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H I G H L I G H T S

∙ Novel energy-efficient Spike Transformer for depth estimation using event cameras.

∙ Purely spike driven transformer with spike-based attention and residual mechanisms.

∙ Fusion depth head combines multi-stage features for fine-grained predictions.

∙ Cross-modality knowledge distillation from DINOv2 enhances SNN training.
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A B S T R A C T

Depth estimation is a critical task in computer vision, with applications in autonomous navigation, robotics, 

and augmented reality. Event cameras, which encode temporal changes in light intensity as asynchronous bi-

nary spikes, offer unique advantages such as low latency, high dynamic range, and energy efficiency. However, 

their unconventional spiking output and the scarcity of labeled datasets pose significant challenges to traditional 

image-based depth estimation methods. To address these challenges, we propose a novel energy-efficient Spike-

Driven Transformer Network (SDT) for depth estimation, leveraging the unique properties of spiking data. The 

proposed SDT introduces three key innovations: (1) a purely spike-driven transformer architecture that incor-

porates spike-based attention and residual mechanisms, enabling precise depth estimation with minimal energy 

consumption; (2) a fusion depth estimation head that combines multi-stage features for fine-grained depth pre-

diction while ensuring computational efficiency; and (3) a cross-modality knowledge distillation framework that 

utilises a pre-trained vision foundation model (DINOv2) to enhance the training of the spiking network despite 

limited data availability. Experimental evaluations on synthetic and real-world event datasets demonstrate the 

superiority of our approach, with substantial improvements in Absolute Relative Error (49 % reduction) and 

Square Relative Error (39.77 % reduction) compared to existing models. The SDT also achieves a 70.2 % reduc-

tion in energy consumption (12.43 mJ vs. 41.77 mJ per inference) and reduces model parameters by 42.4 % 

(20.55 M vs. 35.68 M), making it highly suitable for resource-constrained environments. This work represents 

the first exploration of transformer-based spiking neural networks for depth estimation, providing a significant 

step forward in energy-efficient neuromorphic computing for real-world vision applications.

1. Introduction

Depth estimation is a fundamental task in computer vision, under-

pinning applications such as autonomous driving, robotics, agricultural 

monitoring, and environmental analysis [1]. Traditionally, state-of-

the-art depth prediction has relied on standard frame-based cameras 

combined with artificial neural networks (ANNs) [2–4]. However, these

approaches are often limited by latency, power consumption, and 

dynamic range constraints inherent to conventional imaging sensors.

Event-based cameras have emerged as a promising alternative, in-

spired by biological vision systems. These sensors asynchronously cap-

ture changes in brightness at each pixel, resulting in high temporal 

resolution, low latency, low power consumption, and a wide dynamic 

range [5–10]. Their unique capabilities have enabled new possibilities
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in fields such as 3D scanning, robotic vision, and automotive applica-

tions [11–13]. Despite these advantages, event-based cameras produce 

spiking data that is inherently noisy and lacks the mature processing 

algorithms available for conventional images.

Spiking Neural Networks (SNNs), also known as the third generation 

of neural networks [14], are well-suited for processing the discrete spike 

streams generated by event cameras. SNNs mimic biological neurons 

by transmitting information via discrete spikes, rather than continu-

ous values as in traditional ANNs [15]. This makes SNNs a natural fit 

for event-based data, and recent research has begun to explore their 

potential for vision tasks [16–18].

The choice of SNNs for event-based depth estimation is motivated 

by several unique advantages beyond general energy efficiency. First, 

there is a fundamental synergy in data representation: event cameras 

produce asynchronous, sparse, binary data [5,8,9], and SNNs process 

information in precisely the same manner [19]. This allows SNNs to 

process event streams more directly, avoiding the information loss and 

computational overhead associated with converting events into dense, 

frame-like representations for ANNs [5]. Second, SNNs are inherently 

temporal processors whose membrane dynamics integrate signals over 

time [20], making them well-suited to capturing the rich temporal 

dynamics of event data required for motion-based depth cues. This 

event-driven computation–processing only upon spike arrival–enables 

sparse activation, reducing unnecessary operations and supporting low-

latency inference on neuromorphic hardware [21]. These properties are 

critical for real-time applications such as autonomous navigation and 

robotics operating under energy and latency constraints [12,13].

Nevertheless, the application of SNNs and event-based cameras to 

depth estimation remains in its early stages [10]. Two major challenges 

persist: (1) the lack of robust SNN backbones specifically designed for 

extracting features from spike data for depth estimation, and (2) the gen-

erally lower performance of SNNs compared to their ANN counterparts 

in complex vision tasks.

The lack of SNN backbone designed for spike data depth esti-

mation. The event-based camera generates continuous spike streams 

in a binary irregular data structure that possesses ultrahigh temporal 

features. SNNs are applicable to event camera datasets and are able to 

improve the depth estimation performance by exploiting advanced ar-

chitectures of ANN, such as ResNet like SNNs and Spiking Recurrent 

Neural Networks [20,22–24]. Vision transformer [25,26] (ViT), is cur-

rently the most popular ANN structure and is based on a self-attention 

mechanism to capture long-distance dependencies, especially spatio-

temporal features in images/videos. It improves the performance of AI 

in many computer vision tasks such as image classification/ segmen-

tation [27–29], object detection [30] and depth estimation [31,32]. 

Transformer-based SNNs are a new form of SNN combining transformer 

architectures with spiking neurons, offering great potential to break the 

performance bottleneck on spike stream data. In Zhang et al. [33], the 

authors used the original ViT structure as a backbone to extract features 

from both spatial and temporal domains in spike data. The result demon-

strated the suitability of the transformer for extracting spatio-temporal 

features. However, the original transformer structure has a large num-

ber of multiplication operations and excessive computational energy 

consumption compared to SNNs. In Zhou et al. [34,35], the authors pro-

posed a pure spike driven self-attention and residual connection to avoid 

non-spike computations. This was a major step forward in the potential 

use of transformers for depth estimation from spike data.

SNN model performance. One of the biggest challenges with SNNs 

currently is their inability to achieve equivalent training performance 

on spiking data compared to ANNs on non-spiking data. Gradient-based 

backpropagation is a powerful algorithm for training ANNs, but since 

spiking data is non-differentiable it cannot be used directly with SNNs 

[36]. Converting ANN to SNN is a solution but it may introduce errors of 

uncertainty or lose the temporal information of spikes [20]. Meanwhile, 

the number of event-based datasets is small compared to the static im-

ages used in traditional ANN training, making SNNs prone to overfitting

and limiting their generalisation ability [36]. Knowledge distillation is a 

technique in deep learning to transfer knowledge from the teacher model 

to the student model. It allows training of a lightweight model (student 

model) to be as accurate as a larger model (teacher model). Currently, 

there are already some ANN models trained with massive data that can 

achieve zero-shot for depth estimation [37–39]. Logically, the accuracy 

of these models has the potential to be transferred to the SNN model 

during training.

