points. 

The highest score of 102.8 points was achieved using a Wide Current stance 

(Appendix 4.3), and  the lowest score of 95.0 points was produced in the Current 

Inline position, for which horizontal and vertical shot distribution increased by 14 

mm and 11 mm, respectively. Whilst the Wide Current stance produced the highest 

score, the Foot in Front position also enhanced performance, producing 

consistently high scores regardless of mediolateral stance width. 

Participant 4 demonstrated fewer effects of the changes in stance position 

than any other participant, with a small, albeit significant, difference of 6.3 points 
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between stances  (Appendix  4.4).     Variation  within  stances  was  lower  than 

that recorded between each stance position, ranging from 1.4 to 2.4 points. The 

Foot in Front anterior-posterior stance width was the most effective, producing the 

three highest scores. The highest score was achieved when this was paired with the 

Current mediolateral stance width, matching the results of group analysis. The 

lowest score was produced in the Wide Current position, for which horizontal and 

vertical shot distribution increased by 11 mm and 10 mm respectively in 

comparison to the highest scoring position. 

Score varied by 10.8 points between stance positions for participant 5 

(Appendix 4.5), whilst variation  within each stance position ranged between  1.2 

and 2.2 points. The highest score of 99.4 points was produced using the Narrow 

Inline stance position, and the lowest score of 88.6 points was achieved in the Wide 

Foot in Front stance. Changing stance position had a considerably greater effect on 

horizontal shot distribution than vertical distribution, which increased by 29 mm 

and 1 mm respectively between the highest and lowest scoring positions. Some 

effects of anterior-posterior stance angle were evident, with the Inline position 

consistently producing higher scores than the Foot in Front position. 

Two participants (1 and 3) were selected as case studies for analysis of 

movement patterns and performance variability based on the individual statistical 

analysis of shot score (Appendix 4.1 and 4.3). Whilst most participants in Study 4 

produced flexible movement patterns, participant 1 experienced one consistent 

pattern for control of horizontal pistol motion, and participant 3 produced one 

consistent pattern for vertical motion. Thus, it was suggested that changing stance 

position could potentially enhance performance for these participants by producing 

more flexible movement patterns. Consequently, both participants were selected 

for this study to examine the specific effects of changing stance position on 

performance. The lower scores achieved by both participants was reflected by an 

increase in either vertical or horizontal shot distribution in comparison to the higher 

scoring stances. Consequently, both vertical and horizontal movements were 

compared between stance positions. 
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Range of movement produced for the torso, upper limb and pistol did not 

differ significantly between stance positions, and so comparisons between the 

highest and lowest scoring stances were based on two aspects of performance, 

movement coordination and performance variability. Movement coordination refers 

to how torso sway and upper limb movements affect the motion of the pistol, and is 

analysed using cross-correlations, as described in Study 4 (Chapter 11, section 

11.3.2). Performance variability relates to how closely a performance is reproduced 

across the 10 shots in a particular stance position. Positional variability and 

movement variability were considered, also detailed in Study 4 (Chapter 4, section 

11.3.4). Positional variability examines how closely an angle is reproduced over the 

twenty shots, and movement variability compares how the movement changes over 

the final second, and how similar the change in movement is between the 20 shots. 

12.3.3 Case Study: Participant 1 – Movement Coordination 

Five stance positions were selected for analysis, including two of the higher 

scoring stances (Narrow Foot in Front and Narrow Current), and three of the lowest 

scoring stances (Wide Inline, Current Inline and Wide Current). 

Cross-correlations between anterior-posterior torso sway and horizontal 

movements of the pistol were consistently negative for the higher scoring positions. 

Anterior torso sway was accompanied by the pistol panning right across the target 

(for six shots in Narrow Foot in Front and five shots in Narrow Current), with the 

remaining shots experiencing posterior torso sway and the pistol panning left. In 

contrast, cross- correlations varied between every shot for the lower scoring 

positions (Table 12.5). Correlations between mediolateral torso sway and vertical 

movements of the pistol  did not demonstrate the same distinction between higher 

and lower scoring stances, and varied considerably within each stance position 

(Table 12.5). Only one stance position (Wide Current) produced a predictable 

pattern as sway contributed to pistol movement. 
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Table 12.5. Mean cross-correlations (±SD) for participant 1 between anterior- 

posterior torso sway and horizontal movement of the pistol, and mediolateral 

torso sway and vertical movements of the pistol for the highest and lowest scoring 

stance positions. 

Average cross-correlation with pistol 
movement (± SD) 

Stance Position 
Anterior-posterior 

torso sway 
Mediolateral 
torso sway 

Highest 
Narrow Foot in Front -.87 (.22) -.20 (.78) 
Narrow Current -.48 (.30) .34 (.75) 
Wide Inline .26 (.67) .25 (.78) 

Lowest Current Inline -.23 (.60) .39 (.62) 
Wide Current -.36 (.58) .78 (.17) 

In the highest scoring stances, cross-correlations revealed that shoulder 

movement counteracted anterior-posterior torso sway for some shots (five shots for 

Narrow Foot in Front: -.84 ±.23, and four shots for Narrow Current: -.74 ±.18). Thus, 

the shoulder was responsible for producing the opposing movements of anterior- 

posterior torso sway and horizontal pistol movement. In the remaining shots, 

shoulder movement contributed to torso sway (five shots for Narrow Foot in Front: 

.38 ±.16 and six shots for Narrow Current: .81 ±.26). This indictes that other 

movements must be responsible for the opposite motion of the torso and the pistol. 

Cross-correlations between the shoulder, wrist and pistol differed between each of 

these shots, making it difficult to identify a specific movement pattern responsible 

for controlling horizontal pistol movement. 

For the lowest scoring stance positions, shoulder movement appeared less 

important to performance. In two of the least successful stances, horizontal 

movements of the pistol were primarily determined by the wrist, which consistently 

contributed to pistol movement (Wide Inline: .92 ±.08; Current Inline: .67 ±.27). 

Each stance postion produced five shots with wrist flexion accompanied by the 

pistol panning left across the target, and five where wrist extension was 

accompanied by the pistol panning right. Control of horizontal pistol movement for 

the other low scoring stance position (Wide Current) was highly variable, and no 

clear patterns between the torso, upper limb and pistol could be identified. 
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No clear distinction could be made between the higher and lower scoring 

stances based on the movement patterns produced between mediolateral torso 

sway and either vertical pistol movements (Table 12.5) or movements of the 

shoulder (Table 12.6). Differences were more apparent when comparing movements 

of the upper  limb, which were highly predictable for the lower scoring stances. Each 

of the least successful stances exhibited two methods of controlling vertical pistol 

movement. In one pattern the shoulder counteracted mediolateral torso sway and 

the wrist complimented movements of the shoulder. In the other position, the 

shoulder still counteracted torso sway, but the wrist counteracted shoulder 

movement. The second pattern was most apparent for the Wide Current stance 

position, and resulted in consistently positive correlations between torso sway and 

vertical pistol movements.  In contrast, different movement patterns were produced 

for every shot in the higher scoring stance positions, meaning that no clear methods 

of controlling vertical pistol motion could be identified. 

Table 12.6. Mean cross-correlations between mediolateral torso sway and 

shoulder adduction/abduction for the highest and lowest scoring stance 

positions. 

Highest 

12.3.4 Case Study: Participant 1 – Performance Variability 

Differences between stance positions were most evident in the positional 

variability of the pistol, which was greater for the lower than for the higher scoring 

stances (Table 12.7). No clear differences were evident between stances when 

comparing the positional variability of anterior-posterior torso sway or upper limb 

movements (Appendix 4.6). 

Stance Position Mean cross-correlation (±SD) 

Narrow Foot in Front -.11 (.72) 

Narrow Current -.90 (.12) 

Wide Inline -.92 (.07) 

Lowest Current Inline -.72 (.32) 

Wide Current -.83 (.28) 
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Greater movement variability of anterior-posterior torso sway was evident 

for the higher scoring stances (Table 12.8). Although average movement variability 

of the pistol did not distinguish between stance positions, the degree of variability 

increased over the final 0.3 s for the higher scoring positions (Appendix 4.7). No clear 

differences were evident between stance positions for the movement variability of 

the upper limb. 

Positional variability of the wrist distinguished between stances (Appendix 

4.8), with the highest scoring positions producing a smaller degree of variability than 

the lowest scoring stances (Table 12.7). No other differences were evident  when 

comparing positional variability of the torso, upper limb or pistol. 

Movement variability provided a greater distinction between stance 

positions, as mediolateral torso sway was more variable for the higher than the 

lower scoring positions (Table 12.8). The higher scoring stances also produced a 

smaller degree of wrist movement variability, with only a slight increase in 

variability seen over the final second before the shot (Appendix 4.9). 



Table 12.7. Median positional variability over the final second before the shot for participant 1. 

Movements affecting horizontal pistol motion 
(mRad) 

Movements affecting vertical pistol motion 
(mRad) 

Highest 

Lowest 

Table 12.8. Median movement variability over the final second before the shot for participant 1. 

Movements affecting horizontal pistol motion 
(mRad) 

Movements affecting vertical pistol motion 
(mRad) 

Highest 

Lowest 

1
87 

A-P Torso
Sway

Shoulder 
Flexion/ 

Wrist 
Flexion/ 

Pistol M-L Torso
Sway

Shoulder 
Abduction/ 

Wrist Ulnar/ 
Radial 

Pistol 

Extension Extension Adduction Deviation 

Narrow Foot in Front 5.04 28.02 1.75 13.23 4.54 2.42 5.15 7.23 

Narrow Current 7.48 22.04 11.76 12.48 6.13 17.83 17.35 5.02 

Wide Inline 9.45 17.96 4.61 17.20 6.91 35.67 5.71 7.91 

Current Inline 5.37 19.19 3.78 38.00 7.46 13.03 11.18 7.89 

Wide Current 6.34 28.98 11.35 15.34 6.41 18.54 6.41 5.06 

A-P Torso
Sway

Shoulder 
Flexion/ 
Extension 

Wrist 
Flexion/ 

Extension 

Pistol M-L Torso
Sway

Shoulder 
Abduction/ 
Adduction 

Wrist Ulnar/ 
Radial 

Deviation 

Pistol 

Narrow Foot in Front 0.50 1.03 0.94 2.21 0.18 0.38 0.62 0.66 

Narrow Current 0.59 1.49 0.83 0.90 0.13 0.45 0.63 0.92 

Wide Inline 0.69 1.76 0.88 1.31 0.11 0.84 0.92 1.56 

Current Inline 0.66 1.13 1.06 1.61 0.08 0.52 1.09 0.63 

Wide Current 0.68 0.64 0.39 1.88 0.07 0.34 1.12 0.69 
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12.3.5 Case Study: Participant 3 – Movement Coordination 

Four stance positions were selected for comparisons of movement 

coordination and performance variability. Wide Current and Narrow Foot in Front 

stances both produced significantly higher scores than all seven other stance 

positions. The Current Current and Current Inline positions were selected as the two 

lowest scoring stances, both producing significantly lower scores than the top two 

positions. 

Cross-correlations between anterior-posterior torso sway and horizontal 

movements of the pistol varied between each stance position, and therefore did not 

distinguish between higher or lower scoring stances (Table 12.9). Mediolateral torso 

sway appeared more important to performance, as sway contributed to vertical 

pistol movement in the lowest scoring positions, but varied for the higher scoring 

stances (Table 12.9). 

Table 12.9. Mean cross-correlations (±SD) for participant 3 between anterior- 

posterior torso sway and horizontal movement of the pistol, and mediolateral torso 

sway and vertical movements of the pistol for the highest and lowest scoring stance 

positions. 

