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HIGHLIGHTS

« Novel energy-efficient Spike Transformer for depth estimation using event cameras.

« Purely spike driven transformer with spike-based attention and residual mechanisms.
« Fusion depth head combines multi-stage features for fine-grained predictions.

« Cross-modality knowledge distillation from DINOv2 enhances SNN training.
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ABSTRACT

Depth estimation is a critical task in computer vision, with applications in autonomous navigation, robotics,
and augmented reality. Event cameras, which encode temporal changes in light intensity as asynchronous bi-
nary spikes, offer unique advantages such as low latency, high dynamic range, and energy efficiency. However,
their unconventional spiking output and the scarcity of labeled datasets pose significant challenges to traditional
image-based depth estimation methods. To address these challenges, we propose a novel energy-efficient Spike-
Driven Transformer Network (SDT) for depth estimation, leveraging the unique properties of spiking data. The
proposed SDT introduces three key innovations: (1) a purely spike-driven transformer architecture that incor-
porates spike-based attention and residual mechanisms, enabling precise depth estimation with minimal energy
consumption; (2) a fusion depth estimation head that combines multi-stage features for fine-grained depth pre-
diction while ensuring computational efficiency; and (3) a cross-modality knowledge distillation framework that
utilises a pre-trained vision foundation model (DINOv2) to enhance the training of the spiking network despite
limited data availability. Experimental evaluations on synthetic and real-world event datasets demonstrate the
superiority of our approach, with substantial improvements in Absolute Relative Error (49 % reduction) and
Square Relative Error (39.77 % reduction) compared to existing models. The SDT also achieves a 70.2 % reduc-
tion in energy consumption (12.43 mJ vs. 41.77 mJ per inference) and reduces model parameters by 42.4 %
(20.55 M vs. 35.68 M), making it highly suitable for resource-constrained environments. This work represents
the first exploration of transformer-based spiking neural networks for depth estimation, providing a significant
step forward in energy-efficient neuromorphic computing for real-world vision applications.

1. Introduction

Depth estimation is a fundamental task in computer vision, under-
pinning applications such as autonomous driving, robotics, agricultural
monitoring, and environmental analysis [1]. Traditionally, state-of-
the-art depth prediction has relied on standard frame-based cameras
combined with artificial neural networks (ANNs) [2-4]. However, these
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approaches are often limited by latency, power consumption, and
dynamic range constraints inherent to conventional imaging sensors.
Event-based cameras have emerged as a promising alternative, in-
spired by biological vision systems. These sensors asynchronously cap-
ture changes in brightness at each pixel, resulting in high temporal
resolution, low latency, low power consumption, and a wide dynamic
range [5-10]. Their unique capabilities have enabled new possibilities
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in fields such as 3D scanning, robotic vision, and automotive applica-
tions [11-13]. Despite these advantages, event-based cameras produce
spiking data that is inherently noisy and lacks the mature processing
algorithms available for conventional images.

Spiking Neural Networks (SNNs), also known as the third generation
of neural networks [14], are well-suited for processing the discrete spike
streams generated by event cameras. SNNs mimic biological neurons
by transmitting information via discrete spikes, rather than continu-
ous values as in traditional ANNs [15]. This makes SNNs a natural fit
for event-based data, and recent research has begun to explore their
potential for vision tasks [16-18].

The choice of SNNs for event-based depth estimation is motivated
by several unique advantages beyond general energy efficiency. First,
there is a fundamental synergy in data representation: event cameras
produce asynchronous, sparse, binary data [5,8,9], and SNNs process
information in precisely the same manner [19]. This allows SNNs to
process event streams more directly, avoiding the information loss and
computational overhead associated with converting events into dense,
frame-like representations for ANNs [5]. Second, SNNs are inherently
temporal processors whose membrane dynamics integrate signals over
time [20], making them well-suited to capturing the rich temporal
dynamics of event data required for motion-based depth cues. This
event-driven computation—processing only upon spike arrival-enables
sparse activation, reducing unnecessary operations and supporting low-
latency inference on neuromorphic hardware [21]. These properties are
critical for real-time applications such as autonomous navigation and
robotics operating under energy and latency constraints [12,13].

Nevertheless, the application of SNNs and event-based cameras to
depth estimation remains in its early stages [10]. Two major challenges
persist: (1) the lack of robust SNN backbones specifically designed for
extracting features from spike data for depth estimation, and (2) the gen-
erally lower performance of SNNs compared to their ANN counterparts
in complex vision tasks.

The lack of SNN backbone designed for spike data depth esti-
mation. The event-based camera generates continuous spike streams
in a binary irregular data structure that possesses ultrahigh temporal
features. SNNs are applicable to event camera datasets and are able to
improve the depth estimation performance by exploiting advanced ar-
chitectures of ANN, such as ResNet like SNNs and Spiking Recurrent
Neural Networks [20,22-24]. Vision transformer [25,26] (ViT), is cur-
rently the most popular ANN structure and is based on a self-attention
mechanism to capture long-distance dependencies, especially spatio-
temporal features in images/videos. It improves the performance of Al
in many computer vision tasks such as image classification/ segmen-
tation [27-29], object detection [30] and depth estimation [31,32].
Transformer-based SNNs are a new form of SNN combining transformer
architectures with spiking neurons, offering great potential to break the
performance bottleneck on spike stream data. In Zhang et al. [33], the
authors used the original ViT structure as a backbone to extract features
from both spatial and temporal domains in spike data. The result demon-
strated the suitability of the transformer for extracting spatio-temporal
features. However, the original transformer structure has a large num-
ber of multiplication operations and excessive computational energy
consumption compared to SNNs. In Zhou et al. [34,35], the authors pro-
posed a pure spike driven self-attention and residual connection to avoid
non-spike computations. This was a major step forward in the potential
use of transformers for depth estimation from spike data.

SNN model performance. One of the biggest challenges with SNNs
currently is their inability to achieve equivalent training performance
on spiking data compared to ANNs on non-spiking data. Gradient-based
backpropagation is a powerful algorithm for training ANNs, but since
spiking data is non-differentiable it cannot be used directly with SNNs
[36]. Converting ANN to SNN is a solution but it may introduce errors of
uncertainty or lose the temporal information of spikes [20]. Meanwhile,
the number of event-based datasets is small compared to the static im-
ages used in traditional ANN training, making SNNs prone to overfitting
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and limiting their generalisation ability [36]. Knowledge distillation is a
technique in deep learning to transfer knowledge from the teacher model
to the student model. It allows training of a lightweight model (student
model) to be as accurate as a larger model (teacher model). Currently,
there are already some ANN models trained with massive data that can
achieve zero-shot for depth estimation [37-39]. Logically, the accuracy
of these models has the potential to be transferred to the SNN model
during training.