In this work, we propose a novel energy-efficient spiking transformer 

network for depth estimation, leveraging cross-modality knowledge 

distillation to combine the biological efficiency of SNNs with the ad-

vanced feature extraction capabilities of a visual foundation model 

(DINOv2). To the best of our knowledge, this is the first exploration 

of a transformer-based SNN for depth estimation, marking a significant 

advancement in the field. The proposed framework comprises three key 

components, each contributing uniquely to its overall effectiveness:

(1) We introduce a novel energy-efficient spike-driven transformer

that eliminates conventional floating-point operations through 

carefully designed spike-based attention and residual mechanisms. 

This network incorporates two essential components: a spiking 

patch embedding module that converts raw event data into spike-

based tokens while preserving temporal-spatial information, and 

spiking transformer blocks that integrate Spiking Self-Attention 

(SSA) and Spiking MLP for efficient feature processing. This design 

significantly reduces energy consumption while ensuring robust 

performance.

(2) We develop a fusion depth estimation head that combines fea-

-

tures from multiple transformer stages for fine-grained depth 

prediction. This head is intentionally hybrid: it uses conventional 

ConvBN and upsampling (MAC-based) operations to preserve the 

numerical precision required for the dense regression task of depth 

estimation. This design choice allows us to separate the energy 

accounting between the purely spike-driven backbone and the 

hybrid head.

(3) We propose a single-stage cross-modality knowledge distilla

tion framework that leverages a large vision foundation model 

(DINOv2) to enhance SNN training with limited data. By utilising 

domain loss and semantic loss, our framework effectively transfers 

knowledge from both final and intermediate layers of DINOv2 to 

the spike-driven transformer.

2. Related works

This section presents a literature review of existing research in 

monocular depth estimation, SNNs, and knowledge distillation, high-

lighting the key challenges that motivate our work.

2.1. Image-based and event-based monocular depth estimation

Depth estimation from images aims to measure the distance of each 

pixel relative to the camera. Monocular depth estimation is a challeng-

ing but promising technology. It has the advantage of only requiring one 

image unlike traditional depth estimation, which makes it more practi-

cal for applications where it is not possible to take a pair of images, such 

as on mobile devices. Depending on the type of data used, we can divide 

monocular depth estimation into Image-based and Event-based methods 

[3]. Image-based monocular depth estimation is more common as it es-

timates depth using the information in RGB images, which are easy to 

collect and process. This makes them well-suited for depth estimation in 

challenging conditions, such as low light and fast motion [18], although 

event-based data is harder to collect and process.

The latest developments in deep learning have made it possible to de-

velop monocular depth estimation models that can achieve satisfactory 

accuracy and robustness [3,40,41]. Similar to other deep learning mod-

els, these models typically consist of a generalised encoder that extracts 

abstract features from context information and a decoder that recovers
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depth information from the features. For RGB images, in Laina et al. 

[42], the authors used ResNet-50 as an encoder and novel up-sampling 

blocks as a decoder to estimate depth from a single RGB image. In Laina 

et al. [42], the authors utilised ViT instead of convolutional networks 

as the backbone for a depth estimation task. Experiments have found 

that transformers are able to provide finer and more globally consistent 

predictions than traditional convolutional networks. For event data, the 

research is still in its infancy. The authors [18] presented a new deep 

learning model called E2Depth that can estimate depth from event cam-

eras with high accuracy. A fully convolutional neural network based on 

the U-Net architecture [43] was used in this work. In Nam et al. [44], 

a multiscale encoder was used to extract features from mixed-density 

event stacking and an upscaling decoder was used to predict the depth. 

The transformer structure has also been used in event-based monocular 

depth estimation. In Liu et al. [45], EReFormer was proposed to estimate 

depth from event cameras with superior accuracy based on transformers.

However, these models predominantly utilise traditional deep learn-

ing frameworks, overlooking the unique potential of event-based data. 

Existing research identifies two key challenges that remain unaddressed. 

The first challenge lies in the unique characteristics of event camera 

data. This requires algorithms that can process data in real-time and 

maintain temporal accuracy [5,6]. The second challenge is the scarcity 

of spiking training data. High-quality, labeled datasets tailored for SNNs, 

particularly for tasks like depth estimation, remain limited. The acqui-

sition and labeling of event-based data are both complex and resource-

intensive, further constraining the availability of training resources. To 

address this limitation, knowledge distillation offers a promising solu-

tion. This involves transferring knowledge from a well-trained artificial 

neural network (ANN). The ANN acts as a “teacher”, guiding the SNN, 

or “student”, to learn effectively with limited event-based data.

2.2. Spiking neural networks (SNNs)

Unlike traditional deep learning models that convey information us-

ing continuous decimal values, SNNs use discrete spike sequences to 

calculate and transmit information. Spiking neurons receive continuous 

values and convert them into spike sequences. A number of differ-

ent spiking neuron models have been proposed. The Hodgkin-Huxley 

model is one of the first models that describes the behaviour of bio-

logical neurons [46], and is fundamental to explaining how spikes flow 

in neurons, but the model is too complex to implement in silicon. The 

Izhikevich model [47], which simplifies the Hodgkin-Huxley model, is 

a two-dimensional model that describes the dynamics of the membrane 

potential of a neuron. The leaky integrate-and-fire (LIF) neuron is an-

other simple neuron model that is widely used in neuroscience and 

SNNs. It is simpler than Izhikevich model but captures the essential 

features of how neurons work. It can be used to build SNNs and im-

plemented in very-large-scale integrations (VLSI) [48]. The membrane 

potential of the LIF neuron is governed by the following equation:

𝑑𝑣∕𝑑𝑡 = 𝐼 − 𝑣∕𝜏, for 𝑣 < 𝑣 threshold 

(1)

where 𝑣 is the membrane potential, 𝑡 is time, 𝜏 is a time constant, 

and 𝐼 is the input current. The input current 𝐼 can be either excita-

tory, which makes the membrane potential more positive, or inhibitory, 

which makes it more negative. If 𝑣 ≥ 𝑣 threshold 

, the neuron fires a spike 

and then resets its membrane potential to a predefined reset value. The 

LIF neuron model is simple and computationally efficient, making it suit-

able for hardware implementations. In this work, LIF is used to build the 

proposed model.

Similar to ANNs, as the depth of SNNs increases, their performance 

significantly improves [22,23,49]. Currently, most SNNs have borrowed 

structures from ANNs, which can be categorised into two main groups: 

CNN-based and Vision Transformer (ViT) -based SNNs. ResNet, as the 

most successful CNN model has been extensively studied to extend 

the depth of SNNs [22,23]. SEW ResNet [22] overcomes the vanish-

ing/exploding gradient problem in SNNs by using a technique called

spike-timing dependent plasticity (STDP). It has been shown to be ef-

fective in a variety of tasks, including image classification and object 

detection. However, convolutional networks possess translation invari-

ance and local dependency, but their calculations have a fixed receptive 

field, limiting their ability to capture global dependencies. In contrast, 

ViTs [25] are based on self-attention mechanisms that can capture long-

distance dependencies. They are based on the Transformer architecture, 

which was originally developed for natural language processing tasks.