Average cross-correlation with pistol 
movement (± SD) 

Stance Position 
Anterior-posterior 

torso sway 
Mediolateral 
torso sway 

Highest 
Wide Current -.52 (.72) .06 (.66) 

Narrow Foot in Front .08 (.85) .33 (.59) 

Lowest 
Current Current -.29 (.61) .52 (.40) 
Current Inline -.83 (.28) .81 (.21) 

The movement patterns produced for the upper limb did not distinguish 

between stance positions for this participant. In the lower scoring stances wrist 

flexion and extension counteracted movements of the shoulder for every shot (-.55 

±.28). However, correlations between the wrist and pistol differed for every shot 

and  so there was no consistent pattern to explain how horizontal pistol movement 

was controlled.    In  one  of  the  higher  scoring  stances  (Narrow  Foot  in  Front) 
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the  wrist contributed to pistol movement for all shots (0.9  ±.09), but this 

consistent pattern  was not evident for the other high scoring position (Wide 

Current).  Movement patterns of the upper limb were highly consistent for the 

lower scoring stance positions, as shoulder movement counteracted mediolateral 

torso sway (Current Current: .97 ±.04; Current Inline: .97 ±.04), which was in turn 

counteracted by movements of the wrist (Current Current: -.69 ±.38; Current Inline: 

-.77 ±.35). As such, every shot produced sway away from the target, shoulder 

abduction and radial deviation. This consisent performance was not evident for the 

higher scoring stances, for which there were no clear movement patterns to 

indicate how vertical pistol movements were controlled. 

12.3.6 Case Study: Participant 3 – Performance Variability 

Positional variability of the torso and pistol was smaller for the highest than 

the lowest scoring stance positions (Table 12.10). No differences were observed 

between stance positions for the positional variability of the upper limb (Appendix 

4.10). Movement variability did not distinguish greatly between the highest and 

lowest scoring stances  for any movement of the torso, upper limb or pistol 

(Appendix 4.11). 

Stance position had clear effects on vertical positional and  movement 

variability (Appendix 4.12 and 4.13). Positional variability of the torso, shoulder and 

pistol were each smaller for the lowest scoring positions (Table 12.10). No clear 

difference between stances was evident for positional variability of the wrist. 

The highest scoring stances produced a greater degree of movement 

variability for the shoulder, wrist and pistol than for the lowest scoring stance 

positions (Table 12.11).  Furthermore, whilst the degree of movement variability for 

the wrist and  pistol was relatively consistent throughout the final second in the 

lower scoring positions, variability increased prior to the shot for the higher scoring 

stances (Appendix 4.13). 



Table 12.10 Median positional variability over the final second before the shot for participant 3. 

Movements affecting horizontal 
pistol motion (mRad) 

Movements affecting vertical 
pistol motion (mRad) 

Highest 

Lowest 

Table 12.11. Median movement variability over the final second before the shot for participant 3. 

Movements affecting horizontal 
pistol motion (mRad) 

Movements affecting vertical pistol 
motion (mRad) 

Highest 

Lowest 

1
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A-P Torso
Sway

Shoulder 
Flexion/ 
Extension 

Wrist 
Flexion/ 

Extension 

Pistol M-L Torso
Sway

Shoulder 
Abduction/ 
Adduction 

Wrist Ulnar/ 
Radial 

Deviation 

Pistol 

Wide Current 1.23 
19.21 4.43 

16.97 4.25 19.50 12.61 3.44 

Narrow Foot in Front 2.49 72.11 4.69 16.44 8.11 16.25 4.72 6.73 

Current Current 6.32 18.17 3.86 13.31 3.54 9.76 9.11 1.21 

Current Inline 5.93 23.17 5.35 8.61 2.16 12.80 5.48 1.36 

A-P
Torso 
Sway 

Shoulder 
Flexion/ 
Extension 

Wrist 
Flexion/ 

Extension 

Pistol M-L Torso
Sway

Shoulder 
Abduction/ 
Adduction 

Wrist Ulnar/ 
Radial 

Deviation 

Pist 
ol 

Wide Current 0.32 1.97 
0.59 

1.28 
0.18 

0.64 1.24 0.82 

Narrow Foot in Front 0.77 1.09 0.80 2.48 0.26 0.51 1.40 0.88 

Current Current 0.70 2.14 0.63 2.14 0.24 0.30 0.36 0.38 

Current Inline 0.73 0.68 0.59 1.32 0.06 0.47 1.14 0.40 
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12.4 Discussion 

The objectives of this study were to identify whether stance position had a 

significant effect on shooting success, and to determine the mechanisms behind a 

successful shooting performance. These were achieved by comparing the scores 

achieved and range of movement produced in each stance position, and by 

comparing movement coordination and performance variability between the highest 

and lowest scoring positions. 

Group analysis identified significant differences between the scores achieved 

in different stance positions, highlighting the need for pistol shooters to manipulate 

stance position in training to determine the most effective position. The importance 

of selecting the optimum stance position was particularly apparent given that the 

lowest score was achieved using participants’ Current stance. However, as 

anticipated from studies 1 – 3, group analysis did not fully reflect the response of 

any participant to the modifications in stance position. Only one participant 

produced their lowest score when using their Current stance, and each participant 

achieved their highest score in a different stance position. For each participant the 

variation in score between stances was greater than the variation within each stance 

position. Thus, changes in score appear to be a result of modifications to stance 

position rather than the natural variation that occurs between shots. This led to the 

acceptance of the first hypothesis which stated that stance position would 

significantly affect score, and that the most successful position would vary between 

participants. Thus, a single optimal stance position cannot be recommended for all 

shooters. This finding contradicts the current, group-based stance recommendations 

provided by the majority of coaching aids, which simply suggest a shooting stance 

where the feet are positioned approximately shoulder width apart (Antal & 

Skanaker, 1985; Leatherdale & Leatherdale, 1995; National Rifle Association of 

America, 2008; Yur’yev, 1985).  This is clearly a topic  which deserves more detailed 

consideration by athletes and coaches, particularly given the small changes in stance 

width that brought about the significant changes in score. This was most evident for 

participant 1 for whom simply decreasing mediolateral stance width by 6 cm 
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produced the difference between the lowest and highest score  These small changes 

in position were enough to influence patterns of movement coordination and 

variability, and ultimately affect the scores achieved. 

Currently, most previous research has examined the effects of mediolateral 

stance position on stability (Day et al., 1993; Goodworth & Peterka, 2010; Winter et 

al., 1998) and shooting performance (Hawkins & Sefton, 2011), but little 

consideration has been given to the effects of anterior-posterior stance position. 

The current  research has therefore provided a novel insight into the effects of 

anterior-posterior stance width on shooting performance. The importance of 

anterior-posterior stance position was most apparent for participant 4, who 

achieved all three top scores using the Foot in Front stance, and for participant 3, 

for whom three of the top four scores were achieved using the Foot in Front 

position. These findings clearly highlight the need for shooters to consider both 

mediolateral and anterior-posterior stance widths when selecting their optimal 

stance position. 

Whilst score was clearly affected by the changes in stance position, no 

participant produced any significant differences in range of movement of the torso, 

upper limb or pistol between stances. This non-significant finding may be related to 

the findings of Hawkins and Sefton (2011) who reported that pistol stability 

decreased with mediolateral stances wider than 75 cm. All stance positions used in 

the current research were narrower than 75 cm; the Current mediolateral stance 

widths of participants did not exceed 38.0 cm, and even the widest of the modified 

stance positions was only 47.5 cm. Thus, when stance widths are narrower than 75 

cm, other performance-related variables that are more sensitive to the changes in 

stance  position must cause the changes in shot score. 

The non-significant differences between stance positions in the range of 

movement recorded for the torso, upper limb and pistol was unexpected given the 

findings of the majority of previous research (Day et al., 1993; Winter et al., 1998) 

that has investigated stability of the centre of mass and limb movements in quiet 

stance. Each study used stance widths more similar to those recorded in the current 



193 

study (0 – 32 cm and 14 - 42 cm respectively), and reported that stability decreased 

for narrower stance widths.  There are a number of small, but potentially important, 

differences between quiet stance tasks and shooting that may cause differences in 

the effects of stance position. For instance, Day et al. required participants to focus 

on a blank  screen whilst completing quiet stance tasks. Postural stability during 

similar tasks to those used by Day et al. has been reported to be lower than tasks 

with more complex vision requirements (Stoffregen, Pagulayan, Bardy, & Hettinger, 

2000), such as sighting the target in pistol shooting. Research has also reported that 

postural stability is lower for tasks that require an internal focus, such as quiet 

stance tasks, than for those with an external focus, such as pistol shooting (Wulf, 

Mercer, McNevin, &  Guadagnoli, 2004). Consequently, the increased stability for 

more complex tasks may explain the contrasting findings of pistol shooting and 

quiet stance research. Thus, the effects of stance width on shooting performance 

should be considered separately to the effects on quiet stance tasks, despite the 

seeming similarities in stability requirements. 

A potential explanation for the differences in score achieved in different 

stance positions is that, at an elite level, it is not the amount of movement, but the 

degree of variability and the coordination of the movements of the upper limb and 

pistol, that most influence shooting success (Bradshaw et al., 2007; Davids et al., 

2003; Latash et al., 1999). To investigate whether these variables determined the 

success of a stance position, two participants were selected for comparisons 

between the highest and lowest scoring stances. Any changes in movement 

coordination and variability can be used to indicate the mechanisms behind a more 

successful stance position. 

The effects of stance position on movement coordination and variability 

differed between the two participants. For participant 1, the most successful stance 

positions resulted in horizontal pistol movements counteracting anterior-posterior 

torso sway to maintain a consistent position of the pistol on the target. Mediolateral 

torso sway was more important for participant 3, as the lowest scores were achieved 

in the stance positions where sway contributed to vertical movements of the pistol. 

Such differences in the effects of sway on performance indicate why the  optimal 
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stance position varies between participants. The changes in position required to 

influence torso sway are likely to differ between anterior-posterior and mediolateral 

sway movements. Currently, conflict exists within the literature regarding the effects 

of mediolateral stance width on anterior-posterior sway (Day et al., 1993; 

Winter,1990), and this should be examined in more detail in future research.  By 

examining  the effects of a wider range of stance positions on body sway it should be 

possible to determine whether mediolateral stance position can influence anterior-

posterior sway, or whether anterior-posterior stance position must also be 

manipulated. 

Coordination of upper limb movements also determined the success of a 

stance position. For participant 1, higher scores were achieved when horizontal 

pistol movements were controlled by interactions between the torso, shoulder and 

wrist. A variety of movement patterns were produced depending on the relationship 

between the torso and the shoulder. Movement patterns in the lower scoring 

stances were less variable, as wrist movement primarily controlled the motion of 

the pistol. The coordination of vertical upper limb movements were varied for the 

higher scoring stances, and the presence of the same two movement patterns in 

each of the lowest scoring positions indicate that patterns that involve the shoulder 

counteracting mediolateral torso sway are detrimental to performance. 

In contrast to participant 1, the coordination of upper limb movements used 

by participant 3 to control the horizontal position of the pistol did not differ greatly 

between the highest and lowest scoring stances. Instead, the movements used to 

control the vertical pistol position had a greater influence on success. One 

predictable movement pattern produced for the lowest scoring stances was sway 

away from the target, shoulder adduction and radial deviation of the wrist. 

Movements varied between shots for the highest scoring stances, making it difficult 

to identify any common movement patterns. 