In this work, we propose a novel energy-efficient spiking transformer
network for depth estimation, leveraging cross-modality knowledge
distillation to combine the biological efficiency of SNNs with the ad-
vanced feature extraction capabilities of a visual foundation model
(DINOvV2). To the best of our knowledge, this is the first exploration
of a transformer-based SNN for depth estimation, marking a significant
advancement in the field. The proposed framework comprises three key
components, each contributing uniquely to its overall effectiveness:

(1) We introduce a novel energy-efficient spike-driven transformer
that eliminates conventional floating-point operations through
carefully designed spike-based attention and residual mechanisms.
This network incorporates two essential components: a spiking
patch embedding module that converts raw event data into spike-
based tokens while preserving temporal-spatial information, and
spiking transformer blocks that integrate Spiking Self-Attention
(SSA) and Spiking MLP for efficient feature processing. This design
significantly reduces energy consumption while ensuring robust
performance.

(2) We develop a fusion depth estimation head that combines fea-
tures from multiple transformer stages for fine-grained depth
prediction. This head is intentionally hybrid: it uses conventional
ConvBN and upsampling (MAC-based) operations to preserve the
numerical precision required for the dense regression task of depth
estimation. This design choice allows us to separate the energy
accounting between the purely spike-driven backbone and the
hybrid head.

(3) We propose a single-stage cross-modality knowledge distilla-
tion framework that leverages a large vision foundation model
(DINOvV2) to enhance SNN training with limited data. By utilising
domain loss and semantic loss, our framework effectively transfers
knowledge from both final and intermediate layers of DINOv2 to
the spike-driven transformer.

2. Related works

This section presents a literature review of existing research in
monocular depth estimation, SNNs, and knowledge distillation, high-
lighting the key challenges that motivate our work.

2.1. Image-based and event-based monocular depth estimation

Depth estimation from images aims to measure the distance of each
pixel relative to the camera. Monocular depth estimation is a challeng-
ing but promising technology. It has the advantage of only requiring one
image unlike traditional depth estimation, which makes it more practi-
cal for applications where it is not possible to take a pair of images, such
as on mobile devices. Depending on the type of data used, we can divide
monocular depth estimation into Image-based and Event-based methods
[3]. Image-based monocular depth estimation is more common as it es-
timates depth using the information in RGB images, which are easy to
collect and process. This makes them well-suited for depth estimation in
challenging conditions, such as low light and fast motion [18], although
event-based data is harder to collect and process.

The latest developments in deep learning have made it possible to de-
velop monocular depth estimation models that can achieve satisfactory
accuracy and robustness [3,40,41]. Similar to other deep learning mod-
els, these models typically consist of a generalised encoder that extracts
abstract features from context information and a decoder that recovers



X. Zhang, L. Han, S. Davies et al.

depth information from the features. For RGB images, in Laina et al.
[42], the authors used ResNet-50 as an encoder and novel up-sampling
blocks as a decoder to estimate depth from a single RGB image. In Laina
et al. [42], the authors utilised ViT instead of convolutional networks
as the backbone for a depth estimation task. Experiments have found
that transformers are able to provide finer and more globally consistent
predictions than traditional convolutional networks. For event data, the
research is still in its infancy. The authors [18] presented a new deep
learning model called E2Depth that can estimate depth from event cam-
eras with high accuracy. A fully convolutional neural network based on
the U-Net architecture [43] was used in this work. In Nam et al. [44],
a multiscale encoder was used to extract features from mixed-density
event stacking and an upscaling decoder was used to predict the depth.
The transformer structure has also been used in event-based monocular
depth estimation. In Liu et al. [45], EReFormer was proposed to estimate
depth from event cameras with superior accuracy based on transformers.

However, these models predominantly utilise traditional deep learn-
ing frameworks, overlooking the unique potential of event-based data.
Existing research identifies two key challenges that remain unaddressed.
The first challenge lies in the unique characteristics of event camera
data. This requires algorithms that can process data in real-time and
maintain temporal accuracy [5,6]. The second challenge is the scarcity
of spiking training data. High-quality, labeled datasets tailored for SNNs,
particularly for tasks like depth estimation, remain limited. The acqui-
sition and labeling of event-based data are both complex and resource-
intensive, further constraining the availability of training resources. To
address this limitation, knowledge distillation offers a promising solu-
tion. This involves transferring knowledge from a well-trained artificial
neural network (ANN). The ANN acts as a “teacher”, guiding the SNN,
or “student”, to learn effectively with limited event-based data.

2.2. Spiking neural networks (SNNs)

Unlike traditional deep learning models that convey information us-
ing continuous decimal values, SNNs use discrete spike sequences to
calculate and transmit information. Spiking neurons receive continuous
values and convert them into spike sequences. A number of differ-
ent spiking neuron models have been proposed. The Hodgkin-Huxley
model is one of the first models that describes the behaviour of bio-
logical neurons [46], and is fundamental to explaining how spikes flow
in neurons, but the model is too complex to implement in silicon. The
Izhikevich model [47], which simplifies the Hodgkin-Huxley model, is
a two-dimensional model that describes the dynamics of the membrane
potential of a neuron. The leaky integrate-and-fire (LIF) neuron is an-
other simple neuron model that is widely used in neuroscience and
SNNs. It is simpler than Izhikevich model but captures the essential
features of how neurons work. It can be used to build SNNs and im-
plemented in very-large-scale integrations (VLSI) [48]. The membrane
potential of the LIF neuron is governed by the following equation:

dv/dt =1 —v/7,for v < Vyreshold (€D)]

where v is the membrane potential, ¢ is time, r is a time constant,
and I is the input current. The input current I can be either excita-
tory, which makes the membrane potential more positive, or inhibitory,
which makes it more negative. If v > vy eqnold> the neuron fires a spike
and then resets its membrane potential to a predefined reset value. The
LIF neuron model is simple and computationally efficient, making it suit-
able for hardware implementations. In this work, LIF is used to build the
proposed model.

