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Abstract 
Recently, heavy network traffic and significant data accumulation have been observed in smart energy-efficient 
wireless sensor-based applications. These power-aware sensors devices form low-power Internet of Things 
(IoT) ecosystem. In such applications, IoT nodes gather and analyze private data, which becomes a natural 
target for cyber-attacks. Many intrusion detection systems (IDSs) are designed to address this issue, but the 
majority of these systems are computationally expensive with high latency and fail to accurately identify 
subcategories of cyber-attacks. Attribute selection would help in reducing the data required for attack 
identification, thereby decreasing delays and memory usage for data storage, while also enhancing detection 
performance. In this paper, an advanced and optimized IDS model for IoT applications was proposed, utilizing 
a novel hybrid attribute selection method called credit gain function (CGF). This method incorporates 
correlation feature selection (CFS) and gain ratio. The proposed attribute selector is used to optimize the dataset 
through CGF, resulting in a memory-constrained dataset. By employing the proposed CFS method, a novel 
IDS model based on the Deep-CNN technique is recommended for detecting and classifying cyber-attacks and 
their sub-categories within an IoT environment. Performance analysis of the presented framework was 
conducted using four public datasets—IoTID20, UNSW-nb15, NSL-KDD, and KDD—under various metrics, 
employing different parameters for binary, multi-class, and sub-category classification. The evaluation 
demonstrated that the proposed IDS model is highly capable, achieving a high accuracy, precision, recall, and 
F-measure of 98.1%, 96.7%, 96.3%, and 96.8%, respectively. The optimal performance was attained when 
implementing two convolutional layers and three dense layers of the CNN model with a batch size of 64. 
Additionally, the presented framework was evaluated to be efficient, with a mean response delay of 2.8 seconds 
and a low false positive rate of 0.002%. Consequently, the proposed intrusion detection model offers a 
constructive solution for assessing different cyber-attacks in an IoT ecosystem. 
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1. Introduction 
With the worldwide proliferation of sensory applications, numerous cybersecurity vulnerabilities have 

surfaced in current Internet of Things (IoT) infrastructures. Such security vulnerabilities pose a global 
threat to undermine organizational structures like privacy and the mobility of functional units. These 
security threats impact both technological elements as well as the financial well-being of any organization 
[1]. Malicious attacks that attempt to exploit these vulnerabilities have brought many insecurities to 
digital systems and architectural infrastructures [2, 3]. IoT devices gather, store, and analyze application 
specific information in a distributed manner from diverse sources, making them an open target for 
intruders because of their decentralized nature [4]. The successful establishment of smart sensory 
connectivity has become heavily reliable on the security resilience of these networks [5]. Majority of 
these smart devices are low powered which means they are inadequately powered and possess less 
computation ability. Since these IoT devices are energy constrained with restricted functional power, 
hence the effect of a cyber-attacks may lead to catastrophic impact on the IoT ecosystem. Thus, an 
advanced and reliable approach for smart IoT system to identify cyber threats and ensure the security of 
IoT networks against intruders is an essential requirement. In such a scenario, a computationally effective 
network risks prediction model is needed that can process IoT network data traffic to detect and classify 
cyber-attacks, ultimately enhancing IoT security [6].  

A generic intrusion prediction model for smart IoT setups is shown in Fig. 1. This IoT setup could exist 
in various application domains, such as connected healthcare, connected vehicles, supply chain 
management, etc. The sensory elements are monitored by a detection unit, thereby generating 
notifications to users or the responsive units to analyze potential security issues when the data traffic 
pattern is detected as a threat. The detection module needs to be trained by a suitable predictive analytics 
method with an appropriate classifier. Most of the misuse-oriented methods utilize pattern comparison to 
verify if the potential data is a threat. The above units are required to accumulate the general data patterns 
as well as the threat signals to build their detection framework. 
 

 

Fig. 1. A typical intrusion detection system for IoT environment. 
 

1.1 Motivation 

Several research works [7–9] have attempted to design intrusion detection system (IDS) using different 
predictive learning models that are able to forecast cyber-attacks with good accuracy. But in the context 
of IoT networks, these conventional learning methods fail to exhibit reliable performance. Existing IoT 
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based intrusion detection models using predictive approaches presume the devices to possess identical 
data patterns and packet types. But these sensory systems differ in terms of their hardware configurations, 
computation costs, and capability to generate different features [10]. Upon aggregation of nodes, 
attributes may become sparse, which impacts data modelling performance [11]. Thus, data accuracy is a 
real challenge in IoT systems due to their dynamic nature [12]. Here, deep learning can be considered a 
better alternative as it can generalize any intrusion detection problem with complex and multi-
dimensional data. Although few recent works [13, 14] have used advanced deep learning models, they 
still face difficulty optimizing performance and identifying subcategories of cyber-attacks [15, 16]. 

The main limitation of the current IDS predictive approaches involving advanced prediction approaches 
is that they suffer from performance constraints related to resource availability, computational overhead, 
and dimensionality reduction, as well as failing to detect subcategories of cyber-attacks [17]. Therefore, 
to optimize model sparsity, redundancy, data storage, and high dimensionality in IoT systems, an efficient 
attribute selection method is needed for IDS systems. 

