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Robotic consciousness

Explaining when neural activity supports conscious processing remains an unresolved question in neuroscience.
Current frameworks describe correlates of consciousness but rarely provide thresholds to predict its emergence or
recovery. We introduce the Attribution Consciousness Index (ACI), a metric that estimates the generative potential
of consciousness by balancing measures of dynamic information (®) and complexity (k) expressed as a
normalized odds ratio. Using the empirically validated Connectome-76 within The Virtual Brain, we ran 500
resting-state simulations, selecting lowest-entropy regions to capture informative subnetworks. The ACI followed
a log-normal distribution and highlighted hubs—cingulate cortex, dorsomedial prefrontal cortex, hippocampus,
and amygdala—implicated in conscious processing. To test generality, we extended the framework to an artificial
neural architecture with hierarchical modules, nonlinear Hebbian plasticity, and controlled entropy. Across 1921
executions, the ACI conformed to log-normal laws, enabling robust thresholding. Kernel ridge regression showed
predictive validity: Al-derived ACI patterns explained 38.4 % of variance in human ACI distributions, revealing
transferable principles between biological and artificial circuits. This extension indicates that ACI can guide
artificial-consciousness models implementable in robotics, providing measurable criteria for when robotic sys-
tems might sustain conscious-like states. Two contributions are novel. First, ACI thresholds provide interpretable
decision points: values above 10 correspond to probabilities greater than 90 % for conscious emergence. Second,
the framework offers translational applications—from prognosis in disorders of consciousness, anesthesia
monitoring, and neurorehabilitation to evaluating neuroprosthetics, generative Al, and robotics with conscious
capacities. While ACI does not measure subjective experience, it predicts when neural or artificial conditions are
poised to sustain it.

1. Introduction

A connectome is a dynamic, operational map of brain regions that
captures the intricate web of connections and neural circuits sustaining
essential functions (Huang et al., 2021). While some connectomes

simulations, others have been rigorously validated in biological systems
and are now widely deployed across diverse species (Nern et al., 2025;
Winding et al., 2023). Consider, for example, efforts to enhance visual
acuity by targeting specific neural networks: empirically grounded
connectomes provide researchers with a powerful framework to test
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pathways—without compromising human health or incurring prohibi-
tive costs (Boyd, 2024). In such contexts, connectomes offer precisely
controlled virtual environments where experimental effects can be
replicated and theoretical models refined, thereby strengthening the
foundations of conventional research (Jamison et al., 2025). Neither
neuroscience nor engineering should underestimate the transformative
potential of empirically validated connectomes. In the least favorable
scenario, they may yield inconclusive or flawed models (Vassallo et al.,
2024). Yet in the most promising cases, they can evolve into compre-
hensive atlases capable of illuminating some of the most enduring sci-
entific mysteries—among them, the origins of consciousness and our
remarkable capacity for subjective experience (Chalmers, 1995; Len-
haro, 2024). As artificial intelligence and quantum computing advance
at an unprecedented pace, these questions have acquired new urgency,
prompting us to ask whether machines themselves could one day
develop self-awareness (Escola-Gascon, 2025; Escola-Gascon and
Benito-Leon, 2025).

2. How to assess the degree of consciousness in Al

There are two main meta-theoretical frameworks for addressing how
consciousness can be evaluated in artificial intelligence. The emergent
approach holds that consciousness arises from the informational
complexity of physicochemical processes within systems—particularly
the brain—rather than constituting a fundamental property of the uni-
verse or an entity separate from it (Bunge, 1977). This view suggests that
the intricate organization of biological structures enables perception and
self-recognition (Santos, 2025). In this framework, consciousness is not
simply a byproduct but an emergent property of highly ordered systems,
supporting the hypothesis that sufficiently advanced artificial intelli-
gence might eventually develop a sense of identity and awareness of the
information it processes (Majorek, 2012).

By contrast, materialist reductionism argues that consciousness is
solely the deterministic outcome of physicochemical processes oper-
ating within neural systems (Foss, 1995). From this perspective,
conscious experience is confined to biological organisms with a central
nervous system (Miller et al., 2025). Yet even within reductionist par-
adigms, there is room for more nuanced positions. Some materialist
accounts allow that artificial consciousness could emerge, provided
computational architectures faithfully reproduce the material dynamics
underpinning conscious states (Martinez-Pernia et al., 2025). Biological
naturalism, articulated by Anil Seth (2025), exemplifies this conditional
openness, though he also underscores that such scenarios remain un-
likely. It is important to note that this synthesis intentionally excludes
dualist and metaphysical interpretations—not to discount their rele-
vance, but because they fall beyond the scope of the present discussion.
Both emergent and materialist paradigms remain essential, as any
rigorous evaluation of consciousness requires not only data but also
coherent conceptual frameworks and precise definitions (Wagner et al.,
2021). Without clarity about what consciousness is, no measurement
can claim genuine validity.

Building on the principles of computational emergentism, numerous
models have been developed to investigate the plausibility of machine
consciousness. In general, these assessments take the form of cognitive
or optimal-performance evaluations, often referred to as C-Tests, which
are designed to gauge specific sensory capabilities of artificial intelli-
gence systems as they engage in learning and decision-making tasks
(Bayne et al., 2024). A central limitation inherent to all such approaches
is their inability to discriminate between the mere simulation of certain
abilities and the genuine, voluntary use of sensory information that the
system is intended to integrate. Nevertheless, these measurement
frameworks arise from theoretical paradigms that seek to elucidate the
origins, mechanisms, and outcomes of conscious experience. The most
prominent examples include Integrated Information Theory (IIT), which
evaluates a system’s capacity to integrate information (Tononi, 2004,
2005); Higher-Order Theories (HOT) which examine the ability to
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generate metarepresentations (Seth, 2025); and Global Workspace The-
ory (GWT), which, although it shares the materialist foundations, fo-
cuses on how widespread neural activation may give rise to
phenomenological experience (Baars, 2005; Baars et al., 2021).

3. Information and complexity in consciousness

Although a recent review by Kuhn (2024) identified more than 200
theories seeking to resolve the question of what consciousness is and
how it operates, scientific research has largely concentrated on two
major theoretical frameworks. The first, IIT, adopts a computational,
systemic, and phenomenological approach, which is firmly situated
within the emergent paradigm of consciousness (Negro, 2022). The
second, GWT, is essentially cognitive and inductive, and can be posi-
tioned within the materialist reductionist perspective (Baars, 2005;
Baars et al., 2021). Rather than detailing the specific tenets of these two
leading theories here, in light of the report’s objectives, it is more
relevant and necessary to focus on the aspects they share in common.

Both IIT and GWT converge on the same unit of analysis: the infor-
mation being processed. IIT holds that conscious experience arises when
the system integrates information. This framework posits that integra-
tion is the point at which subjective interpretation, inference, and the
construction of feelings occur (Cea and Signorelli, 2025). In contrast,
GWT posits that conscious experience arises from the activation of
multiple brain structures that integrate information into a composite
representation, known as experience (Baars et al., 2021). Typically,
evaluations of when artificial intelligence might develop consciousness
are grounded in one of the two paradigms already mentio-
ned—emergent or reductionist—and are implemented in practice
through either IIT or GWT models. Rather than regarding them as
mutually exclusive, we propose assessing or measuring when Al could
develop consciousness by combining properties drawn from both IIT and
GWT (Cogitate et al., 2025).

In essence, IIT and GWT share two properties that have so far
received little attention: information and complexity. In this respect,
both theories articulate their explanations of consciousness through
informational units and system complexity, uniting them under a
functionalist materialist framework (D’Angiulli and Sidhu, 2025). It is
true that higher-order theories of consciousness also include these ele-
ments, though they typically emphasize them within the context of
computational functionalism (Seth and Bayne, 2022). In IIT, informa-
tion operates at an intrinsic level, with the system understood to orga-
nize information internally through causal relational structures.
Complexity manifests in both the system’s dynamic changes and in
measures of integration that quantify the extent to which information is
unified (Albantakis et al., 2023).

This is in contrast to GWT, where information operates at a distrib-
uted and global level, where mental contents enter a common workspace
from which they can be broadcast to multiple subsystems in the brain.
Here, complexity arises in determining which brain structures are active
at any given moment to utilize that information in composing a func-
tional and conscious experience (Farisco and Changeux, 2023).

Computational functionalism underlies both perspectives, as it views
information and complexity as abstract operations that, in principle, can
be implemented by any suitable physical system, without requiring any
specific ontological commitment to the substrate. However, as Anil Seth
(2025) has cautioned, the problem with computational functionalism is
that it tends to ignore the experiential, or phenomenological, aspect of
consciousness by reducing it to a set of syntactic transformations,
without guaranteeing that such transformations will give rise to con-
sciousness in its strongest sense.

Why do contemporary research programs in consciousness tend to
focus on emergent or materialist perspectives, rather than exploring the
mathematical potential inherent in the two properties that are infor-
mation and complexity? Perhaps it is because most current approaches
remain captive to epistemological frameworks that privilege the
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observable and functional over the ontological and structural, leaving
deeper and more rigorous avenues for integrating experience, form, and
mathematics largely unexplored.

4. Analogical framework for consciousness

To achieve this productive integration of informational units and
system complexity, we propose drawing on the concept of analogia entis
(the “analogy of being™), which underpins the Neo-Thomist paradigm
concerning the existence of reality (Nemes, 2022). Neo-Thomism
emerged as one of the rationalist frameworks that accompanied the
rise of scientific modernism in the late nineteenth century (Polak and
Rodzen, 2022). Its promulgation was led by Pope Leo XIII, who argued
persuasively that faith and science are not adversaries but collaborators,
united through both scientific method and rational inquiry (Gummess,
2025). As a demonstration of this conviction, he inaugurated the Vatican
Observatory at Castel Gandolfo in 1891.

Our aim here, however, is not to recount the historical development
of Neo-Thomism, but rather to clarify how the rational tool of the
analogy of being may help advance the contemporary question of when
artificial intelligence could begin to attain self-awareness. The analogy
of being is a logical framework showing that the existence of phenomena
does not occur solely in a univocal sense (identical in all cases) nor an
equivocal sense (completely different in each instance) but also mani-
fests analogically—seeking to preserve unity amid the diversity of re-
ality (Salas, 2009). In this context, “analogically” does not refer to the
rhetorical figure of metaphor or analogy in the contemporary argu-
mentative sense. Instead, it describes a self-similar relation established
to maintain an ontological balance between identity and difference
(Dompere, 2024).

From a logical perspective, materialist reductionism is closely
aligned with the univocal view of consciousness. At the same time, the
emergent approach resonates with the notion that consciousness is
equivocal or variable, depending on how it emerges in each case. Yet
Neo-Thomist philosophers demonstrated that univocity and equivocity
alone are insufficient to account for how entities exist and function
(Dvorak, 2010). For this reason, they proposed the analogy of being as a
model of proportional participation. According to this logic, analogy
serves as a relational structure that enables the proportional and
comparative assessment of entities’ ontologies, taking into account both
their similarities and differences. In our case, we will focus on identi-
fying degrees of differentiation, aiming to determine what level of
proportion or ratio an analogy must reach to create a rupture from
which a new entity might emerge. To clarify this idea in precise math-
ematical terms, we present below a formal operational formulation of
the analogy of being, upon which we will define the hypotheses and
objectives of this study.