The finding that more successful stances are often associated with more 

variable movement patterns concurs with previous research, particularly Schorer et 

al. (2007), who reported that the ability to adapt a performance can enhance 
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success. Such adaptations in performance can help to maintain a consistent task 

outcome between trials (Gorniak et al., 2008; Scholz & Schöner, 1999; Tseng et al., 

2002). These findings also provide support for Hwang et al. (2006) who stated that 

more stable stance positions result in a decreased coupling of the upper limb, and 

therefore an improved ability to adapt a performance.   The    ability to adapt the 

movements of the torso and upper limb was most important when controlling 

horizontal  pistol movement for participant 1, and vertical pistol movement for 

participant 3.  In  contrast the group-based findings of Pellegrini et al. (2002) 

suggested that the upper limb moves as one segment when controlling horizontal 

movements but produces more complex movement patterns when controlling 

vertical movement. Instead, methods of controlling pistol movement vary between 

individuals, again explaining  why the optimal stance position will likely vary 

between shooters. 

The amount of variability also differed between stance positions, providing 

further insight into the processes that determine a successful stance position. 

Positional variability of horizontal pistol movements was smaller for the most 

successful stances. Thus, both participants reproduced the position of the pistol 

more closely between shots in the highest scoring stance positions. This corresponds 

with the greater number of movement patterns produced for the upper limb in the 

higher scoring stances, and further reflects the increased ability of the movement 

system to adapt a performance, thereby maintaining a stable task outcome. These 

findings support existing research that states that when movement coordination is 

more variable, the outcome will be more consistent for highly skilled performances 

(Wagner, Pfusterschmied, Klous, von Duvillard, & Müller, 2012; Wilson et al., 2008). 

These findings support both the second and third hypotheses, that higher scoring 

stances would have a greater ability to adapt movement patterns of the upper limb, 

resulting  in smaller pistol variability. 

Further differences between stance positions were apparent when 

comparing the variability of movements affecting vertical pistol motion for 

participant 3. Greater positional variability of the torso and shoulder was recorded 

for the higher rather than lower scoring stance positions. This reflects previous 
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findings concerning the principle of abundancy, whereby greater variability of 

movement components result in a more consistent task outcome (Button, Macleod, 

Sanders, & Coleman, 2013; Tseng et al., 2002). This was accompanied by greater 

movement variability of the shoulder, wrist and pistol for the most successful 

stances. Increased movement variability can reflect  a greater number of 

submovements produced during the final second before the shot, which  represent 

fine  movement  control  used  to  increase  accuracy  at  the target (Dounskaia et al., 

2005; Fradet, Lee, & Dounskaia, 2008). The use of submovements should result in a 

greater degree of control over pistol movement prior to the instance of the shot. 

The finding that the changes in movement coordination and variability differ 

for each participant is unsurprising, given the individual nature of shooting 

performances discussed throughout this thesis. Whilst intra-individual analysis of 

coordination and variability had not previously been examined for pistol shooting, 

the current findings agree with those from a wide range of other activities; from 

simple tasks such as pointing (Domkin et al., 2002) and walking (Preatoni et al., 

2010), to more complex tasks such as triple jump (Wilson et al., 2008). Thus, it is 

important that when evaluating elite pistol shooting technique, the performance of 

each shooter is analysed individually. This supports Bradshaw et al. (2007) who 

stated that whilst many coaches and athletes attempt to follow one, optimal, model 

of performance, success should instead be achieved using a flexible pattern of 

movements. Individual analysis is particularly important for a sport such as pistol 

shooting, where exceptionally small changes in performance can greatly influence 

success. Thus, reliance on the results of group analysis without consideration of 

individual performance traits could in fact hinder, rather than enhance, 

performance. Analyses such as those made here should be made available to 

coaches and athletes (Langdown et al., 2012) to make it possible for athletes to 

further develop technique without the traditional focus on recreating one, optimal, 

performance. 

The comparisons made in this research have clearly identified the 

importance of stance position to elite precision pistol shooting performance. There 

are limitations to the method that should be acknowledged. Due to the nature of 
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each  testing session, only 10 shots were completed in each stance position. This 

ensured that testing could be completed on a single day, and remain within an 

acceptable number of shots so that performance did not decline as a result of 

fatigue. This method appeared successful, as demonstrated by a Spearman’s rank 

correlation which detected no significant correlations between trial order and the 

scores achieved for either the group or individual participants. Future research 

should now examine the effect of stance position on the location of the aim point 

on the target.  Whilst the current research has identified how changes in 

coordination and variability affect movement of the pistol, analysis of the aim point 

will determine how this affects the exact location at which the pistol is aiming. This 

analysis was not possible here, owing to interference between the motion analysis 

and opto-electronic shooting systems,  but future research using the new video-

based shooting systems should now examine this in more detail. This research 

should also consider the effects of stance angle on performance. Stance angle, 

defined as the angle of turnout of the toes in relation to the heel when measured 

along the long axis of the feet, has previously been reported to have significant 

effects on shooting performance (Hawkins, 2013), and future research should 

consider whether the optimal angle varies depending on the stance width selected. 

12.5 Conclusion 

Stance position had a significant effect on precision pistol shooting success, 

and is clearly something that requires more consideration than current coaching 

manuals provide. The optimal stance position varied between participants, 

indicating that athletes must consider which stance is most effective for their 

personal performance, taking into account both mediolateral and anterior-posterior 

foot position. The mechanisms behind any differences in performance varied 

between individuals, but the more successful stances often demonstrated a greater 

ability to adapt the movements of the torso and upper limb, resulting in a more 

consistent position of the pistol. Thus, whilst the specific movement patterns and 

the degree of variability produced may be beyond that which a shooter can 
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consciously control, manipulating stance position is an effective way of influencing 

these variables to enhance success. Finally, given the individual variation in the most 

effective stance position, and its specific effects on movement coordination and 

variability, simply following a recommended technical model, as often provided in 

coaching manuals, will not be appropriate for most shooters who fall outside the 

traditional ‘average’ performance. 
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Chapter Thirteen 

Summary of Findings, Practical Applications and Recommendations for Future 

Research 

This thesis has contributed to existing knowledge of the kinematic variables 

associated with elite pistol shooting performances. It has enhanced understanding of 

the modern pentathlon combined event, particularly the non-significant effects of 

time constraints and running phases on shooting performance. It has also produced 

a more detailed understanding of the methods used to control movement of the 

pistol in precision shooting, and the importance of stance position to shooting 

success.  The  first three studies examined shooting performance in the modern 

pentathlon combined event, and investigated: 

- the changes in performance with the move from precision shooting to the

combined event;

- the effects of the 70 s time limit within each shooting series on shooting

performance; and

- the effects of each 1 km running phase on performance in subsequent shooting

series.

The focus of the final two studies was modified from combined event to

precision shooting. These studies investigated the mechanisms behind successful 

shooting performances, and potential techniques to further enhance success. This 

was  achieved by examining: 

- the movement coordination and variability of the torso and upper limb, and

how they affect horizontal and vertical movements of the pistol; and

- the effects of changing stance position on shot score, movement coordination

and variability.
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13.1 Summary of Findings 

No previous research had compared performance between precision and 

combined event shooting, and so Study 1 (Chapter 5) investigated the changes in 

performance introduced by the rule change in modern pentathlon. The 

performances of pistol shooters and modern pentathletes were compared under 

precision and combined event conditions and, contrary to the hypothesis, the most 

successful precision shooters were not the most successful in the combined event. 

This was demonstrated by non-significant differences between pistol shooters and 

modern pentathletes in the combined event, despite significantly higher scores, and 

smaller movements of the pistol and centre of pressure (p<.05) for pistol shooters 

when precision shooting. The non-significant differences between the two groups in 

the combined event were a result of significantly decreased scores and aiming time, 

and significantly increased pistol and centre of pressure movements (p<.05), in 

comparison to precision shooting. Differences in performance between the two 

events were further demonstrated by different variables being significantly 

associated with score in the two events. For example, for one participant shot score 

was most highly  correlated with pistol movements in precision shooting, and with 

aiming time in the combined event. Different variables being associated with score 

meant that the second hypothesis was accepted, and highlighted the new 

performance requirements of the combined event. 

The first study examined performance in only the first shooting series, prior 

to the start of the running phases. No research had investigated the effects of either 

the 70 s time limit or the running phases on the kinematics of combined event 

shooting. Thus, studies 2 and 3 provided novel investigations into combined event 

shooting performance by incorporating the second and third shooting series into the 

analysis. 

Study 2 (Chapter 6) investigated the effects of the 70 s time limit by 

comparing performance between the first six shots within each shooting series. The 

hypothesis was rejected, as participants maintained consistent performances 
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throughout each series despite a gradually diminishing time  period  in  which  to 

achieve five hits  on  target.  Consistent performances were produced regardless of 

whether a participant required less than 30 s, or the full 70 s, to complete a series. 

Participants maintained consistent aiming times throughout each series, which 

resulted in non-significant differences in shot score and movements of the pistol and 

centre of pressure (p>.05). Thus, the 70 s time limit had a limited effect on shooting 

performance. Correlations revealed that aiming time and pistol and centre of 

pressure movements accounted for between 57% and 88% of changes in score. This 

supported the findings of Study 1 that other variables must also affect shooting 

success. 

Study 3 (Chapter 7) examined the effects of each 1 km running phase by 

comparing shooting performance between each of the three shooting series. The 

hypothesis was rejected, as each running phase did not appear to have any negative 

influence on performance in subsequent shooting series. Despite an increasing 

reliance on anaerobic metabolism following each running phase, there were no 

significant differences in aiming time, score, or movements of the pistol or centre of 

pressure between shooting series (p>.05). 

A key finding from each of the first three studies was the individual nature of 

pistol shooting performance. Results from group analysis were used to indicate how 

performance changed between precision and combined event shooting, and 

between each shooting series. These results rarely reflected any individual 

participants’ response to the shooting task. For example, group analysis in Study 3 

demonstrated that average scores varied by just 0.2 points between each series. This 

was in contrast to the participants selected as case studies, including one who 

experienced a decrease in score with every series, and another who experienced a 

reduction of 1.8 points between series two and three. Individual variation from the 

group median was also evident for aiming time and movements of the pistol and 

centre of pressure. These characteristics of an individual’s shooting technique are 

masked by the use of the group median, so intra-individual methods of analysis were 

selected as the primary method of analysis for the final two studies. 
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The first three studies identified that variables other than movements of the 

pistol and centre of pressure must influence success in pistol shooting. 

Consequently, the final two studies provided a more detailed analysis of the 

movements produced when  shooting than has been achieved in previous  literature. 

Study 4 (Chapter 11)used a three-dimensional motion analysis system to analyse the 

coordination and variability of movements of the torso, upper limb and pistol. 

Horizontal movements of the pistol took place in the opposite direction to anterior-

posterior sway of the torso for most participants (average cross-correlation: -.84 

±.08), thus enabling the maintenance of a consistent position of the pistol on the 

target. These opposing movements were produced by an interaction between the 

shoulder, wrist and pistol, but the exact movement patterns varied between 

participants. Mediolateral torso sway was less important to performance (average 

cross-correlation: .18 ±.33), as only one participant demonstrated a predictable 

relationship between torso sway and vertical pistol movements. Movement patterns 

varied between shots for the other participants, demonstrating that pistol shooters 

have developed effective synergies between movements of the torso, pistol and 

upper limb to produce highly consistent performances. This study provided an in-

depth descriptive analysis of precision shooting performance, but further research 

was required to determine how coordination and variability could be modified to 

enhance success, and make the findings of practical use to pistol shooters. 

