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Abstract: 

It is a common theme in basic bone biomechanics and in biomechanical applications that much of 

the behaviour can be determined and is dictated by the level of strain, whether this pertains to bone 

physiology, bone remodelling, osseinduction, osseointegration or the development of damage. The 

development of damage, demonstrated by stiffness loss measurements, has already been reported in 

detail in the literature. However, the systematic study of the development of ‘plastic’ (irrecoverable) 
strains, which are associated with the inelastic mechanical behaviour of bone tissue has generally 

been overlooked. The present study compares the rates at which the elastic (εa) and plastic

components (εp) of strain developed during tensile, compressive, and shear fatigue in human

cortical bone of six individuals aged between 53 and 79 yrs of age. The overall hypothesis of this 

investigation is that there is a common underlying factor in the damage-related behaviour of bone, 

which may allow us to link together the various aspects of the damage related behaviour of bone. 

The rate of development of plastic strain (έp) and the rate of damage (έa) are described as a function

of the cycle number, the stress (), and/or stress normalised by the modulus of elasticity (). The

implications of our findings are discussed with respect to simple models/mechanisms, which may 

underlie the observed behaviour. 
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INTRODUCTION 

It is a common theme in basic bone biomechanics and in biomechanical applications which involve 

bone physiology and remodelling that much of the behaviour can be determined and is dictated by 

the level of strain. In orthopaedic implants for instance, the mechanical competence and density of 

the cancellous bone in contact with the implant 1-3 will determine through a strain mediated 

behaviour the chances for loosening and subsidence of the implant 4,5 and whether a costly revision 

operation is averted 6. Age related changes in bone matrix, experienced via either modified 

stress/strain behaviour, or a strain related bone deposition and bone induction may critically affect 

the chances for osseointegration. The strain level has also been implicated for the onset of damage 

in basic bone biomechanics where at a certain strain threshold microcracking ensues and the tissue 

demonstrates yield 7. Microcracking damage is associated with inelastic strain behaviour, which 
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shows itself in two ways: increasing elastic strain amplitudes and the development of ‘plastic’ 
(irrecoverable) strains. 

Previous studies have examined the systematic development and accumulation of damage in fatigue 

in both animal and human tissue 8-10 and in both cortical and cancellous bone 11,12. More recently the 

present authors have reported a similar systematic study of the development of the ‘plastic’ 
(irrecoverable) component of strain in human bone from individuals of various ages in fatigue 13,14. 

The irrecoverable component of strain has also been shown by these authors (at least in tension) to 

equal in both effect and nature the creep behaviour of the tissue 15. Strong associations have also 

been established between the ‘rate of damage’ (based on the rate of development of elastic strain 
amplitude) the ‘cycles to failure’ and the development of ‘irrecoverable strains’ during tensile 
fatigue tests 16. 

However, the way in which the magnitude of the plastic strain (εp) and the amplitude of the elastic

strain (εa) develop as a function of stress have not yet been fully documented, especially for

behaviour pertaining to all 3 main loading modes (including shear which is usually overlooked) and 

to a possible variability between individuals. The rate of development of plastic strain (έp= εp)

and the rate of damage (έa=εa this is practically the rate of ‘damage’ strain as used by

Haddock et al. 12) need to be followed as a function of the cycle number, as a function of function of 

stress () and/or stress normalised by the modulus of elasticity ().

The underlying cause of damage is of course the existence and growth of microcracks. However, 

the effects these cracks may have on the mechanical behaviour of the tissue may be any of a number 

that includes the response in terms of strains, the final fracture outcome, the redistribution of 

stresses and so forth. However, what would be important with respect to the data we are presenting 

here is if we are able to discern commonalities and easily defined patterns. The present study 

compares the rates at which the elastic and plastic components of the strain developed during 

tensile, compressive, and shear fatigue in human cortical bone of six individuals aged between 53 

and 79 yrs of age. The overall hypothesis of this investigation is that there is a common underlying 

factor in the damage-related behaviour of bone, which may allow us to link together the various 

aspects of the damage related behaviour of bone. 