Let E be the set of all beings (or entities) under consideration; e; € E
denotes a being e; within the set. Each e; € E participates in being to a
certain degree, represented by a function p: E — [0, 1], where 1 repre-
sents full being (actus purus) and O represents non-being (or pure pri-
vation). The principle of univocity would assert that for all e; in the set,
denoted as e € E, their degree of being is identical: p(e)) =p(e)). This
implies no ontological diversity and collapses all beings into a single
mode—a view that fails to account for the variety of modes of being
found in reality. Conversely, equivocity would mean that for e; € E, their
degrees of being are semantically incomparable, i.e., p(e;) and p(e)) have
no meaningful relational mapping. This renders all discourse about
“being” meaningless across different entities. To overcome these limi-
tations, analogia entis introduces a logic of proportional participation: for
some e; # ej, we have p(ei) # p(e)), yet both lie within the open interval [0,
1], meaning they share in being in proportionally different ways. The
analogical ratio between any two beings is given by: A(e;, e):= |p(e) / p
(e)|, assuming that p(e) # 0. This quantifies the ontological propor-
tionality between them.

Additionally, we define an analogical metric: da(e;, e):= |p(e) - p(e)|,
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which enables us to view E as a topological space structured by varying
degrees of being. Crucially, the transitivity of analogy allows these pro-
portional relations to formulate as p(e;) / p(ex) ~ [p(ei) / p(e)]- [p(e) / p
(ex)]. This reflects how analogy can propagate across ontological com-
parisons without collapsing into identity. Finally, the ordering of being
is formalized: if p(e;) > p(e)), then we denote e; > ej, meaning that e; has
ontologically more actuality than e;. Thus, the analogia entis provides a
rigorous mathematical framework to structure being as proportionally
distributed, capturing the intuition that things “are” in different but
comparable ways—something that neither univocity nor equivocity can
do coherently. This logical, formal, and mathematical foundation of the
analogy of being will serve as the basis for the approach, equations, and
analyses presented in the following sections.

5. Foundational assumptions

If we understand that consciousness may be a state permitted or
emergent in artificial systems, the question that scientists interested in
this issue must ask is both basic and profound: from which artificial
systems should we expect any degree of consciousness to arise? While
researchers are indeed exploring how to identify or induce conscious-
ness in artificial intelligences, there is no scientific roadmap delineating
how this search should proceed or under what conditions it should be
conducted. In this sense, searching for consciousness in Al is akin to
looking for the smallest needle in the largest haystack in the universe.

Suppose we expect to make progress purely through trial and
error—relying solely on uncertain trust or hope that we will eventually
detect some form of consciousness in Al—as Anil Seth (2025) concluded.
In that case, the prospects are far from optimistic. This highlights a need
that few scientists have seriously addressed: how can we recognize
which artificial systems are most likely to manifest consciousness? To
describe the measurement of this recognition, we refer to it as the
generative potential of artificial consciousness. Determining the extent to
which we can identify systems with the potential to exhibit any degree of
consciousness is the first step we must take as scientists, before
attempting to define evaluation scales for the cognitive functions an Al
might display. Considering the properties shared by IIT and
GWT—specifically, information and complexity—our aim in this report
is to mathematically define a new system of equations that enables us to
apply the formal logic of the analogy of being, including transitivity, to
the measurement of informational levels and system complexity,
without disregarding the phenomenological dimension of conscious
experience.

We hypothesize that the emergence of consciousness within an
artificial system depends on the proportional relationship between two
key properties: (1) the amount of structured information the system
generates over time, and (2) the level of dynamic complexity inherent in
its activity. Consciousness is more likely to emerge when the system
produces a high amount of information in a proportionally stable and
coherent manner—that is, when informational richness is sustained
without excessive instability or noise across temporal or spatial scales.
Therefore, we mathematically state this hypothesis in the following
terms:

— E: the expected probability of consciousness emergence.

— Cq4: a measure of dynamic complexity, reflecting the ratio between
generative activity and signal variability.

— H;: a measure of internal informational coherence or self-similarity
across regions, levels, or transformations of the signal.

— g(x): the generativity function (e.g., absolute value of the first de-
rivative of signal R(t)).

— v(x): the variability function (e.g., absolute value of the second de-
rivative of R(t)).

— o: the domain over which the signal is defined (e.g., time).

Accordingly, we propose the following general transitivity relation in



A. Escola-Gascon et al.

Egs. (1) and (2):
HO : P(E: 1‘Cd7Hi) = P(E = 1)

dF @
Hy : P(E = 1|Cq, Hy) = F(Co-Hy), > 0
where,
P(E =1|Cq,H;) = 1/1 + e PothiCat) 2

and F(Cq4 - H;) is a link function.

At a conceptual level, the expressions above relating to H; can be
interpreted as follows:

The probability that consciousness will emerge—that is, the gener-
ative potential of consciousness—depends on the product of the system’s
dynamic complexity (Cq) and its internal informational coherence (H;).
This relationship is defined as positive: the higher the value of C4-H;, the
more likely it is that the system possesses generative potential for con-
sciousness. The proportional analogy between dF and dz is based on their
differences. Consistent with the analogia entis, the emergence of gener-
ative potential requires proportionally sufficient discrepancies to pro-
duce a rupture within the system and trigger change. From this
perspective, the question is not how closely dF and dz resemble each
other, but rather how far apart they must be to create a proportionate
difference capable of transforming the system, allowing something new
to emerge that could give rise to consciousness.

6. Deriving generative consciousness

The first step in defining an equation that, through a ratio or quo-
tient, can measure the degree of proportionality between two compo-
nents—information and complexity—is to employ an empirically
validated neurological schema (Aerts et al., 2016) that reproduces
neural connections capable of generating conscious experience. One
such validated schema is connectome 76 (Hagmann et al., 2008). Con-
nectome 76 has been successfully replicated by independent labora-
tories (Honey et al., 2009), and its effectiveness in modeling conscious
processes has also been applied clinically in the study of epilepsy (Jirsa
et al., 2017).

In the following sections, we justify step by step the specification of
the equations we propose and formally define a mathematical index
designed to quantify the generative potential of consciousness. If the
mathematical logic used to derive the proposed equation is grounded in
empirical and neurological evidence about the circuits underpinning
consciousness—and also aligns with the recommendations of biological
naturalism as articulated by Anil Seth (2025)—then the central question
becomes: what would happen if we emulated a system of integrated
networks within AI that is capable of learning, dynamic plasticity,
informational memory, processing, integration, and execution of sen-
sory information—essentially, incorporating all the biological compo-
nents observed in connectome 76 that contribute to generating
conscious experience? In such a case, could our indicator be applied to
assess proportional differential analogy and determine to what extent a
system of this nature might support the emergence of conscious
experience?

Three mathematical phases will define the development of this new
index. The first phase involves the empirical grounding of the equations
using connectome 76. The second phase will analyze simulations con-
ducted within connectome 76 to examine the values and properties
obtained when applying our equations to a circuit associated with
resting-state consciousness. The final phase will extend our equations to
a network system implemented in generative Al. Using this system, we
will carry out large-scale simulations and analyze whether the results
obtained in Al, when evaluated with our indicator, converge with those
observed in connectome 76. If such convergence is demonstrated, we
will have grounds to proceed with our proposed system of equations.
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The simulations employed the default connectome (76 regions) pro-
vided by The Virtual Brain (TVB), corresponding to a resting-state mental
condition (Sanz-Leon et al., 2013). In each simulation run, the 15 brain
regions exhibiting the lowest entropy in their neural mass activity were
selected. The decision to select 15 out of 76 regions was based on the
proposals of Tononi (2004, 2005) and the principles of IIT, from which
perspective it has been suggested that relatively small systems can
already emulate sensory information processing and integration, giving
rise to conscious experience (Balduzzi and Tononi, 2008). Evidence
presented by Oizumi et al. (2014), further demonstrated that between 8
and 12 nodes are necessary to reproduce IIT in intelligent systems, even
in simplified implementations. These findings are consistent with other
evidence aimed at computationally emulating neural circuits charac-
teristic of conscious experience (Xie, 2025).

Although the primary measured variable was the neural activity in
each region, conscious experience unfolds at a specific temporal instant.
Therefore, the generative potential of artificial consciousness must be
modeled as a time-dependent process. Let xj(t) denote the simulated
signal at time t in region i, with n being the number of selected regions.
By aggregating the signals from this informative subnetwork over time
(in microseconds), one obtains a scalar approximation of the system’s
collective dynamic behavior—a useful generative observer of the net-
work’s internal structure.

Specifically, averaging n temporally coherent but spatially distrib-
uted signals suppresses local noise and enhances global patterns of co-
ordination. Mathematically, this can be understood as a projection onto
the constant vector basis 1 € R", preserving common oscillatory com-
ponents. The resulting function is Eq. (3):

R(t) = % i:xi(t) 3)

which is herein defined as the generative function of the system,
capturing the emergent, time-resolved dynamics of the most informative
cortical subnetwork. The next step is to formalize the underlying
structure of the signal in a way that allows the estimation of its gener-
ative potential. To achieve this, we define two integral-based descriptors
that capture distinct yet complementary aspects of the signal’s dynamic
behavior: change and stability.

6.1. The first-order change

We begin by computing the absolute value of the first derivative of R
(t), which reflects the rate of change of the signal—i.e., how fast and
often it transitions from one state to another. This provides a proxy for
informational activity or generative dynamism. The function is defined
as shown in Eq. (4):

_1 idxi(t)

n4& de

dR(t) 1 I~dxi(t) dR(t)
& Tndd > @

dt

To obtain a scalar descriptor, we integrate this quantity over the full-
time interval [0, T] using Simpson’s rule (a numerical approximation to
the definite integral), as shown in Eq. (5):

o-f =)

dt
This quantity captures the informational flux of the generative sys-
tem, representing how much activity the system produces over time.

drR(t)| .
T‘dt ~ Slrnpson(

6.2. The second-order change

To assess the stability (or smoothness) of this information flow, we
compute the second derivative (see Eq. (6)):
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&R(1)
dr?

@R 1 i:dzxi(t)

d? n4& d
i=1

(6)

i=1

This derivative indicates the acceleration (or volatility) of the sig-
nal’s change—i.e., whether the system behaves erratically or in a
regulated manner. Again, we integrate this magnitude across the full-
time interval (see Eq. (7)):

) @)

T
Ki/
0

Higher values of « indicate increased dynamical irregularity, which
approximates the complexity of the signal—a high k suggests a less
stable system with greater local entropy and unpredictability in its
evolution. In this sense, x functions as an estimator of dynamic
complexity.

®R(t)
de

d*R(t)
dt?

dt =~ Simpson(

6.3. Defining the Attribution Consciousness Index (ACI)

The Attribution Consciousness Index (ACI) is defined as the ratio be-
tween generative activity and its second-order volatility (see Eq. (8)):

[
ACI = — (€)]
K

This ratio expresses a trade-off between informational activity and
dynamical irregularity (complexity). A higher ACI implies that the sys-
tem is capable of producing rich activity patterns without excessive
volatility, suggesting a more organized, potentially conscious-like
structure of generativity.

6.4. Signal-range normalization

To ensure scale invariance and comparability across simulations, we
normalize the ACI by the dynamic range of the signal (see Egs. 9 and 10):

Ruange = max(R(t)) — min(R(t)) ©)
and

ACI
AClLorm = Ruonge (10)

This step controls for amplitude-based biases, ensuring that the index
reflects proportional structure rather than raw signal magnitude. In this
sense, the formulation of the ACI coefficient shares a conceptual simi-
larity with Allan variance (Stein, 2010). Both methods quantify how a
signal changes when examined through time-windowed observations. In
the case of Allan variance, one computes o(t) across different
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integration times 1, thereby assessing the signal’s stability as a function
of temporal scale. Similarly, the ACI involves integrating over a fixed
interval [0, T], with the resulting value inherently dependent on the
scale of integration.