 
1.2 Contributions 

This paper introduces an advanced feature optimization method that is used for a deep learning IDS 
model which is able to detect and classify various cyber vulnerabilities in a heterogeneous and dynamic 
low powered IoT environment, as shown in Fig. 2. The paper utilizes a novel hybrid attribute selection 
method called credit gain function (CGF), which combines correlation feature selection (CFS) with gain 
ratio, thereby optimizing the scaled IoT dataset to retrieve relevant features. This CGF was then used to 
propose a convolutional neural network (CNN)-based IDS approach with capability to identify and 
classify multi-class risks for low powered IoT ecosystems. The primary contributions of this paper are 
highlighted as follows: 

l A novel CGF attribute selection method considers credit functions of correlated attributes as well as 
the entropy-based gain ratio to derive an optimized dataset. This is needed because correlation 
coefficient methods are not suitable if attributes are not normally distributed. Also, the gain ratio by 
itself fails to perform well if the dataset has a high number of distinct values. In an IoT environment, 
there is heavy fluctuation in accumulated values, which are seldom normalized. Thus, a hybrid 
integration of both of the above attribute selection methods can overcome this concern. The proposed 
CGF attribute selection method was evaluated and compared with different attribute selection 
methods like info-gain, gain ratio, and chi-square methods, among others. 

l A hybrid Deep-CNN based IDS which, in addition to the CGF, consists of multiple interconnected 
convolutional layers and dense layers to identify cyber-attacks in an IoT system. The combination 
helps alleviate the computational load of CNN, and has shown better performance when compared to 
its counterparts. 

l The hybrid Deep-CNN based IDS model was evaluated using four standard datasets—IoTID20, 
UNSQ-nb15, NSL-KDD, and KDD—through different performance metrics including accuracy, 
precision, recall, F-measure, and false positive rate (FPR) for different scenarios including binary, 
multi-class category, and multi-class subcategory attack identification as well as latency time. The 
evaluation outcome demonstrates the effectiveness of the novel intrusion detection approach over 
other traditional existing methods. Performance evaluation validates the reliability and robustness of 
the deployed model, which can be used in modern smart sensory interfaces to identify malicious 
threats. 

The overall structure of the article is presented as follows. Section 2 discusses an explanatory 
background overview, along with a comparative analysis of relevant works summarizing the important 
research gaps. The overall presented IDS model utilizing the IoT samples is detailed out in Section 3. 
Subsequently, the evaluation outcomes and performance analysis are given in Section 4. Finally, the 
paper is concluded in Section 5. 
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2. Literature Survey  

Recently, several constructive and relevant works have been carried out that are applicable to the 
security issues of IoT networks. Many novel smart privacy methodologies were developed by combining 
machine intelligence with cybersecurity aspects [18]. Various innovative works are being undertaken for 
security in the IoT utilizing data analytics and advanced cognitive methods. Here, we will shed some 
light on existing works in the field of IDSs for the IoT using predictive learning models. Specifically, we 
will focus on the classification models applied, including any attribute selection methods used, and 
performance metrics such as the FPRs and the prediction accuracy. 

Gao et al. [19] studied the recent development in IDSs, where they developed a multi-level tree 
algorithm. Also, an ensemble model was designed to improve the performance by using methods like 
random forest and deep neural networks as the base approach. The results showed that ensemble models 
performed better than conventional approaches. In another work by Ding and Zhai [20], the performance 
of conventional machine learning frameworks is analyzed. Later, they also developed a CNN model, 
which, upon comparison with machine learning, generated optimal performance. Though their approach 
exhibited a better accuracy rate than other conventional models, it should be enhanced to reduce network 
risk. Ingre et al. [21] presented a decision tree-enabled threat analysis model using KDD samples. CFS 
selected relevant attributes, and it showed the impact of this method on IDS performance. 

Ever et al. [22] discussed an optimal classification method to build an IDS in their study. They applied 
NSL-KDD data to train their framework. In [23], the authors applied a genetic algorithm to an IoT dataset 
to select vital features and a support vector machine (SVM) classifier to identify the malicious packets 
with a recorded accuracy of 97.3%. In another piece of research undertaken in [24], the authors developed 
an Internetwork prediction model utilizing a variant of a neural network using NSL-KDD data on IoT 
systems. The outcome of the research was subdivided into binary and multi-class classifications, giving 
an accuracy rate of 83.28% and 81.29%, respectively. The authors in [25] proposed a CNN-based model 
for detection of network intrusion using IoT-collected datasets. Attribute selection methods were used to 
further optimize the data, and the prediction accuracy was found to be 97.7%. In [26], the authors applied 
a neural network to detect intrusion categories using IoT-KDD data. Principal component analysis (PCA) 
was the preprocessing method used to optimize the attributes, while the min-max method was used for 
data normalization. Feed-forward neural networks (FFNN) and Levenberg-Marquardt (LM) back 
propagation methods were used for classification, and the model gave around 97% accuracy. A novel 
deep learning-based model was developed in [27] using the NSL-KDD dataset. Label encoding with 
normalization was applied for preprocessing. Among all attacks predicted, the accuracy rate for denial-
of-service (DoS) attacks peaked at 97%. In [28], a research analysis was carried out using machine 
intelligence-based intrusion detection using deep neural network (DNN) to verify the presence of any 
malicious attacks. Four hidden layers were used, and the ReLU function was the activation function used 
in the model. It recorded a maximum accuracy of around 99%. 

In another work [29], the authors used the DNN model with DARPA 1999 data and used ReLU as the 
activation function in the hidden layer while two neurons were in the outer layer. An accuracy of 93% 
was determined. Basati and Faghih [30] developed a CNN-based IDS using deep attribute retrieval. It 
focused on IoT modules that exhibit less computational power. The developed model was validated for 
binary as well as multi-class labels. Rashid et al. [31] developed an ensemble-stacked technique using 
trees to detect intrusion in an IoT ecosystem using heterogeneous datasets. Multiple feature selectors 
were combined to optimize the model’s performance. Fatani et al. [32] presented a new hybrid attribute 
reduction method for the IDS model, applying the pros of evolutionary computing. Some datasets, like 
BoT-IoT and CIC 2017, were used for model validation. Alkahtani and Aldhyani [33] proposed popular 
deep learning models like CNN, LSTM, and hybrid CNN-LSTM for intrusion prediction. The IoTID20 
dataset was used for performance evaluation. Keserwani et al. [34] discussed an intrusion detection 
approach to extract relevant IoT network features. The technique is comprised of a combination of the 
evolutionary optimization method and the grey wolf optimization method. They used different datasets, 
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like KDDCup99 and CICIDS-2017 data. Table 1 highlights the accuracy rate analysis of some recent 
relevant works in context with IoT systems, where the utilization of any attribute selection is also 
specified [21, 23–26, 29, 35–41]. 
 