ViT-based SNNs represent a novel form of SNNs that combine the 

transformer architecture with SNNs, providing great potential to break 

through the performance bottleneck of SNNs. Yao et al. [50], and Zhou 

et al. [34], proposed two different Spike-Driven Self-Attention models. 

To avoid multiplication, they utilised only mask and addition operations, 

which are efficient and have low computational energy consumption. 

Zhou et al. [35], proposed Spikingformer, modifying the residual con-

nection to be purely event-driven, making it energy efficient while 

improving performance.

However, the application of ViT architectures to Spiking Neural 

Networks (SNNs) for depth estimation is an emerging field [33] fac-

ing significant challenges. Key among these are the difficulties in 

training pure transformer-based SNN models and the limited avail-

ability of paired event-based depth data essential for robust training. 

Knowledge distillation presents a promising approach to mitigate such 

challenges, particularly data scarcity, by transferring knowledge from 

well-pretrained models. Accordingly, this work proposes a knowledge 

distillation method to leverage ANN model knowledge for SNN-based 

depth estimation.

2.3. Knowledge distillation for SNN

Knowledge distillation is a model compression technique that trans-

fers knowledge from a large teacher model to a smaller student model, 

enabling efficient training with limited resources [51]. It has been shown 

to be effective for improving SNN performance: Kushawaha et al. [52] 

transferred knowledge from a large to a small SNN for image classifi-

cation; He et al. [36] further boosted student SNN accuracy; Qiu et al. 

[53] reduced the ANN–SNN performance gap; and [54] first explored 

cross-modality distillation for SNN depth estimation using RGB data. 

While these studies [36,53,54] demonstrate clear benefits, existing ap-

proaches still face limitations: (1) most focus on classification rather 

than dense prediction tasks like depth; (2) cross-modality transfer be-

tween conventional images and event data remains underexplored; and 

(3) many require training a separate teacher, adding computational 

overhead. Currently, large foundation models have become the new 

deep learning hotspot [55]. A large foundation model is trained on a 

vast quantity of data at scale (often by self-supervised learning or semi-

supervised learning) so that the learned features can be used directly 

for various downstream tasks or knowledge distillation. For example, 

Dense Prediction Transformers (DPT) [39] are a type of ViT designed 

for depth prediction tasks, trained on 1.4 million images for monocular 

depth estimation. DINOv2 [37] used ViT-Giant, a larger version of ViT 

with 1 billion parameters. It is more powerful than previous ViT models 

and outperforms previous self-supervised learning methods in a variety 

of computer vision tasks, especially for depth estimation. In this work, 

for the first time, we will explore transferring knowledge from a large 

foundation model (DINOv2) to SNNs for depth estimation.

3. The proposed method

We propose a novel energy-efficient spike transformer network 

for depth estimation via cross-modality knowledge distillation. The 

flowchart of the method is illustrated in Fig. 1, encompassing three 

primary components: (1) Spike-Driven Transformer, (2) Fusion Depth 

Estimation Head, and (3) Knowledge Distillation.

The rationale for our proposed method centres on three key innova-

tions:
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Fig. 1. Overview of the proposed method, illustrating the three main components: (1) spike-driven transformer, (2) fusion depth estimation head, and (3) knowledge 

distillation.

(1) We introduce a Spike-Driven Transformer architecture. This archi-

-

tecture replaces conventional computationally intensive floating-

point matrix multiplications with binary spike-based computa-

tions. This is achieved through spike-based attention and residual 

mechanisms, which not only reduce energy consumption but also 

maintain high performance in capturing long-range dependencies.

(2) We propose a novel fusion depth estimation head designed to in

tegrate features from multiple transformer stages for precise and 

robust depth estimation. Compared to existing methods, our ap-

proach overcomes the limitations of CNN based architectures, 

which often lose critical spatial information due to downsampling. 

By leveraging transformers’ ability to retain dimensional consis-

tency and integrating features at multiple levels, the fusion head 

achieves superior depth estimation accuracy. Additionally, it is 

fully compatible with spike-based computation models, making 

it both efficient and biologically plausible, providing a signifi-

cant advantage for real-world applications requiring precision and 

robustness in challenging environments.

(3) To address the limited training data available for SNNs, we lever-

age knowledge from DINOv2, a large vision foundation model, 

through a novel single-stage cross-modality distillation frame-

work. Rather than requiring separate training phases or an ad-

ditional teacher model, our approach directly transfers relevant 

features from RGB to event data domains, enabling efficient 

training while preserving the spike-based computation paradigm.

3.1. Spike-driven transformer

The proposed spike transformer aligns with the foundational struc-

ture of the original ViT, encompassing a Spiking Patch Embedding and
×Spiking Transformer Block. Given an event sequence, 𝐼 ∈ R 

𝑇 𝐶×𝐻×𝑊 ,

the spike patch embedding is used to convert the input into a sequence of 

tokens that can be processed by the transformer architecture, where the

event input is projected as spike-form patches 𝑋 ∈ R 

𝑇×𝑁×𝐷 , 𝑁 = 

𝐻 

8 × 

𝑊
8 

. 

Then, the spiking patches 𝑋 are passed to the multi spiking transformer

blocks (L). Considering that we have used knowledge distillation from 

the large model, this method uses only a minimum number of blocks 

as L = 4. Inspired by Zhou et al. [34,35], in order to avoid non-spike 

computations in traditional deep learning architectures, a Spiking Self 

Attention (SSA) and a Spiking MLP block are used in spiking transformer 

blocks.

3.1.1. Spiking patch embedding

In the original ViT [25], the patch embedding is used to represent an 

image as a sequence of tokens. This is done by dividing the image into a 

grid of patches and flattening each patch into a vector. In this work, we 

implement this operation through a convolution batch norm (ConvBN), 

Max pooling (MP) and multistep LIF (MLIF) combination. The structure 

is shown in Fig. 2. Given an input sequence as 𝐼 ∈ 𝑅 

𝑇×𝐻×𝑊 , after the 

processing of picking patch embedding, I is split into an image patches

Fig. 2. The architecture of the Spiking Patch Embedding module. This module 

converts the input event sequence into spike-form patches using a combination 

of Convolution-Batch Normalization (ConvBN), Max Pooling (MP), and Multi-

step Leaky Integrate-and-Fire (MLIF) operations.