MATERIALS AND METHODS 

Specimens from six donors (five females & one male) aged between 53 to 79 years were collected, 

with full ethical approval and relatives’ permission and stored at -20oC prior to testing. This tissue

was donated after consent for transplantation purposes and therefore, it originated from otherwise 

healthy individuals with no known reported metabolic bone tissue conditions. Tensile and 

compressive fatigue specimens were harvested from the diaphysis region in the longitudinal 

direction and shaped into dumb bell specimens (30 mm long, 2 mm thick, 7 mm wide at the 

shoulders, 5 mm wide over a central 10 mm gauge length). Shear specimens were cut transversely 

nearer the metaphyses of the same femurs in flat sections of cortical bone that allowed the 

preparation of transverse samples to test for shear in between the osteons (Fig. 1) and in a direction 

where most in-vivo fatigue microcracks have been reported to be confined 17,18. Shear tests followed 

the Iosipescu method 19, an in-plane composite shear test utilizing a notched beam type sample 

which is loaded so as to produce a zero bending moment across the notch or test section. Samples 

were 25 mm long, 5 mm deep, 3 mm wide, and a 1 mm deep 90 v-notch on either side and 

according to an earlier application for bone 20. The Iosipescu method allows for the in-plane shear in 

a homogeneous and uniform deformation moe which can not be achieved by the more usually 

iemployed torsion test methods.  

All specimens were sanded and polished by using carbide papers (grade 800-1200grit) and then 

polished to a mirror finish by the use of alumina slurry paste (MetPrep Ltd., Coventry, UK, gamma 

alumina 0.05 m). Sample preparation was preformed under constant water irrigation, to prevent

the production of microcracks or damage to the specimen prior to mechanical testing. Additionally 



specimens were stained in Fuchsin staining agent (Fisher Scientific®), to verify that no cracks had 

been induced by the preparation procedure. 

Specimens were fatigue cycled sinusoidally at a frequency of 2Hz using a Dartec® HC25 servo-

hydraulic testing machine (Zwick Roell Group Ltd, Southern Avenue, Leominster, Hereford, UK) 

equipped with a 5kN Sensotec® load cell (2080 Arlingate Lane, Columbus, Ohio, 43228, USA) and 

with specially fabricated grips for each of the three main loading modes. Tests were carried out at a 

constant 37oC and fully immersed in Ringers physiological solution. Strains were recorded by the 

use of a waterproof fatigue rated extensometer and data was collected by using Dartec® Toolkit 96 

V4.09 software. In each cycle the strain amplitude (at constant stress amplitude), the plastic strain 

(which is defined as the irrecoverable translation on the strain axis at zero stress), the cycle number, 

the time and the peak load values (for verification) were recorded as entry rows and passed onto a 

spreadsheet in real time. Every so often (in practice at cycle numbers that followed a power law of 3 

increment, N=1,3,9,27 …) the full load extension data was recorded at a sampling frequency of 
500Hz in order to produce the full load/extension loops at certain points of the fatigue lifetime to 

demonstrate the qualitative changes in the load/extension behaviour. More details of this set up 

were presented in 14-16. 

Failure was defined by either the complete rupture of the sample (as in tension), or at the point 

where the sample could not further sustain the cyclically imposed level of stress and exhibited high 

levels of strain. In the case of compression and shear some stress will be transferred through the 

material from one set of grips to the other via a ligament area of crushed tissue. Typical stress/strain 

cycles are shown in Fig. 2, where also the various components of strain are defined. 

Statistics and curve fitting were performed by using either Minitab (v.13, Minitab Inc, State 

College, PA 16801-3008, USA), Excel (2002-SP3, Microsoft Corp. and SigmaPlot (v.8.02, SPSS 

Inc. Chicago IL, USA) software. 

RESULTS 

The variation of elastic (εa) and plastic strain (εp) as a function of cycle number until failure was

examined in all three loading modes (Fig. 3) as in the studies by Winwood et al. 13,14. 