Table 1. Accuracy analysis of important existing works on intrusion detection system using IoT 

Study 
Attribute 

selection used 
Classification model applied 

Accuracy 
(%) 

Ingre et al. [21] No Decision tree and support vector machine (SVM) 96.40 
Aslahi-Shahri et al. [23] Yes Genetic algorithm and SVM 97.30 
Yin et al. [24] No Recurrent neural networks 83.28 
Liu et al. [25] No Convolutional neural network (CNN) 97.70 
Singh & Ahlawat [26] Yes Artificial neural network (ANN) with PCA 97.97 
Vigneswaran et al. [27] No Deep neural network (DNN) with ReLU activation function 93 
Taher et al. [35] No ANN, SVM 94 
Shah & Trivedi [36] No Back propagation neural network 91 
Yulianto et al. [37] No AdaBoost 81.83 
Pelletier & Abualkibash [38] No ANN, Random forest (RF) 96.40 
Hammad et al. [39] No SVM, J48, RF, Zero 96.70 
Faker & Dogdu [40] No DNN, RF 97 
Amiri et al. [41] Yes SVM, MMIFS 86.46 
CGF-Deep-CNN Yes DNN 98.10 

 

Table 2. False positive rate analysis of some popular works related to IoT based IDS 
Study Model used False positive rate (%) 

Kanimozhi & Jacob [42] Deep neural network 15 
Shone et al. [45] Stacked deep autoencoder network 2.15–14.58 
Al-Zewairi et al. [43] Deep neural network 0.56 
Fu et al. [44] Deep neural network 13.44 
Farnaaz & Jabbar [46] Random forest 0.005 
Hammad et al. [39] Decision tree 13 
Pelletier & Abualkibach [38] Neural network 7.34 

CGF-Deep-CNN Deep neural network 0.002 

 

As highlighted in Table 1, there are many computational models used for IDS analysis in context to 
IoT, but very few of them implement the dimensionality reduction method. Also, as observed from the 
literature survey, existing models [38, 42, 43, 44] deal with classifying the cyber-attacks into binary 
categories. Specifically, no work is done for multi-attack classification, making it incomplete and not so 
scalable. Another important parameter is the FPR, which determines the number of normal events 
observed by the IDS as intrusions. It is vital to reduce this metric as much as possible. Some relevant 
works related to FPR analysis are shown in Table 2 [38, 39, 42–46], from which it can be noticed that 
the reviewed IoT IDS systems have a high FPR of intrusion prediction (i.e., less reliable systems) [47]. 
It refers to the fact that any data pattern deviating from the general trend is tagged as a cyber threat, even 
if it is not the scenario. This can be misleading as a result of false associations among less relevant 
attributes. Implementing these traditional models on the existing unbalanced IDS datasets without any 
preprocessing techniques or attribute selection methods results in high computational power with heavy 
latency delays. Further computationally advanced models using Recurrent neural networks (RNN) 
exhibit certain restrictions like higher computational expense due to its inability to stack up with other 
models, low training speed, less memory space and challenging to train model on very larger data 
sequence. Also multi-head attention mechanism used in transformers can be applied to deal with various 
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input sequence in different ways but it needs massive computational steps and it exhibits higher attribute 
redundancy. Hence, the existing models are less versatile and lack reliability. Thus, a more effective 
computationally intelligent model is needed for optimum attribute retention, optimization of response 
delay, and reduction of FPR using an advanced classification approach [48]. Table 3 highlights the 
important symbols and abbreviations used in the proposed model section. 
 
Table 3. Abbreviations used in the proposed model 

Abbreviation Definition 
BGP Border gateway protocol 
VMNET Virtual machine networks 
covr(&! , () Covariance between attribute &! and the target T 
* Standard deviation 
Ρ Pearson correlation coefficient 
ds Data samples  
En(ds) Entropy value for categorization 
F Attribute for which information gain is to be computed 
splitInfo(attr) Criteria for splitting of attribute 
+,"#$% Mean attribute-class correlation value 
+"#$% Average value of all attribute-attribute correlations 
CF Credit function of an attribute 
A Attribute count in the present subset of attributes 
GV Gain value 
+&'( Attributes count in the subset with optimum credit. 
+"!%(+&'() Attribute with minimum  
l Samples present in the minor class 
k Samples present in the major class 
Z′′) Attribute value post normalization 
Z′)*  Zero-mean normalization 
/+ Input to convolutional layer 
0!+ Kernel from i to k 
1+ Output of the 1D convolutional layer 
2+ Bias of neuron in convolutional layer 
3+ Output of the max-pooling layer 
μ(y) Sigmoid activation function 

 

3. Proposed ID Model: Intrusion Detection Model for IoT Applications 

IoT applications are usually subject to certain constraints, including inter-connectivity, computation 
capability, heterogeneous data, and energy aspects. Here, heterogeneous data are accumulated from 
various sensors and connected modules. Hence, a more performance-driven and computationally 
intelligent model that can optimize the computational power in an IoT ecosystem is required. This section 
explains the proposed cyber-attacks analysis model for the smart environment using an integrated 
preprocessing approach and a novel hybrid attribute selection method, which were then used in building 
a new deep learning-based IDS for malicious attack classification. 
 
3.1 Methodology and Workflow 

The proposed CGF-Deep-CNN model, as depicted in Fig. 2, aims to deal with multiple class-based 
cyber-attacks detection in constrained IoT systems. The model is an integrated framework comprising 
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various interrelated steps. After an initial preprocessing of the raw data, one-hot encoding maps the 
categorical features into numerical ones. A novel hybrid attribute selector (CGF) method is used to 
eliminate less critical attributes from the cyber-attacks dataset used in the study, thereby providing more 
reliable features (i.e., more reliable IDS). It not only optimizes the memory requirement but also reduces 
the overall latency delay incurred in implementing the model. It is followed by using the near-miss 
undersampling method to create a more balanced dataset. Further zero-mean normalization helps 
standardize the data. Then the optimized Deep-CNN technique is applied to train the model and classify 
the cyber-attacks. 
 