𝐼 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 ∈ 𝑅 

𝑇×𝑁×𝐷 . This process can be formulated as:

𝐼 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 = MLIF(MP(ConvBN(𝐼))) (2)

where the ConvBN applies a 2D convolution with a 3 × 3 kernel 

(stride=1) followed by batch normalization to patch the input. MP (Max 

Pooling) is used to down-sample the feature size to patch size. The MLIF 

module is designed to simulate the multi-step dynamics of an LIF neuron 

to convert continuous feature maps into spike-based representations. In 

practice, this means that the MLIF operation iterates the LIF process over 

several discrete time steps to produce a spike train, rather than a single 

output. The corresponding pseudocode for the MLIF operation is shown 

in Fig. 3.

where 𝐼 is assumed to be a sequence of input values over 𝑇 time 

steps. The term (1 − (1∕𝜏)) approximates the decay of the potential. The 

neuron emits a spike when 𝑣 reaches or exceeds 𝑉 𝑡ℎ 

, and then 𝑣 is reset

to 𝑣 𝑟𝑒𝑠𝑒𝑡. The number of operations can be greater than 1. When multiple 

blocks are used, the number of output channels gradually increases and 

the size of the feature is halved, eventually matching the embedding 

dimension of the patch in ViT.

3.1.2. Spiking transformer block

The Spiking Transformer Block is structured to incorporate both a 

Spiking Self Attention (SSA) mechanism and a Spiking MLP block, as 

illustrated in Fig. 4.

Guided by the findings in [35], we position an MLIF before the 

ConvBN within the residual mechanism to omit floating-point multipli-

cation and mixed-precision calculations during the ConvBN operation. 

This adjustment also enables ConvBN to replace conventional linear 

layers and batch normalization seamlessly. The SSA operation can be
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Fig. 3. Pseudocode for the MLIF operation.

mathematically described as:

𝑄 = MLIF 𝑄 

( 

ConvBN 𝑄 

( 

𝑋 

′ 

))

𝐾 = MLIF 𝐾
(

ConvBN 𝐾
( 

𝑋 

′ 

))

𝑉 = MLIF 𝑉 

( 

ConvBN𝑉 

( 

𝑋 

′ 

))

SSA(𝑄, 𝐾, 𝑉 ) = ConvBN 

( 

MLIF 

( 

𝑄𝐾 

T 𝑉 ∗ 𝑠 

))

(3)

The Query (Q), Key (K), and Value (V) matrices are generated by pro-

cessing input features through learnable transformations (e.g., ConvBN 

layers) followed by distinct spiking neuron layers (e.g., MLIF layers), as 

detailed in Eq. (3). This process yields 𝑄, 𝐾, 𝑉 ∈ R 

𝑇×𝑁×𝐷 as pure spike 

data, containing only binary values (0 or 1). The Spiking Self-Attention 

(SSA) mechanism leverages the inherently non-negative nature of these 

spike-form Q and K matrices to produce a non-negative attention map. 

This characteristic allows SSA to directly aggregate relevant features 

while disregarding irrelevant ones, thereby making the conventional 

softmax function redundant. A scaling factor, s, is employed to adjust the 

magnitude of the matrix multiplication results within the SSA operation, 

without altering the fundamental properties of the attention mechanism 

itself. The Spiking MLP block, also a component of the transformer ar-

chitecture, consists of a residual connection and a combination of MLIF 

and ConvBN operations.

3.2. Fusion depth estimation head

The task of depth estimation requires generating pixel-wise depth 

predictions from encoded features. A common approach is a simple Fully 

Convolutional Network (FCN) head that processes only the final encoder 

features. While computationally efficient, this often fails to preserve fine

Fig. 4. The architecture of the Spiking Transformer Block, detailing the integration of the Spiking Self Attention (SSA) mechanism and the Spiking MLP block.

spatial details necessary for accurate depth maps. A key challenge in 

adapting transformers for dense prediction is that, unlike CNNs which 

naturally produce a multi-scale feature hierarchy through progressive 

downsampling, standard Vision Transformers (ViTs) maintain a constant 

spatial resolution of tokens throughout their layers. To address this, we 

propose a fusion depth estimation head that explicitly combines features 

from multiple stages of the spike-driven transformer backbone.

While the spatial resolution of tokens remains fixed, the effec-

tive receptive field and semantic level of the features evolve through 

the transformer blocks. Early layers capture local, fine-grained details, 

whereas deeper layers, through successive self-attention operations, in-

tegrate information across the entire token set to learn more global, 

abstract, and semantic representations. Therefore, fusing features from 

different stages allows the decoder to leverage both high-resolution 

structural details (from early layers) and robust semantic context (from 

later layers), which is critical for high-quality depth estimation. This 

multi-stage fusion strategy is not ad hoc but follows established best 

practices in state-of-the-art transformer architectures for dense pre-

diction. Models like DPT (Dense Prediction Transformers) [39] and 

SegFormer [56] have successfully demonstrated that combining features 

from multiple transformer blocks significantly improves performance in 

tasks like depth estimation and semantic segmentation. Our fusion head 

adapts this proven concept to our spike-driven backbone. The structure 

of the fusion head for depth estimation is shown in Fig. 5.

The first step of the fusion head is to assemble the internal features 

in transformer blocks into image-like feature representations. The fea-

ture representations are then fused into the final dense prediction with 

skip connections. A generic upsampling structure is used to restore the 

feature representations to original data size. Given an input feature as 

𝐹  

 

∈ R 

𝑇 ×𝐻∕8×𝑊 ∕8 ), i=1 ,2 ,3𝑖   ,4. The depth estimation head can be

formulated as follows:

Y 2 =
( 

ConvBN 

( 

Up
(

𝐹1
)) 

+ Up
(

𝐹2
))

Y 3 =
( 

ConvBN 

( 

Up
(

Y2
)) 

+ Up
(

𝐹3
))

Y 4 =
( 

ConvBN 

( 

Up
(

Y3
)) 

+ Up
(

𝐹4
))

𝑌 = Sigmod
(

Y4
)

(4)

This design enables the network to combine high-level semantic in-

formation from deeper layers with fine-grained spatial details from 

earlier layers, leading to more accurate depth predictions while main-

taining compatibility with knowledge distillation from vision foundation 

models.

3.3. Knowledge distillation

Knowledge distillation is particularly challenging for SNNs due to 

two main factors: (1) the binary nature of spike data differs funda-

mentally from the continuous values used in traditional ANNs, and 

(2) the limited availability of labeled event camera data makes train-

ing challenging. To address these challenges, we propose a single-stage 

cross-modality knowledge distillation framework that leverages DINOv2 

[37], a large-scale vision foundation model, to guide our SNN training.
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Fig. 5. Architecture of the proposed fusion depth estimation head. It integrates multi-stage features from the spike-driven transformer blocks (𝐹 1 

, 𝐹 2 

, 𝐹 3 

, 𝐹 4 

) through 

progressive upsampling and skip connections to generate the final depth map.

Fig. 6. (a) Sample RGB image. (b) Visualization of self-attention map from 

DINOv2 features. (c) Depth estimation results using a linear probe applied to 

frozen DINOv2 features.

Our choice of DINOv2 as the teacher model is motivated by several key 

advantages:

(1) Architectural Compatibility: DINOv2’s Vision Transformer (ViT)

architecture closely aligns with our model’s structure, facilitating 

effective knowledge transfer due to its similar feature representa-

tions and computational patterns.