Similar to ANNS, as the depth of SNNs increases, their performance
significantly improves [22,23,49]. Currently, most SNNs have borrowed
structures from ANNs, which can be categorised into two main groups:
CNN-based and Vision Transformer (ViT) -based SNNs. ResNet, as the
most successful CNN model has been extensively studied to extend
the depth of SNNs [22,23]. SEW ResNet [22] overcomes the vanish-
ing/exploding gradient problem in SNNs by using a technique called
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spike-timing dependent plasticity (STDP). It has been shown to be ef-
fective in a variety of tasks, including image classification and object
detection. However, convolutional networks possess translation invari-
ance and local dependency, but their calculations have a fixed receptive
field, limiting their ability to capture global dependencies. In contrast,
ViTs [25] are based on self-attention mechanisms that can capture long-
distance dependencies. They are based on the Transformer architecture,
which was originally developed for natural language processing tasks.

ViT-based SNNs represent a novel form of SNNs that combine the
transformer architecture with SNNs, providing great potential to break
through the performance bottleneck of SNNs. Yao et al. [50], and Zhou
et al. [34], proposed two different Spike-Driven Self-Attention models.
To avoid multiplication, they utilised only mask and addition operations,
which are efficient and have low computational energy consumption.
Zhou et al. [35], proposed Spikingformer, modifying the residual con-
nection to be purely event-driven, making it energy efficient while
improving performance.

However, the application of ViT architectures to Spiking Neural
Networks (SNNs) for depth estimation is an emerging field [33] fac-
ing significant challenges. Key among these are the difficulties in
training pure transformer-based SNN models and the limited avail-
ability of paired event-based depth data essential for robust training.
Knowledge distillation presents a promising approach to mitigate such
challenges, particularly data scarcity, by transferring knowledge from
well-pretrained models. Accordingly, this work proposes a knowledge
distillation method to leverage ANN model knowledge for SNN-based
depth estimation.

2.3. Knowledge distillation for SNN

Knowledge distillation is a model compression technique that trans-
fers knowledge from a large teacher model to a smaller student model,
enabling efficient training with limited resources [51]. It has been shown
to be effective for improving SNN performance: Kushawaha et al. [52]
transferred knowledge from a large to a small SNN for image classifi-
cation; He et al. [36] further boosted student SNN accuracy; Qiu et al.
[53] reduced the ANN-SNN performance gap; and [54] first explored
cross-modality distillation for SNN depth estimation using RGB data.
While these studies [36,53,54] demonstrate clear benefits, existing ap-
proaches still face limitations: (1) most focus on classification rather
than dense prediction tasks like depth; (2) cross-modality transfer be-
tween conventional images and event data remains underexplored; and
(3) many require training a separate teacher, adding computational
overhead. Currently, large foundation models have become the new
deep learning hotspot [55]. A large foundation model is trained on a
vast quantity of data at scale (often by self-supervised learning or semi-
supervised learning) so that the learned features can be used directly
for various downstream tasks or knowledge distillation. For example,
Dense Prediction Transformers (DPT) [39] are a type of ViT designed
for depth prediction tasks, trained on 1.4 million images for monocular
depth estimation. DINOv2 [37] used ViT-Giant, a larger version of ViT
with 1 billion parameters. It is more powerful than previous ViT models
and outperforms previous self-supervised learning methods in a variety
of computer vision tasks, especially for depth estimation. In this work,
for the first time, we will explore transferring knowledge from a large
foundation model (DINOv2) to SNNs for depth estimation.

3. The proposed method

We propose a novel energy-efficient spike transformer network
for depth estimation via cross-modality knowledge distillation. The
flowchart of the method is illustrated in Fig. 1, encompassing three
primary components: (1) Spike-Driven Transformer, (2) Fusion Depth
Estimation Head, and (3) Knowledge Distillation.

The rationale for our proposed method centres on three key innova-
tions:
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Fig. 1. Overview of the proposed method, illustrating the three main components: (1) spike-driven transformer, (2) fusion depth estimation head, and (3) knowledge

distillation.

(1) We introduce a Spike-Driven Transformer architecture. This archi-
tecture replaces conventional computationally intensive floating-
point matrix multiplications with binary spike-based computa-
tions. This is achieved through spike-based attention and residual
mechanisms, which not only reduce energy consumption but also
maintain high performance in capturing long-range dependencies.
We propose a novel fusion depth estimation head designed to in-
tegrate features from multiple transformer stages for precise and
robust depth estimation. Compared to existing methods, our ap-
proach overcomes the limitations of CNN based architectures,
which often lose critical spatial information due to downsampling.
By leveraging transformers’ ability to retain dimensional consis-
tency and integrating features at multiple levels, the fusion head
achieves superior depth estimation accuracy. Additionally, it is
fully compatible with spike-based computation models, making
it both efficient and biologically plausible, providing a signifi-
cant advantage for real-world applications requiring precision and
robustness in challenging environments.

To address the limited training data available for SNNs, we lever-
age knowledge from DINOv2, a large vision foundation model,
through a novel single-stage cross-modality distillation frame-
work. Rather than requiring separate training phases or an ad-
ditional teacher model, our approach directly transfers relevant
features from RGB to event data domains, enabling efficient
training while preserving the spike-based computation paradigm.

(2)

3)

3.1. Spike-driven transformer

The proposed spike transformer aligns with the foundational struc-
ture of the original ViT, encompassing a Spiking Patch Embedding and
Spiking Transformer Block. Given an event sequence, I € RTXCXHxW
the spike patch embedding is used to convert the input into a sequence of
tokens that can be processed by the transformer architecture, where the
event input is projected as spike-form patches X € RT*N*D N = % X %
Then, the spiking patches X are passed to the multi spiking transformer
blocks (L). Considering that we have used knowledge distillation from
the large model, this method uses only a minimum number of blocks
as L = 4. Inspired by Zhou et al. [34,35], in order to avoid non-spike
computations in traditional deep learning architectures, a Spiking Self
Attention (SSA) and a Spiking MLP block are used in spiking transformer
blocks.

3.1.1. Spiking patch embedding

In the original ViT [25], the patch embedding is used to represent an
image as a sequence of tokens. This is done by dividing the image into a
grid of patches and flattening each patch into a vector. In this work, we
implement this operation through a convolution batch norm (ConvBN),
Max pooling (MP) and multistep LIF (MLIF) combination. The structure
is shown in Fig. 2. Given an input sequence as I € RT*H*W after the
processing of picking patch embedding, I is split into an image patches

x3
r A Bl
o|(@
3|3
H SEEAE: > H/8
8||3|@|
W \ @A

Fig. 2. The architecture of the Spiking Patch Embedding module. This module
converts the input event sequence into spike-form patches using a combination
of Convolution-Batch Normalization (ConvBN), Max Pooling (MP), and Multi-
step Leaky Integrate-and-Fire (MLIF) operations.