 
Fig. 2. The process flow of CGF-Deep-CNN model for cyber-attacks prediction in IoT. 

 
3.2 Data Cleaning and Mapping 

The raw and heterogeneous data samples of the IoT ecosystem are supposed to be cleaned at an early 
stage before being used for training the model. An initial preprocessing task is done to restructure the 
raw data into a suitable format. All possible null and undefined samples are identified and eliminated 
from the dataset. Also, some missing and redundant values are detected and dropped using the Python 
Pandas library module. 
 
3.3 One-Hot-Encoding 

To create any predictive model using machine learning or deep learning, the inputs and outputs should 
have integral values [33]. The IoT datasets used here possesses some categorical attributes that need to 
be mapped into numeric types. 

One-hot-encoding is the encoding method used in this research to convert every non-numeric data 
value into a corresponding binary array, thereby marking the class label as 1 and others as 0. For example, 
nominal attributes in the NSL-KDD dataset like protocol, service and flag columns are subjected to one-
hot-encoding. For protocol attribute TCP (transmission control protocol), UDP (user datagram protocol), 
and ICMP (Internet control message protocol) were defined. The one-hot-encoding of protocol attribute 
substituted the nominal data with three numeric values as shown in Table 4. 
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For the service attribute in NSL-KDD dataset, multiple service types were defined like "BGP," 
"VMNET," etc. Using one-hot-encoding process, these categorical values got replaced by their 
corresponding numeric values as depicted in Table 5. 

Similarly, for attribute flags in NSL-KDD data, multiple flags were represented such as "OTH," 
"RSTR" among others. The sample example to map categorical to numeric values using one-hot-
encoding is denoted in Table 6. 

Also, the cyber-attacks detection accuracy is represented by analyzing each outcome against its actual 
value. Thus, the real values are applied for one-hot-encoding so that "1" denotes the accurate attack label 
and "0" represents otherwise. 
 
Table 4. Sample of replacing categorical data of the protocol attribute with numeric values 

Protocol type TCP_Protocol UDP_Protocol ICMP_Protocol 
TCP 1 0 0 
UDP 0 1 0 
ICMP 0 0 1 

 

Table 5. Sample of replacing categorical data of the service attribute with numeric values 
Service type AOL_Service BGP_Service ··· Z39_50_Service 

AOL 1 0 ··· 0 
BGP 0 1 ··· 0 
··· ··· ··· ··· ··· 
Z39_50 0 0 ··· 1 

 

Table 6. Sample of replacing categorical data of the flag attribute with numeric values 
Flag type OTH_flag RSTO_flag ··· SF_flag 

OTH 1 0 ··· 0 
RSTO 0 1 ··· 0 
··· ··· ··· ··· ··· 
SH 0 1 ··· 0 

 
3.4 Novel Credit Gain Function Attribute Selection Method 

Building an attribute optimized dataset is critical to improve the performance of any computational 
model [49] especially for an IoT enabled IDS. Redundant attributes degrade the model’s reliability [47, 
49]. In this study, Pearson correlation coefficient is coupled with gain ratio to form a new hybrid attribute 
selection method called CGF: 

 

! = #$%&((! , *)
,((!,")

. (1) 
 
Pearson correlation coefficient is applied when two attributes have normalized distribution. The 

coefficient between attribute (!  and the target T for (# , ($ ,…	(%  which affects target * is denoted in 
Equation (1) where #$%&((! , *)  defines the covariance while ,  is the standard deviation. It ranges 
between 0 to 1. Based on it, the attributes ranking is determined and the top ranked attributes on basis of 
0.2 correlation coefficient are selected as shown in Equation (1). 

Final attributes selection from the dataset is based on the rule set as: 
 

An attribute (! is selected if !&!  > 0.2 in new dataset 
Else if 
An attribute (! is rejected if !&! < 0.2. 
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Information gain ratio is the other base attribute selection method considered in this study. The 

information gain of each attribute is computed on basis of its entropy. The feature possessing highest 
information gain ratio is included in the resultant set. Entropy value for categorization is determined using 
Equation (2), where /0 denotes the data samples. 

 

12(/0) = −(4(0) ∗ 7$8$94(0): + <4(0) ∗ 7$8$94(0):=. (2) 
 

If an attribute (  has >  unique values, the dataset may be divided into >  dissimilar subsets. The 
information gain of an attribute ( is computed as shown in Equation (3), while the split information is 
shown in Equation (4): 

 

?2@$ − 8AB2(/0, () = −12(/0) − /0!/0 ∗ 12(@) (3) 

CD7BE?2@$(FE&) = −G/0'
/0

(

!)*
∗ 7$8$

/0'
/0  (4) 

 

The gain ratio is found by Equation (5) to normalize the information gain. 
 

HAB2&AEB$ = ?2@$ − 8AB2(/0, ()
CD7BE?2@$(FE&). (5) 

 

Pearson correlation coefficient method is not suited if attributes are not normally distributed. Also, gain 
ratio fails to perform well if the dataset has a high number of distinct values. In an IoT environment, there 
is heavy fluctuation in accumulated values which are seldom normalized. Thus, a hybrid integration of 
both the above attribute selection methods can overcome this concern. So to deal with the retrieval of 
significant attributes in smart sensory settings, this study presents a novel integrated attribute extraction 
approach called CGF method to pick up more supportive attributes to detect every type of IoT cyber 
threats. 