The final study (Chapter 12) applied the methods and findings of Study 4 to 

produce a novel investigation into the effects of mediolateral and anterior-posterior 

stance position on shooting performance. The hypothesis, that stance position 

would have a significant effect on shot score, was accepted (p<.05). Group analysis 

indicated that the lowest score was achieved using participants’ current stance 

position. In contrast, intra-individual analysis identified that the position which 

resulted in the highest or lowest score varied between participants, and only one 

participant  produced their lowest score using their current stance. The processes 

behind the changes in score, as quantified by changes in movement coordination 

and variability, also differed between participants. One participant achieved their 

highest scores for the stances where anterior-posterior sway took place in the 
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opposite direction to horizontal pistol movement, and where coordination of upper 

limb movement was more variable. Mediolateral torso sway was more important for 

another participant, who achieved lower scores in the stances where torso sway 

contributed to vertical pistol  movement.    Both  participants  achieved  higher 

scores  when  the    horizontal position of the pistol was less variable. Thus, this 

study demonstrated how changes to stance position can be used to modify the 

variables which affect performance, and further enhance the success of elite pistol 

shooters. 

13.2 Key Findings and Practical Applications 

Key findings from this research have practical applications for both modern 

pentathletes and precision pistol shooters. Findings from the combined  event 

research in studies 1-3 can be used by modern pentathletes to aid both training and 

competition. These findings, and their subsequent implications for performance, 

include: 

- ability in precision shooting does not guarantee success in the combined event

(Study 1, Chapter 5). Modern pentathletes therefore need to develop  new

training methods to adapt to the increased speed of shooting associated with

the combined event. Particular consideration should be given to how quickly an

athlete can shoot before accuracy is compromised;

- shooting performance does not change significantly within each series despite a

gradual decrease in heart rate (Study 2, Chapter 6). This finding corresponds

with previous research into the relationship between heart rate and pistol

shooting (Brown et al., 2013), but is in contrast to the effects of exercise on

biathlon shooting (Hoffman et al., 1992). Thus, using techniques such as

reducing running speed prior to each shooting series will not enhance shooting

performance; and

- shooting performance does not change significantly following each 1 km running

phase (Study 3, Chapter 7). This provides support for existing combined event
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research (Le Meur et al., 2010), and has two potential implications for 

performance. One is that, given the similarities in performance, shooting 

training  in isolation could be effective in addition to  recreating the entire 

event.  Given that all previous research suggests that performance should 

decline following exercise, it  is surprising that  a similar effect  was not 

observed  in  the  combined event. Thus, a second implication is that shooting 

performance in the first series was already poor, and therefore did not decline further 

in series two and three. Arguably, this may be due to the negative effects of pre-

competition anxiety, which could be greater than those associated with exercise. 

Exercise can reduce the effects of anxiety (Nibbeling et al., 2014), and thus the impact 

of anxiety on performance could be reduced in series two and three.  Whilst not the 

focus of  this research, evidence from the increase in heart rate at the beginning of the 

first shooting series, which was not present in series 2 or 3, suggests that these 

negative anxiety effects may be present. Athletes could consider methods to enhance 

shooting performance in the first series, such as using pre-event anxiety reduction 

techniques. This has the potential to improve shooting performance in series one, thus 

improving overall combined event time. 

Findings from the analysis of precision shooting in the final two studies can be 

used by pistol shooters and coaches to further enhance precision shooting success. 

These findings, and their corresponding performance implications are: 

- even minor changes in stance width can significantly affect the scores

achieved by elite pistol shooters. Pistol shooters should therefore consider

stance position in much greater detail than is currently provided in

coaching manuals. Shooters should consider both the mediolateral and

anterior-posterior position of the feet, as Study 5 (Chapter 12) revealed

that both have the potential to significantly influence performance. This

finding builds on previous pistol shooting stance research (Hawkins &

Sefton, 2011); and

- the optimal stance position, and the mechanisms behind any changes in

performance, vary between participants (Study 5, Chapter 12). Thus, pistol

shooters must examine the effect of stance position on their individual
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performance, rather than follow guidelines generalised for all shooters. 

Following group-based recommendations, such as those provided in 

coaching manuals,  is not sufficient if shooters wish to further enhance 

performance. This expands on existing stance position research in both 

shooting (Hawkins & Sefton, 2011) and balance tasks (Day et al., 1993; 

Goodworth & Peterka, 2010), which have recommended optimal stances 

based on group analysis of performance. 

Finally, key findings from this research also have important implications for 

researchers in the field of motor control. A common theme throughout this thesis 

has been the importance of intra-individual analysis of performance, rather than 

the group-based designs that are commonly favoured in the literature. A 

consequence of group analysis is that extreme data points are masked by 

calculating the centre point of the data. Elite level performances, however, may 

often be characterised by these extreme values which lie outside the typical 

‘average’ performance.  For  instance, group analysis in Study 5 indicated that the 

highest scores could be achieved when participants used a Current Foot in Front 

stance position. Intra-individual analysis revealed that only one participant achieved 

their highest score using this position. Thus, important techniques to enhance 

performance for all other participants were hidden by the use of group data. Similar 

effects have previously been reported by Scholes et al. (2012) who questioned the 

validity of using group-based data when analysing knee mechanics during step 

landing. Currently, the use of group analysis is compounded by journal policy to 

accept primarily group-based designs. Until the current preference towards the use 

of group average data is changed, research will continue to mask important 

characteristics of both exercise and elite sports performance. 

13.3 Recommendations for Future Research 

This thesis has expanded current knowledge on both combined event and precision 

shooting performance.  There are now opportunities for future research to build on 

the current findings and investigate additional ways to enhance performance. One 
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particular consideration is the application of the techniques used in the final two 

studies (Chapters 11 and 12) to performance in the combined event. Given the 

significant effects of small changes in stance position on precision shooting 

performance, research should consider whether similar effects are apparent in the 

combined event.  An additional comparison in the combined event is the specific 

effect of exercise intensity. In studies 2 and 3 (Chapters 6 and 7), participants were 

instructed  to run at a similar pace to which they would in competition, but specific 

information concerning whether a constant pacing strategy was used, or whether 

participants reduced running speed prior to each shooting series, was not recorded. 

Previous research suggests that pacing strategies should not significantly affect 

shooting performance (Le Meur et al., 2012), but none has examined the specific 

effects of exercise intensity on the kinematics of combined event shooting. 

Future research should also expand on the effects of stance position on 

precision shooting performance by incorporating the effects of stance angle on 

shooting success. Stance angle has previously been reported to significantly affect 

shooting stability (Hawkins, 2013), but research has yet to consider the effects on 

score.  Study 5 (Chapter 12) revealed that the optimal stance position is produced by 

an interaction between mediolateral and anterior-posterior stance position, and so 

stance angle should be examined in relation to various stance widths.  Stance 

position and angle have the potential to influence other variables, such as velocity of 

centre of pressure movement, that were not examined in the studies within this 

thesis.  Research should therefore incorporate these additional variables into future 

analyses. 

The findings of this research are clearly most applicable to elite shooting-

based sport. There is also potential for the transfer of the methods used, particularly 

in the final two studies, to the wider population. A common consideration of existing  

research has been how stability changes with ageing (Demura, Kitabayashi, & Aoki, 

2008; Freitas & Duarte, 2012), or is affected by illness or disability (Mehdikhani, 

Khalaj, Chung, & Mazlan, 2014; Termoz et al., 2008). Much of this research has used 

discrete methods to analyse centre of pressure movement, and little has used more 

detailed methods, such as the analysis of movement coordination and variability. A 
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particular consideration for future research could be the effects of stance position 

on stability in clinical groups, something which has currently received limited 

attention in the literature. More in-depth analyses could enhance the understanding 

of the processes associated with ageing or balance disorders, and potentially lead to 

the development of new techniques or technology to aid individuals with balance 

impairments. 

13.4     Conclusion 

This thesis has improved the understanding of the kinematic factors associated with 

shooting performances in the modern pentathlon combined event and for precision 

pistol shooting. A key theme throughout all five studies was the individual nature of 

pistol shooting, and the importance of intra-individual analysis of performance. 

These findings are primarily of benefit to athletes competing in either modern 

pentathlon or precision shooting events. They will also be of interest to researchers 

investigating motor control and balance impairments in clinical populations, with the 

potential for transfer of some of the data collection and analysis methods to 

research in non- sporting disciplines 
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Appendix 1 – Centre of Pressure Calculations 

1.1 Equations used to calculate centre of pressure (CoP) location for 
each force Plate. 

Axis conventions: x = mediolateral; y = anterior-posterior; z = vertical 

1.2 Axis Convention used for each AMTI Force Platform. 

CoP(x): x coordinate of the centre of pressure, representing 

mediolateral movement. 

CoP(y): y coordinate of the centre of pressure, representing anterior-

posterior movement. 

Zoff : Vertical offset from the top of the plate to the origin of the force 
platform (origin set in the centre of each platform) 

Fx, Fy, Fz : Force along the X, Y and Z axis 

CoP  = 
 

∗ (−1) 

Equation 1.1. Calculation of mediolateral centre of pressure 
location for each force plate 

Equation 1.2. Calculation of anterior-posterior centre of pressure 

Zoff 
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1.3 Equations used to Calculate Whole Body Mediolateral Centre of Pressure 
(CoP𝑥𝑥) Location using the Values Obtained for each Force Plate in Appendix 1.1. 

a: Percentage of vertical force ) on force platform 1: 

b: 

c: 

d: 

Distance between CoP  location on each force plate: 

 −  

Displacement of whole body CoP from CoP : 

(1 − ) ∗ 

Overall body location in relation to origin of force platform 1: 

 +  

 1 = vertical force on force platform 1 

 2 = vertical force on force platform 2 

= coordinates of CoP on force platform 1 

= coordinates of CoP on force platform 2 
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1.4 Equations used to Calculate Whole Body Anterior-Posterior Centre of 
Pressure (CoP𝑦𝑦) Location using the Values Obtained for each Force Plate in 
Appendix 1.1. 

a: Percentage of vertical force ) on force platform 1: 

b: 

c: 

Distance between CoP𝑦𝑦 location on each force 
plate: 

 −  

Displacement of whole body CoP from CoP : 

(1 − ) ∗
d: 1: 

 +  

 1 = vertical force on force platform 1 

 2 = vertical force on force platform 2 

= coordinates of CoP on force platform 1 

= coordinates of CoP on force platform 2 
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Appendix 2.1a. Aiming time, score and pistol movement produced by participant 1 for each shot in every series. Data (shown in 
black) are presented in relation to the group median (shown in grey). 
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Appendix 2.1b. Centre of pressure movement produced by participant 1 for each shot in every series. Data  (shown in black) 
are  presented in relation to the group median (shown in grey). 
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Appendix 2.2a. Aiming time, score and pistol movement produced by participant 5 for each shot in every series. Data (shown in 
black) are presented in relation to the group median (shown in grey). 
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Appendix 2.2b. Centre of pressure movement produced by participant 5 for each shot in every series. Data  (shown in black) 
are  presented in relation to the group median (shown in grey). 
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Appendix 2.3a. Aiming time, score and pistol movement produced by participant 14 for each shot in every series. Data (shown in 
black) are presented in relation to the group median (shown in g 
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Appendix  2.3b. Centre of pressure movement produced by participant 14 for each shot in every series.   Data (shown  in black)  
are  presented in relation to the group median (shown in grey). 
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Appendix 3 – Angle Calculations and Individual Variability Graphs 

3.1 Each torso, upper limb and pistol angle was calculated using a    combination of 

trigonometric equations as follows: 

Movements in a vertical plane, perpendicular to the target: 

a = �(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1𝑧𝑧 − 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 2𝑧𝑧)2  + (𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1𝑥𝑥 − 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 2𝑥𝑥)2 b 

= �(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 2𝑧𝑧 − 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 3𝑧𝑧)2  + (𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 2𝑥𝑥 − 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 3𝑥𝑥)2 c = 

�(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1𝑧𝑧 − 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 3𝑧𝑧)2  + (𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1𝑥𝑥 − 𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 3𝑥𝑥)2

Angle C = ARCCOS 
𝑎𝑎2+𝑏𝑏2−𝑐𝑐2 2𝑎𝑎𝑏𝑏 

- If markers 1, 2 and 3 represent the C7, shoulder and elbow markers respectively,

angle C in this example is referred to as shoulder angle, and movement described

as either abduction or adduction. Mediolateral torso sway followed the same

equations, with the x coordinates substituted for y coordinates.