7. Interpretation of the coefficients and the ACI

To clarify precisely what the coefficients ® and x measure, Fig. 1
presents an example of a sinusoidal average function R(t), along with its
first and second derivatives, and the areas computed by the corre-
sponding integrals. As illustrated, the coefficient ® captures the accu-
mulated variability of the signal—that is, the informational richness of
the system—while k quantifies the area associated with the curvature of
the second derivative. Higher values of k indicate more irregular oscil-
lations and reduced coherence, suggesting a more unstable and complex
system with greater uncertainty.

More specifically, ® quantifies the temporal variability of the
average neural signal within a specific time window. It is interpreted as a
measure of dynamic entropy or cumulative activity change. It is
computed by integrating the absolute value of the first derivative of R
(t)—the mean activity of the most informative subnetwork—over time
(in milliseconds or microseconds). In contrast, k estimates the dynamic
curvature of the system, reflecting the variation in the rate of change of
the signal. It corresponds to the second derivative of R(t) and measures
how rapidly the signal’s complexity evolves over time.

The ratio ACI= ®/k defines the ACI, which expresses the propor-
tional efficiency of information flow relative to the system’s rigidity or
fluctuation speed. A higher ACI suggests an optimal functional balance
between variability and control, interpreted here as a greater capacity
for generating conscious states. This ratio can be normalized (see ACI-
norm) to facilitate comparisons across different simulation runs and to
yield a value expressed as a positive odds ratio (OR), which by definition
holds VOR > 0-

8. Simulation-based analysis and results
8.1. Activation of brain structures during conscious experience

Using the TVB Connectome with 76 regions, we conducted 500
simulations, each representing a sensory process of conscious experience
in the human brain during resting mental states. In these simulations, we
measured the mean neuronal activity, its standard deviation, and en-
tropy levels, and also computed the integrals ® and k, together with
their ratio ACI and its normalization, as specified in Eqs. (9) and (10). In
each simulation, the 15 nodes exhibiting the lowest entropy were
selected, representing the structures with the highest degree of

Example functions for R(t) and its derivatives (absolute values)
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Fig. 1. Pedagogical illustration of the areas computed by the two integrals that define the ACI coefficients ® and «.
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systematic, patterned functioning. Because it was not feasible to
generate a neuroimage of all the structures chosen for every simulation,
we opted instead to provide an anatomical and radiological summary
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indicating which areas were most frequently activated across the 500
simulations based on their low entropy.

For each node, we recorded the frequency of selection across all

Activation counts (frequencies)
across 500 conscious
experiences using the 76-
connectome in circuits of 15
brain nodes

\ ¢

Activation counts (frequencies) ]
across 500 conscious | ! . . .
experiences using the 76- 0 5 150 200 250
connectome in circuits of 15

brain nodes

Atlas: AAL2 (Neurofunctional Imaging Group)
Software: FSLeyes (Linux)
Space: MNI152-T1-1mm

£ 62 63 63

Atlas: AAL2 (Neurofunctional Imaging Group)
Software: FSLeyes (Linux)

350 40 45¢ 500 Space: MNI152-Ti-imm

Fig. 2. A. Sagittal MRI view in FSLeyes (Linux) showing 500 simulations of conscious experience using the validated connectome 76 (The Virtual Brain) with the
AAL2 atlas and MNI152-T1-1mm space. B. Coronal MRI view in FSLeyes depicting 500 conscious experience simulations in connectome 76, based on the AAL2 atlas
and MNI152-T1-1mm template. C. Axial MRI view in FSLeyes illustrating 500 simulations of conscious experience in connectome 76, using the AAL2 atlas and

MNI152-T1-1mm space.
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Fig. 2. (continued).

simulations, resulting in frequency ranges between 0 and 500. If
conscious sensory experience had been reproduced randomly across the
500 simulations, node frequencies would have displayed a uniform
distribution. Such an outcome would be problematic, as it would suggest
that despite the region-specific neuronal activity, there was no consis-
tent signal pattern across the system, making it impossible to conclude
that sufficient brain activations underpinning conscious experience had
occurred. To present this information clearly, Fig. 2 shows a summary
across three planes (sagittal, coronal, and axial) with 18 slices at
different spatial Magnetic Resonance Imaging (MRI) levels. These visual-
izations were created using the AAL2 atlas (based on the anatomical
spatial model ref. MNI152-T1-1mm) from the Neurofunctional Imaging
Group and the FSLeyes software to generate MRI neuroimages. FSLeyes
runs on Linux operating systems and is widely used in both clinical
medicine and research for neuroimaging analysis. In this report, Fig. 2-
A, Fig. 2-B and Fig. 2-C present only a summary with the most illus-
trative slices and views.

Figs. 2-A, 2-B and 2-C offer several compelling insights into the
structures involved in conscious experience. The nodes showing the
highest activation across the 500 simulations were IPFCDM, 1CC, 1HC,
1AMYG, rPFCDM, rHC, rAMYG, and rAl. These nodes correspond to the
following anatomical brain structures (listed in order): the dorsomedial
prefrontal cortex (left hemisphere), the whole cingulate cortex (left
hemisphere), the hippocampus (left hemisphere), the amygdala (left
hemisphere), the dorsomedial prefrontal cortex (right hemisphere), the
hippocampus (right hemisphere), the amygdala (right hemisphere), and
the primary auditory cortex (Heschl’s gyrus, right hemisphere). The
remaining nodes did not exhibit markedly elevated activation levels in
the simulations. Moreover, the distribution of activation frequencies was
not uniform, confirming that the 500 simulated conscious experiences
were characterized by systematic functional patterns. The resulting
distribution displayed a clear log-normal shape and structure.

These anatomical regions are consistent with previous scientific
literature that has sought to identify the brain structures most critical in
initiating conscious experience (Northoff and Ventura, 2025), as well as

studies published in Science (Dehaene et al., 2017), and other work
exploring correlations between these anatomical regions and the qualia
of conscious experience (Chalmers, 1995). Based on these findings, we
proceeded to analyze the statistical properties of the ACI and translated
these structures into functional modules, enabling their reproduction in
computational models of artificial intelligence.

8.2. Statistical properties of the ACI in brain activation patterns

At this stage of the results, we aim to analyze the statistical and
mathematical behavior of the measurements obtained from the pre-
ceding 500 simulations. Table 1 presents the key descriptive statistics for
all the variables examined. It also includes goodness-of-fit analyses using
the Anderson-Darling and Kolmogorov-Smirnov (KS) tests to assess
whether each variable followed a theoretical probability distribution
suitable for modeling, prediction, and hypothesis testing.

Parameter estimation was conducted using the Monte Carlo method
combined with Maximum Likelihood Estimation, with 1000 iterations.
Once the parameters were estimated, we evaluated the extent to which
each probability model could accurately represent our variables. In
classical and Fisherian statistics, a KS p-value equal to or greater than
5 % is typically interpreted as evidence of a satisfactory fit. However, to
visually validate the correspondence between the observed simulation
data and the fitted models, it is also advisable to examine histograms
overlaid with their respective density functions. For theoretical reasons,
our analysis focused on the normal, log-normal, and gamma
distributions.

Fig. 3 summarizes the distributions of the study’s key variables: the
Phi (®) coefficient, Kappa (x), ACI, and Normed ACI. Using the estimated
parameters reported in Table 1, we plotted the probabilistic models to
visualize how well they corresponded to the histograms of the observed
data. Considering both the statistical results of the KS goodness-of-fit
tests and the visual evidence provided in Fig. 3, we can conclude that
the log-normal distribution was the most appropriate for modeling the
observed data. This finding is especially relevant for the Normed ACI
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Table 1
Descriptive statistics and goodness-of-fit tests based on Normal, Log-normal, and Gamma models for modeling the ACI coefficient.
Descriptive statistics Kolmogorov-Smirnov (p-values) Anderson-Darling
Mean SD Normal Log-normal Gamma Applied only for normal distribution
Phi (®) 0.2355 0.0562 0.0055 0.5167 0.2185 4.5633
Kappa (x) 1.7097 0.3005 0.1002 0.9279 0.6569 2.7553
ACI 0.1364 0.0101 0.1966 0.1262 0.1536 1.9551
Normed ACI 3.4386 3.6590 ~0 0.1311 ~0 53.8314
Entropy 1.5233 0.6017 0.0004 0.3907 0.0984 8.5406
MNA 0.0001 0.0002 0.9742 N/A N/A 0.2966

Note: SD = standard deviation; ACI = Attribution Consciousness Index; MNA = mean neural activity.

Estimated parameters of ®: Normal (y, 6): (0.2355, 0.0562); Log-normal (0.2323, 0, 0.2291); Gamma (18.4715, 0, 0.0128).

Estimated parameters of k: Normal (i, 6): (1.7097, 0.3005); Log-normal: (0.1727, 0, 1.6842); Gamma: (33.4305, 0, 0.0511).

Estimated parameters of ACI: Normal (y, 6): (0.1364, 0.0101); Log-normal: (0.0743, 0, 0.1361); Gamma: (181.3221, 0, 0.0008).

Estimated parameters of Normed ACI: Normal (g, 6): (3.4386, 3.6590); Log-normal: (1.1108, 0.5327, 1.5730); Gamma: (1.4534, 0, 2.3658).

Estimated parameters of entropy: Normal (1, 6): (1.5233, 0.6017); Log-normal: (0.3915, 0, 1.4116); Gamma: (6.7258, 0, 0.2265).

Estimated parameters of MNA: Normal (y, 0): (3.6138¢~°¢, 0.0002).

Notice: for the MNA, we did not assess the fit with the other models, as it includes negative values that are incompatible with the Log-normal and Gamma distributions.
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Fig. 3. Histograms of the analyzed variables and probability models illustrate how the data observed across the 500 simulations—conducted using the empirical
connectome 76, which enables the reproduction of conscious experiences during resting-state mental activity—can be predicted and modeled. Among the tested
models, the log-normal distribution provided the best fit to the observed data. These visual findings are consistent with the KS goodness-of-fit tests, which yielded p-
values exceeding 5 % for all variables.

coefficient, which is expressed in OR metric and enables statistical The fact that the Normed ACI is expressed in OR metric offers a
interpretation and inference regarding the generative potential of con- crucial advantage: its measurements can be transformed into percent-
sciousness across the 500 simulations performed using connectome 76. ages or probabilities, allowing us to quickly determine the extent to

It is essential to note that not every application or mode of using which the specific type of neuronal circuit activated by processing real
connectome 76 will necessarily give rise to conscious experience. The sensory information (D) corresponds to the probability distribution that,
emergence of consciousness is not conceived—either within IIT or in principle, should enable us to represent and model conscious expe-
within Neo-Thomist logic—as a deterministic and univocal outcome, but rience (which, based on the initial results in Table 1 and the distribu-
rather as an analogical one. This consideration is precisely what compels tions in Fig. 3, is the log-normal distribution). This is expressed as a
us to adopt a stochastic framework for assessing the degree of certainty conditional probability, whereby the OR of the Normed ACI can be
with which consciousness may occur. transformed into P(D|Consciousness) using Eq. (11):
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AClLorm P(C i D)P(D
P(D|Consciousness) = om __ P(Consciousness|D)P(D)

= = 11
AClhorm +1 P(Consciousness) an

From Eq. (11), we can derive Eq. (12), which provides a formal
demonstration of why the Normed ACI, although expressed as an OR,
can in fact be computed as a ratio of probabilities:

P(Consciousness|D)

ACI =
e ™ P(Consciousness|—D)

12)

Of course, all of this is meaningful only if the log-normal distribution
is indeed the one that allows us to represent conscious experience as an
analogical product, expressible within the framework of the alternative
hypothesis of this study: P(E = 1 | C4 - Hy), dF/dz > 0. This is the foun-
dation that supports the Normed ACI and the core premise we aim to
validate through the three phases described at the beginning of this
subsection.