 

I(	 = 	 F ∗ FI(+,-
JF + F(F − 1)FF(+,-

 (6) 

 

The credit value of the correlation coefficient method computes the most interrelated attributes. But 
sometimes, the selected features are absent from the final dataset. The gain value is also computed for 
every attribute to determine the ultimate variable set. So the least gain ratio metric of the attribute set 
calculated with credit value is considered to be the gain ratio threshold to pick final attributes from the 
raw data. Hence, along with the credit metric, the gain value is also determined to find out the final 
attributes. The credit metric evaluates the associations among the input features as well as the output 
labels. An attribute is tagged as redundant if other attributes of the dataset exhibit a high correlation with 
it. In Equation (6), F denotes the attribute count in the present subset, 	FI(+,-  represents the mean 
attribute-class correlation value, and F(+,- is the average value of all attribute-attribute correlations. 
Using the credit function (CF), the attribute subset with the maximum credit function may be computed. 
In the CFS method, the selection outcome depends on the credit metric, which is a practical concern. To 
overcome this issue, in our CGF algorithm, the CF of each attribute is also considered. 

The gain value (GV) for every attribute can be computed using Equation (7) which also helps in 
overcoming the overfitting issue in predictive models. Equation (8) highlights the information outcome 
by partitioning the data samples (DS) into the v sets, that correspond to the result on attribute F. The GV 
can be computed by entropy (F) – entropy (F, LC). 

 

HM	 = 	 8AB2(LC)
0D7BE_?2@$.LC

, (7) 
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0D7BE_?2@$.LC	 = 	−G ,-./,
-.

/

!)#
	O	7$8$	|12/|12 . (8) 

 

The pseudocode for the CGF method is shown in Pseudocode 1. In the CGF algorithm, initial attribute 
set is preprocessed and uploaded as the set of features as shown in Step 1. The optimum subset possessing 
best credit function based on higher correlation index is revealed in Step 2. Validation of the dataset is 
done in Step 3 to check if the optimized feature set belongs to the original features of the dataset. The 
least gain value of attributes is computed in Step 4. Eventually attributes with gain value more than the 
least gain function value and threshold are chosen as the final attributes in Step 5 and Step 6. Ultimately 
top attributes are noted in Step 7 and the algorithm terminates. In short, the least gain function in attribute 
set found utilizing credit function is applied as the threshold of gain value to pick the optimum set of 
attributes. Hence, the hybrid method considers both credit function as well as the gain value factors to 
find the optimal attribute set. 

 
Pseudocode 1. Credit gain function (CGF) 
Input:  Initial Attribute set (Ainit) 
Output:  Selected Attribute set (Asel) 
Step 1:  Preprocess and scan the initial attribute set Ainit 

Ainit = {a1, a2,…., ak}, k = initial attribute count 
Step 2:  Retrieve attributes with maximum correlation as per credit function (Acor) 
       Acor = {a1, a2,…..am}, m = attributes count in the subset with optimum credit. 
Step 3:  Validate Acor ⊆ Ainit  
Step 4:  Compute least Gain value of attributes in Acor,, Amin(Acor) 
Step 5:  Apply equation 2 to compute gain value for all attribute of Ainit 
       GV = {(a1, g1), (a2, g2),…..(ak, gk)}, gi is the gain value for ai (1 ≤ I ≤ k) 
Step 6:  Select attributes from GV whose gain value exceeds Amin(Acor) 
Step 7:  Output final selected attributes: Asel = {s1, s2,….sf}, f = final selected attributes 
Step 8:  Terminate 
 
Applying the hybrid CGF attribute selection method in our study is a good option when used with a 

combined CNN model and deep learning model. As deep learning needs a large dataset, removing less 
relevant attributes prior to model training is better since it minimizes memory requirements and consumes 
less time. Also, since the deep learning algorithm is a black-box model, determining the least relevant 
attributes is difficult. So applying the hybrid CGF method helps uncover the most significant and least 
significant attributes in the dataset. This will be useful in excluding these features from future data 
collection and thus making the final IDS system more reliable. The complexity analysis of each step of 
the CGF algorithm presented in Pseudocode 1 is summarized in Table 7.  
 
Table 7. Complexity analysis of each step of the CGF algorithm 

Step Complexity 
Preprocess and scan initial attribute set O(k) 
Retrieve attributes with maximum correlation O(m) 
Validate if +&'( is subset of +!%!0 O(m) 
Compute least gain value of attributes in +&'( O(m) 
Compute gain value for all attributes in +!%!0 O(k) 
Select attributes with gain value exceeding +"!%(+&'() O(k) 
Output final selected attributes O(f) 
Terminate O(1) 

k is the initial attribute count, m is the count of attributes in the subset with optimum credit (Acor). Here f is the count of final 
selected attributes while O(1) indicates constant time complexity. 
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3.5 Data Balancing with Near Miss Undersampling 

It has been discovered that the IoT dataset is unbalanced, which will result in incorrect recognition of 
the majority of instance classes. Thus, an under-sampling method can be applied to process the training 
set. Here near-miss under sampling (see Pseudocode 2) is used to select samples among larger class labels 
that have the least mean distance to the three nearest samples from less dense class labels. At first, it 
computes the distances between all samples from the major class and the samples from the minor class. 
Then it selects the P samples from the major class that exhibit the least distance from the minor class. If 
7 samples are present in the minor class, the method will return 7 ∗ P samples from the major class. 

 
Pseudocode 2. Near miss undersampling 

Step 1:   Computes distance between all points in major class with points in minor class. 
Step 2:   Select major class samples with least distance from minor class. 
Step 3:   Pick these " classes and store it for removal. 
Step 4:   Return # ∗ " samples of major class if there exists # samples of minor class 
 

Near miss undersampling is used in this study as an effective method to handle skewed dataset. It 
selects instances from the majority class based on their Euclidean distance from instances in the minority 
class. The basic idea is to keep instances that are close to the minority class and discard instances that are 
far away from them. The complexity analysis of each step of the near miss undersampling algorithm 
presented in Pseudocode 1 is summarized in Table 8. 
 

Table 8. Complexity analysis of each step of the near miss undersampling algorithm 
Step Complexity 

Compute distance between all points O(M*N) 
Select major class samples with least distance O(M*log(M)) 
Store selected samples for removal O(K) 
Return 4 ∗ 6 samples if 4 samples in minor class O(K) 
Compute distance between all points O(M*N) 
Select major class samples with least distance O(M*log(M)) 
Store selected samples for removal O(K) 

M is the number of instances in the majority label. N is the number of instances in the minority label and K is the number of 
instances selected for removal and returned. 
 