In tension (Fig. 3a) the complete trace of strains vs. cycles shows 3 phases: (I) in the primary phase 

(between 0 and about 10% of fatigue lifetime for most samples) the tissue shows strong transient 

effects and a curvilinear behaviour; (II) in the secondary phase, which stretched usually in between 

10-90% of lifetime, the behaviour is reasonably linear; (III) in the tertiary region (over 90% of

lifetime) near failure the increase in strain was rapid and unpredictable. The situation was slightly

different for compression (Fig. 3b) and shear due to the absence of a primary phase and the non-

linearity present within the secondary and tertiary phases.

To derive a representative rate for the development of strains we fitted least squares lines in the 

secondary region. This extended in tensile tests in between 10-90% of the complete lifetime of the 

samples and in compression and shear practically in the mid-life section of about 40-60%. Of 

course in tension the 40-60% estimate was coincident to the 10-90% estimate as the linearity 

extended over the 10-90% range and so as a generic rule one may consider that all rates were 

calculated at a 40-60% mid-life range. 

Fitting the linear regressions allows us to describe the behaviour by an ‘intercept’ strain value at the 
start of cycling and a ‘rates of strain’ given as the two slopes of έa and έp. Further analysis is

possible by then examining how the damage (έa) and plastic (έp) rates behave as a function of

stress, age, loading mode or any other specimen characteristics. 

Fig. 4a & b show the behaviour of the strain rates versus nominal stress in the 3 loading modes. As 

strain rates varied by orders of magnitude (very much like the cycles to failure) logarithmic values 

for strain rates are used here and for the analysis that follows. Stress remained as is because the R2 

values of strain rates vs. stress did not improve appreciably when log(stress) was used. 



In some cases, as seen in previous publications the variability of the data (R2) caused by inter-

individual variation can be reduced if the strain rates are plotted versus normalised stress 

(stress/modulus). Table I summarises: (i) the relationship for strain rates vs. stress (eq.1-6) and 

normalised stress (eq.7-12) and (ii) for έa plotted against the plastic rate έp (Fig.5) for all the data

collected here (eq.13-16). Normalised stress did reduce the variability for tension (eq. 7 and 10), but 

did not help in the cases for compression and shear. That may possibly be caused by errors in 

measuring the modulus accurately in these two modes, but we have included the relationships here 

for completeness of discussion. 

The difference in the slopes and intercepts of the regressions were analysed 21 and are shown in 

Table II. The statistics confirm one's visual impression: the slopes of the lines are in general the 

same, and the heights of the distributions about the common slope show only that the compression 

values are slightly below the tension and shear values. In shear the slope of the damage rate vs. 

stress was different than in tension and compression (Table II, no.1,2), while as far as plastic strain 

rates vs. stress (Table II, no.3,4) and plastic vs. elastic strain rates (Table II, no.5) are concerned the 

slopes against stress were equal for all 3 loading modes. 

An analysis of covariance was performed to determine whether the relationships we examined 

different significantly between the various individuals. Plastic or elastic strain rate was the 

‘response’ variable, and the five individuals (four in the case of shear) were the ‘treatments’ and 
‘stress’ was a covariate. Table III shows that although there were some differences between the

individuals (none in the case of shear) the level of ‘stress’ was of far greater importance in 
determining plastic or elastic strain rate. We also found that when the ‘age’ of the individuals was 
added as a second explanatory variable to the regressions relationships 1-6 of Table I it never 

achieved significance. This suggests that the relationship between stress and strain rate does not 

change uniformly (going one way) with age, and this suggestion was confirmed further by analysis 

of the residuals. The generic nature of these results certainly hints to a more general and 

rudimentary structure based mechanism as being the causal factor behind the damage related trends 

we report here. 

DISCUSSION 

The occurrence of non-linear and occasionally irreversible strains in bone has been reported early 

on by J.Currey 22 as ‘anelasticity’, later on as ‘nonelasticity’ 23, or ‘viscoplasticity’ 24 and eventually

as inelastic strain behaviour 25. The inelastic behaviour was initially attributed to viscoelasticity, 

which was later on coupled with plasticity. It soon became clear however, that the nonlinear 

behaviour was reminiscent of damage accumulation in composite materials 8. This was shown by 

two principal behavioural patterns; stiffness reductions and residual strains upon unloading. The 

observation of direct evidence of microcracking via optical and acoustic emission methods 7 led 

eventually to the formulation of models depicting either perfect damage or viscoplastic damage 

situations 25. 