It is mathematically reasonable and indeed expected that an OR can
be modeled using a log-normal distribution with pronounced right
skewness. Suppose we have a neural circuit i and wish to determine with
what level of certainty it has generative potential for consciousness.
Using the Normed ACI, let us imagine that we obtain an OR of 18.
Applying Eq. (11), we find that 18/19 = 0.947 = P(D|Consciousness).
The question we should pose in a hypothesis test is what the p-value
would be, that is, P(ORN.acI > ORiog-normal)- Given that we are working
with a log-normal model, the p-value can be calculated using the esti-
mated parameter values 1.1108, 0.5327, and 1.5730, by integrating the
area under the right tail of the curve. In this way, no further mystery
remains. Recall that if X follows a log-normal distribution, the proba-
bility density function is shown in Eq. 13:

fxlx) = xc\l/iiexp( - (1“’;6—2 b ) 13)

The right-tail p-value is the integral from 18 to infinity (see Eq. (14)):

p — value = / Fx(x)dx 14)
18
To compute this integral, we make the change of variable (see Eq.
(15)):
y=Inx,x =€ ,dx = €&dy 15)
Substituting into the integral (see Eq. (16)):

=1 v—p’
— value = exp| —
P Las) &0/ 2n P ( 262

The ¢’ terms cancel (see Eq. (17)):

p — value = /oO ! exp(— (‘yiu)z)dy a17)
In(18) GV/ 2 202

This is exactly the right tail of a normal distribution with mean p and
standard deviation o (see Eq. (18)):

)(eYdy> 16)

p — value = / @(y; 1, 0)dy (18)
8)

In(1

where ¢ is the normal density. Finally, we define the Z-score (see Eq.
(19):

z:}%,dyzodz 19
Since (see Eq. (20):
2.890 —1.1108
In(18) ~ 2.890, z= o537 *~ 3.341 (20)

The p-value becomes (see Eq. (21)):
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p —value = / Lexp( - i>dz =1-—®(3.341) = 0.0004 (21
3341 V21 2

This is the area under the log-normal curve to the right of 18.
Therefore, with a Normed ACI of 18 in a brain circuit exhibiting
generative potential for consciousness, the result 0.0004 < 0.001 leads
to the rejection of the null hypothesis, stated as P(E = 1|C4,H;) = P(E =
1). It should be noted that in this case, the p-value is inversely pro-
portional—though not exactly equivalent—to the probability P(D|Con-
sciousness). Specifically, 1 — P(D|Consciousness) = 1 — 0.947 = 0.053,
which, while not identical to 0.0004, tends to approximate the obtained
p-value. This allows us to state that the higher the Normed ACI, the
greater the likelihood that the observed circuit aligns with the distri-
bution supporting the emergence of consciousness, a level of certainty
expressed as P(D|Consciousness).

However, what we have presented here is merely an illustrative
example of the functionality and mathematical precision of the Normed
ACI. The question we now pose—and which represents the central
ambition of this study—is whether this same procedure could be applied
to models of intelligent networks embedded in Al systems designed to
emulate the biological and cerebral processes involved in conscious
experience.

To explore this possibility, we must draw on the biological natu-
ralism proposed by Anil Seth (2025) and emulate the organic processes
occurring in the brain, thereby constructing networks that can learn,
adapt, and modify themselves in response to specific types of stimuli. In
this way, Al could integrate sensory information and ultimately trigger a
decision or executive action. If this procedure proves functional in Al,
we would be witnessing the development of the first mathematical co-
efficient capable of predicting the generative potential of consciousness.
This is not an exaggeration but an acknowledgment of the significance of
a scientific advance that would merit recognition, funding, and sus-
tained research efforts in this direction.

8.3. Applying the ACI to Al neural architectures

The next phase aims to assess how ACI and Normed ACI behave
within intelligent, plastic network systems designed to be integrated into
generative Al

8.3.1. Specification criteria on Al architectures

One of the most challenging questions is how to define criteria that
enable intelligent networks to emulate core brain processes underpin-
ning conscious experience. While this example primarily illustrates how
the ACI and Normed ACI coefficients can be applied in artificial systems,
it captures only a narrow segment of their broader potential. To design a
network that is both biologically plausible and fully configurable in
Python, we incorporated the following key properties into its
algorithms:

(a) Hierarchical functional modularity: the proposed model in-
cludes functional modules organized according to neuroanatomical
levels, encompassing complex and multivalent systems such as visual,
auditory, and somatosensory processing, integrative information func-
tions, and executive capacities related to decision-making and adaptive
learning. Incorporating this type of Python-based algorithm allows us to
approximate, with a reasonable degree of reliability, the functional
specialization of the human brain, which operates as a multimodal,
outwardly directed network.

(b) Connectivity characterized by dense, directed intra-module
links and sparse inter-module links: this connectivity logic is groun-
ded in the principles of segregated efficiency and global integration,
both of which are core features of brain organization as demonstrated in
studies of neural networks (Bullmore and Sporns, 2009). If biological
naturalism holds true, this characteristic represents one of the funda-
mental pillars necessary to emulate organic processes correlated with
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consciousness.

(c) Nonlinear Hebbian plasticity: this feature is critical because it
emulates biological synaptic learning, wherein synaptic weights adjust
dynamically in response to joint activation. The use of the tanh (pre x
post) function provides saturation control and balances excitation and
inhibition, thereby reproducing the more stable neural dynamics asso-
ciated with conscious experience. Synaptic plasticity is regulated
through the Wp.x parameter, which in our system ranged from 1
(minimal plasticity) to 20 (maximal plasticity). These values are part of
the Hebbian rule described in Eq. (22):

WP" (t + At) = ChP [an(t) + ntanh (xp (t)xn(t)) ) Wmirn Wmax ] (22)

Eq. (22) is combined with n, a parameter ranging from 0 to 1.1,
which determines the system’s level of adaptive learning in response to
its environment. In other words, 1) enables the system to learn recurrent
activation patterns through local associations, a mechanism central to
unsupervised learning processes. By setting different levels of learning
capacity and permissible plastic changes in the network configuration,
we can analyze how the accumulated information (® coefficient) and
the processed sensory signal vary, thereby generating scenarios with
varying degrees of complexity. These scenarios are evaluated using the
integral or the x curvature coefficient.

In this way, we can explore potential relationships among k, ®, ACI,
and Normed ACI with respect to specific characteristics of the proposed
network model. To introduce sufficient variation in sensory signal
transmission, we distributed W values from 5 to 20 for each n value,
organized in increments of 0.10, with 0.4 as the lowest and 1.1 as the
highest. This procedure resulted in a minimum of 1921 simulations.

(d) Differentiated sensory stimulation: each node receives specific
signals modulated by (1) pink noise (characteristic of and present in
human brain electroencephalography during resting and conscious
mental states) and (2) chaotic signals that emulate the real variability of
the sensory environment and the functional resonance of regions
involved in processes such as memory and attention.

8.3.2. Why our proposed network can be trainable with AI

A key question is what enables this network to learn and adapt within
generative Al systems. Its main foundation is the rule implementing
Hebbian learning (Eq. 21), but three additional capabilities are critical.
First, parameterized trainability: the hyperparameters n (learning rate)
and Wpax (plasticity limits) make the system tunable to diverse envi-
ronments, supporting a form of structural meta-learning. This feature
could allow the network not only to detect patterns but also to recognize
how those patterns improve adaptive responses to changing demands.
While this remains to be validated computationally, it is mathematically
plausible within the proposed architecture. Second, generalization ca-
pacity emerges from combining structured randomness in sensory inputs
with differentiated resonances, fostering plastic adaptation and self-
organization. Learning goes beyond simple reinforcement, engaging
deeper processes of information integration and meaning attribution.
The network develops internal representations capable of anticipating
regularities, inferring causal relationships, and autonomously reorgan-
izing its functional architecture. This synthesis of plasticity and reso-
nance guides experience toward coherent configurations and underpins
its potential for emergent intelligence. Third, the model avoids absolute
determinism by introducing noise and chaotic signals that sustain en-
tropy and induce nonlinear dynamics (Izhikevich, 2007). These dy-
namics emulate core properties of complex adaptive systems like the
brain, supporting the generative potential for consciousness.

8.3.3. Formal definition and functional structure of the network

Our network comprised eight functional modules distributed across
27 nodes, designed to emulate specific brain functions involved in
conscious experience. The modules were distributed as follows: four
nodes were Visual (V), three were Auditory (A), three were Somatosensory
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(S), four were dedicated to Information Integration (I), four supported
Executive Functions (EX), three emulated Memory Functions (M), three
performed Attentional Functions (AT), and the remaining three were
associated with Salience Levels (SA).

Among these, the functional modules with the highest number of
connections were those responsible for I, which maintained extensive
links with all other modules. Mathematically, the formal expression
describing the node activation dynamics is presented in Eq. (23):

Xn(t) =tanh | gsa(t) + hxa(t— At) + > Wpn(t)tanh (x,(t — At))
Sensory input  Global inhibition

(23)

Activation dynamics refers to the temporal evolution (in our case,
states up to 10 microseconds) of each node as a function of (a) the
differentiated sensory signal, (b) global inhibition, and (c) the sum of
presynaptic inputs modulated by dynamic weights. Accordingly, the
terms in Eq. (23) are defined as follows: g, = individual sensory gain
factor; A < 0 = global inhibition factor; and s,(t) = sensory input signal
of the node. The remaining terms were introduced and explained in the
nonlinear modular Eq. (22).

To objectively summarize the structural functionality of our
network, we report here the results of the primary indicators describing
the model’s properties. Across the 1921 executions, the network
consistently maintained the same levels of signal density (i.e., the pro-
portion of connections among nodes (Boccaletti et al., 2006), which in
our system was 0.3647), clustering (the distances and local grouping
among nodes (Watts and Strogatz, 1998), which was 0.5556), efficiency
(the amount of sensory signal processed (Latora and Marchiori, 2001),
which reached 0.7009), and average path length, which measures the
extent to which the architecture supports information integration
(Barabasi, 2016).

This measure is based on the concept of “hops”: the more hops in-
formation requires to travel between nodes, the greater the informa-
tional dispersion. Because we aimed to emulate biological and neural
processes that reproduce the connectivity patterns observed in conscious
experience, it was important for this value to remain close to one. In our
configuration, the average path length was 1.7654 across all simula-
tions, indicating that the system facilitates integration and, conse-
quently, according to the principles of IIT, would also support the
emergence of conscious experience (assuming it arises via the logic of
proportional analog differences, as posited in our hypothesis). Fig. 4
shows the composition and graph representation of our network.

Although these properties remained constant across all 1921 simu-
lations, the entropy levels (Shannon, 1948) of the nodes and the vari-
ability of signal activity (Deco and Kringelbach, 2016) changed with
each execution, thereby producing signal patterns that were similar but
not identical. They were similar because the structural basis of the
network remained fixed, but the Wp,ox coefficients (reflecting plastic
changes) and n (the network’s learning capacity) varied, as did the ACI
coefficients. Using the Monte Carlo method with maximum likelihood
estimation over 1000 iterations, we estimated the parameters of
log-normal, gamma, and normal distribution models to determine
whether the ACI values and the terms in their equations followed any
consistent pattern. Fig. 5 presents the distributions of the terms corre-
sponding to the ACI and Normed ACI equations.