Lyyicnes € RTN*P_ This process can be formulated as:
lpmcha, = MLIF(MP(ConvBN([1))) 2

where the ConvBN applies a 2D convolution with a 3 x 3 kernel
(stride =1) followed by batch normalization to patch the input. MP (Max
Pooling) is used to down-sample the feature size to patch size. The MLIF
module is designed to simulate the multi-step dynamics of an LIF neuron
to convert continuous feature maps into spike-based representations. In
practice, this means that the MLIF operation iterates the LIF process over
several discrete time steps to produce a spike train, rather than a single
output. The corresponding pseudocode for the MLIF operation is shown
in Fig. 3.

where I is assumed to be a sequence of input values over T time
steps. The term (1 — (1/7)) approximates the decay of the potential. The
neuron emits a spike when v reaches or exceeds V};,, and then v is reset
t0 Uy~ The number of operations can be greater than 1. When multiple
blocks are used, the number of output channels gradually increases and
the size of the feature is halved, eventually matching the embedding
dimension of the patch in ViT.

3.1.2. Spiking transformer block

The Spiking Transformer Block is structured to incorporate both a
Spiking Self Attention (SSA) mechanism and a Spiking MLP block, as
illustrated in Fig. 4.

Guided by the findings in [35], we position an MLIF before the
ConvBN within the residual mechanism to omit floating-point multipli-
cation and mixed-precision calculations during the ConvBN operation.
This adjustment also enables ConvBN to replace conventional linear
layers and batch normalization seamlessly. The SSA operation can be
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Algorithm 1 MLIF Algorithm

1: function MLIF(I, T, 7, Vin, Vreset)

2: v 0

3 spikes + []

4: fort=1to T do

5 v (1-2)-v+I[t] > assuming At = 1
6 if v > V;, then

7 s+ 1

8 V $— Ureset > reset potential after spike
9: else

10: 5+0

11: end if

12: Append s to spikes

13: end for

14: return spikes

15: end function

Fig. 3. Pseudocode for the MLIF operation.

mathematically described as:

Q = MLIF, (ConvBN, (X'))
K = MLIFy (ConvBNg (X'))
V = MLIF;, (ConvBNy, (X'))
SSA(Q. K, V) = ConvBN (MLIF (QK™V x 5))

(3)

The Query (Q), Key (K), and Value (V) matrices are generated by pro-
cessing input features through learnable transformations (e.g., ConvBN
layers) followed by distinct spiking neuron layers (e.g., MLIF layers), as
detailed in Eq. (3). This process yields Q, K,V € RTXNXD ag pure spike
data, containing only binary values (0 or 1). The Spiking Self-Attention
(SSA) mechanism leverages the inherently non-negative nature of these
spike-form Q and K matrices to produce a non-negative attention map.
This characteristic allows SSA to directly aggregate relevant features
while disregarding irrelevant ones, thereby making the conventional
softmax function redundant. A scaling factor, s, is employed to adjust the
magnitude of the matrix multiplication results within the SSA operation,
without altering the fundamental properties of the attention mechanism
itself. The Spiking MLP block, also a component of the transformer ar-
chitecture, consists of a residual connection and a combination of MLIF
and ConvBN operations.

3.2. Fusion depth estimation head

The task of depth estimation requires generating pixel-wise depth
predictions from encoded features. A common approach is a simple Fully
Convolutional Network (FCN) head that processes only the final encoder
features. While computationally efficient, this often fails to preserve fine

Spiking Features

Spiking Self Attention
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spatial details necessary for accurate depth maps. A key challenge in
adapting transformers for dense prediction is that, unlike CNNs which
naturally produce a multi-scale feature hierarchy through progressive
downsampling, standard Vision Transformers (ViTs) maintain a constant
spatial resolution of tokens throughout their layers. To address this, we
propose a fusion depth estimation head that explicitly combines features
from multiple stages of the spike-driven transformer backbone.

While the spatial resolution of tokens remains fixed, the effec-
tive receptive field and semantic level of the features evolve through
the transformer blocks. Early layers capture local, fine-grained details,
whereas deeper layers, through successive self-attention operations, in-
tegrate information across the entire token set to learn more global,
abstract, and semantic representations. Therefore, fusing features from
different stages allows the decoder to leverage both high-resolution
structural details (from early layers) and robust semantic context (from
later layers), which is critical for high-quality depth estimation. This
multi-stage fusion strategy is not ad hoc but follows established best
practices in state-of-the-art transformer architectures for dense pre-
diction. Models like DPT (Dense Prediction Transformers) [39] and
SegFormer [56] have successfully demonstrated that combining features
from multiple transformer blocks significantly improves performance in
tasks like depth estimation and semantic segmentation. Our fusion head
adapts this proven concept to our spike-driven backbone. The structure
of the fusion head for depth estimation is shown in Fig. 5.

The first step of the fusion head is to assemble the internal features
in transformer blocks into image-like feature representations. The fea-
ture representations are then fused into the final dense prediction with
skip connections. A generic upsampling structure is used to restore the
feature representations to original data size. Given an input feature as
F, € RT*H/W/8) j=1 2 3 4. The depth estimation head can be
formulated as follows:

Y, = (ConvBN (Up (F,)) + Up (F3))
Y; = (ConvBN (Up (Y;)) + Up (F3))
(Up

Y, = (ConvBN (Up (Y3)) + Up (Fy))
Y = Sigmod (Y,)

4

This design enables the network to combine high-level semantic in-
formation from deeper layers with fine-grained spatial details from
earlier layers, leading to more accurate depth predictions while main-
taining compatibility with knowledge distillation from vision foundation
models.

3.3. Knowledge distillation

Knowledge distillation is particularly challenging for SNNs due to
two main factors: (1) the binary nature of spike data differs funda-
mentally from the continuous values used in traditional ANNs, and
(2) the limited availability of labeled event camera data makes train-
ing challenging. To address these challenges, we propose a single-stage
cross-modality knowledge distillation framework that leverages DINOv2
[371, a large-scale vision foundation model, to guide our SNN training.

Spiking MLP
1
gl ,m L0 2 D
SR AEIE

@

Multi-step LIF @

Matrix Dot-Product ®

Element-wise Add @

Fig. 4. The architecture of the Spiking Transformer Block, detailing the integration of the Spiking Self Attention (SSA) mechanism and the Spiking MLP block.
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Fig. 5. Architecture of the proposed fusion depth estimation head. It integrates multi-stage features from the spike-driven transformer blocks (F;, F,, F;, F,) through

progressive upsampling and skip connections to generate the final depth map.