(2) Rich Feature Representations: Pre-trained on 142 million diverse

images, DINOv2 has demonstrated state-of-the-art performance in 

depth estimation tasks on benchmark datasets such as NYU [57] 

and SUN RGB-D [58]. As shown in Fig. 6, DINOv2’s self-attention 

patterns and depth estimation capabilities on our dataset sug-

gest that it can provide valuable guidance during the knowledge 

distillation process.

(3) Zero-shot Generalisation: DINOv2’s strong zero-shot learning ca-

pabilities enable effective knowledge transfer even when dealing 

with limited event camera data.

Fig. 7. The knowledge distillation algorithm, illustrating the process of trans-

ferring knowledge from the DINOv2 teacher model to the student SNN using a 

combined loss function.

The knowledge distillation process can be shown in Fig. 1. We freeze 

the DINOv2 (Lightblue) as a teacher model. The output features from 

DINOv2 are considered as targets in our training. To ensure compatible 

feature dimensions, we upsample the RGB input images by a factor of 
′ × ∕8× ∕81.75, 𝑥  

 size ∈  

 resulting in teacher model features of  𝑟𝑔𝑏  R 

𝑑 𝐻 𝑊 .

Fig. 7 shows the knowledge distillation algorithm. Our distillation 

framework employs a fusion loss function that combines two comple-

mentary components:

• Feature Perceptual Loss (Lp): Measures the distance between stu-

dent and teacher feature representations, ensuring the SNN learns 

similar feature patterns. The Perceptual Loss [59] is used here to help 

capture high-level semantic differences between teacher and student 

representations, going beyond pixel-level comparisons.

• L2 loss function: A scale-invariant metric [60], specifically designed

for monocular depth estimation to address the inherent scale ambi-

guity problem. This scale-invariant loss is particularly important as 

it focuses on relative depth relationships rather than absolute values,

Neurocomputing 658 (2025) 131745 

6 



X. Zhang, L. Han, S. Davies et al.

aligning with the fundamental nature of monocular depth estimation 

where absolute scale cannot be determined from a single view.

The fusion loss function is defined by the following equations:

L𝑝 𝑖 = 

1
𝐶 × 𝐻 × 𝑊

‖

‖

𝑥 𝑖 − 𝑥 

′
𝑖
‖

‖

2
2

L 2 

= 

1
𝑛
∑ 

𝐢

(

𝐷𝑡
𝑖 − 𝐷 

𝑝
𝑖
) 2 − 1

𝑛 

2

(

∑

𝐩
𝐷 

𝑡 

𝑖 − 𝐷 

𝑝
𝑖

) 2 (5)

Where L𝑝  

 

is the feature perceptual loss between features for pixel i.𝑖  

𝐷 

𝑡 − 𝐷𝑝
 is the difference between predicted and ground truth depth for𝑖 𝑖  

pixel i, and n is total number of pixels with a dimension of 𝐻 ×𝑊 . 𝐷𝑡 

               is𝑖  

𝐷𝑝
the ground-truth depth, and  is the predicted depth. It makes the loss𝑖  

invariant to uniform scaling of the depth predictions, allowing the net-

work to learn consistent relative depth relationships even when absolute 

scale cannot be determined. This aligns with human depth perception, 

which relies heavily on relative rather than absolute depths.

4. Experiments

To test our model, we conducted two experiments to demonstrate 

the effectiveness of the proposed SNN. We first introduce the details of 

datasets used in this experiment. Then, we evaluate our method’s per-

formance, including accuracy and energy consumption, on both real and 

synthetic event data to demonstrate its robustness and generalisability. 

Finally, comprehensive ablation studies are conducted to investigate the 

impact of each component.

4.1. Datasets

For model evaluation, we utilise two datasets comprising both real 

and synthetic data.

DENSE Datasets: The first dataset is a synthetic dataset from Zhang 

et al. [33], which is generated from the DENSE dataset [61], includ-

ing clear depth maps and intensity frames at 30 FPS under a variety of 

weather and illumination conditions. To obtain spike streams with high 

temporal resolution, the video is interpolated to generate intermediate 

RGB frames between adjacent 30-FPS frames. With absolute intensity 

information among RGB frames, each sensor pixel can continuously 

accumulate the light intensity with the spike generation mechanism, 

producing spike streams with a high temporal resolution (128 × 30 FPS) 

that is 128 times the video frame rate. The ‘spike’ version of the DENSE 

dataset (namely DENSE spike) contains eight sequences, five for train-

ing, and three for evaluation. Each sequence consists of 999 samples, 

and each sample is a tuple of one RGB image, one depth map, and one

spike stream. Each spike stream is simulated between two consecutive 

images, generating a binary sequence of 128 spike frames (with a size 

of 346 × 260 each) to depict the continuous process of dynamic scenes.

DSEC Datasets: The second dataset, DSEC [62], is a real event 

dataset that provides stereo dataset in driving scenarios. It contains 

data from two monochrome event cameras and two global shutter 

colour cameras in favourable and challenging illumination conditions. 

Hardware synchronised LiDAR data is also provided for depth predic-

tion. The dataset contains 41 sequences collected by driving in a variety 

of illumination conditions and provides ground truth disparity for the 

depth estimation evaluation. In this work, 29 sequences (70 %) are used 

for model training and 12 are used for evaluation. Each sequence con-

sists of 200–900 samples, and each sample is a tuple of one RGB image, 

one depth map (dense disparity), and one spike stream with 16 spike 

frames and size of 480 × 640. Fig. 8 presents the two data samples used 

in this work.

4.2. Experiment design 

4.2.1. Model performance

In this section, we evaluate the depth estimation performance and en-

ergy consumption of our SNN on the synthetic (DENSE) and real datasets 

(DSEC) and compare it with three competing dense prediction networks, 

namely U-Net [43], E2Depth [61] and Spike-T [33]. U-Net employs 2D 

convolutional layers as its encoder and focuses on spatial feature extrac-

tion, while E2Depth applies ConvLSTM layers that combine CNN and 

LSTM to capture the spatial and temporal features. The Spike-T employs 

transformer-based blocks to learn the spatio-temporal features simulta-

neously. These models therefore constitute our immediate and direct 

competitors. To ensure a fair and direct comparison, all baseline models 

were re-implemented and trained from scratch on our specific datasets 

and data processing pipeline using their publicly available source code 

and recommended hyperparameters.

The network’s total energy consumption is the sum of energy from its 

spike-based Accumulate (AC) operations and any conventional Multiply-

Accumulate (MAC) operations.

These calculations assume 45 nm hardware [63], with an energy cost 

of 𝐸 MAC = 4.6 

 

pJ per MAC operation and 𝐸A C  

 

= 0.9 pJ per AC operation.