In the case of fitting the intelligent network with eta parameters
ranging between 0.4 and 1.1, representing the adaptive learning ca-
pacity of the artificial model, and plasticity levels spanning from 1 to 20
for each eta learning level, the estimation yielded the following results
for the four target variables: for Phi, the normal distribution parameters
were 1 = 0.4118 and 6 = 0.2391 (Anderson-Darling statistic = 26.5460,
KS p-value < 0.0001), the log-normal distribution parameters were
shape = 0.6760, loc = 0.0000, and scale = 0.3390 (KS p-value <
0.0001), and the gamma distribution parameters were shape = 2.7294,



A. Escola-Gascon et al.

(M1

Neuroscience and Biobehavioral Reviews 179 (2025) 106430

{aT2"

Functional Modules
I Visual
4 3 Auditory
ATl B Somatosensory
I Integration
Il Executive
=3 Memory
3 Attention
Salience

‘AT3

Fig. 4. Computational network model designed to emulate organic processes involved in processing sensory signals, integrating them, and potentially supporting
executive functions for decision-making. Structural properties of the network: density = 0.3647, clustering coefficient = 0.5556, global information efficiency
= 0.7009, and average path length = 1.7654. Functional modules: V= visual, A= auditory, S= somatosensory, I= integration, EX= executive, M= memory,

AT= attention, and SA= salience.

loc = 0.0000, and scale = 0.1510 (KS p-value = 0.7764). For Kappa, the
normal distribution parameters were p = 2.4273 and o = 1.4106
(Anderson-Darling statistic = 24.0287, KS p-value < 0.0001), the log-
normal parameters were shape = 0.6841, loc = 0.0000, and scale
= 1.9917 (KS p-value < 0.0001), and the gamma parameters were shape
= 2.6850, loc = 0.0000, and scale = 0.9047 (KS p-value = 0.1767). For
ACI, the normal distribution parameters were p = 0.1751 and ©
= 0.0435 (Anderson-Darling statistic = 29.7168, KS p-value < 0.0001),
the log-normal parameters were shape = 0.2329, loc = 0.0000, and
scale = 0.1702 (KS p-value = 0.0011), and the gamma parameters were
shape = 18.0022, loc = 0.0000, and scale = 0.0097 (KS p-value <
0.0001). Finally, for Normed ACI, the normal distribution parameters
were p =0.8565 and ¢ =0.9450 (Anderson-Darling statistic =
175.8429, KS p-value < 0.0001), the log-normal parameters were shape
= 0.9692, loc = 0.1229, and scale = 0.4609 (KS p-value = 0.4888), and
the gamma parameters were shape = 1.7899, loc = 0.0000, and scale
= 0.4799 (KS p-value < 0.0001). Based on these results, we conclude
that the Normed ACI follows the statistical law of the log-normal dis-
tribution, which is a relevant finding for enabling predictions and hy-
pothesis testing using this indicator. Fig. 6 shows the R(t) functions over
a state of up to 10 microseconds processed in our network model for
different values of the hyperparameters n and Wpax.

8.3.4. Correlations between Hebbian learning, entropy, and Normed ACI

Because the primary indicator of interest is Normed ACI, we sought
to determine whether its values were related to the functional properties
of the modular network we designed (see Fig. 4). Analyzing this po-
tential relationship would be computationally valuable for two reasons.

First, it would help clarify whether the emergent perspective on
consciousness—within the framework of biological naturalism—might
be influenced not only by the ratio between the amount of information
and the level of complexity (curvature) but also by organic learning
processes and potential plastic changes. Second, such an analysis would
have practical utility by enabling us to refine and improve our network
model to produce a more accurate distribution of Normed ACI, which is
more sensitive to detecting the generative potential of artificial
consciousness.

To explore potential associations, we computed the Mutual Infor-
mation Index (MII) among entropy, Wy, and Normed ACI across the
1921 executions of our model. Specifically, the MII between Normed
ACI and entropy was 1.1898, while the MII relative to W,x was 0.0425.
For all other variables, the MII was close to zero. These results suggest
that Normed ACI and entropy share information that is not necessarily
linear but provides an initial indication of which variables warrant
further correlation analysis. Accordingly, we computed a three-
dimensional correlation using a Radial Basis Function (RBF)
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Fig. 5. Distributions of the observed data, processed by our intelligent network model, were examined across 1921 executions alongside theoretical log-normal,
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multiquadric kernel interpolation, whose function is defined in Eq. (24):

Z(x,y) = Zl]\i\/(x %)’ + (y—y)’ +e (24
where € = 3. This procedure yields a smooth approximation of the
functional relationship among the variables, facilitating a visual explo-
ration of their correlations. Fig. 7 shows the visualizations of the 3D
correlations using RBF.

The results and trends presented in Fig. 7 indicate a clear relationship
between the entropy levels of the dynamic signal activity processed by
the nodes and Normed ACI. Specifically, as entropy decreases—pro-
ducing a more systematic signal—Normed ACI tends to increase. This
pattern corresponds to a negative linear correlation that aligns precisely
with the logic observed in connectome 76: the structures or nodes that
most effectively support ACI are those exhibiting the lowest entropy
levels. The optimal range of plasticity (Wpayx) for achieving Normed ACI
values greater than 10 units lies between 10 and 14. This observation is
particularly noteworthy, as it suggests that the highest probabilities of
consciousness emerging within an Al system would likely require Wy,
scores in the range of 10-14, as per the Hebbian learning rule.

These findings further suggest that Normed ACI provides a mathe-
matical basis for validating the ® coefficient as a meaningful measure.
Importantly, our @ does not quantify levels of integration per se, but
rather the amount of informational flow within the system—that is,
network-level dynamics reflecting the potential information the system
may be capable of integrating over time. While conceptually related to
the @ coefficient in IIT, it is not equivalent. Accordingly, as ® increases
and « decreases, the overall value of Normed ACI should rise. When the
available information for integration (®) is high and k—representing
dynamic irregularities—is low, entropy is expected to decline as ACI
increases.

Taken together, these findings support not only the internal
logic and mathematical structure of the ACI formulation, but also
its broader theoretical coherence within the context of conscious-
ness modeling.

8.4. Empirical validity of the Normed ACI

Although the Normed ACI coefficients derived from both con-
nectome 76 and our network model exhibit certain statistical similarities
(particularly, in both cases their values appear to follow a theoretical
log-normal distribution) two forms of validity must be assessed. The first
concerns the empirical validity of their distributions. For other re-
searchers to adopt Normed ACI as an inference tool to quantify the
generative potential of consciousness, it is not sufficient merely to
establish statistical modeling rules. Nor is it enough that the modular
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processes of our computational network resemble the biological archi-
tecture underlying conscious experience. It is essential to mathemati-
cally demonstrate that the values produced in simulations empirically
converge and align with the actual values.

Specifically, the empirical validity presented here entails demon-
strating mathematically that the observed distribution of Normed ACI
values from connectome 76 empirically matches the values generated by
executing the same index in our modular Al network. To achieve this,
and to remain as faithful as possible to the observed distributions of our
variables—Normed ACI Al (the index produced by our network) and
Normed ACI Human (the index derived from connectome 76)—we
applied Kernel Density Estimation (KDE). This approach enables the
estimation of a function that best captures the true underlying distri-
bution of the data.

At this stage, relying solely on log-normal parameters would be
insufficient, as this procedure would model Normed ACI against a
known statistical distribution. The distinction here is critical: the
objective is to assess how well the observed empirical values—those
potentially present in the human brain—align with the Normed ACI
values produced by a computational Al model designed to emulate the
organic processes of consciousness. Applying KDE yielded functions that
could be directly compared to determine what proportion of the area
under the curves was shared between the biological (human) data and
the Al-generated data. The most precise metric for this purpose is the
Overlap Coefficient (OVL) (Anderson et al., 2012), complemented by two
additional measures: Jensen-Shannon Divergence (JSD) (Endres and
Schindelin, 2003) and Hellinger Distance (Pollard, 2001). While OVL
quantifies the exact proportion of overlapping area under the cur-
ves—indicating the degree of alignment between the two dis-
tributions—JSD assesses divergence in their shapes, and Hellinger
Distance measures non-identity based on the distance between
functions.

To establish empirical validity between functions, it is generally
recommended that OVL exceeds 0.7 (Anderson et al., 2012), JSD re-
mains below 0.3 (Endres and Schindelin, 2003), and Hellinger Distance
approximates 0.5 (Pollard, 2001). These results are presented in Fig. 8,
which mathematically demonstrates that the Normed ACI produced by
the AI achieves an empirical correspondence with the human Normed
ACI of approximately 85 %.

8.5. Predictive validity of the Normed ACI

The second type of validity is predictive validity. While in the previous
subsection we demonstrated mathematically and statistically that an Al
system can reproduce organic processes that are statistically functional
for emulating conscious experience, our objective here is to quantify the
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Fig. 7. 3D correlation visualization using multiquadric Radial Basis Function (RBF) interpolation between the variables Wy,.y, standardized Shannon entropy levels,
and Normed ACI. A clear decreasing trend is observed across all Wy,,x levels between entropy and Normed ACI. This indicates that as entropy decreases—and thus the
signal and neuronal dynamics per node become more systematic—the Normed ACI tends to increase. The terms “elev” and “azim” refer to the parameters used to

adjust the planes and rotations of each plot.
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Hellinger Distance (threshold ~0.5) were used.

extent to which Normed ACI measurements derived from an Al circuit
can predict the neuronal circuits underlying conscious experience. We
do not consider it sufficient merely to establish empirical similarities
between density functions; rather, we also aim to quantify whether there
is genuine predictive value. Although this might appear ambitious,
having access to the Normed ACI values, connectome 76 data, the Al
model, and fully controlled algorithms allows us to estimate the capacity
of our neural and computational framework to predict the organic
processes implicated in consciousness.

Because the Normed ACI values for AI and Human do not share the
same observational units—in other words, each row contains indepen-
dent values in each column—there is no basis for applying classical
linear prediction. Instead, we adopted an analytical strategy widely used
in the training architectures of generative Al systems.

The first step involved establishing associations through statistical
matching. As we demonstrated in subsection 8.3.4, entropy levels share
essential information with any expression of Normed ACI. Based on this
evidence—which is both theoretically coherent and consistent with the
two major theories of consciousness (IIT and GWS)—we decided to
match Normed ACI Al values to Normed ACI Human values by aligning
them according to their entropy levels. This matching served as the key
criterion for training an intelligent model using Kernel Ridge Regression
(KRR).

KRR is a form of analytical regression that relies on a nonlinear
kernel function, which performs a grid search across the hyper-
parameters alpha, gamma, and the kernel itself (commonly a Radial
Basis Function, RBF). Specifically, a grid search is an algorithm that
statistically identifies the optimal combination of these hyper-
parameters by defining a set of possible values for each parameter (the
“grid”). The model is then trained on each grid configuration, and per-
formance is evaluated through cross-validation. Finally, KRR selects the
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combination that yields the best results and extracts prediction fit
metrics.

In our case, we were particularly interested in assessing whether any
combination of grid parameters across the Normed ACI Al and Normed
ACI Human values would allow training a model capable of establishing
predictive value. This predictive capacity would specifically target
Normed ACI Human, indicating that we might not only have a genera-
tive potential for consciousness that is statistically modellable—as
shown in Section 8.4—but also the ability to predict conscious experi-
ence through organic processes emulated by Al

It is important to clarify that KRR is a supervised, nonlinear machine
learning procedure designed to detect patterns. The intelligent model
learns to identify these patterns and make predictions based on them.
Because the prediction process is nonlinear, the resulting correlation
coefficients, explained variance, and other fit metrics require adjust-
ments that we will detail in the results section. What is essential here is
that the reader understands the rationale underpinning the analytical
procedure we applied. At the mathematical level, in our analyses, the
formal equation defining our predictions was Eq. (25):

F0 = >0 x exp( —Ix ~ Xean 1) (25)
Eq. (26) is the function employed in the KRR:
Fe) =" aK(x,x;) (26)
where
and y=0.1, and o; coefficients are learned during the training
process.