Fig. 6. (a) Sample RGB image. (b) Visualization of self-attention map from
DINOv2 features. (c) Depth estimation results using a linear probe applied to
frozen DINOv2 features.

Our choice of DINOv2 as the teacher model is motivated by several key
advantages:

(1) Architectural Compatibility: DINOv2’s Vision Transformer (ViT)
architecture closely aligns with our model’s structure, facilitating
effective knowledge transfer due to its similar feature representa-
tions and computational patterns.

Rich Feature Representations: Pre-trained on 142 million diverse
images, DINOv2 has demonstrated state-of-the-art performance in
depth estimation tasks on benchmark datasets such as NYU [57]
and SUN RGB-D [58]. As shown in Fig. 6, DINOv2’s self-attention
patterns and depth estimation capabilities on our dataset sug-
gest that it can provide valuable guidance during the knowledge
distillation process.

Zero-shot Generalisation: DINOv2’s strong zero-shot learning ca-
pabilities enable effective knowledge transfer even when dealing
with limited event camera data.

(2

—

@3

=

Algorithm 2 Spike knowledge distillation algorithm
Input:
x_batch: One batch Spike images;
T,gp_batch: One batch Mathced RGB images;
T': Teacher Network;
S: Student Network;
H: Depth estimation head Network;
1: set T.params = S.params;
2: set T.Frozen() # Frozen Teacher’s params;
for z,2,4 in z_batch, x,q4_batch do # One batch
training
‘T;'_qb = T(IT!]b)

"= S(z)

5

xr

D = H(2')

loss =Yt | Ly g({,x{rgb) + La(D, Target )

loss.backward() # Back-propagate

- Update(S.params) # Student params update by
knowledge distillation

10: end for

o R e

Fig. 7. The knowledge distillation algorithm, illustrating the process of trans-
ferring knowledge from the DINOv2 teacher model to the student SNN using a
combined loss function.

The knowledge distillation process can be shown in Fig. 1. We freeze
the DINOv2 (Lightblue) as a teacher model. The output features from
DINOV2 are considered as targets in our training. To ensure compatible
feature dimensions, we upsample the RGB input images by a factor of
1.75, resulting in teacher model features of size x;gb € RIXH/3XW /8,

Fig. 7 shows the knowledge distillation algorithm. Our distillation
framework employs a fusion loss function that combines two comple-
mentary components:

» Feature Perceptual Loss (Lp): Measures the distance between stu-
dent and teacher feature representations, ensuring the SNN learns
similar feature patterns. The Perceptual Loss [59] is used here to help
capture high-level semantic differences between teacher and student
representations, going beyond pixel-level comparisons.

L2 loss function: A scale-invariant metric [60], specifically designed
for monocular depth estimation to address the inherent scale ambi-
guity problem. This scale-invariant loss is particularly important as
it focuses on relative depth relationships rather than absolute values,
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aligning with the fundamental nature of monocular depth estimation
where absolute scale cannot be determined from a single view.

The fusion loss function is defined by the following equations:

1
T CxHXW

2 %)
b= T 0y - (ot or)
P

Where Lp; is the feature perceptual loss between features for pixel i.
D! — D! is the difference between predicted and ground truth depth for
pixel i, and n is total number of pixels with a dimension of H x W. D; is
the ground-truth depth, and D/ is the predicted depth. It makes the loss
invariant to uniform scaling of the depth predictions, allowing the net-
work to learn consistent relative depth relationships even when absolute
scale cannot be determined. This aligns with human depth perception,
which relies heavily on relative rather than absolute depths.

Lp [lxi - xf“;

4. Experiments

To test our model, we conducted two experiments to demonstrate
the effectiveness of the proposed SNN. We first introduce the details of
datasets used in this experiment. Then, we evaluate our method’s per-
formance, including accuracy and energy consumption, on both real and
synthetic event data to demonstrate its robustness and generalisability.
Finally, comprehensive ablation studies are conducted to investigate the
impact of each component.

4.1. Datasets

For model evaluation, we utilise two datasets comprising both real
and synthetic data.

DENSE Datasets: The first dataset is a synthetic dataset from Zhang
et al. [33], which is generated from the DENSE dataset [61], includ-
ing clear depth maps and intensity frames at 30 FPS under a variety of
weather and illumination conditions. To obtain spike streams with high
temporal resolution, the video is interpolated to generate intermediate
RGB frames between adjacent 30-FPS frames. With absolute intensity
information among RGB frames, each sensor pixel can continuously
accumulate the light intensity with the spike generation mechanism,
producing spike streams with a high temporal resolution (128 x 30 FPS)
that is 128 times the video frame rate. The ‘spike’ version of the DENSE
dataset (namely DENSE spike) contains eight sequences, five for train-
ing, and three for evaluation. Each sequence consists of 999 samples,
and each sample is a tuple of one RGB image, one depth map, and one

Event data

DENSE synthetic dataset
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spike stream. Each spike stream is simulated between two consecutive
images, generating a binary sequence of 128 spike frames (with a size
of 346 x 260 each) to depict the continuous process of dynamic scenes.

DSEC Datasets: The second dataset, DSEC [62], is a real event
dataset that provides stereo dataset in driving scenarios. It contains
data from two monochrome event cameras and two global shutter
colour cameras in favourable and challenging illumination conditions.
Hardware synchronised LiDAR data is also provided for depth predic-
tion. The dataset contains 41 sequences collected by driving in a variety
of illumination conditions and provides ground truth disparity for the
depth estimation evaluation. In this work, 29 sequences (70 %) are used
for model training and 12 are used for evaluation. Each sequence con-
sists of 200-900 samples, and each sample is a tuple of one RGB image,
one depth map (dense disparity), and one spike stream with 16 spike
frames and size of 480 x 640. Fig. 8 presents the two data samples used
in this work.

4.2. Experiment design

4.2.1. Model performance

In this section, we evaluate the depth estimation performance and en-
ergy consumption of our SNN on the synthetic (DENSE) and real datasets
(DSEC) and compare it with three competing dense prediction networks,
namely U-Net [43], E2Depth [61] and Spike-T [33]. U-Net employs 2D
convolutional layers as its encoder and focuses on spatial feature extrac-
tion, while E2Depth applies ConvLSTM layers that combine CNN and
LSTM to capture the spatial and temporal features. The Spike-T employs
transformer-based blocks to learn the spatio-temporal features simulta-
neously. These models therefore constitute our immediate and direct
competitors. To ensure a fair and direct comparison, all baseline models
were re-implemented and trained from scratch on our specific datasets
and data processing pipeline using their publicly available source code
and recommended hyperparameters.