- Movements in a horizontal plane, parallel to the target, were calculated as

detailed, but with x and y coordinates replacing the x and z coordinates.

Marker 1 

Marker 3 

b
a 

Marker 2 
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Time before the shot (s) 

Appendix 3.2. (a) Positional and (c) movement variability of anterior-posterior torso sway and horizontal upper limb movements for 

participant 1. (b) Positional and (d) movement variability of mediolateral torso and vertical upper limb movements. Coloured lines 

represent the median angle over twenty shots and black vertical lines represent standard deviation. 
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Time before the shot (s) 
Appendix 3.3. (a) Positional and (c) movement variability of anterior-posterior torso sway and horizontal upper limb movements for 

participant 2. (b) Positional and (d) movement variability of mediolateral torso and vertical upper limb movements. Coloured lines 

represent the median angle over twenty shots and black vertical lines represent standard deviation. 
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Appendix 3.4. (a) Positional and (c) movement variability of anterior-posterior torso sway and horizontal upper limb movements for 

participant 3. (b) Positional and (d) movement variability of mediolateral torso and vertical upper limb movements. Coloured lines 

represent the median angle over twenty shots and black vertical lines represent standard deviation. 
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Appendix 3.5. (a) Positional and (c) movement variability of anterior-posterior torso sway and horizontal upper limb movements 

for participant 4. (b) Positional and (d) movement variability of mediolateral torso and vertical upper limb movements. Coloured 

lines represent the median angle over twenty shots and black vertical lines represent standard deviation. 
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Appendix 3.6. (a) Positional and (c) movement variability of anterior-posterior torso sway and horizontal upper limb movements for 

participant 5. (b) Positional and (d) movement variability of mediolateral torso and vertical upper limb movements. Coloured lines 

represent the median angle over twenty shots and black vertical lines represent standard deviation. 
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Appendix 3.7. Scores achieved by participants in official competitions close to the time of testing. 

Testing session 
(1st 10 / 2nd 10) 

96 / 92 

CSFC 
(2013) 

97 / 92 / 93 / 96 

SAPOC 
(2013) 

SAPOC 
(2014) 

CG 
(2014) 

EC 
(2014) 

94 / 92 / 92 / 87 94 / 94 / 90 / 91 

87 / 92 86 / 93 / 95 / 98 91 / 94 / 92 / 90 

92 / 92 90 / 92 / 94 / 94 89 / 90 / 93 / 93 75 / 88 / 92 / 96 90 / 92 / 91 / 88 

93 / 96 
92 / 92 / 89 / 93 

90 / 90 / 85 / 87 88 / 88 / 88 / 93 

92 / 85 
90 / 93 / 93 / 91 

92 / 91 / 89 / 93 

CSFC – Commonwealth Shooting Federation Championships 
SAPOC – Scottish Air Pistol Open Championships 
CG – Commonwealth Games 
EC – European Championships 

2
33 
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4.2 Scores and shot distribution achieved in each stance position for participant 2. 

Shot Distribution (mm) 
Stance Position Score 

* significantly different to Wide Foot in Front stance position (p<.007)

significantly different to Current Foot in Front stance position (p<.007)

Appendix 4 – Shot Score for Individual Participants and Case Study Graphs 

4.1 Scores and shot distribution achieved in each stance position for participant 1. 

Shot Distribution (mm) 
Stance Position Score 

Horizontal Vertical 

1 Narrow, Foot in Front 102.7 19 13 
2 Narrow, Current 100.1 20 29 
3 Current, Current 99.5 24 26 
4 Wide, Foot in Front 98.7* 30 21 
5 Narrow, Inline 97.0* 30 20 
6 Wide, Current 96.3*♦ 25 35 
7 Current, Inline 96.0*♦ 10 39 
8 Wide, Inline 93.9*♦ 33 29 

9 Current, Foot in Front 93.4 30 27 

* significantly different to Narrow Foot in Front stance position (p<.007)
◆ significantly different to Narrow Current stance position (p<.007)

1 Wide, Foot in Front 102.2 

Horizontal 

16 

Vertical 

21 

2 Current, Foot in Front 101.5 19 26 
3 Narrow, Inline 100.1 21 30 
4 Narrow, Current 99.8* 29 21 
5 Wide, Current 98.3 24 18 
6 Narrow, Foot in Front 97.6* 34 29 
7 Wide, Inline 96.6* 31 34 
8 Current, Inline 95.5* 22 30 
9 Current, Current 88.7*♦ 45 29 



235 

4.3 Scores and shot distribution achieved in each stance position for participant 3. 

Shot Distribution (mm) 
Stance Position Score 

* significantly different to Wide Current stance position (p<.007)

significantly different to Narrow Foot in Front stance position (p<.007) 
† significantly different to Current Foot in Front stance position (p<.007)

1 Wide, Current 102.8 

Horizontal 

16 

Vertical 

19 

2 Narrow, Foot in Front 101.9 21 18 
3 Current, Foot in Front 98.9*♦ 21 26 
4 Wide, Foot in Front 97.9*♦ 30 21 
5 Narrow, Inline 97.0*♦ 22 25 
6 Narrow, Current 96.8*♦ 26 30 
7 Wide, Inline 96.7*♦ 32 28 
8 Current, Current 96.1*♦ 31 26 
9 Current, Inline 95.0*♦†

 30 30 

4.4 Scores and shot distribution achieved in each stance position for participant 4. 

Shot Distribution (mm) 
Stance Position Score 

Horizontal Vertical 

1 Current, Foot in Front 100.5 21 18 
2 Narrow, Foot in Front 98.9 30 21 
3 Wide, Foot in Front 97.2 35 26 
4 Current, Inline 96.6 30 30 

Narrow, Current 96.6* 31 26 
6 Current, Current 96.5 21 26 

Wide, Inline 96.5* 22 25 
8 Narrow, Inline 96.1* 26 30 
9 Wide, Current 95.0* 32 28 

* significantly different to Current Foot in Front stance position (p<.007)



236 

4.5 Scores and shot distribution achieved in each stance position for participant 5. 

Shot Distribution (mm) 
Stance Position Score 

* significantly different to Narrow Inline stance position (p<.007) 

1 Narrow, Inline 99.4 

Horizontal 

17 

Vertical 

29 

2 Current, Current 97.8 34 18 
3 Wide, Inline 97.1* 25 26 
4 Wide, Current 96.8* 29 22 
5 Current, Inline 96.3* 33 33 
6 Current, Foot in Front 94.1* 30 30 
7 Narrow, Current 92.9* 22 39 
8 Narrow, Foot in Front 91.9* 36 39 
9 Wide, Foot in Front 88.6* 46 30 
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Time before shot (s) 

Appendix 4.6. Positional variability of anterior-posterior sway and horizontal upper limb movements over the final second for the highest 

scoring (a – Narrow Foot in Front; b – Narrow Current) and lowest scoring (c – Current Inline; d – Wide Current; e – Wide Inline) stance 

positions for participant 1. Coloured lines represent the median angle over ten shots and vertical black lines represent standard deviation. 
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Appendix 4.7. Movement variability of anterior-posterior sway and horizontal upper limb movements over the final second for the highest 

scoring (a – Narrow Foot in Front; b – Narrow Current) and lowest scoring (c – Current Inline; d – Wide Current; e – Wide Inline) stance 

positions for participant 1. Coloured lines represent the median angle over ten shots and vertical black lines represent standard deviation. 
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Appendix 4.8. Positional variability of mediolateral sway and vertical upper limb movements over the final second for the highest scoring (a 

– Narrow Foot in Front; b – Narrow Current) and lowest scoring (c – Current Inline; d – Wide Current; e – Wide Inline) stance positions for

participant 1. Coloured lines represent the median angle over ten shots and vertical black lines represent standard deviation.
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Appendix 4.9. Movement variability of mediolateral sway and vertical upper limb movements over the final second for the highest scoring 

(a – Narrow Foot in Front; b – Narrow Current) and lowest scoring (c – Current Inline; d – Wide Current; e – Wide Inline) stance positions for 

participant 1. Coloured lines represent the median angle over ten shots and vertical black lines represent standard deviation. 
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Time before shot (s) 
Appendix 4.10 Positional variability of anterior-posterior sway and horizontal upper limb movements over the final second for the highest 

scoring (a – Wide Current; b – Narrow Foot in Front) and lowest scoring (c – Current Current; d – Current Inline) stance positions for 

participant 3. Coloured lines represent the median angle over ten shots and vertical black lines represent standard deviation. 
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Appendix  4.11. Movement variability of anterior-posterior sway and horizontal upper limb movements over the final second for the 

highest scoring (a – Wide Current; b – Narrow Foot in Front) and lowest scoring (c – Current Current; d – Current Inline) stance positions for 

participant 3. Coloured lines represent the median angle over ten shots and vertical black lines represent standard deviation. 

L
o

w
e

s
t 

S
c
o

ri
n

g
 P

o
s
it
io

n
s
 

H
ig

h
e
s
t 
S

c
o

ri
n

g
 P

o
s
it
io

n
s
 

A
n
g
le

 (
m

R
a

d
) 2
42 



a b 

c d 

Time before shot (s) 
Appendix 4.12. Positional variability of mediolateral sway and vertical upper limb movements over the final second for the highest scoring 

(a – Wide Current; b – Narrow Foot in Front) and lowest scoring (c – Current Current; d – Current Inline) stance positions for participant 3. 

Coloured lines represent the median angle over ten shots and vertical black lines represent standard deviation. 
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Appendix 4.13. Movement variability of mediolateral sway and vertical upper limb movements over the final second for the highest 

scoring (a – Wide Current; b – Narrow Foot in Front) and lowest scoring (c – Current Current; d – Current Inline) stance positions for 

participant 3. Coloured lines represent the median angle over ten shots and vertical black lines represent standard deviation. 
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Abstract 
Despite the importance of the Combined Event to the modern pentathlon competition, little is known about performance in 

the event. This study aimed to (i) identify the key variables affecting Combined Event shooting performance, and the  extent 

to which these corresponded with those identified for precision shooting and (ii) investigate the impact of changing shooting 
format, and whether more successful precision shooters were also more successful in the Combined Event. Seven modern 
pentathletes and three pistol shooters completed precision and Combined Event trials. An opto-electronic shooting system 

recorded score and pistol movements, whilst force platforms recorded centre of pressure movements 1 s prior to every  shot. 