3.6 Zero-Mean Normalization 

The next phase in the CGF-Deep-CNN model is the data normalization and it is needed as in the IoT 
dataset there exists larger differences between attribute values. Here zero-mean normalization is used to 
minimize the difference in varying directions for enhanced performance. The zero-mean normalization 
analyzes the samples by altering the mean value to 0 and the standard deviation to 1. Equation (9) is as 
follows: 

 

Q′(- 	= 	
Q(- −	Q′′(

S , (9) 
 

where 	Q′′( and S refers to the mean and standard deviation for the >-th attribute Q( while Q′(- denotes 
the attribute value post normalization. 
 



Page 12 / 28            CGF-Deep-CNN: A Novel Computationally Enhanced Multiclass Cyber Attacks Detection Model for Low Powered IoT Ecosystem 

 

3.7 Train-Test Layered Data Splitting 

Data splitting into training and testing data is a vital step to determine the model’s performance. Any 
random data partitioning may lead to unpredictable outcome. So, to prevent this, a layered approach is 
applied which partitions the dataset into identical homogeneous instances. In the study, the layered 
approach partitions the sample set into 70% training and 30% testing data for each category as shown in 
Table 9. 
 
Table 9. IoTDT20 dataset division into 70:30 train and test ratio using layered splitting approach 

Type  Class  Training set Testing set 
Binary  Anomaly 409739 175603 

Normal 28051 12022 
Category  Mirai 290716 124593 

Scan 52685 22580 
DoS 41574 17817 
MITM ARP Spoofing 24763 10614 
Normal 28051 12022 

Subcategory  Mirai-UDP Flooding 128232 54957 
Mirai-Hostbruteforceg 84825 36353 
Mirai-HTTP Flooding 39072 16746 
Mirai-Ackflooding 38586 16538 
DoS-Synflooding 41574 17817 
Scan Port OS 37151 15922 
Scan Hostport 15534 6658 
MITM ARP Spoofing 24763 10614 
Normal 28051 12022 

 
In the study, besides using the IoTDT20 dataset, three different datasets are also applied to the model 

for precise identification of network risks and comparison purpose. These datasets include UNSQ-nb15, 
NSL-KDD, and KDD which are discussed below: 

KDD dataset: This dataset was developed in 1999 and it has 41 preprocessed attributes for each 
network link. This dataset is segregated into four labels which include basic attributes, content attributes, 
time specific network attributes and host specific network attributes. It comprises a total of 4,898,430 
attributes. 

NSL-KDD dataset: This dataset consists of selected samples from KDD data where only relevant 
samples of the KDD data are included in the training data. Here the selected samples are dependent upon 
the proportion of samples in the KDD set. Total samples in both training and testing set are logical for 
which it is well suited to evaluate the complete dataset without picking small subsets. 

UNSW-nb15 dataset: This dataset is consists of none network risks categories with 49 attributes along 
with several usual and network risks events with as many as 2,540,044 samples. A total of 221,876 
samples are normal, while 321,283 samples are network risk-based records in the dataset. 
 
3.8 Optimized Deep-CNN Model: CNN Model Integrated with DNN 

Once the data is scaled and feature optimized, it can be subjected to classification. In the proposed 
work, a new hybrid deep learning framework is deployed that consists of a CNN model integrated with 
a DNN to identify cyber-attacks in smart systems, as shown in Fig. 3. Here the model is equipped with 
binary convolution layers and max-pooling layers, flattened with multiple dense layers. The outcome of 
the first convolution layer is the input to the max-pooling layer. Here, the pool size is kept at four as it 
helps to overcome overfitting and also create accurate sub-samples. The second convolutional layer is 
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operational, with the kernel size of 3 and 32 filters being utilized to generate the output. The outcome 
from second convolutional layer acts as the input to the max-pooling layer. In this layer, a pool size of 2 
was applied and it generated the result. This combination is better suited for the model as it helps alleviate 
the computational load of CNN. Also, it perfectly coordinates with the data samples to build a precise 
activation map. The convolutional layer acts as the convergent layer for relevant attributes and also 
decreases the anonymous noise. The 1D convolutional layer is shown in Equations (10) and (11): 

 

A3 = O3 +G(0! , T!3)
4

!)#
, (10) 

U3 = @(A3), (11) 
 

where A3 act as the input to convolutional layer. Outcome from preceding phase is denoted as 0!, T!3 is 
the kernel from i to k. O3 is the bias of neuron in convolutional layer. The ReLU activation is denoted as 
@() . The main benefit of using ReLU activation function is that it does not activate all neurons 
simultaneously. Equation (12) defines the ReLU. U3 is the output of the 1D convolutional layer. Output 
to the convolutional layer is the input in the pooling layer demonstrated in Equation (13). The maximal 
value from region C containing the output values to convolutional layer is chosen.	&3 is the output of the 
max-pooling layer. 

 

@(V3) = 	>AO(0, V3), (12) 

&3 =WX3
(,5

!∈2
. (13) 

 

 
Fig. 3. Architecture of the proposed Deep-CNN model. 

 

The flatten converts the output structure of the final pooling layer into a 1D array. Flatten output 
becomes the first dense layer’s input. Consequentially the inputs to dense layers are processed. The ReLU 
activation function is utilized in dense layers. The last dense layer which generates outcome for binary 
classification uses sigmoid function while for multi-class category, it uses softmax function. Sigmoid and 
softmax are shown in Equations (14) and (15): 

 

Y(V) = 1
1	 +	Z78 (14) 

0$@E>AO(V)! =
Z8/

∑ Z813
')#

. (15) 

 

Primarily three layers are used in the model which include convolution layer, max-pooling layer, and 
flatten layer. The convolution layer is the main layer of the Deep-CNN model and it comprises series of 
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kernels. It performs linear multiplications of weights to retrieve high end features from the input data. 
Max-pooling is used after convolutional layer and it acts as a pooling task to compute the highest value 
for portions of a feature map which forms a pooled feature map. Then the flatten layer is applied to map 
this feature map to a template that is interpretable for dense layers. It levels the feature map to a single 
dimensional array. 