The network’s total energy consumption is the sum of energy from its
spike-based Accumulate (AC) operations and any conventional Multiply-
Accumulate (MAC) operations.

These calculations assume 45 nm hardware [63], with an energy cost
of Eyjac = 4.6 pJ per MAC operation and E,c = 0.9 pJ per AC operation.
The total energy is calculated as:

E

model = z

1eMAC _layers

Eyiac XFLOP, + Y
1eAC_layers

Exc X SOP; (6)

Here, FLOP, is the number of floating-point MAC operations in a
conventional layer /. For spike-based layers, the number of Synaptic

Depth ground Truth

DSEC real dataset

Fig. 8. Examples from the DENSE (synthetic) and DSEC (real-world) datasets used for evaluation. Each sample typically includes an RGB image, the event stream

and a corresponding depth map.
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Table 1
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Quantitative performance comparison on synthetic (DENSE) and real (DSEC) datasets. Symbols | / 1 indicate that lower / higher values are better. Param (M):
parameters (millions). Mean firing rate (f,) and Power: theoretical energy per inference (45 nm estimates). "Models evaluated on DSEC with replicated temporal

frames (16—128).

Model Dataset Abs Rel | Sq Rel | RMS log | Sllog | 6§<1251 §< 12521 §< 1251 Spike-driven Param (M) Mean FR Power (mJ)

U-Net DENSE 2.89 72.25 0.19 1.73 0.39 0.50 0.58 No 31.20 0.88 72.93
DSEC 1.203 3.281 0.181 1.210 0.142 0.309 0.502

E2Depth DENSE 9.91 96.01 0.30 1.70 0.21 0.31 0.45 No 10.71 0.85 59.25
DSEC’ 9.909 96.011 0.299 1.697 0.209 0.309 0.448

Spike-T DENSE 1.57 39.77 0.17 0.91 0.50 0.65 0.74 No 35.68 0.65 41.77
DSEC' 2.853 51.757 0.321 0.751 0.164 0.341 0.483

Proposed DENSE 0.80 8.32 0.17 0.46 0.53 0.68 0.76 Yes 20.55 0.35 12.43
DSEC 1.000 0.999 0.105 0.212 0.387 0.500 0.583

Operations (SOP,) is estimated based on the firing rate f, (the propor-
tion of non-zero elements in the spike matrix), the number of time steps
T, and the equivalent FLOPs of the layer:

SOP, = f, x T x FLOP, @

4.2.2. Ablation study

An ablation study is detailed in this subsection to investigate the
contributions of two novel components within our model. They are the
fusion depth estimation head and the knowledge distillation technique.
We compare: (i) Linear FCN Head - a single-scale decoder analogous
to standard lightweight heads attached to frozen encoders (e.g., typi-
cal DINOv2 usage), (ii) full architecture without knowledge distillation
(W/0O KD), and (iii) proposed multi-stage fusion + KD. Their respective
impacts on model performance are dissected and discussed.

4.2.3. Implementation details

All models were trained and evaluated on a single NVIDIA RTX
A6000 GPU. Our proposed model and baseline model U-Net were trained
for 200 epochs with a batch size of 4 using the AdamW optimizer with
a weight decay of 0.05. The learning rate was initialised to 1e-5 and
followed a cosine annealing schedule. For the Spike-T and E2Depth, we
utilised the officially provided pre-trained weights from their respec-
tive authors, as the full original training parameters were not available.
The models and weights were obtained from their official codebases at
https://github.com/Leozhangjiyuan/MDE-SpikingCamera and https://
github.com/uzh-rpg/rpg_e2depth respectively. The architecture of our
proposed model is detailed in Section 3, with key components illus-
trated in Figs. 1-4. The spike-driven backbone consists of 4 spiking
transformer blocks with an embedding dimension of 384. To facil-
itate reproducibility, our source code and pre-trained weights will
be made publicly available at https://gitlab.com/han-research/spike-
transformer-for-depth.

4.3. Metrics

Several metrics are selected to evaluate the performance of the pro-
posed method, including Absolute Relative Error (Abs Rel.), Squared
Relative Error (Sq Rel.), Mean Absolute Error (MAE), Root Mean Square
Logarithmic Error (RMSE log) and the Accuracy metric (Acc.5). The
formulations are as follows:

Absolute Relative Error (Abs Rel.) | computes average errors on
the normalized depth map for every pixel, formulated as:

AbsRel. = % Zp: % (€))

It normalizes the value of depth to the range [0,1].
Square Relative Error (Sq Rel.) |, formulated as

D,-D
SqRel. = % > ),,—,, )
P

‘2
2]

which focuses on large depth errors due to its squared numerator.
Mean Absolute Error (MAE) | can be formulated as:
1 ~
MAE =~ 3 |D,-D,| 10)
P

Root Mean Square Error (RMSE log) | is a classic metric for per-
pixel prediction error and the logarithmic version can be denoted as

RMSE = | logD, —logD, | 11
= N;‘og , —logD, 1D

The Accuracy (Acc §) 1 as & denotes the percentage of all pixels D,
that satisfy max:

D, D
Acc = <—p, 7p> < thr
Dp Dp

where thr = 1.25, 1.252, 1.253 [7].

()

4.4. Experiment results

4.4.1. Model performance

Our experimental investigation encompasses both quantitative per-
formance and energy consumption analyses, utilising synthetic (DENSE)
and real-world (DSEC) datasets. Several metrics were employed to
evaluate the outcomes comprehensively Table 1.

On DENSE dataset, the results consistently indicate that the proposed
method outperforms the alternative approaches across nearly all evalu-
ated metrics. Notably, substantial reductions are observed in the abso-
lute relative error (Abs.Rel) and squared relative error (Sq.Rel)—critical
metrics in depth estimation tasks. The Abs.Rel for the proposed method,
recorded at 0.80, represents reductions of 72 %, 91.9 %, and 49 % com-
pared to U-Net (2.89), E2Depth (9.91), and Spike-T (1.57), respectively.
Similarly, the Sq.Rel of our method, at 8.32, demonstrates reductions of
88.5 %, 91.3 %, and 79 % relative to U-Net (72.25), E2Depth (96.01),
and Spike-T (39.77).

In addition to error reduction, the proposed method achieves modest
increases in accuracy metrics (6 < 1.25, 6 < 1.25%, and 6 < 1.25%), attain-
ing values of 0.53, 0.68, and 0.76, respectively. These values are slightly
higher than those achieved by the competing methods, reinforcing the
method’s superior capability in depth estimation tasks.