The total energy is calculated as:

𝐸 model = 

∑

𝑙∈MAC_layers
𝐸 MAC × FLOP 𝑙 

+ 

∑

𝑙∈AC_layers
𝐸 AC × SOP 𝑙 (6)

Here, FLOP 𝑙 

is the number of floating-point MAC operations in a 

conventional layer 𝑙. For spike-based layers, the number of Synaptic

Fig. 8. Examples from the DENSE (synthetic) and DSEC (real-world) datasets used for evaluation. Each sample typically includes an RGB image, the event stream 

and a corresponding depth map.
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Table 1 

Quantitative performance comparison on synthetic (DENSE) and real (DSEC) datasets. Symbols ↓ / ↑ indicate that lower / higher values are better. Param (M): 

parameters (millions). Mean firing rate (𝑓 𝑟 

) and Power: theoretical energy per inference (45 nm estimates). † Models evaluated on DSEC with replicated temporal 

frames (16→128).

Model Dataset Abs Rel ↓ Sq Rel ↓ RMS log ↓ SI log ↓ 𝛿 < 1.25 ↑ 𝛿 < 1.25 

2 ↑ 𝛿 < 1.25 

3 ↑ Spike-driven Param (M) Mean FR Power (mJ)

U-Net DENSE 2.89 72.25 0.19 1.73 0.39 0.50 0.58 No 31.20 0.88 72.93

DSEC 1.203 3.281 0.181 1.210 0.142 0.309 0.502

E2Depth DENSE 9.91 96.01 0.30 1.70 0.21 0.31 0.45 No 10.71 0.85 59.25

DSEC 

† 9.909 96.011 0.299 1.697 0.209 0.309 0.448

Spike-T DENSE 1.57 39.77 0.17 0.91 0.50 0.65 0.74 No 35.68 0.65 41.77

DSEC 

† 2.853 51.757 0.321 0.751 0.164 0.341 0.483

Proposed DENSE 0.80 8.32 0.17 0.46 0.53 0.68 0.76 Yes 20.55 0.35 12.43

DSEC 1.000 0.999 0.105 0.212 0.387 0.500 0.583

Operations (SOP  

 

) is estimated based on the firing rate (the𝑙 𝑓𝑟  propor

tion of non-zero elements in the spike matrix), the number of time steps

𝑇 , and the equivalent FLOPs of the layer:

-

SOP 𝑙 

= 𝑓 𝑟 

× 𝑇 × FLOP 𝑙 

(7)

4.2.2. Ablation study

An ablation study is detailed in this subsection to investigate the 

contributions of two novel components within our model. They are the 

fusion depth estimation head and the knowledge distillation technique. 

We compare: (i) Linear FCN Head – a single-scale decoder analogous 

to standard lightweight heads attached to frozen encoders (e.g., typi-

cal DINOv2 usage), (ii) full architecture without knowledge distillation 

(W/O KD), and (iii) proposed multi-stage fusion + KD. Their respective 

impacts on model performance are dissected and discussed.

4.2.3. Implementation details

All models were trained and evaluated on a single NVIDIA RTX 

A6000 GPU. Our proposed model and baseline model U-Net were trained 

for 200 epochs with a batch size of 4 using the AdamW optimizer with 

a weight decay of 0.05. The learning rate was initialised to 1e-5 and 

followed a cosine annealing schedule. For the Spike-T and E2Depth, we 

utilised the officially provided pre-trained weights from their respec-

tive authors, as the full original training parameters were not available. 

The models and weights were obtained from their official codebases at 

https://github.com/Leozhangjiyuan/MDE-SpikingCamera and https:// 

github.com/uzh-rpg/rpg_e2depth respectively. The architecture of our 

proposed model is detailed in Section 3, with key components illus-

trated in Figs. 1–4. The spike-driven backbone consists of 4 spiking 

transformer blocks with an embedding dimension of 384. To facil-

itate reproducibility, our source code and pre-trained weights will 

be made publicly available at https://gitlab.com/han-research/spike-

transformer-for-depth.

4.3. Metrics

Several metrics are selected to evaluate the performance of the pro-

posed method, including Absolute Relative Error (Abs Rel.), Squared 

Relative Error (Sq Rel.), Mean Absolute Error (MAE), Root Mean Square 

Logarithmic Error (RMSE log) and the Accuracy metric (Acc.𝛿). The 

formulations are as follows:

Absolute Relative Error (Abs Rel.) ↓ computes average errors on 

the normalized depth map for every pixel, formulated as:

𝐴𝑏𝑠𝑅𝑒𝑙. = 

1
𝑁

∑

𝑝

|

|

|

D𝑝 − ̂ D 𝑝
|

|

|

|

|

|

D 𝑝
|

|

|

(8)

It normalizes the value of depth to the range [0,1]. 

Square Relative Error (Sq Rel.) ↓, formulated as

𝑆𝑞𝑅𝑒𝑙. = 

1
𝑁

∑

𝑝

|

|

|

D𝑝 − ̂ D 𝑝
|

|

|

2

|

|

|

D𝑝
|

|

|

(9)

which focuses on large depth errors due to its squared numerator. 

Mean Absolute Error (MAE) ↓ can be formulated as:

𝑀𝐴𝐸 = 

1
𝑁

∑

𝑝

|

|

|

D 𝑝 − ̂ D 𝑝
|

|

|

(10)

Root Mean Square Error (RMSE log) ↓ is a classic metric for per-

pixel prediction error and the logarithmic version can be denoted as

𝑅𝑀𝑆𝐸 = 

√

1
𝑁

∑

𝑝

|

|

|

logD 𝑝 − log ̂ D 𝑝
|

|

|

2
(11)

The Accuracy (Acc 𝛿) ↑ as 𝛿 denotes the percentage of all pixels D 𝑝 

that satisfy max:

𝐴𝑐𝑐 = 

( ̂ D 𝑝

D 𝑝
,
D 𝑝

D̂ 𝑝

) 

< 𝑡ℎ𝑟 (12)

where 𝑡ℎ𝑟 = 1.25, 1.252 

 , 1.253 

 [7]. 

4.4. Experiment results 

4.4.1. Model performance

Our experimental investigation encompasses both quantitative per-

formance and energy consumption analyses, utilising synthetic (DENSE) 

and real-world (DSEC) datasets. Several metrics were employed to 

evaluate the outcomes comprehensively Table 1.

On DENSE dataset, the results consistently indicate that the proposed 

method outperforms the alternative approaches across nearly all evalu-

ated metrics. Notably, substantial reductions are observed in the abso-

lute relative error (Abs.Rel) and squared relative error (Sq.Rel)—critical 

metrics in depth estimation tasks. The Abs.Rel for the proposed method, 

recorded at 0.80, represents reductions of 72 %, 91.9 %, and 49 % com-

pared to U-Net (2.89), E2Depth (9.91), and Spike-T (1.57), respectively. 

Similarly, the Sq.Rel of our method, at 8.32, demonstrates reductions of 

88.5 %, 91.3 %, and 79 % relative to U-Net (72.25), E2Depth (96.01), 

and Spike-T (39.77).