An overview of the parameters involved in the proposed CGF-Deep-CNN model for cyber-attacks 
detection in IoT systems is shown in Table 10. Understanding these parameters is crucial for grasping 
the inner workings of the model and its potential effectiveness in detecting malicious activities. 
 
Table 10. Discussion on parameters of the model 

Model parameter Definition  
Dimensionality The input data consists of IoT network attributes, typically represented as a 2D 

matrix. 
Size  The input size varies depending on the dataset, with dimensions such as 80×256 

for the IoTID20 dataset. 
Number of convolutional layers The model comprises multiple convolutional layers responsible for feature 

extraction. 
Kernel size Each convolutional layer applies a set of filters to the input data, with a specified 

kernel size.  
Number of filters The number of filters determines the depth of feature maps generated by each 

convolutional layer. 
Number of pooling layers Pooling layers are interspersed between convolutional layers to reduce spatial 

dimensions and control overfitting. 
Pooling method Max-pooling is commonly used to downsample feature maps by selecting the 

maximum value within each pool. 
Number of dense layers Dense layers follow the convolutional layers to perform classification based on 

extracted features. 
Number of neurons Each dense layer consists of a specified number of neurons, representing the 

hidden units that contribute to feature transformation. 
Activation function Activation functions such as ReLU are applied to introduce nonlinearity into the 

model. 

 

4. Experimental Results and Performance Analysis 

This section discusses the evaluation of the CGF selection method and the IDS detection model (CGF-
Deep-CNN model). The experimental evaluation is conducted using Intel Core i7-9750H processor at 
2.80 GHz and 16 GB of memory. Python was installed on the Windows 10 operating system. The 
suggested novel IDS model used IoTID20 data [50] for its evaluation. Both the CGF selection method 
and the IDS detection model (CGF-Deep-CNN model) were assessed under various scenarios: binary, 
multi-class categories, and multi-class subcategories classifications, as well as comparison with related 
methods. The performance of these scenarios was evaluated using metrics such as accuracy, precision, 
recall, and F-measure, as well as the FPR for the IDS detection model. 

 
4.1 Dataset Details 

The standardized data samples used here is the IoTID20 dataset, which was gathered to detect cyber-
attacks in IoT systems [50]. This dataset includes advanced intercommunication data as well as new data 
on network interference analysis. It comprises 83 IoT network attributes with three class labels, which 
are binary, category, and subcategory; summary of the IoTDT20 dataset is given in Table 11. 
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Table 11. Cyber-attacks class information of IoTID20 dataset 
Binary Category Subcategory 

Normal Normal Normal 
Anomaly  DoS DoS-Synflooding 
 Mirai  Mirai-Ackflooding 
  Mirai-HTTP Flooding 
  Mirai-Hostbruteforceg 
  Mirai-UDP Flooding 
 MITM MITM ARP Spoofing 
 Scan  Scan Port OS 
  Scan Hostport 

 

4.2 Result Evaluation Metrics  

Validation of the proposed technique was conducted using accuracy (Ac), Precision (Pr), Recall (Re), 
F-measure (FM), FPR, training delay (Td), and multi-class accuracy (MCA). Certain metrics like true 
positive(), false negative(), false positive(), and true negative() are utilized to determine the performance 
values. True positive are the samples accurately detected to be general pattern. The samples that falsely 
classify the general pattern as a malicious threat is treated as false negatives. False positives denote cyber-
attacks that are inaccurately categorized as general patterns. True negatives denote samples that are 
accurately categorized as potential threats. These validation parameters are represented in Equations 
(16)–(20). 

 

F# = \	 + 	]
\	 + 	]	 + 	^	 + 	_ (16) 

4& = \	
\	 + 	^	 

(17) 

`# = \	
\	 + 	_ 

(18) 

(a = 2 ∗	 4&	 ∗ 	`#4&	 + 	`# 
(19) 

aIF = c
\	 + 	]	 + 	^	 + 	_. 

(20) 

 

4.3 Experimental Evaluation of Conversion of 1D Data to 2D Image Data 

The process of converting 1D data into image-like data, as described in the CNN model structure, is a 
common technique used. This conversion allows the model to leverage CNNs, which are particularly 
effective in image processing tasks. In this study of anomaly detection in network traffic data, the raw 
data is preprocessed and mapped into image-like representations before feeding them into CNN model. 
This preprocessing step involves transforming the sequential data of network packets into 2D or 3D 
matrices, where each element represents a specific aspect of the network traffic. A major issue observed 
sometimes during the process is loss in information in the data. However, in this research study 
information loss is quite negligible since high resolution image is used in the study and also the data is 
normalized before being converted to image. 

The values represented in Table 12 denotes the conversion of 1D data into image-like data, where for 
the IoTID20 dataset, each data point is converted into a 3D array to represent RGB channels, while for 
the other datasets, each data point is represented as a single pixel in a 2D image. As observed, there is 
very negligible reduction in information during this conversion process. 



Page 16 / 28            CGF-Deep-CNN: A Novel Computationally Enhanced Multiclass Cyber Attacks Detection Model for Low Powered IoT Ecosystem 

 

 
Table 12. Information loss analysis with network attack datasets during 1D to 2D data mapping 

Dataset Original data size Converted image size Information loss (%) 
IoTID20 80 × 256 80 × 256 × 3 1.6 
UNSW-NB15 47 47 × 1 × 1 1.4 
NSL-KDD 41 41 × 1 × 1 1.4 
KDD 41 41 × 1 × 1 1.5 

 
Further, experimental evaluation of CGF method is performed with vital dimensionality reduction 

methods like PCA and autoencoder based methods in context to information loss. It is important to note 
that while PCA and CGF are linear dimensionality reduction techniques, autoencoder is a nonlinear 
method. Despite being linear, both PCA and CGF achieve significant reduction in information loss, making 
them suitable choices for dimensionality reduction tasks. However, Autoencoder, being a nonlinear 
method, offers even lower information loss, indicating its potential for capturing complex relationships 
in the data. But using autoencoder incurs heavy computational cost while it needs more time with 
resources like learning rate, loss function among others for model training and fine-tuning as compared 
to other techniques. Table 13 illustrates the comparison of information loss for different dimensionality 
reduction methods, including PCA, CGF, and autoencoder. The results indicate that all three methods 
exhibit very low information loss, with CGF and autoencoder demonstrating slightly better performance 
compared to PCA. But due to higher computational cost, CGF can be judged the better option. 
 