Early work focussed, naturally, on the stiffness reduction of the material bone in fatigue studies 

(which allow a continuous monitoring of stiffness loss) of human and animal cortical bone. The 

stiffness loss was described as a function of ‘stress’ or ‘normalised stress’, for bone tissue of 
varying internal architecture and different species 11 and with a brief reference to some age effects10. 

However, considering the importance of a complete recording of the damage related behaviour of 

bone and the need to understand the mechanical behaviour around orthopaedic implants, it is 

surprising that the behaviour of bone in terms of the second most important behavioural pattern, 

namely the accumulation of residual strains upon unloading, has been generally overlooked till very 

recently 13. 

The present study produced novel information in three respects: (i) damage and strain accumulation 

has been recorded as a function of ‘stress’ and ‘cycle number’ for the 3 primary loading modes: 
tension, compression and shear; (ii) bone tissue material was made available to us from six different 

individuals spanning ages between 53 to 79 years old, which could illuminate age differences; (iii) 



there was enough material from each individual (both right and left femurs) to allow testing of 

paired samples and record fatigue strength and damage accumulation for tension, compression and 

shear within each donor and in between donors; (iv) the data collected in shear is also unique and 

was obtained via a recently implemented methodology 20. 

Samples were matched between right and left femora. A stratified random procedure was used, 

specimens being assigned to different stress levels according to their undamaged (‘virgin’) modulus 
of elasticity. This procedure ensured that there was no overrepresentation of low- or high-modulus 

specimens tested at low- or high-stresses. The only restriction in an otherwise randomised selection 

was the location of harvesting the shear specimens, which were taken slightly away from the mid-

diaphysis section because they needed to be longer and transverse. This may have resulted in 

specimens, which were relatively less anisotropic, slightly more porous and more remodelled than 

at mid-diaphysis, but preliminary material analysis suggests that the difference in these material 

features were not in fact statistically different between the 3 groups of specimens for tension, 

compression and shear. 

In order to summarise the present findings in a digestible form (also able to be implemented by FE 

analysts) we chose to treat and concentrate on strain rate patterns rather than strain magnitude 

values. The actual strain values: (i) developed in a curvilinear manner as a function of the cycle 

number as shown in Fig. 3 and for all 3 modes; (ii) the irreversible (plastic) strains were in 

magnitude a small fraction (30%) of the total strains but larger than the damage strains in general. 

The ‘plastic’ strain rates were as a whole identical to the damage rates in compression (Fig. 5) and 
about 85% and 87% of the damage rates in shear and tension. One has to bear in mind that we are 

talking about strain rates, which describe a linear increase of either strain as a function of cycle 

number in fatigue. The practical significance of these findings is of course that it provides a 

characterisation of bone by ‘coding’ this very basic biomechanical data in the simplest possible 
manner and in a way that will allow it to be used in computer modelling and biomechanical 

analysis. 

Even more interesting is the relationship shown in Fig. 5. The logarithms of the ‘recoverable’ and 
‘irrecoverable’ strain rates are clearly tightly and almost linearly related. The power law relating 
them is (Table I): Plastic strain rate  (Elastic strain rate)0.892. We are not interested here in

predicting plastic strain rate from elastic strain rate, or vice versa, rather we are interested in the 

functional relationship between the two variables. The values are in logs, the value of R2 is 0.856, 

so R is 0.925, and the power law for the functional relationships can be estimated from the slope of 

the reduced major axis. This is obtained by dividing the regression coefficient by the correlation 

coefficient 27. This results in an estimate of 0.0892/0.925 = 0.964; that is to say, the power law 

relationship is very close to unity, and so the log values of plastic strain rate and elastic strain rate 

are nearly proportional to each other.

The very generic nature of Fig.5 may have its basis in a more profound structural feature of bone 

and how it responds to damage. The fact that the relationship applies across 6 different individuals 

of varying ages, different internal bone architecture, cortical porosity, bone mineral status and so 

forth, points out that the causal factor of this behaviour is probably at the bone matrix level. There 

have been efforts to depict deformation phenomena at the ultrastructural level so as to account for 

damage observed of both in a diffuse form and as discrete microcracks. 