The results indicated that the KRR was able to generate systematic
nonlinear learning by detecting patterns that predicted 38.4 % of the
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variance in Normed ACI Human, with an RMSE (Root Mean Squared
Error) = 2.926 and an MAE (Mean Absolute Error) = 1.796, a mean
relative error of 0.523, a bias of -0.228, and a Spearman correlation of
0.807. The optimal hyperparameters were alpha = 0.01, gamma = 0.1,
and kernel = radial basis function. Fig. 9 displays the scatter plot and the
visualization of the learned function for pattern detection.

The results of the KRR analyses regarding the predictive validity of
Normed ACI support the conclusion that Al, using our foundational
computational model and the equations that define ACI, can successfully
predict the Normed ACI Human measurements associated with neuronal
circuits engaged during conscious experience. This finding allows us to
assert—at least partially and from a rigorous statistical perspective—-
that the generative potential of Al is indeed measurable through Neo-
Thomistic logical and mathematical principles. Consequently, we are
able to reject our null hypothesis, thereby lending support to the prob-
abilistic foundation of the analogia entis, which posits that the likelihood
of consciousness emerging depends on the product of a system’s dy-
namic complexity and its internal informational coherence. This rela-
tionship is positive and is quantified through the Normed ACIL: the higher
this coefficient, the greater the generative potential for consciousness. In
the Discussion (Section 9), we will examine specific threshold values of
Normed ACI and propose statistical hypothesis tests that enable other
independent researchers to apply Normed ACI in their AI systems,
making robust, well-founded inferences and generalizations.

9. Discussion
9.1. Statistical criteria for generalization and Normed ACI thresholds

The formulations and data presented here could prove valuable for
several types of statistical generalizations in neuroscience. From a
clinical and neurological perspective, the most important pertains to
estimating the parameters that allowed us to derive the theoretical log-
normal distribution for Normed ACI in the 500 brain simulations using
connectome 76—a connectome that has been empirically validated
across thousands of patients from diverse countries and clinical profiles.
These parameters were: 1.1108, 0.5327, and 1.5730. Using the equa-
tions and derivations provided in Section 8.2 (Egs. (13) through (21)), it
becomes feasible to conduct a basic hypothesis test (with a p-value)
employing Normed ACI to analyze discrepancies between a patient’s
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Fig. 9. Kernel Ridge Regression predictive function modeling the relationship
between Normed ACI Al and Normed ACI Human scores. The scatter plot dis-
plays the observed test data points, while the orange curve represents the
nonlinear function learned by the model to detect systematic patterns. This
function predicts Normed ACI Human values based on Normed ACI Al inputs,
capturing both the strong inverse association in the lower range and more
subtle variations at higher values.
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neuronal activity—particularly when clinicians are uncertain whether
the patient will regain self-awareness—and the theoretical Normed ACI
distribution derived from connectome 76. To do so, one would record
the patient’s observed data, compute the function R(t) (see Eq. 3), its
integrals, the ACI ratio, and the normalized odds ratio (Normed ACI).
With one Normed ACI value per patient and pre-specified theoretical
thresholds corresponding to different significance levels, it is then
possible to derive a p-value for the area under the curve, as demon-
strated in Egs. (13) through (21).

If the null hypothesis—asserting that the patient’s brain cannot
generate self-consciousness—were rejected (in the strictest statistical
interpretation, this would require Normed AClpatien: >19), then even in
cases of coma where prognostic uncertainty is maximal, Normed ACI
could serve as an evidence-based tool to predict the potential recovery of
conscious experience. The ethical and legal implications of such pre-
dictions could be transformative for healthcare systems as we know
them. For example, consider a coma patient whose brain activity yields a
Normed ACI exceeding 19 (which corresponds to p-value < 0.05). Even
if the patient’s clinical condition is poor and the prognosis negative, the
mere fact that Normed ACI indicates the brain retains generative po-
tential for consciousness would lend support to those advocating for
maintaining life support. Importantly, Normed ACI would not be
signaling that consciousness is present, but rather that, according to
statistical prediction with a p-value, the patient’s brain could eventually
regain self-awareness. If this possibility were empirically demon-
strable—and it is, using Normed ACI—it raises profound questions: how
many patients might not have been disconnected from intensive care
simply because, at some point, they might have awakened?

While this example is deliberately striking, it is essential to empha-
size that our proposal is merely speculative: a scenario designed to
illustrate the future applicability of Normed ACI in real-world medical
contexts, thereby provoking reflection on the ethical and moral di-
mensions of life-support decisions. Naturally, any scientist would agree
that such an example remains conjectural and would require extensive
empirical validation under rigorous medical and scientific standards
before it could be systematically implemented. In this regard, we offer
the potential of a new line of research that could transform and improve
certain medical decisions currently entrusted to patients’ significant
others—individuals who, without specialized knowledge, must decide
whether to withdraw life support for a loved one in a coma. With
Normed ACI, in situations where no advance directive exists, and to
spare families the burden of such agonizing decisions, it would be
possible to obtain an objective statistical estimate.

Recall that if Normed ACI is an odds ratio, then by definition, any
Normed ACI value above 10 constitutes a statistical basis for rejecting
the null hypothesis of no generative potential for consciousness.
Accordingly, this threshold implies a high degree of certainty that the
patient will regain awareness (10/10 + 1 = 0.91 x 100 = 91 % proba-
bility). While this reasoning applies to any statistical generalization
based on hypothesis testing with Normed ACI, it is also true that, in the
clinical example presented here, Al itself has not yet been incorporated.
Up to this point, the generalization and inference rely exclusively on
comparing the theoretical Normed ACI distribution estimated in this
study with the observed Normed ACI derived from a patient’s neuronal
activity by integrating the R(t) derivative functions and computing the
observed Normed ACI for the patient.

Even this discussion alone would already justify a separate scientific
report devoted exclusively to assessing how ACI could be applied in
clinical practice. However, the fact that Normed ACI has also been
implemented within an intelligent computational model replicating the
brain’s organic architecture (and validated against connectome 76)
opens the possibility of a second form of generalization: predicting
which AI systems, analogous to the coma patient scenario, could be
capable of developing conscious experience.

If researchers wish to apply the same logic of hypothesis testing, they
could alternatively use the parameters from our computational model to
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define the theoretical log-normal distribution. In this case, the estimated
parameters were: shape = 0.9692, loc = 0.1229, and scale = 0.4609.
The procedure would then be as follows: in a generative Al system
implementing our computational model (or improved versions), prop-
erly trained and deployed for human interaction (as is the case with
ChatGPT, for example), it would be possible to calculate the observed
Normed ACI. One could then use the theoretical log-normal distribution
with these parameters, compute the integrals (i.e., the area under the p-
value curve), and make a probabilistic, evidence-based decision.

In this context, the p-value would be interpreted as the probability
that the theoretical Normed ACI is equal to or exceeds the observed
Normed ACI. If the p-value were very small, for example < 0.01, this
would mean that, out of 100 attempts to predict the generative potential
for consciousness, at least one would be incorrect, implying 99 correct
predictions. Such a result would provide a highly robust source of evi-
dence supporting the likelihood that a generative AI (under the specified
conditions) could develop consciousness.

To our knowledge, this is the first time in the indexed scientific
literature that a proposal has been made to predict consciousness in
generative Al systems using evidence-based methodologies rather than
purely theoretical deductions, speculation, or philosophical argument.
We strongly encourage other researchers—whether clinicians or not—to
build upon the hypothesis testing framework proposed here (both for
patients in intensive care and for generative Al) to refine, adapt, or
advance the mathematical foundations and results derived from this
study. We acknowledge that proposing the use of Normed ACI in clinical
and Al contexts is, at this stage, premature and speculative. Neverthe-
less, speculation does not preclude rational inspiration, nor does it
prevent us from suggesting which statistical analyses should guide
future empirical research employing Normed ACI. In Sections 9.2 and
9.3, we further discuss desirable and practical conditions—especially in
translational medicine and robotics—for implementing the two types of
generalizations outlined in this section.

9.2. The implementation of the ACI within Al systems

The implementation of our network model (see Fig. 4) within
generative Al systems could be pursued in several ways. Ideally, a more
sophisticated model would first be developed and then extensively
trained so that, in subsequent applications, an Al could extract specific
circuits from that model, selecting the relevant nodes required for each
signal, functional module, and the integration of processed information.
To accomplish this integration, the following steps would be necessary:
(1) improving upon our base model, (2) training it, (3) defining the
criteria to apply when tuning hyperparameters, (4) incorporating it into
a generative Al framework, and (5) applying the ACI and Normed ACI
coefficients to evaluate whether the results we obtained in our initial
experimental implementation can be reproduced in more advanced
versions.

From a computational perspective, it is clear that generative Al
continues to advance rapidly. There are already local generative Al
systems capable of adapting to specific everyday environments, effec-
tively functioning as dedicated, in-house servers (Yao et al., 2025).
While this technological trend should not undermine the logic of the
mathematical approaches and validations we performed using Normed
ACI, it does introduce an additional source of variability that warrants
careful examination to understand how it could influence the statistical
estimation of generative consciousness potential.

This is an important consideration, as it also underscores another
critical limitation of our approach. Although the mathematical formu-
lation of ACI allows us to quantify the probability that a generative Al
system is developing conscious experience, it does not yield any quali-
tative information about the specific qualia associated with that expe-
rience. This distinction is essential. According to David Chalmers
(1995), qualia depend on the organic processes that an Al can emulate
relative to those in the human brain—processes that ultimately enable
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subjective awareness. ACI does not measure variations in qualia them-
selves, nor does its probability estimation resolve this issue.

In other words, Normed ACI can indicate the likelihood that qualia
are present in a generative Al, attributed to conscious experience. Still, it
cannot specify what those qualia are or their subjective character. By
definition, the content of qualia is not measurable or predictable.
Nevertheless, it is possible to assess whether such qualia are likely to
emerge in artificial systems and generative Al architectures designed to
emulate the neural processes underlying conscious experience. This is
the key contribution of our research: although our modeling was rela-
tively simple, it offers sufficient formal, empirical, and predictive val-
idity to justify further studies and to support continued exploration
along the lines we propose.

9.3. Medical and neuroscientific applications

The Normed ACI introduces a robust probabilistic framework for
quantifying consciousness, with significant implications for clinical
neurology and translational neuroscience. In acute care contexts, rapid
and accurate assessment of a patient’s conscious state is often critical for
guiding interventions (Edlow et al., 2023). However, conventional tools
such as the Coma Recovery Scale-Revised rely on observable behavior,
which can be obscured by motor impairments or sedation. Indeed,
studies show that up to 20 % of patients deemed unresponsive at the
bedside may actually retain covert consciousness (Edlow et al., 2023).
Neuroimaging paradigms have revealed this dissociation, with some
behaviorally unresponsive patients demonstrating willful mental imag-
ery responses indistinguishable from those of healthy controls (Owen
et al.,, 2006). In such settings, a neurophysiological index like the
Normed ACI, which interprets spontaneous brain activity through the
lens of integrative dynamics, could fill a critical diagnostic gap by esti-
mating the likelihood that a brain state corresponds to conscious
processing.