Intra-individual analysis revealed that the extent of associations between variables was participant-specific, highlighting the 
need for individual analysis of performance. No participants displayed matching associations between variables for precision 
and Combined Event shooting, emphasising the difference between performances in the two events. Both groups experi- 

enced significantly reduced scores, and increased pistol and body movements for Combined Event shooting (P < 0.05). 
Despite the pistol shooters’ greater precision shooting ability, no significant differences were evident between the groups ’ 
Combined Event  performances (P >          0.05). This implies that experience in one event does not guarantee  success in the 

other, indicating the importance of event specific   training. 

Keywords: combined event,  pistol  movement,  body sway 

Introduction 

Modern pentathlon has traditionally consisted of five 

separate disciplines: pistol shooting, fencing, swim- 

ming, horse riding, and running. A rule change in 

2009, however, resulted in the formation of a new 

discipline: the Combined Event, in which two exist- 

ing events, precision pistol shooting and the 3 km 

run, were merged. Athletes now complete the fol- 

lowing tasks within the Combined Event: 

20 m Run → Shooting Series 1 → 1 km Run → 

Shooting Series 2 → 1 km Run → Shooting Series 

3 → 1km Run 

In each shooting series, athletes attempt to hit five 

targets as quickly as possible within a maximum time 

limit of 70 s. Targets are 5.95 cm in diameter; 

equivalent to the 7 ring of a precision target. The 

number of shots taken within each series is unlim- 

ited, and athletes who hit all five targets before the 

time limit is reached can immediately begin the next 

running phase. In contrast, under previous precision 

rules, athletes aimed at a target with a 10 ring of only 

1.15 cm, and had 40 s available per shot. The 

Combined   Event   forms   the   final   stage   of   the 

competition, with the overall competition winner 

being the first to complete the final running   stage. 

Following the rule change, the focus of pistol 

shooting has changed from achieving high scores in 

a relatively time-unlimited environment, to an event 

where athletes attempt to complete each series as 

quickly as possible whilst maintaining sufficient 

accuracy. Le Meur, Hausswirth, Abbiss, Baup, and 

Dorel (2010) reported that shooting performance 

remains essential to success in modern pentathlon, 

with faster event times attributed primarily to greater 

shooting accuracy and not faster running phases. 

Correlations between rankings in each of the four 

disciplines and overall World Cup ranking revealed 

that Combined Event performance was more influ- 

ential to the overall result than swimming or fencing. 

Other than Le Meur et al. (2010), previous shoot- 

ing research has focused on precision shooting (Ball, 

Best, & Wrigley, 2003; Era, Konttinen, Mehto, 

Saarela, & Lyytinen, 1996; Heimer, Medved, & 

Spirelja, 1985; Mason, Cowan, & Gonczol, 1990). 

Most studies have identified two main factors affect- 

ing performance;  pistol  movement  and body sway. 
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a.burden@mmu.ac.uk

© 2013 Taylor &  Francis 
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Opto-electronic shooting systems have been used to 

measure movement of the pistol aim-point and the 

distance of the shot from the centre of the target. 

Centre of pressure measures have been used to 

represent body sway. 

Previous rifle shooting research has reported that 

higher ability shooters have smaller rifle and centre 

of pressure movements than lower ability shooters 

(Era et al., 1996; Heimer et al., 1985; Zatsiorsky & 

Aktov, 1990), although differences in technique 

between rifle and pistol disciplines mean these find- 

ings should be used carefully. Mason et al. (1990) 

and Ball et al. (2003) focused specifically on pistol 

shooting performance. Mason et al. reported that 

horizontal pistol movements of elite and junior shoo- 

ters accounted for 37% of the variability in horizon- 

tal accuracy, whilst vertical pistol movement 

accounted for just 13% of the variability in vertical 

accuracy. Anterior-posterior body sway accounted 

for just 8% of the variability in horizontal accuracy, 

while mediolateral body sway accounted for 40% of 

the variance in vertical accuracy. Thus, while both 

pistol and body movements influence accuracy to 

some extent, each has a greater impact on accuracy 

in one particular direction. This illustrates the 

importance of breaking down variables into direc- 

tional components rather than one resultant   value. 

Most previous studies have used group-based 

designs (Hoffman, Gilson, Westenburg, & Spencer, 

1992; Mason et al., 1990), however, Ball et al. 

(2003) included intra-participant analysis of elite 

shooters, with each type of analysis producing differ- 

ent results. Group analysis revealed that pistol move- 

ments were positively associated with accuracy, 

whereas intra-individual analysis identified  three 

out of five individuals with significant negative cor- 

relations between accuracy and  pistol  movements 

(P <0.05). Body sway was only significantly asso- 

ciated with accuracy for one participant. 

Consequently movement variables can clearly have 

both positive and negative impacts on score, with the 

specific effect varying between participants. 

Previous precision shooting research has provided 

useful information regarding levels of pistol and 

body movement associated with high level perfor- 

mers (Ball et al., 2003; Mason et al., 1990). These 

findings are, however, of limited relevance to the 

Combined Event. Previous research has identified 

that as movement speed increases, as is necessary 

with the Combined Event, accuracy decreases 

(Duarte & Freitas, 2005; Fernandez & Bootsma, 

2004; Goonetilleke, Hoffman, & Lau, 2009; 

Walmsley & Williams, 1994). Furthermore, as target 

size increases, movement speed also increases 

(Berrigan, Simoneau, &  Martin,  2006;  Fernandez 

& Bootsma, 2004). Therefore, the  greater  target 

size  and  reduced  shot  times  associated  with    the 
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Combined Event may influence shot accuracy when 

compared to precision shooting techniques, making 

it difficult to compare between events. This research 

indicates that accuracy may be sacrificed for speed, 

although most studies considering this phenomenon 

have analysed simple pointing tasks rather than more 

ecologically valid shooting performance. Research 

should, therefore, identify whether similar  effects 

are seen with the change from precision to 

Combined  Event shooting. 

Research aims and  hypotheses 

There are few research studies that have considered 

pistol shooting as it currently occurs in modern pen- 

tathlon. Therefore, the main aims of this research 

were to: 

(i) Identify key kinematic variables associated

with Combined Event shooting performance,

and determine whether these correspond to

those associated with the precision event;

(ii) Identify the impact of changing from precision

to Combined Event shooting, and whether

ability level in precision shooting influences

shooting performance in the Combined

Event.

To achieve the first aim, athletes’ shooting perfor- 

mance under both Combined Event and precision 

rules was monitored. Correlations between shot 

score, pistol movements, and body sway were used 

to identify any variables influential to success in 

either event. To achieve the second aim, perfor- 

mances of modern pentathletes and elite pistol 

shooters were compared between shooting condi- 

tions, and between groups to identify whether ath- 

letes of greater precision shooting ability also 

showed greater ability in the Combined Event. As 

this research considered changes in performance as 

a result of the altered shooting format, participants 

completed all shooting and running phases of the 

event, but only the first shooting series was ana- 

lysed. This removed the  additional  effects  that 

each running phase could have on performance in 

later series. 

There are three hypotheses for this research. First, 

the variables significantly associated with score will 

differ between precision and Combined Event shoot- 

ing due to the different shooting formats. Second, 

pistol shooters will achieve significantly higher scores 

and smaller pistol and body movements than the 

modern pentathletes in both events. Finally, both 

groups will experience increased movements and 

decreased scores with the Combined Event. 

Consequently the differences between groups will 

be smaller than for precision  shooting. 
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Methods 

Participants 

Seven Modern Pentathlon World Class Development 

athletes (3 male, 4 female) (mean age 17.3 ± 3.1 

years, mass 58.6 ± 7.6 kg), and three elite pistol 

shooters (3 female) (mean age 19.3 ± 4.2  years, 

mass 48.3 ± 5.6 kg), comprised the two participant 

groups. Throughout all testing sessions participants 

wore the clothes in which they would normally com- 

pete. All athletes used their own training/competition 

pistol (4.5 mm calibre compressed or CO2 single shot 

air pistol, weighing less than 1500 g). Written consent 

was obtained from all participants prior to testing, 

which was approved by the University ethics 

committee. 

Tasks 

Testing took place in a specially designed shooting 

range within the University’s Biomechanics 

Laboratory which met all International Shooting 

Sport Federation shooting regulations. Each partici- 

pant completed live fire shooting tasks under two 

conditions; precision rules, and Combined Event 

(CE) rules. For each testing session, participants 

stood behind a firing line 10 m from the target. A 

table was placed in front of the line on which parti- 

cipants rested the pistol, pellets, and any other 

equipment they were using. Under precision condi- 

tions participants completed 20 shots with a maxi- 

mum of 40 s per shot, aiming at a standard air pistol 

target (17 cm × 17 cm), and attempting to achieve 

the highest possible score. An opto-electronic target 

was positioned on the target to allow more accurate 

measurement of pistol movement and score. The 

commands “Load”, “Start”, and “Stop” were issued  

in accordance with modern pentathlon precision 

shooting regulations. The Combined Event condi- 

tion was completed in the same laboratory, but a 

Combined Event target with five targets was used, 

with the opto-electronic target positioned in front of 

the centre target. Each shooting series lasted 70 s 

with participants attempting to hit the centre target 

(5.95 cm diameter) five times within that period. 

Conditions were designed to replicate competition 

conditions, so when a participant successfully com- 

pleted the shooting series or reached the 70 s time 

limit, they continued with the subsequent running 

and shooting sections as they would in competition. 

Only the first Combined Event shooting series was 

analysed. 

Centre of pressure measurements 

Two AMTI OR6-7-2000 force platforms 

(Advanced  Mechanical  Technology,  Inc.  (AMTI), 

Massachusetts), each measuring 46.7 × 51.0 cm 

were used, with both platforms recording ground 

reaction force throughout the aiming period of each 

shot. The platforms were linked through a Data 

Translation 3002 12-bit A-D converter to an RM 

Expert 3010 computer, using AMTI Netforce 

(Version 2.1.0, Advanced Mechanical Technology, 

Inc.) software, sampling at 100 Hz, for data acquisi- 

tion. For both conditions, participants positioned 

themselves with one foot fully on each force plate 

whilst shooting. This made little or no change to 

their normal shooting stance. Vertical ground 

reaction force and centre of pressure co-ordinate  

data from each platform were exported through 

BioAnalysis software (Biosoft Version 2.3.0, 

AMTI), and used to calculate the centre of pressure 

location for the whole body during the 1 s prior to 

each shot. 

Pistol movements and shot location 

Pistol movements and shot score were recorded 

using a SCATT USB opto-electronic shooting sys- 

tem (SCATT, Moscow), linked to SCATT 

Professional  software  (version  5.63),  recording  at 

100 Hz. A microphone positioned near the pistol 

detected the noise from the trigger pull. This was 

recorded as a pulse on the centre of pressure trace 

via the DataTranslation 3002 A-D convertor, 

enabling synchronisation of the centre of pressure 

and pistol movement  data. 

 

Data analysis 

Decimal shot score was reported by the SCATT 

system to a maximum of 10.9. Trace Length, calcu- 

lated as the distance (mm) moved by the aiming 

point of the pistol on the target along the X (hori- 

zontal) and Y (vertical) axes was used to represent 

pistol movement. Aim-point refers to the precise 

location on the target at which the pistol is pointing. 

Therefore, trace length represented changes in aim- 

point location that were brought about by move- 

ments of the pistol. Trace length is a common mea- 

sure of pistol movement, used regularly within elite 

shooting training, which can accurately discriminate 

between different ability level athletes (Ball et al., 

2003; Mason et al., 1990). Consequently trace 

length was chosen as an appropriate measure of 

pistol movement for this initial evaluation of 

Combined  Event performance. 