Two such models are shown in fig.6. Fig.6a shows a typical single idealised microcrack at an 

oblique random angle to a uniaxial stress field as commonly seen in engineering mechanics 

formulations at a meso-mechanical level. In general, and regardless of the nature of the stress field, 

the crack is activated with forces on the fracture surfaces, which will in general be resolved normal 

to the surface (in tension this results in dilatational forces ‘d’) and in traction forces parallel to the 
faces of the crack ‘t’. When stress is relieved the traction forces work in the opposite direction, but

the asperities of the surfaces result in the crack remaining open (activated) and give rise to residual 

strains such as those we saw here. The increase in crack length it is, this way, intrinsically linked to 

plastic/irrecoverable deformation very much in accordance with the data we have recorded here. 

This is a simple model that can explain many of the trends found in our results, and in those of 



others and may offer indirect, but nevertheless compelling evidence that the inelastic phenomena 

seen at bone matrix level can be understood on the basis of nucleation and growth of microcracks 

even when they resemble plasticity. 

The second model is of a biophysical nature and derives from the ultrastructure of bone at the 

mineralised fubirlk level (fig.6b). The mineral apatite crystals nucleate at the hole zone of the 

quarter staggered collagen aggregate structure and they stretch in the overlap region nearby. Upon 

loading collagen experiences tensile and shear loading (red vectors), which at some threshold level 

may cause dissociation of the crystallites from the collagen matrix. That will have as a consequence 

a loss of structural integrity (loss in stiffness) and will result in exposed active calcium ions, which 

can be easily stained by stains such as basic fuchsin17 and thus confirm and demonstrate the so-

called ‘diffuse’ damage phenomenon. There is still a question mark of course with respect to this 
biophysical model in that it does not easily demonstrate and link plasticity with elastic degradation 

the way that the meso-mechanical model (a) does. However, both models help us conceptualise and 

grapple with the damage phenomena we have reported here. 

Further investigations are required of course to establish the lesser influences of material level 

parameters (density, mineral content, condition of collagen) to the development and accumulation 

of both the elastic and plastic strains as seen here in fatigue. The influence of density, mineral, and 

other material constants has previously been examined with respect to the fatigue strength of bone, 

but not in terms of the development of damage and strain accumulation. Examination of some ‘key’ 
material parameters together with the present strain rate behaviour parameters may greatly influence 

our ability to understand the behaviour of bone around implants and in various other biomechanical 

applications in the future. 

This study was supported by the EPSRC-UK (GR/M59167). The tests were carried out in the Biomechanics 

Laboratories of Cranfield University Postgraduate Medical School, Shrivenham, UK. The authors would like 
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TABLE I 

Linear regression relationships between strain rates, stress (MPa) and normalised stress 

(stress/modulus) of the data in Fig. 4 & 5. 