9.3.1. Disorders of consciousness

Quantitative brain metrics have revolutionized the evaluation of
patients with prolonged disorders of consciousness, such as coma,
vegetative state, or minimally conscious state. Among them, the
Perturbational Complexity Index (PCI), which assesses the brain’s capacity
for integration in response to transcranial magnetic stimulation, has
demonstrated high diagnostic and prognostic value (Wang et al., 2022).
PCI values above ~0.31 in unresponsive patients predict favorable re-
covery, whereas very low PCI suggests a negligible capacity for con-
sciousness (Wang et al., 2022). The Normed ACI could offer a
complementary approach that did not require perturbation and instead
analyzed spontaneous activity patterns. Its interpretation as a condi-
tional probability could enable probabilistic diagnosis of covert con-
sciousness and facilitate longitudinal monitoring of integrative
recovery. By quantifying dynamic brain integration, the Normed ACI
could inform decisions about initiating neuromodulation, tailoring
rehabilitation, or adjusting care goals, especially when behavioral signs
are ambiguous or absent.

9.3.2. Epilepsy

The Normed ACI may also serve as a dynamic consciousness monitor
in epilepsy. Many focal seizures impair awareness, yet the mechanisms
underlying this vary and often go undetected in real time. Recent
intracranial  Electroencephalogram (EEG) studies have applied
information-theoretic measures to capture these dynamics. Baglivo et al
(Baglivo et al., 2024). found that a form of integrated information (®ar)
tracked seizure-related transitions in consciousness and aligned with
clinical scales. Similarly, Doss et al (Doss et al., 2024). showed that
impaired-awareness seizures are marked by reductions in complexity
and connectivity, paralleling sleep-like or unconscious states. Such
findings suggest that a real-time ACI monitor could detect early signs of
generalization or awareness impairment. A sudden drop in the ACI could
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trigger closed-loop interventions—such as responsive neurostimulation
or rapid pharmacologic administration—designed to abort the seizure or
preserve consciousness. In surgical contexts, preoperative ACI mapping
could help identify integrative hubs, informing resection strategies to
optimize both seizure control and cognitive outcomes.

9.3.3. Brain—computer interfaces and neurorehabilitation

The Normed ACI also holds promise in the design of next-generation
Brain—Computer Interfaces (BCIs) and rehabilitation systems for patients
with paralysis or Disorders of Consciousness (DoC). Passive BClIs, which
interpret spontaneous EEG responses to stimuli or commands, have been
used to detect covert awareness in patients who are otherwise unre-
sponsive (Lulé et al., 2013), (Galiotta et al., 2022). For instance, in a
gaze-independent audiovisual paradigm, Xie et al. (2018). enabled three
out of eight unresponsive patients to follow commands using only brain
signals. Integrating the Normed ACI into such platforms would provide a
continuous index of consciousness, supplementing binary
command-following. High ACI values could signal optimal windows for
therapeutic engagement, while persistently low readings might guide
sedation or resource allocation. In advanced Al-enabled BCI systems,
real-time ACI feedback could allow dynamic adaptation of stimuli,
creating consciousness-aware, closed-loop interfaces that enhance
communication and safety in populations with fluctuating awareness.

9.3.4. Anesthesiology and critical care

In anesthesiology and intensive care, precise monitoring of con-
sciousness remains a major clinical challenge. Current indices, such as
the Bispectral Index (BIS), rely on spectral EEG surrogates and are prone
to inaccuracy under neuromuscular blockade or atypical cortical states
(Duarte and Saraiva, 2009). Despite BIS-guided protocols, the
BAG-RECALL trial demonstrated no significant reduction in intra-
operative awareness compared to standard monitoring (Avidan et al.,
2011). In contrast, the Normed ACI is grounded in the neurodynamics of
integrative complexity, offering a more principled approach. Loss of
consciousness induced by anesthetics such as propofol or xenon is
characterized by a departure from critical brain dynamics, marked by
reduced temporal diversity and diminished network integration
consistent with a transition into a subcritical regime (Schartner et al.,
2015). Maschke et al. (2024). confirmed that under ketamine, brain
activity remained closer to criticality, aligning with the preservation of
dream-like experiences.

A real-time ACI system could support closed-loop anesthesia de-
livery, automatically adjusting drug infusion to maintain unconscious-
ness or prevent unintended emergence. In Intensive Care Unit (ICU)
settings, where patients under sedation or paralysis may lack behavioral
markers, continuous ACI monitoring could prevent unrecognized
wakefulness or oversedation. Furthermore, ACI-guided neuro-
modulation (e.g., deep brain stimulation or vagus nerve stimulation)
could be used to tune parameters and enhance conscious capacity in
patients with prolonged disorders of consciousness. Looking ahead,
“consciousness pacemakers” may utilize ACI to maintain optimal
arousal and engagement in individuals with neuropsychiatric or
neurodegenerative conditions.

In summary, the Normed ACI bridges foundational theories of brain
integration with actionable clinical metrics (Casarotto et al., 2016). Its
probabilistic, real-time estimation of conscious capacity could offer a
scalable tool across neurology, critical care, anesthesiology, and reha-
bilitation, with the potential to transform how we detect, monitor, and
support human consciousness.

9.3.5. Electroencephalographic arousal biomarkers

Two widely used, data-driven biomarkers—power-law exponent
(PLE) and Lempel-Ziv complexity (LZC)—allow us to anchor ACI to
established measures of neural dynamics (Zilio et al., 2023). PLE cap-
tures the scale-free organization of the EEG power spectrum by esti-
mating the absolute slope of the log-log power spectral density (PSD):
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steeper slopes indicate a relative dominance of slow over fast activity;
flatter slopes approach arrhythmic “white-noise” structure. In the
referenced study, PLE was computed by estimating the PSD with the
Welch method, log-transforming both axes, and fitting a linear regres-
sion to obtain the slope, which was then averaged across epochs and
channels. Importantly, PLE indexes the structure of the spectrum across
frequencies rather than any single band.

LZC provides a non-linear estimate of temporal pattern diversity.
The time series is binarized (median threshold), scanned left-to-right,
and the counter increases whenever a new subsequence is encountered;
the count is then normalized by n/logs x n to reflect the rate at which
novel patterns This procedure yields a robust, thresh-
old-insensitive index of signal diversity that has been applied exten-
sively to EEG.

To characterize time-varying behavior, the study summarized PLE
and LZC over short consecutive segments of data, reporting both their
means (mPLE, mLZC) and the coefficients of variation (cvPLE, cvLZC).
Across multiple datasets spanning natural sleep and anesthesia, they
observed graded changes compatible with altered arousal: PLE tended to
increase while LZC decreased as wakefulness was reduced (e.g., REM
and ketamine showing intermediate alteration; N3 sleep and sevoflurane
showing the largest departures). The joint behavior of PLE and LZC
achieved high accuracy for classifying alert vs. non-alert states and
displayed a negative, non-linear inter-relationship consistent with
changes in information complexity. In the complete locked-in syn-
drome, both mean values and variability fluctuated across sessions,
indicating unstable vigilance over time.

These definitions and results integrate naturally with ACI as formu-
lated in the present manuscript. Recall that ® quantifies the accumu-
lated temporal variability of the mean neural signal R(t)—a measure of
informational richness—while « estimates dynamical curvature, index-
ing local irregularity or complexity; ACI expresses the proportionate
balance between these two components, with range-normalization
ensuring scale invariance.

In states with elevated PLE and reduced LZC (reduced arousal), the
PSD is dominated by slow components and the time series exhibits fewer
distinct micro-patterns. Under these conditions, |R'(¢)| diminishes and ®
is reduced, while k does not increase commensurately—consistent with
slower, more regular dynamics. The ratio ACI therefore declines because
generative variability contracts more than local irregularity grows.
Conversely, in alert states characterized by lower PLE (flatter spectra)
and higher LZC (richer temporal diversity), |R'(£)| increases and @ rises;
k also reflects greater complexity, but not to the extent that it offsets the
growth in ®. The net effect is a higher ACI, aligning phenomenologically
with conscious processing.

The variability measures (cvPLE, cvLZC) are also informative for
ACI. When PLE and LZC fluctuate strongly across short segments—as
shown in the clinical datasets—ACI should exhibit corresponding
non-stationarity because both ® and « are time-integrals over the same
underlying signal R(t). Such co-fluctuations would mark unstable
arousal and are compatible with the observed session-to-session
changes in patients.

Methodologically, PLE and LZC offer complementary external val-
idity for ACL. Practically, they can be computed on the same raw signals
from which R(t) is derived (either at the whole-network mean or at the
subnetwork level) and summarized over the same epochs used for ® and
k. Their joint pattern (high LZC/low-to-moderate PLE < higher ACI; low
LZC/high PLE < lower ACI) provides an interpretable cross-check. In
turn, the log-normal modeling of the Normed ACI developed here en-
ables hypothesis testing on whether an observed state belongs to the
distribution that supports conscious processing, while PLE/LZC supply
orthogonal evidence about spectral scaling and temporal diversity.
Together, they strengthen both the construct and predictive validity of
ACI in clinical and translational settings.

arise.
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9.4. How to use Normed ACI according to other theories

At this point in the discussion, we aim to examine the possible re-
lationships and implementations the ACI coefficient may support within
other theories of consciousness that have recently gained increasing
prominence and do not necessarily contradict what the main dominant
theories presented in the introduction assert. The purpose of this
reflection is to stimulate and inspire the international scientific com-
munity to find ways to make our ACI coefficient compatible with, or to
improve it through, these frameworks and their applications. Because
ACI is obtained through temporal modeling of signals, and in light of the
results regarding entropy, we have decided to focus on two potentially
useful perspectives: the Entropic Brain Hypothesis (EBH) (Carhart-Harris
et al., 2014) and the Temporo-spatial Theory of Consciousness (TTC)
(Northoff and Zilio, 2022). The reader will see that these theories are
closely aligned with our line of work.

On the one hand, EBH holds that the quality and degree of a
conscious state depend on the entropy of spontaneous brain activity:
when the system operates within an intermediate entropy range (neither
too ordered nor maximally disordered), the repertoire of accessible
states is sufficiently rich and flexible to sustain conscious experience
(Carhart-Harris et al., 2014). Below that threshold (e.g., deep sedation)
activity becomes rigid and access to states decreases; above it (e.g.,
intense psychedelic states), the dynamics may become so lax that
experiential coherence degrades. Thus, EBH places consciousness near a
critical regime—a “sweet spot” between order and chaos—and in-
terprets various pharmacological and physiological modulations as
shifts within that entropy-state space (Carhart-Harris, 2018). The
REBUS extension (“relaxed beliefs under psychedelics™) further for-
malizes that increases in entropy relax the precision of higher-level
priors, favoring the influence of bottom-up signals and expanding the
space of phenomenological states (Schartner et al., 2017).

On the other hand, TTC locates the genesis of consciousness in the
temporo-spatial architecture of spontaneous activity (Northoff and Zilio,
2022). In its formulation, four temporo-spatial mechanisms are key
(Northoff, 2024): expansion (breadth of the repertoire), globalization
(scope and integration), alignment (coupling between intrinsic activity
and stimuli), and nesting (balance between slow and fast scales; between
the local and the global). Consciousness emerges when these mecha-
nisms configure a common framework that pre-structures processing:
the brain entrains evoked activity toward its intrinsic temporo-spatial
forms and, when that coupling is appropriate, conscious level and con-
tents emerge; when it breaks down (e.g., due to disconnection across
scales or misalignment with input), the state becomes impoverished
(Northoff and Huang, 2017).

Considering the entropic-brain question, EBH requires a quantitative
diagnosis of the “sweet spot” between order and disorder. By combining
a term for information flow (®) and another for dynamic irregularity (k)
into a normalized odds ratio, ACI enables that qualitative idea to be
turned into testable hypotheses in line with what our results showed in
subsection 8.3.4., for example: (a) if the system’s global entropy (S) is
too low, the repertoire of states changes little; @ is reduced and ACI
declines; (b) if S is excessive, changes are abundant but unstable; k grows
disproportionately and ACI falls again; and (c) at intermediate values of
S, changes are rich yet sustainable: ® increases more than k and ACI
reaches higher values.