Two factors, both separated into anterior-poster- 

ior and mediolateral components, were selected to 

represent centre of pressure movement: “range”, 

calculated as the difference between the maximum 

and minimum co-ordinates of the centre of pressure 

(mm); and “path length”, calculated as the    distance 
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travelled by the whole body centre of pressure. For 

each parameter, data were obtained for 1 s prior to 

trigger pull, in accordance with previous shooting 

research (Ball et al., 2003; Mason et al.,   1990). 

Statistical analysis 

Due to relatively small sample sizes, non-parametric 

tests were selected. Spearman’s rank order correla- 

tion coefficients revealed the extent of associations 

between score, pistol movements (trace length) and 

centre of pressure movements (range and path 

length). Correlations were performed for both  

groups and for each individual’s data using median 

values from each data set. A Wilcoxon test identified 

changes in score, pistol movements, and centre of 

pressure movements as a result of changing from 

precision to Combined Event shooting for both 

groups. A Mann-Whitney U test compared variables 

between the participant groups. For all comparisons, 

P < 0.05 was considered statistically significant. 

Results 

Group median values and the results of statistical 

comparisons between the two participant groups for 

each shooting condition are shown in Table I. Table 

II details the results of statistical comparisons 

between precision and Combined Event  shooting 

for each group. 

Shot score 

Pistol shooters achieved significantly greater scores 

than modern pentathletes under precision conditions 

(Table I), with a median score of 9.7 for pistol 

shooters, compared to 8.8 for modern pentathletes. 

All median precision scores for both groups were 

greater than 8.0, demonstrating that all    participants 

were capable of consistently scoring a “hit” on the 

Combined Event target (equivalent to scoring 7.0 or 

higher). Median scores reduced significantly for both 

groups when changing to Combined Event shooting 

(Table II), reducing by 1.1 points for modern pen- 

tathletes and 1.7 points for pistol shooters. This 

reduction was greater, but not significantly, for pistol 

shooters than modern pentathletes resulting in a non-

significant difference between groups of  0.3. 

Pistol movements 

Under precision conditions median horizontal trace 

length was significantly greater for modern pentath- 

letes than pistol shooters (Table I). When changing 

to Combined Event shooting, both groups experi- 

enced significant increases in horizontal trace length 

of 166 mm for modern pentathletes and 119 mm for 

pistol shooters (Table II). As a result, between-group 

differences became non-significant. 

Vertical trace length was also significantly greater 

for modern pentathletes than pistol shooters under 

precision conditions (Table I). Values significantly 

increased by 76 mm for modern pentathletes and 

120 mm for pistol shooters with Combined Event 

shooting (Table II). Again, between-group differ- 

ences became non-significant. 

Centre of pressure movements 

Under precision conditions, modern  pentathletes 

had significantly greater anterior-posterior and med- 

iolateral range and anterior-posterior path length 

than pistol shooters. Both groups experienced signif- 

icantly increased body sway for Combined Event 

conditions (Table II). Mediolateral and anterior- 

posterior range increased by 2.2 mm and 1.9 mm 

respectively for modern pentathletes. For pistol 

shooters,  mediolateral  and  anterior-posterior range 

Table I. Group medians and interquartile range (IQR) for all  dependent variables, and  statistical results of comparisons  between the 

modern pentathlon and pistol shooter    groups. 

Precision Combined  Event 

Group 

median (IQR) 

Group 

median (IQR) 

MP Pistol Statistic (U) p value MP Pistol Statistic (U) p value 

Score 8.8 (1.7) 9.7 (0.9) 8.0 0.003 7.7 (1.9) 8.0 (2.3) 6.0 0.571 

Horizontal TL (mm) 115.8 (18.5) 71.2 (28.8) 24.0 <0.001 281.9 (120.2) 190.4 (52.2) 2.0 0.071 

Vertical TL (mm) 132.8 (29.7) 88.4 (28.8) 53.0 <0.001 209.5 (72.1) 209.3 (50.6) 5.0 0.286 

M-L Range (mm) 3.6 (0.7) 2.6 (1.1) 10.0 0.006 5.8 (0.8) 8.0 (4.0) 2.5 0.060 

A-P Range (mm) 2.7 (0.8) 1.4 (0.7) 5.0 <0.001 4.6 (2.8) 4.1 (6.3) 8.5 0.488 

M-L PL (mm) 66.1 (30.9) 52.0 (11.7) 16.0 0.172 75.7 (15.1) 59.7 (26.6) 3.0 0.083 

A-P PL (mm) 32.4 (11.7) 24.7 (8.0) 7.0 0.015 49.3 (23.3) 35.7 (23.1) 5.0 0.190 

Group: MP = Modern pentathletes; Pistol = Pistol shooters; TL = Trace Length; PL = Path Length; M-L = Mediolateral; A-P = Anterior- 

posterior. 
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Table II. Statistical results of comparisons for each participant 

group between precision and Combined  Event  shooting 

conditions for all dependent  variables. 

MP Pistol 

Group: MP = Modern pentathletes; Pistol = Pistol shooters; TL = 

Trace Length; PL = Path Length; M-L = Mediolateral; A-P = 

Anterior-posterior. 

increased by 5.4 mm and 2.7 mm respectively. 

Consequently, between-group differences became 

non-significant. Between-group differences  

remained non-significant for mediolateral path 

length, with movement increasing by 27.7 mm for 

modern pentathletes and 17.0 mm for pistol shoo- 

ters. Differences also became non-significant for 

anterior-posterior path length, with movements 

increasing by 7.5 mm for modern pentathletes     and 

10.7 mm for pistol  shooters. 

Correlations between shot score and pistol and centre of 
pressure movement 

Under precision conditions, group analysis revealed 

one significant correlation with score for each group; 

mediolateral path length for  modern  pentathletes 

(rs = –0.386, P < 0.05, R2 
= 0.15) and vertical pistol

movements    for    pistol    shooters    (rs     = –0.408, 

P < 0.05, R2  
= 0.17). Intra-individual analysis  iden-

tified significant correlations between movement 

variables and score for three modern  pentathletes 

and all pistol shooters (Table III). Changes in centre 

of   pressure   movements,   particularly mediolateral 

path length, were commonly associated with changes 

in score for precision shooting, while pistol move- 

ments showed few significant correlations. 

Under Combined Event conditions, group analy- 

sis revealed no significant correlations with score for 

either group, and only two participants showed sig- 

nificant associations for intra-individual analysis 

(Table III). None of these associations were with 

centre of pressure path length despite the multiple 

correlations for precision shooting. No participants 

showed the same correlations for both shooting 

conditions. 

Correlations between pistol and centre of pressure 
movements 

Group precision shooting analysis revealed no sig- 

nificant associations between pistol and centre of 

pressure movement for pistol shooters. Significant 

correlations for modern pentathletes were between 

horizontal pistol movement and anterior-posterior 

path length (rs  = –0.385, P < 0.05, R2  
= 0.15),   and

vertical pistol movement  and  mediolateral  range 

(rs = –0.391, P < 0.05, R2 
= 0.15). Intra-individual

analysis (Table IV) significantly associated only one 

centre of pressure variable with pistol movements for 

each modern pentathlete and up to three for pistol 

shooters. Few modern pentathletes showed any sig- 

nificant associations so no clear trend was identified, 

while mediolateral centre of pressure movements  

had the greatest influence on pistol movement for 

pistol shooters. 

Combined Event group analysis revealed no sig- 

nificant correlations between pistol and centre of 

pressure movements for modern pentathletes, whilst 

pistol shooters had significant correlations between 

horizontal  trace  length  and both mediolateral range 

(rs = 0.886, P < 0.01, R2 
= 0.78) and anterior- 

posterior  range  (rs  =  0.829,  P  < 0.05, R2  
=  0.69).

Intra-individual analysis identified only one modern 

pentathlete  with  a  significant  correlation  between 

Table III. Significant intra-individual correlations with shot score under precision and Combined Event conditions. R
2  

values are included

in brackets. 

Event Group Participant Vertical TL Horizontal TL M-L Range A-P Range M-L PL

Precision MP 1 −.405** (0.16) 

3 .713* (0.51) 

5 .310** (0.10) 

Pistol 1 −.295** (0.09) 

2 −.294** (0.09) −.283** (0.08) −.373* (0.14) 

3 .592* (0.35) 

Combined Event MP 1 .949* (0.90) .949* (0.90) 

2 .949* (0.90) 

Group: MP = Modern pentathletes; Pistol = Pistol shooters; TL = Trace Length; PL = Path Length; M-L = Mediolateral; A-P = Anterior- 

posterior; *= significant correlations between variable and score at p < 0.01; ** = significant correlations between variable and score at  

p  < 0.05. 

Statistic (T) p value Statistic (T) p value 

Score 2 0.003 0 0.016 

Horizontal TL 0 <0.001  0 0.008 

Vertical TL 0 <0.001  0 0.008 

M-L Range 0 0.006  0 0.016 

A-P Range 0 <0.001  0 0.016 

M-L PL 0 0.172  0 0.016 

A-P PL 8 0.015 0 0.016 



pistol movements and body sway (Table V). In
accordance with group analysis, one pistol shooter
showed a significant association between horizontal
trace length and mediolateral range. These variables
were also correlated for this participant under preci-
sion conditions, but the strength of the association
was much greater for Combined Event shooting;
51% for Combined Event compared to 27% for
precision.

Discussion

This study aimed to identify the key variables affect-
ing shooting performance in the Combined Event,
and highlight any similarities with precision shoot-
ing. A further aim was to identify whether pistol
shooters who had a higher precision shooting ability
than modern pentathletes were also more successful
in the Combined Event.

Precision scores recorded for the pistol shooters
compared well with other elite groups (Ball et al.,
2003; Heimer et al., 1985; Mason et al., 1990; Tang,
Zhang, Huang, Young, & Hwang, 2008), supporting
their status as elite shooters. Modern pentathletes
scored lower than the pistol shooters in this study
and other elite groups, but higher than groups pre-
viously identified as less skilled shooters (Heimer
et al., 1985; Tang et al., 2008).

Group analysis revealed few significant associa-
tions between score and any other variable for either
shooting condition. Individual analysis identified a

greater number of significant correlations with score,
the strength and direction of which were participant
specific. Individual variation was particularly evident
for precision shooting, where six participants dis-
playing significant correlations with score were iden-
tified. Of these, one displayed an association
between score and pistol movements, with score
increasing as vertical pistol movement decreased.
Despite this movement accounting for over half of
the variation in score, no other participant displayed
any significant correlations between these two vari-
ables. All other associations were with centre of
pressure movements, most commonly with medio-
lateral range. Within these results, an increased med-
iolateral range was associated with greater scores for
two participants but reduced scores for three others.
The extent to which this movement influenced shot
score varied from 9% to 35% between participants.
Variation was also apparent for Combined Event
shooting, where despite three significant positive
correlations with score, none were with the same
movement variable. This supports the findings of
Ball et al. (2003) that group analysis masks impor-
tant individual trends. Consequently, the outcomes
of individual analysis will be considered as a means
of identifying key variables affecting performance.

The limited number of significant Combined
Event correlations means that no single variable
could be identified as most influential to Combined
Event performance. Under precision conditions only
one participant displayed more than one movement
variable significantly associated with score. This

Table IV. Significant intra-individual correlations between pistol and centre of pressure movements under precision conditions. R2 values
are included in brackets.