In terms of power consumption, the proposed method demonstrates a
marked advantage in computational efficiency. A key contributor to this
is the sparse activation inherent to SNNs, reflected in the low mean firing
rate (FR) of our model. This metric quantifies the event-driven nature
of the computation, where energy is consumed only for active neurons.
This sparsity allows our model to reduce theoretical power consumption
by up to 82.9 % compared to the dense operations of U-Net (12.43 mJ vs.
72.93 mJ). Furthermore, our knowledge distillation framework enables
a more compact architecture, reducing the parameter count by 42.4 %
compared to the Spike-T method (20.55 M vs. 35.68 M).
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Fig. 9. Visual comparison of predicted depth maps on the DENSE validation set. The proposed model recovers sharper object boundaries, thin structures, and more
globally consistent depth (far-range stability and reduced bleeding) than U-Net, E2Depth, and Spike-T, which exhibit smoothing, edge erosion, or depth discontinuities.
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Fig. 10. Depth estimation results under low-light conditions on the DSEC dataset. The proposed model preserves thin roadside structures (e.g., trees, poles), sharp
object boundaries (buildings, vehicles), and delivers more stable far-range depth than baseline methods, despite the sparsity and noise of the event stream.

Table 2

Ablation study results: Quantitative performance comparison on the synthetic (DENSE) dataset. Symbols | and
1 indicate that a lower value and higher value are preferable, respectively.

Abs Rel | Sq Rel | RMS log | Sllog | 6<1251 §5<1251 §<1251
Linear FCN Head 2.85 51.76 0.32 0.75 0.16 0.34 0.48
W/0 KD 3.52 85.10 0.25 2.15 0.31 0.42 0.51
Proposed 0.80 8.32 0.17 0.46 0.53 0.68 0.76

These experimental results show that our proposed method can more
effectively capture the spatiotemporal characteristics of irregular contin-
uous spike data streams, delivering satisfactory accuracy. This is further
illustrated in Fig. 9, which depicts the visualization results from multiple
comparison models on a validation synthetic dataset. The visualization
demonstrates that, unlike the U-Net and Spike-T methods which can pre-
dict details yet misestimate depth, or the E2Depth method that produces
blurry outcomes losing fine details, our method effectively manages to
capture more intricate details, including minute structures, sharp edges,
and contours.

In addition, in order to validate the generalisability of the model,
we evaluate the proposed model on DSEC real event dataset. It is note-
worthy that while the DENSE synthetic dataset encompasses 128 spike
frames, the real-world DSEC dataset contains only 16 frames. Our model
and the SpikeU-Net model require retraining on this reduced dataset.
However, the SNN-based methods (E2Depth and Spike-T) are unable to
be retrained due to insufficient training parameters, necessitating the
replication of DSEC data to 128 frames to accommodate their setups.
Consequently, the performance of E2Depth and Spike-T is expectedly
low.

The results, as shown in Table 1, demonstrate that the proposed
model excels across all metrics in comparison to the E2Depth, Spike-
T, and U-Net models. This superior performance is evident particularly
in terms of metrics such as Abs Rel, Sq Rel, RMS log, and SI log, as well

as in the accuracy metrics (6 < 1.25, 6 < 1.25%, and & < 1.25%), where
higher scores are indicative of better performance. These findings un-
derscore the effectiveness of the proposed model in handling real-event
data from spiking cameras.

Fig. 10 shows the visualization result in a low light environment. Our
method effectively identifies features such as trees and houses along the
roadside, as well as vehicles located in the center of the road.

4.4.2. Ablation study

This subsection presents an ablation study conducted to evaluate
the effectiveness of the proposed Fusion Depth Estimation Head and
Knowledge Distillation (KD) modules.

Table 2 reports the quantitative performance comparison on the
synthetic datasets (DENSE) in the ablation study. As demonstrated by
the results, all accuracy metrics exhibit a decline when employing the
linear FCN (Fully Convolutional Network) head for depth estimation.
Specifically, Absolute Relative (Abs Rel) error increased from 0.80 to
2.85, while the Squared Relative (Sq Rel) error escalated from 8.32 to
51.76. Fig. 11 illustrates the visualization results of using two different
heads. The image becomes notably blurrier and loses details when em-
ploying the linear FCN head, which relies solely on the final features
generated by the transformer. Conversely, our fusion head integrates
multi-scale features, thereby facilitating superior recovery of details
compared to the linear FCN head.
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Fig. 11. Visualization results on validation synthetic (DENSE) dataset by using FCN head and proposed fusion depth estimation head.
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Fig. 12. Visualization results on validation synthetic (DENSE) dataset with and without knowledge distillation.

The visualization of results with and without knowledge distillation
is depicted in Fig. 12. The results without knowledge distillation approx-
imate those of the baseline models from Experiment 1. The presence
of noise in the spike data leads to less accurate depth estimations for
certain segments of the point cloud. However, employing knowledge dis-
tillation enables the model to predict the depths of distant clouds more
accurately, a benefit attributed to the enhanced inductive capabilities
derived from the substantial foundational model.

5. Discussion

The development of efficient and accurate depth estimation methods
for event cameras remains a significant challenge in computer vision
[5,6]. Our work addresses this challenge through three key innovations:
(1) a purely spike-driven transformer architecture, (2) fusion depth es-
timation head and (3) a novel knowledge distillation framework. The
experimental results demonstrate the improvements in both accuracy
and energy efficiency, we discuss the implications, limitations, and
potential impact of our approach in this section.

The satisfactory performance of the spike transformer architecture
can be attributed to several factors. Beyond mere energy savings, the ar-
chitecture’s success stems from the fundamental synergy between SNNs
and event data. By implementing spike-driven residual learning and
self-attention mechanisms [34,35], our model effectively captures the
temporal dynamics inherent in event camera data while maintaining
the computational efficiency characteristic of SNNs [15]. This is evi-
denced by the significant reductions in absolute relative error (49 %
reduction) and squared relative error (39.77 % reduction) compared to
the state-of-the-art Spike-T model [33]. The elimination of floating-point
operations in the transformer portion substantially reduces power con-
sumption [64,65], making our approach more practical for real-world
applications where energy efficiency is crucial.