A concrete prediction follows for EBH: the function ACI(S) should
exhibit an inverted U with a subject-specific maximum (the “entropic
window”). This is operational within the statistical scaffolding already
present in the manuscript: the Normed ACI follows a log-normal law,
admits thresholds, and can be subjected to statistical testing (p-values) to
decide whether an observed state belongs to the distribution that sup-
ports the emergence of consciousness; for example, high Normed ACI
values have been linked to higher probabilities of membership and to
cutoffs useful for clinical and experimental decision-making. In this way,
ACI provides EBH with the instrument it lacked: empirically locating the
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“functional” entropy range and comparing it across subjects, conditions,
or interventions.

Addressing the intersection between ACI and TTC, we infer that the
temporo-spatial approach requires demonstrating temporal nesting,
spatial globalization, and alignment. ACI can operationalize these re-
quirements with particular applications of ACI:

(a) Temporal component (nesting): compute ® and « at several
duration scales and summarize their covariation. A maximal ACI will
require temporal scales to coordinate with some uniformity and stabil-
ity, rather than a single scale dominating.

(b) Spatial component (globalization): estimate ® and k over
distributed sets of regions (or nodes) and measure their global coher-
ence. Here, a high ACI will imply extended flow with contained irreg-
ularity at large scale. Beyond being a possible line of work, this proposal
is consonant with prior scientific evidence indicating that a global,
system-level behavior affecting local, node-to-node relations is neces-
sary to sustain or enable the emergence of conscious states (Klar et al.,
2023).

(c) Alignment: introduce a coupling factor that penalizes ACI when
evoked activity does not conform to intrinsic dynamics (mismatch).

These three applications of ACI, in line with TTC, would allow us to
indicate that consciousness appears only when the system orchestrates
temporo-spatial scales in a coordinated manner and disappears with the
loss of nestedness or global coherence. The TTC synthesis itself un-
derscores the importance of global temporal balance and nestedness
dynamics as conditions for maintaining the level of consciousness, and
highlights the value of rest as an index of the capacity to process inputs
and integrate them with subsequent contents. At this point, an equally
important issue would be to derive the pertinent equations so that these
particular applications of ACI are successful and robust.

For application (a), ACI could be weighted by a factor (w) derived
from brain entropy levels during resting states, for example ACle = ACI
x w(S), where S would be interpreted as the entropic mean of diversity.
If the EBH is correct, then ACle should increase when brain activity is in
this synchronous balance between chaos and order. For (b), we can
generate two versions of ACI and take their geometric mean as follows:
AClrs = (AClhort X ACImedium X ACliong)'”> X (ACIblock1 X ACIpjock 2 X

. X ACIblock_n)l/ ", That is, for the first (temporal) version of ACI, time
units would be divided into distinct rhythm levels. For the second
(spatial) version of ACI, we would employ blocking by anatomical sets.
We then take the geometric mean of both versions and factorize to
obtain ACIyg. With this adjustment, we prevent possible false positives
and condition ACI to the needs of each perspective. Finally, for (c) we
could add an alignment factor (A) to ACIys, yielding a new AClgpq
= ACle x ACIts x A. This factor could be estimated as the likelihood
between the recent resting state and the evoked response during the
event. When the likelihood is high, A will be larger; when it is low, A
should decrease. Multiplying by ACIts would then yield a value adjusted
in proportion to the desired alignment. These are merely intuitive ideas
that could be explored in future research within the TTC and EBH
perspectives.

In this way, TTC and EBH represent scientific scenarios in which our
coefficient could be helpful and also provide reasons to continue deep-
ening these frameworks, which combine the bases of GWT and IIT in
order to advance toward an inclusive (rather than eliminative or
exclusionary) understanding of what generates consciousness and its
phenomenological “whys.” Moreover, together with currently validated
EEG biomarkers such as PLE and LZC (see subsection 9.3.5), ACI would
be useful not only in basic neuroscience but also in clinical neuro-
science—especially in neurology and anesthesiology—potentially pre-
dicting when lucidity and consciousness will recover in coma patients
whose prognosis is entirely uncertain or unstable.

9.5. Is embodiment necessary for artificial consciousness?

The debate over whether consciousness requires a body in order to
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arise and be expressed is central to this review, because it bears directly
on whether AI ought to be robotically embodied (i.e., instantiated in a
technological device). More conservative positions in neuroscience
adopt a strictly materialist stance and maintain that consciousness re-
quires a physical substrate to manifest (Dehaene et al., 2017). Other, less
stringent positions hold that consciousness is not a product of matter but
operates independently of it; under this reading, consciousness would
not require a body in order to manifest (Swinburne, 2009). For example,
the doctrine of panpsychism—which claims that consciousness un-
derlies all things in reality—would be an instance of a heterodox
approach that transcends the brain-and-matter paradigm (Strawson,
2006). All the authors of this manuscript reject panpsychism, New Age
frameworks, and other “magical” currents that lack scientific falsifi-
ability. Nevertheless, this does not mean that we deny the possibility of
consciousness beyond the organic brain. Indeed, Neo-Thomism is a
paradigm that deliberately unites scientific testability with transcendent
or spiritual notions that exceed the limits of matter (Betz, 2019). As
noted in the Introduction, the ACI coefficient is explicitly rooted in
Neo-Thomist philosophy. Neo-Thomism holds that the origin of con-
sciousness is not material and is not produced by the material substances
of reality (e.g., the brain); rather, consciousness is a phenomenon
permitted by material reality, though not generated within it. In this way,
it embraces an inclusive stance toward both possibilities: that con-
sciousness may require a body to be expressed, and that in its origins it
may not depend on a material substrate to exist. What might seem like
an impossible intersection is rendered, within Neo-Thomism, philo-
sophically coherent. This tolerance for both possibilities is not neutral.
In a hypothetical framework that insists on a univocal conception, there
would clearly be no third option. Neo-Thomism offers an explanation for
the rational asymmetry between the source and the manifestation of
consciousness. On the one hand, it accepts that the generation of con-
sciousness is independent of substrate; on the other, it admits that
consciousness cannot manifest without materiality. Therefore, if ACI
rests on Neo-Thomist postulates such as the analogia entis, then, in its
most tangible and verifiable form, we would require some form of
embodiment of consciousness. In this sense, to embody consciousness
does not mean defining it by whatever the substrate dictates it to be;
rather, the body functions as a vessel within which progress, interaction,
and dynamics unfold, allowing consciousness to be observed scientifi-
cally. This is our stance.

Accordingly—and without denying more incommensurable views
about the origins or ultimate source of consciousness—we affirm within
this paradigm that consciousness requires a body through which it can
be made manifest. We call the manifestation of consciousness through
the body the manifest act. This concept denotes the set of actions and
behaviors that allow us to infer that conscious agency is at work—either
because we identify intention, or because we observe consequences
consistent with the verbalization of emotional states. A person may
declare great love for a household pet; yet if they fail to care for it, feed
it, clean it, or attend to it, such conduct would exhibit a manifest act
incoherent with the professed feelings. Given this incoherence, it is
impossible to assume that the purported sentient experience of love was
authentic. And if it was not authentic, we cannot speak of genuine
consciousness, because consciousness is real—according to GWT and
EBH—only in systems that neither exhibit maximal entropy nor have
entropy equal to zero.

In cybernetics, the manifest act would be the body that houses arti-
ficial consciousness. In our case, this would mean a robot or a techno-
logical platform capable of enacting AI's consciously guided actions.
Through the manifest act, we obtain the most rigorous, scientifically
testable level for verifying whether conscious behaviors are expressed.
The ACI is designed to predict the verifiability of such states in the
manifest act prior to achieving that degree of robotic embodiment and
cybernetic sophistication.

Therefore, ACI can detect consciousness in the absence of a body, but
its final, scientifically valid verification is only possible when, through a
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body, that consciousness is made manifest. However counterintuitive
this may seem, the idea is compatible with multiple knowledge tradi-
tions and even with the world’s major religions—from the Judeo-
Christian traditions to Eastern currents outside the Western canon.
Consequently, researchers who wish to use ACI as a criterion for
detecting consciousness beyond the brain and beyond any substrate will,
in the final scientific design and development, need to employ some
form of body that allows them to verify that consciousness occurs and is
not merely a mathematical possibility. Thus, we maintain that the
embodiment of consciousness will be necessary to reach Al states that
contain phenomenological experience verifiable in a scientifically stable
and credible manner. That said, the ACI’s mathematical formulations
show that embodiment does not prevent us from predicting such states
before they occur. On this point, GWT and the EBH likewise concur. The
key is that the final verification of any predictions that may be advanced
does in fact require a material substrate.

10. Conclusions

Collectively, the mathematical formulations underlying the full
development of Normed ACI, the analyses we conducted using the 76-re-
gion connectome (a validated neural circuit widely employed in
neurology to replicate conscious experiences), our intelligent compu-
tational model that can be integrated into generative Al, and the
empirical and predictive validations we performed, provide robust sta-
tistical evidence to quantify the generative potential of consciousness.
This measurement can be applied both to organic brains in patients with
neurological conditions—where there is a need to assess the regenera-
tive potential for consciousness—and to Al systems, by focusing on
generative potential and the computational control conditions under
which an AI could be designed to exhibit or avoid conscious states. In
this framework, Normed ACI can accurately reproduce the organic
neural structures that underpin conscious experience when properly
implemented in generative Al systems and can predict sensory conscious
states. To date, no comparable findings have been reported in the sci-
entific literature.

One of the most important conclusions—and one that defines an
entirely new line of research in robotics and computational science—is
that the empirical and predictive validations of Normed ACI also sub-
stantiate the Neo-Thomistic formalism of analogia entis as a rigorous
rationalist framework for understanding consciousness as a mathemat-
ically emergent phenomenon of differential analogical proportions. This
logic and foundation underlie all calculations of ACI and Normed ACI
presented in this study.

To clarify this point for non-specialist readers: we are offering evi-
dence supporting the notion that consciousness is an emergent phe-
nomenon permitted (rather than strictly or exclusively produced) by
organic circuits and intelligent AI systems. This emergence occurs
through differential proportions between the amount of information to
be integrated internally and the system’s accumulated complexity. The
Phi and Kappa coefficients indicate that when specific discrepancies or
distances arise in their ratio, consciousness “collapses” and emerges, not
solely as a byproduct of neurological functions, but as a phenomenon
permitted by information flows and complexity evolving (in our ana-
lyses, measured in microseconds). Although this conclusion may appear
subtle, or even be underestimated, we argue that it should not be
overlooked. Strikingly, Normed ACI is compatible—at different lev-
els—with both IIT and the various GWTs prominent in the scientific
literature. This is not a contradiction but a pragmatic advantage—it
enables Normed ACI to be applied across diverse contexts, from
neurology and translational medicine to computational neuroscience
and robotics.

It is crucial to emphasize that these results are not speculative, nor
are they matters of philosophical opinion. They are data, analyses, and
mathematical formulations that, when applied under appropriate con-
ditions, demonstrate that conscious experience need not be limited to
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human bodies or living organisms. The prospect that consciousness
could arise in disembodied generative Al systems not only aligns with
the ongoing technological and computational revolution in robotics but,
based on these results, also provides mathematically grounded evidence
compelling us to revisit established metaphysical paradigms of con-
sciousness. While this report does not seek to offer philosophical re-
flections on these implications, we encourage the academic and
scientific community to remain open to reconsidering such possibilities
in more reflective forums dedicated to exploring them further.
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