Group TL Participant M-L Range A-P Range M-L PL A-P PL

MP Horizontal TL 2 −.432** (0.19)
Vertical TL 3 −.405** (0.16)

4 −.402** (0.16)
Pistol

Horizontal TL 1 .340** (0.12) .438** (0.19)
2 .522* (0.27) .269** (0.07) .305** (0.09)
3 .575* (0.33) .404* (0.16)

Vertical TL 1 .424* (0.18) .281** (0.08) .438** (0.19)
3 .317** (0.10)

Group: MP = Modern Pentathletes; Pistol = Pistol Shooters; TL = Trace Length; PL = Path Length; M-L = Mediolateral; A-P = Anterior-
posterior; * = significant correlations between variables at p < 0.01; ** = significant correlations between variables at p < 0.05.

Table V. Significant intra-individual correlations between pistol and centre of pressure movements under Combined Event conditions.
R2 values are included in brackets.

Group TL Participant M-L Range A-P Range M-L PL A-P PL

MP Vertical TL 5 .949* (0.90)
Pistol Vertical TL 3 .821** (0.67)

Horizontal TL 2 .714** (0.51)

Group: MP = Modern Pentathletes; Pistol = Pistol Shooters; TL = Trace Length; PL = Path Length; M-L = Mediolateral; A-P = Anterior-
posterior; * = significant correlations between variables at p < 0.01; ** = significant correlations between variables at p < 0.05.
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highlights how other variables not investigated here, 

such as movement of individual body segments, 

must also influence performance. No participants 

displayed the same correlations for both conditions, 

demonstrating the new demands that the Combined 

Event has placed on athletes. In relation to the first 

aim, there are few similarities regarding key variables 

affecting performance in the two events. This differ- 

ence between events is particularly apparent when 

comparing mediolateral centre of pressure move- 

ments. These movements were commonly identified 

as having a significant influence on both shot score 

and pistol movements under precision conditions. In 

contrast, only two associations with mediolateral 

centre of pressure movements were evident under 

Combined Event conditions. This supports the 

hypothesis that the variables significantly associated 

with score would differ between the two shooting 

events. These findings imply that experience in one 

event does not guarantee success in the other, indi- 

cating the importance of Combined Event specific 

training. 

Intra-individual analysis also identified that body 

sway accounted for some, but not all of the variabil- 

ity in pistol movements, with centre of pressure 

movements accounting for up to 33% of the variance 

in pistol movement for precision shooting. This sup- 

ports the concept of a more complex system than 

simply centre of pressure movements being trans- 

ferred through the body to the pistol and ultimately 

reducing score (Ball et al., 2003; Pellegrini & 

Schena, 2005). While some correlations between 

pistol and centre of pressure movements were 

expected, it is unsurprising that these associations 

were not greater. Between the centre of pressure at 

ground level and the hand holding the pistol there 

are many potential sources of movement, such as 

movements of the upper extremity. These may affect 

pistol movement but not be represented by centre of 

pressure motion. This theory is supported by 

Pellegrini and Schena (2005) who reported that 

vertical arm movements  increased  from  proximal 

to distal segments. Furthermore, Arutyunyan, 

Gurfinkel, and Mirskii (1968) reported that pistol 

movement was not determined solely by postural 

stability,    but    was    further    influenced  by   the 

compensatory actions of the upper extremity joints. 

Strong correlations were identified between move- 

ment of the shoulder and wrist; the combination of 

which contributed to much of the pistol movement. 

Such findings demonstrate that while centre of pres- 

sure movements influence performance, they are not 

the only variable to consider. 

Future Combined Event research would benefit 

from increased participant numbers. A greater num- 

ber of significant individual correlations may 

become apparent, increasing the potential to 

uncover any factors influencing performance. 

Research should not only consider sources of varia- 

tions in pistol movement, but also which aspects of 

pistol movement are most influential to perfor- 

mance. This study  has  identified  that  the  amount 

of pistol movement can influence performance for 

some individuals, but research should now consider 

whether other factors, such as speed of movement 

are equally  important. 

Within each shooting condition, the performances 

of each participant group were compared to 

identify whether the greater precision shooting abil- 

ity of the pistol shooters was also evident in the 

Combined Event. The difference in precision 

ability was evident by the significantly higher scores, 

and smaller pistol and body movements of  the 

pistol shooters compared to modern pentathletes. 

Movements recorded for the pistol shooters were 

again more comparable  with  elite  shooters  (Ball  

et al., 2003), while modern pentathletes had similar 

movements to the elite and junior shooters of Mason 

et al. (1990) (Table VI). This supports past research 

which has reported greater ability shooters to display 

smaller pistol movements (Zatsiorsky & Aktov, 

1990), and has associated greater centre of pressure 

movements with greater pistol movement and lower 

scores (Ball et al.,  2003;  Era  et al.,  1996; Heimer 

et al., 1985). 

Under Combined Event conditions, score signifi- 

cantly decreased while pistol and some body move- 

ments significantly increased, for both groups. 

Consequently, scores were up to 2.0 points lower 

than all previous precision results, while pistol and 

centre of pressure movements were greater than all 

previous findings (Pellegrini & Schena, 2005;   Tang 

Table VI. Comparisons of movement variables with those from previous    research. 

Current Study 

MP Pistol Mason et al. (1990) Ball et al. (2003) 

Horizontal TL (mm) 115.8 71.2 108.9 76.1 

Vertical TL (mm) 132.8 71.3 89.2 70.7 

M-L Range (mm) 3.6 2.6 3.1 1.0 

A-P Range (mm) 2.7 1.4 3.3 1.9 

Group: MP = Modern Pentathletes; Pistol = Pistol Shooters; TL = Trace Length; M-L = Mediolateral; A-P = Anterior-posterior. 



et al., 2008) (Table VI). This finding supports the 

third hypothesis that the Combined Event would 

result in significantly increased movements and 

decreased scores, and emphasises the different per- 

formance requirements of the Combined Event. 

This was expected as increased target size means 

that success is determined by achieving any score 

above 7.0; i.e. significantly lower than all precision 

scores. Increased target size, alongside the removal 

of any incentive to hit the centre of the target, means 

athletes could attempt to shoot more quickly with 

less consideration of exact shot placement or redu- 

cing their movement which might negatively affect 

performance. Therefore some accuracy may have 

been sacrificed to increase shooting speed. Previous 

research into the speed-accuracy trade-off supports 

this change in performance, with tasks with greater 

target sizes associated with faster movements 

(Berrigan et al., 2006; Duarte & Freitas, 2005; 

Fernandez & Bootsma, 2004). Le Meur et  al. 

(2010) however, reported that the most successful 

Combined Event athletes had the shortest event 

times due to greater shooting accuracy and not 

quicker shot times or faster running phases. 

Increased accuracy meant that  athletes  achieved 

five hits in fewer shots, and could progress to the 

next running phase sooner than those who were less 

accurate. Consequently, minimising shot time may 

in fact be detrimental to performance. Less success- 

ful Combined Event athletes therefore need to deter- 

mine the appropriate level of trade-off between 

accuracy and speed. 

In this study, modern pentathletes’ performances 

changed dramatically with the change to Combined 

Event rules. Scores decreased for all individuals and 

group scores reduced by 1.1 points. Furthermore, 

despite the pistol shooters’ greater precision perfor- 

mances, there were no notable differences between 

groups in the Combined Event. This does not fully 

support the second hypothesis as pistol shooters were 

expected to achieve significantly greater scores in both 

events. This highlights the potential impact of the rule 

change, where athletes who were successful precision 

shooters will not necessarily be successful Combined 

Event shooters without specific training. Differences 

between conditions may also be a result of experience, 

where the pistol shooters had been shooting at a higher 

level than modern pentathletes in the precision event 

whereas neither group had any prior Combined Event 

experience. Future research with experienced partici- 

pants would be useful as additional associations 

between variables may become apparent. 

In conclusion, intra-individual analysis highlighted 

that while pistol movements and  body  sway  can 

both be key factors influencing shot score, the strength 

of associations between variables is individual-specific. 

Associations differed between precision and Combined 
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Event shooting for each individual, emphasising the 

different performance requirements of the two events. 

This conclusion is further supported by the lack of any 

significant difference between the performances of the 

two groups under Combined Event conditions despite 

the greater performance of the pistol shooters in the 

precision trials. Therefore, ability in precision shooting 

does not guarantee similar success in the Combined 

Event. This has important implications, as athletes who 

were successful under the old rules must find ways to 

adapt to the new demands of Combined Event shoot- 

ing in order to remain successful in modern 

pentathlon. 
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Figure 1. Heart rate from 1 participant throughout the combined event. This pattern is representative of the heart rate pattern for all participants. 

Table 1. Statistical comparisons from Friedman’s ANOVA (χ2) between the first 
six shots within each shooting series for all dependent variables (n = 17). 

Series 1 Series 2 Series 3 

Dependent variable χ2 P value χ2 P value χ2       P value 

† .370 3.59 .610 8.75 .119 

Inter-series comparisons 

’ 

Anteroposterior path length 9 

  Notes: * Pistol movement variables. 
† Centre of pressure movement  variables. 

Figure 2. Median group shot time (a), shot score (b), horizontal trace length (c) and vertical trace length (d). Data are taken from the first 6 shots within each series. 

  Score 7.61 .268 3.83 .574 9.59 .088 
Timings 4.95 .422 2.12 .833 9.53 .09 
Horizontal trace length* 0.76 .985 4.57 .495 1.62 .917 
Vertical trace length* 4.47 .513 2.19 .848 0.67 .990 

Mediolateral range† 6.51 .260 5.07 .408 3.81 .577 

Anteroposterior range† 1.74 .884 5.02 .413 5.75 .331 

Mediolateral path length† 3.09 .685 4.37 .498 5.06 .409 



Figure 3. Median group mediolateral (a) and anteroposterior (b) centre of pressure range, and mediolateral (c) and anteroposterior (d) path length. Data are 
taken from the first 6 shots within each series. 

Table 2. Comparisons of all dependent variables between each shooting series. 

Median group values (±IQR) 

Dependent variable Series 1 Series 2 Series 3 χ2 P value 

Maximum HR (bpm) Minimum 
HR (bpm) 

142 (15.5)a,b

112 (39.0)b
181 (13.0)a

150 (28.5) 
185 (9.3)a

153 (25.5) 
18.13 
12.81 

<0.001 
.002 

BLa concentration (mMol·L−1) 1.1 (1.3)b 5.9 (2.6)b 6.7 (2.8) 26.53 <0.001 
Shot time (s) 1.4 (0.1) 1.3 (0.1) 1.2 (0.1) 5.32 .070 
Shot score 7.2 (0.5) 7.0 (0.6) 7.2 (1.3) .93 .711 
Horizontal trace length  (mm) 272.6 (16.9) 227.9 (21.1) 248.2 (42.0) 2.18 .403 
Vertical trace length (mm) M-L 238.5 (16.8) 280.9 (31.1) 264.4 (13.3) 5.63 .062 
range (mm) 5.4 (0.7) 6.4 (0.9) 5.2 (0.8) .760 .714 
A-P range (mm) 5.8 (0.4) 6.5 (1.6) 5.4 (0.6) 1.06 .607 
M-L path length (mm) 5.6 (0.7) 5.5 (6.6) 5.9 (5.1) .462 .866 
A-P path length (mm) 1.7 (1.9) 1.8 (2.3) 1.9 (2.3) 4.76 .098 

Notes: HR = Heart rate, BLa = Blood lactate. 
M-L = Mediolateral, A-P = Anteroposterior. 
aSignificant reduction in heart rate within series (P  < 0.05). 
bSignificant difference between series (P  < 0.012). 
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−

−

−
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