Our innovative fusion depth estimation head integrates multi-
scale transformer features, preserving fine details and global struc-
ture, addressing limitations of traditional methods and ensuring robust

10

performance. Traditional approaches often struggle to maintain fine-
grained spatial information while processing temporal event data [3].
Our fusion head addresses this by effectively combining features from
multiple transformer stages, as demonstrated by the improved preser-
vation of detail in our depth predictions compared to standard linear
FCN heads [43]. This multi-scale feature integration is particularly ben-
eficial for capturing both fine details and global scene structure [66],
contributing to the overall robustness of our depth estimates. As noted
in the introduction, the fusion head is intentionally not purely spike-
based. This decision was driven by the requirement for high accuracy
in depth estimation tasks, as pure spike-based operations currently face
limitations for precise value prediction.

Our hybrid approach allows us to leverage the energy efficiency
of spike-based computing in the feature extraction stages while main-
taining the high accuracy requirements of depth estimation through
conventional computation in the fusion head.

Our knowledge distillation framework represents a significant ad-
vancement in addressing the longstanding challenge of training SNNs
with limited data [36]. While the ablation study in Table 2 shows
that our model without knowledge distillation (“W/O KD”) performs
comparably to the U-Net baseline, this result precisely underscores the
necessity and impact of our distillation approach. The key contribution
is not that a spike-driven transformer alone is superior, but that our
specific knowledge distillation framework elevates its performance to a
state-of-the-art level. The technical innovation lies in our single-stage,
cross-modality distillation strategy, which directly transfers knowledge
from a large, pre-trained vision foundation model (DINOv2) to the
SNN student without requiring a custom-trained teacher model. This
is enabled by a carefully designed fusion loss function that combines a
Feature Perceptual Loss (L,) with a scale-invariant L2 loss. This combi-
nation is novel and critical: the perceptual loss aligns high-level semantic
features across the disparate RGB and event-data domains, while the
scale-invariant loss specifically addresses the inherent scale ambiguity
of monocular depth estimation. As shown in Fig. 12, this framework
allows the SNN to learn robust representations that generalise even to
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challenging scenarios, such as estimating the depth of distant objects,
which would be difficult to learn from the limited event data alone.

Despite the promising results, our approach has several limitations
that merit explicit discussion. (1) Dependence on knowledge distillation:
the model’s state-of-the-art performance is heavily dependent on knowl-
edge distillation from a large foundation model; this reliance introduces
complexity into the training pipeline and may limit applicability where a
suitable teacher is unavailable. (2) Scalability constraints: training larger
backbones or scaling to substantially larger datasets would sharply in-
crease computational cost, memory footprint (activation, membrane and
optimizer states), and training instability. Although spike operations are
energy-efficient at inference, current software stacks (GPU/TPU kernels,
autograd, scheduler support) are not yet optimised to exploit event spar-
sity during large-scale training, yielding sub-linear hardware utilisation,
higher gradient variance, and more frequent issues such as silent or ex-
ploding neurons. (3) Dataset availability: publicly available event-based
depth datasets remain limited in both scale and scene diversity com-
pared to large RGB depth corpora; this scarcity constrains architecture
scaling, hyperparameter exploration, and statistically robust generali-
sation assessment, reinforcing the need for cross-modality distillation
to import broader semantic priors. (4) Real-world deployment: reported
energy gains are analytic (45 nm MAC/AC cost models) and realised effi-
ciency will depend on hardware factors (memory hierarchy, spike packet
congestion, I0 bandwidth, leakage, clock gating efficacy, quantisation
resilience, temporal jitter, sensor noise, device variability); additionally
the MAC-based fusion/upsampling depth head (retained for continuous
numeric precision) breaks end-to-end spike purity and may become a
bottleneck on strictly event-driven accelerators.

Several avenues for future research emerge from our findings. First,
investigating methods to achieve comparable accuracy with pure spike-
based fusion mechanisms remains an important challenge, though this
may require fundamental advances in spike-based computing preci-
sion. Second, evaluation on neuromorphic hardware platforms (such as
SpiNNaker 1/2 [67,68], BrainScales [69], or TrueNorth [70]) would
provide valuable insights into real-world performance and energy ef-
ficiency. Especially SpiNNaker 2 [68], unlike traditional methods, is
specifically designed to handle operations such as multiplications, which
are generally inefficient for spiking computations. The introduction of
such platforms highlights the necessity for hybrid approaches, where
specific operations may leverage conventional hardware optimisations
while retaining the efficiency of spike-driven designs.

Additionally, our architecture’s ability to effectively process tempo-
ral event data suggests potential applications beyond depth estimation,
such as object tracking [7] or motion estimation [11]. The success of our
knowledge distillation approach also raises interesting questions about
the broader applicability of foundation models in training efficient SNNs
for various computer vision tasks [55].

The integration of event cameras in autonomous systems and robotics
applications continues to grow [12], driven by their advantages in
terms of latency, dynamic range, and power efficiency [9]. Our work
demonstrates that by combining the biological inspiration of SNNs
with modern deep learning architectures and knowledge distillation
techniques, we can develop more efficient and accurate methods for
processing event camera data. While our hybrid approach represents
a careful balance between computational efficiency and accuracy re-
quirements, it provides valuable insights for the broader development of
neuromorphic computing systems. The success of this approach suggests
that future developments in spike-based computing may benefit from
similar pragmatic trade-offs between pure neuromorphic computation
and task-specific performance requirements.

6. Conclusion

In this paper, we have introduced a novel energy-efficient Spike
Transformer network for depth estimation, leveraging spiking camera
data. The proposed architecture integrates spike-driven residual learning
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and spiking self-attention mechanisms, creating a transformer frame-
work that operates entirely within the spike domain. This innovative
design achieves significant computational efficiency, with an 82.9 %
reduction in power consumption compared to conventional methods
(from 72.93 mJ to 12.43 mJ per inference). Additionally, our single-
stage knowledge distillation framework, leveraging large foundational
ANN models such as DINOv2, enables robust training of SNNs even in
the presence of limited data. Extensive evaluations on synthetic and real-
world datasets demonstrate the efficacy of our approach, with significant
improvements in key performance metrics, including a 49 % reduction in
Absolute Relative Error and a 39.77 % reduction in Square Relative Error
compared to the state-of-the-art SpikeT model. The architecture further
enhances efficiency with a 42.4 % reduction in parameters (20.55 M ver-
sus 35.68 M), making it particularly well-suited for resource-constrained
environments. By combining high accuracy with remarkably low power
requirements, our spike-based design is well-suited for practical appli-
cations. Future work will focus on extending this research to broader
real-world scenarios, including deployment on dedicated SNN proces-
sors and further validation with diverse datasets. These efforts aim to
unlock the full potential of Spike Transformers in applications such as
autonomous navigation, robotics, and energy-efficient vision systems,
paving the way for advanced neuromorphic computing in practical
settings.
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