In addition to error reduction, the proposed method achieves modest 

increases in accuracy metrics (𝛿 < 1.25, 𝛿 < 1.25 

2 , and 𝛿 < 1.25 

3 ), attain-

ing values of 0.53, 0.68, and 0.76, respectively. These values are slightly 

higher than those achieved by the competing methods, reinforcing the 

method’s superior capability in depth estimation tasks.

In terms of power consumption, the proposed method demonstrates a 

marked advantage in computational efficiency. A key contributor to this 

is the sparse activation inherent to SNNs, reflected in the low mean firing 

rate (FR) of our model. This metric quantifies the event-driven nature 

of the computation, where energy is consumed only for active neurons. 

This sparsity allows our model to reduce theoretical power consumption 

by up to 82.9 % compared to the dense operations of U-Net (12.43 mJ vs. 

72.93 mJ). Furthermore, our knowledge distillation framework enables 

a more compact architecture, reducing the parameter count by 42.4 % 

compared to the Spike-T method (20.55 M vs. 35.68 M).
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Fig. 9. Visual comparison of predicted depth maps on the DENSE validation set. The proposed model recovers sharper object boundaries, thin structures, and more 

globally consistent depth (far-range stability and reduced bleeding) than U-Net, E2Depth, and Spike-T, which exhibit smoothing, edge erosion, or depth discontinuities.

Fig. 10. Depth estimation results under low-light conditions on the DSEC dataset. The proposed model preserves thin roadside structures (e.g., trees, poles), sharp 

object boundaries (buildings, vehicles), and delivers more stable far-range depth than baseline methods, despite the sparsity and noise of the event stream.

Table 2 

Ablation study results: Quantitative performance comparison on the synthetic (DENSE) dataset. Symbols ↓ and 

↑ indicate that a lower value and higher value are preferable, respectively.

Abs Rel ↓ Sq Rel ↓ RMS log ↓ SI log ↓ 𝛿 < 1.25 ↑ 𝛿 < 1.252 

 ↑ 𝛿 < 1.25 

3 ↑

Linear FCN Head 2.85 51.76 0.32 0.75 0.16 0.34 0.48

W/O KD 3.52 85.10 0.25 2.15 0.31 0.42 0.51

Proposed 0.80 8.32 0.17 0.46 0.53 0.68 0.76

These experimental results show that our proposed method can more 

effectively capture the spatiotemporal characteristics of irregular contin-

uous spike data streams, delivering satisfactory accuracy. This is further 

illustrated in Fig. 9, which depicts the visualization results from multiple 

comparison models on a validation synthetic dataset. The visualization 

demonstrates that, unlike the U-Net and Spike-T methods which can pre-

dict details yet misestimate depth, or the E2Depth method that produces 

blurry outcomes losing fine details, our method effectively manages to 

capture more intricate details, including minute structures, sharp edges, 

and contours.

In addition, in order to validate the generalisability of the model, 

we evaluate the proposed model on DSEC real event dataset. It is note-

worthy that while the DENSE synthetic dataset encompasses 128 spike 

frames, the real-world DSEC dataset contains only 16 frames. Our model 

and the SpikeU-Net model require retraining on this reduced dataset. 

However, the SNN-based methods (E2Depth and Spike-T) are unable to 

be retrained due to insufficient training parameters, necessitating the 

replication of DSEC data to 128 frames to accommodate their setups. 

Consequently, the performance of E2Depth and Spike-T is expectedly 

low.

The results, as shown in Table 1, demonstrate that the proposed 

model excels across all metrics in comparison to the E2Depth, Spike-

T, and U-Net models. This superior performance is evident particularly 

in terms of metrics such as Abs Rel, Sq Rel, RMS log, and SI log, as well

as in the accuracy metrics (𝛿 < 1.25, 𝛿 < 1.25 

2 , and 𝛿 < 1.25 

3 ), where 

higher scores are indicative of better performance. These findings un-

derscore the effectiveness of the proposed model in handling real-event 

data from spiking cameras.

Fig. 10 shows the visualization result in a low light environment. Our 

method effectively identifies features such as trees and houses along the 

roadside, as well as vehicles located in the center of the road.

4.4.2. Ablation study

This subsection presents an ablation study conducted to evaluate 

the effectiveness of the proposed Fusion Depth Estimation Head and 

Knowledge Distillation (KD) modules.

Table 2 reports the quantitative performance comparison on the 

synthetic datasets (DENSE) in the ablation study. As demonstrated by 

the results, all accuracy metrics exhibit a decline when employing the 

linear FCN (Fully Convolutional Network) head for depth estimation. 

Specifically, Absolute Relative (Abs Rel) error increased from 0.80 to 

2.85, while the Squared Relative (Sq Rel) error escalated from 8.32 to 

51.76. Fig. 11 illustrates the visualization results of using two different 

heads. The image becomes notably blurrier and loses details when em-

ploying the linear FCN head, which relies solely on the final features 

generated by the transformer. Conversely, our fusion head integrates 

multi-scale features, thereby facilitating superior recovery of details 

compared to the linear FCN head.
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Fig. 11. Visualization results on validation synthetic (DENSE) dataset by using FCN head and proposed fusion depth estimation head.

Fig. 12. Visualization results on validation synthetic (DENSE) dataset with and without knowledge distillation.

The visualization of results with and without knowledge distillation 

is depicted in Fig. 12. The results without knowledge distillation approx-

imate those of the baseline models from Experiment 1. The presence 

of noise in the spike data leads to less accurate depth estimations for 

certain segments of the point cloud. However, employing knowledge dis-

tillation enables the model to predict the depths of distant clouds more 

accurately, a benefit attributed to the enhanced inductive capabilities 

derived from the substantial foundational model.

5. Discussion

The development of efficient and accurate depth estimation methods 

for event cameras remains a significant challenge in computer vision 

[5,6]. Our work addresses this challenge through three key innovations:

(1) a purely spike-driven transformer architecture, (2) fusion depth es

timation head and (3) a novel knowledge distillation framework. The 

experimental results demonstrate the improvements in both accuracy 

-

and energy efficiency, we discuss the implications, limitations, and 

potential impact of our approach in this section.

The satisfactory performance of the spike transformer architecture 

can be attributed to several factors. Beyond mere energy savings, the ar-

chitecture’s success stems from the fundamental synergy between SNNs 

and event data. By implementing spike-driven residual learning and 

self-attention mechanisms [34,35], our model effectively captures the 

temporal dynamics inherent in event camera data while maintaining 

the computational efficiency characteristic of SNNs [15]. This is evi-

denced by the significant reductions in absolute relative error (49 % 

reduction) and squared relative error (39.77 % reduction) compared to 

the state-of-the-art Spike-T model [33]. The elimination of floating-point 

operations in the transformer portion substantially reduces power con-

sumption [64,65], making our approach more practical for real-world 

applications where energy efficiency is crucial.

Our innovative fusion depth estimation head integrates multi-

scale transformer features, preserving fine details and global struc-

ture, addressing limitations of traditional methods and ensuring robust

performance. Traditional approaches often struggle to maintain fine-

grained spatial information while processing temporal event data [3]. 