No. Equation R2 p Loading 
mode 

1 Log (έa) = -12.8 + 0.0949 stress (MPa) 0.62 <0.001 T 

2 Log (έa) = -11.6 + 0.0657 stress (MPa) 0.69 <0.001 C 

3 Log (έa) = -9.48 + 0.1480 stress (MPa) 0.24 0.004 S 

4 Log (έp) = -11.7 + 0.0824 stress (MPa) 0.54 <0.001 T 

5 Log (έp) = -11.7 + 0.0676 stress (MPa) 0.60 <0.001 C 

6 Log (έp) = -8.70 + 0.127 stress (MPa) 0.23 0.005 S 

7 Log (έa) = -11.8 + 1093 normalised stress 0.64 <0.001 T 

8 Log (έa) = -11.1 + 761 normalised stress 0.50 <0.001 C 

9 Log (έa) = -6.36 + 23.2 normalised stress 0.02 0.463 a S 

10 Log (έp) = -10.9 + 978 normalised stress 0.59 <0.001 T 

11 Log (έp) = -11.3 + 787 normalised stress 0.44 <0.001 C 

12 Log (έp) = -6.21+ 34.7 normalised stress 0.05 0.214 a S 

13 Log (έp) = -0.543 + 0.872 log (έa) 0.88 <0.001 T 

14 Log (έp) = - 0.036 + 0.997 log (έa) 0.82 <0.001 C 

15 Log (έp) = - 0.608 + 0.850 log (έa) 0.91 <0.001 S 

16 Log (έp) = -0.497 + 0.892 log (έa) 0.86 <0.001 All 

a insignificant at p=0.05 

TABLE II 

Analysis of the distributions shown in Fig. 4a,b & Fig. 5. 

Comparison Shear 
included? 

Slopes different? Heights different? No. 

Elastic strain rate vs. stress 

Yes Yes, p  0.05 Yes, p<<0.001  
(S higher, C lower) 

1 

No No Yes, p<< 0.001 

(C lower) 

2 

Plastic strain rate vs. stress 

Yes No Yes, p<< 0.001  
(S higher, C lower) 

3 

No No Yes, p <<0.001 

(C lower) 

4 

Plastic strain rate vs. Elastic 
strain rate 

Yes No Yes, p = 0.01 

(C lower?) 

5 

Comparison of slopes and heights [20]; considered to show a difference at p0.05.



TABLE III 

ANCOVA for the effect of the stress and the individual, on plastic or elastic strain rate. 

Loading mode Strain rate Individual 

F, d.f 

Individual 

p 

Stress 

F, d.f 

Stress 

p 

Tension Plastic 3.25, 5, 40 0.015 75.87, 1, 40 <<0.001 

Tension Elastic 7.08, 5, 40 <<0.001 141.62, 1, 40 <<0.001 

Compression Plastic 3.03, 5, 40 0.022 90.49, 1, 37 <<0.001 

Compression Elastic 3.63, 5, 37 0.009 140.37, 1, 37 <<0.001 

Shear Plastic 1.22,4, 27 0.326 11.54, 1, 27 0.002 

Shear Elastic 1.50,4, 27 0.231 14.14, 1, 27 0.001 

FIGURE LEGENDS 

Figure 1  Site and geometry of samples prepared from human femora. Tensile and compressive 

sample were longitudinally oriented (with the compressive samples being shorter and stubbier than 

the tensile ones to avoid buckling), shear samples were prepared in the Iosipescu design in order to 

examine shear properties in the in-between the osteons direction. 

Figure 2  Stress (nominal) / strain (engineering) curves at the start (N=1, 2) and at failure in a 

compression specimen of cortical bone (F54#19, cycles to failure= 259, stress= 110 MPa). The 

translation in the strain axis (the strains shown here apply to the penultimate cycle Nf-1) is the 

irrecoverable strain (εp). The increase in the elastic (εa) strain amplitude is a result of the incipient

damage and the rate of its increase έa is analogous to the rate of damage. Total strain is simply

εT=εa+εp.

Figure 3 Trends for total strain (εT) and plastic strain (εp) for 2 specimens tested in (a) tension

(F54#5, stress=81 MPa, Nf=556, E=14.9 GPa); and (b) compression (F54#19, stress=110 MPa, 

Nf=259, E=14 GPa) from the 54 yr old female showing how the representative elastic (damage) and 

plastic strain rates were calculated.  

Figure 4 The behaviour (a) of the damage rate (έa) and (b) of the plastic crate (έp) as a function

of stress for the 3 loading modes. 

Figure 5 Elastic strain rate (έa, recoverable strain) versus the plastic strain rate (έp, irrecoverable

strain) in human cortical bone during tensile, compressive, and shear cyclic fatigue loading. 

Figure 6  Structural models as a driving factors of the phenomena seen here (a) meso-mechanical 

model of a single microcrack, depicted at a random oblique angle of orientation () to a uniaxial

stress field (S); (b) biophysical model (modified 28) of mineralised collagen fibrils impregnated with 

apatite crystals (blue) and experiencing tension and shear (red vectors) upon stretching.  
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Figure 3 
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Figure 4 
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Figure 5 

elastic strain rate
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Figure 6 
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