Our fusion head addresses this by effectively combining features from 

multiple transformer stages, as demonstrated by the improved preser-

vation of detail in our depth predictions compared to standard linear 

FCN heads [43]. This multi-scale feature integration is particularly ben-

eficial for capturing both fine details and global scene structure [66], 

contributing to the overall robustness of our depth estimates. As noted 

in the introduction, the fusion head is intentionally not purely spike-

based. This decision was driven by the requirement for high accuracy 

in depth estimation tasks, as pure spike-based operations currently face 

limitations for precise value prediction.

Our hybrid approach allows us to leverage the energy efficiency 

of spike-based computing in the feature extraction stages while main-

taining the high accuracy requirements of depth estimation through 

conventional computation in the fusion head.

Our knowledge distillation framework represents a significant ad-

vancement in addressing the longstanding challenge of training SNNs 

with limited data [36]. While the ablation study in Table 2 shows 

that our model without knowledge distillation (“W/O KD”) performs 

comparably to the U-Net baseline, this result precisely underscores the 

necessity and impact of our distillation approach. The key contribution 

is not that a spike-driven transformer alone is superior, but that our 

specific knowledge distillation framework elevates its performance to a 

state-of-the-art level. The technical innovation lies in our single-stage, 

cross-modality distillation strategy, which directly transfers knowledge 

from a large, pre-trained vision foundation model (DINOv2) to the 

SNN student without requiring a custom-trained teacher model. This 

is enabled by a carefully designed fusion loss function that combines a 

Feature Perceptual Loss (𝐿 𝑝 

) with a scale-invariant L2 loss. This combi-

nation is novel and critical: the perceptual loss aligns high-level semantic 

features across the disparate RGB and event-data domains, while the 

scale-invariant loss specifically addresses the inherent scale ambiguity 

of monocular depth estimation. As shown in Fig. 12, this framework 

allows the SNN to learn robust representations that generalise even to
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challenging scenarios, such as estimating the depth of distant objects, 

which would be difficult to learn from the limited event data alone.

Despite the promising results, our approach has several limitations 

that merit explicit discussion. (1) Dependence on knowledge distillation: 

the model’s state-of-the-art performance is heavily dependent on knowl-

edge distillation from a large foundation model; this reliance introduces 

complexity into the training pipeline and may limit applicability where a 

suitable teacher is unavailable. (2) Scalability constraints: training larger 

backbones or scaling to substantially larger datasets would sharply in-

crease computational cost, memory footprint (activation, membrane and 

optimizer states), and training instability. Although spike operations are 

energy-efficient at inference, current software stacks (GPU/TPU kernels, 

autograd, scheduler support) are not yet optimised to exploit event spar-

sity during large-scale training, yielding sub-linear hardware utilisation, 

higher gradient variance, and more frequent issues such as silent or ex-

ploding neurons. (3) Dataset availability: publicly available event-based 

depth datasets remain limited in both scale and scene diversity com-

pared to large RGB depth corpora; this scarcity constrains architecture 

scaling, hyperparameter exploration, and statistically robust generali-

sation assessment, reinforcing the need for cross-modality distillation 

to import broader semantic priors. (4) Real-world deployment: reported 

energy gains are analytic (45 nm MAC/AC cost models) and realised effi-

ciency will depend on hardware factors (memory hierarchy, spike packet 

congestion, IO bandwidth, leakage, clock gating efficacy, quantisation 

resilience, temporal jitter, sensor noise, device variability); additionally 

the MAC-based fusion/upsampling depth head (retained for continuous 

numeric precision) breaks end-to-end spike purity and may become a 

bottleneck on strictly event-driven accelerators.

Several avenues for future research emerge from our findings. First, 

investigating methods to achieve comparable accuracy with pure spike-

based fusion mechanisms remains an important challenge, though this 

may require fundamental advances in spike-based computing preci-

sion. Second, evaluation on neuromorphic hardware platforms (such as 

SpiNNaker 1/2 [67,68], BrainScales [69], or TrueNorth [70]) would 

provide valuable insights into real-world performance and energy ef-

ficiency. Especially SpiNNaker 2 [68], unlike traditional methods, is 

specifically designed to handle operations such as multiplications, which 

are generally inefficient for spiking computations. The introduction of 

such platforms highlights the necessity for hybrid approaches, where 

specific operations may leverage conventional hardware optimisations 

while retaining the efficiency of spike-driven designs.

Additionally, our architecture’s ability to effectively process tempo-

ral event data suggests potential applications beyond depth estimation, 

such as object tracking [7] or motion estimation [11]. The success of our 

knowledge distillation approach also raises interesting questions about 

the broader applicability of foundation models in training efficient SNNs 

for various computer vision tasks [55].

The integration of event cameras in autonomous systems and robotics 

applications continues to grow [12], driven by their advantages in 

terms of latency, dynamic range, and power efficiency [9]. Our work 

demonstrates that by combining the biological inspiration of SNNs 

with modern deep learning architectures and knowledge distillation 

techniques, we can develop more efficient and accurate methods for 

processing event camera data. While our hybrid approach represents 

a careful balance between computational efficiency and accuracy re-

quirements, it provides valuable insights for the broader development of 

neuromorphic computing systems. The success of this approach suggests 

that future developments in spike-based computing may benefit from 

similar pragmatic trade-offs between pure neuromorphic computation 

and task-specific performance requirements.

6. Conclusion

In this paper, we have introduced a novel energy-efficient Spike 

Transformer network for depth estimation, leveraging spiking camera 

data. The proposed architecture integrates spike-driven residual learning

and spiking self-attention mechanisms, creating a transformer frame-

work that operates entirely within the spike domain. This innovative 

design achieves significant computational efficiency, with an 82.9 % 

reduction in power consumption compared to conventional methods 

(from 72.93 mJ to 12.43 mJ per inference). Additionally, our single-

stage knowledge distillation framework, leveraging large foundational 

ANN models such as DINOv2, enables robust training of SNNs even in 

the presence of limited data. Extensive evaluations on synthetic and real-

world datasets demonstrate the efficacy of our approach, with significant 

improvements in key performance metrics, including a 49 % reduction in 

Absolute Relative Error and a 39.77 % reduction in Square Relative Error 

compared to the state-of-the-art SpikeT model. The architecture further 

enhances efficiency with a 42.4 % reduction in parameters (20.55 M ver-

sus 35.68 M), making it particularly well-suited for resource-constrained 

environments. By combining high accuracy with remarkably low power 

requirements, our spike-based design is well-suited for practical appli-

cations. Future work will focus on extending this research to broader 

real-world scenarios, including deployment on dedicated SNN proces-

sors and further validation with diverse datasets. These efforts aim to 

unlock the full potential of Spike Transformers in applications such as 

autonomous navigation, robotics, and energy-efficient vision systems, 

paving the way for advanced neuromorphic computing in practical 

settings.
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