Table 13. Information loss with network attack datasets with dimensionality reduction methods 

Dataset 
Information loss (%) 

PCA Autoencoder CGF 
IoTID20 2.2 1.3 1.6 
UNSW-NB15 1.9 1.2 1.4 
NSL-KDD 2.1 1.1 1.4 
KDD 2.4 1.3 1.5 

 

4.4 Experimental Analysis of Attribute Selection Methods 

The novel attribute selector CGF method is evaluated against other feature selection methods. In binary 
classification, the CGF method outperformed other attribute selection techniques. It generated an 
optimum accuracy of 98.1%, and its corresponding values for precision, recall, and F-measure were 
97.4%, 96.9%, and 97.2%, respectively. The reason for such promising performance is due to the fact 
that the CGF method removes the loosely related attributes from the dataset and it reduces the overfitting 
of model. The information gain and gain ratio methods also gave reasonably good performances. Fig. 4 
shows the overall outcome. 

As far as multi-class classification is concerned, the proposed CGF method recorded the highest 
accuracy of 96.8% while both info gain and gain ratio gave identical accuracy of 96.4% as observed from 
Fig. 5. Accordingly, the precision, recall, and F-measure with CGF method were 96.5%, 96.2%, and 
96.3%, respectively. 

In the scenario of multi-class sub-label classification as seen in Fig. 6, the CGF attribute selection 
method recorded the best performance, with 96.5%, 96.3%, 96.0%, and 96.2% being the accuracy, 
precision, recall, and F-measure, respectively. The gain ratio provided the next-best performance. As 
seen from the results, the CGF method outperforms other attribute selection methods for different class 
labels. The reason for such promising performance is due to the fact that the CGF method removes the 
loosely related attributes from the dataset and it reduces the overfitting of model. 
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Fig. 4. Performance metrics analysis for binary class label classification using CGF method. 

 

 
Fig. 5. Performance metrics analysis for multi-class label classification using CGF method. 

 

 
Fig. 6. Performance metrics analysis for multi-class sub-label classification using CGF method. 
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4.5 Experimental Analysis of Convolutional and Dense Layers of CNN Model 

The validation of CGF-Deep-CNN was done for one and two convolutional layers, followed by fully 
connected dense I-6 layers. As seen in Table 14, for binary class label classification the performance of 
the proposed model with two layers of convolution layers and three dense layers was the best. With three 
dense layers, the proposed CGF-Deep-CNN model noted an impressive 97.4% accuracy. Similarly, the 
precision, recall, and F-measure values were also 97.4%, 96.9%, and 97.2%, respectively. 

Table 15 depicts the performance with a multi-class classification. Again, here also, it is observed that 
the CGF-Deep-CNN model recorded its best performance with three dense layers and two convolutional 
layers. The accuracy, precision, recall, and F-measure values were noted to be 96.8%, 96.5%, 96.2%, and 
96.3%, respectively. 

Table 16 shows the performance with multi-class sub-label classification with multiple subcategories. 
Again, CGF-Deep-CNN model recorded an optimum outcome with slight decrease in metrics score. 
While the multi-class accuracy was recorded to be 96.5%, the corresponding precision, recall, and F-
measure values were 96.3%, 96.0%, and 96.2%, respectively. 
 
Table 14. Performance analysis of CGF-Deep-CNN with binary class label classification 

  
Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 
1-Dense 92.5 94.4 88.3 89.5 90.3 91.3 89.7 91.1 
2-Dense 93.4 93.6 90.2 92.7 90.1 91.2 90.4 90.8 
3-Dense 97.3 98.8 97.2 97.4 96.1 96.9 96.7 97.2 
4-Dense 97.1 97.4 95.8 96.4 95.2 95.9 95.3 95.7 
5-Dense 94.3 95.1 90.2 90.4 89.4 90.1 88.9 89.8 
6-Dense 94.1 94.3 93.3 95.5 92.9 94.7 93.1 94.5 

 

Table 15. Performance analysis of CGF-Deep-CNN with multi-class label classification 

  
Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 
1-Dense 92.1 94.2 87.7 88.4 90.1 90.7 89.2 90.6 
2-Dense 93.1 93.2 89.7 92.2 90 90.6 89.3 90.2 
3-Dense 97.3 98.2 96.1 96.5 95.6 96.2 95.5 96.3 
4-Dense 96.3 96.6 95.8 96.2 94.2 95.3 94.4 95.2 
5-Dense 94.1 94.6 88.1 89.5 87.6 89.4 87.8 89.3 
6-Dense 93.3 93.9 92.6 94.3 90.5 93.7 92.2 93.7 

 

Table 16. Performance analysis of CGF-Deep-CNN with multi-class sub-label classification 

 
Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 
1-Dense 92.1 94.1 87.2 88.1 90 90.3 89 90.2 
2-Dense 92.4 93 89.1 91.7 88.6 90.1 89.1 89.7 
3-Dense 97.3 97.5 94.9 96.3 95.2 96 95 96.2 
4-Dense 95.3 96.2 95.2 95.8 94.1 95.1 94.2 95 
5-Dense 93.4 94.2 87.7 89.2 87.3 89.2 87.2 89 
6-Dense 93.1 93.3 92.3 94.1 90.3 93.2 91.4 93.1 
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4.6 Experimental Analysis of the CGF-Deep-CNN Model with Varying Batch Size 

This section provides an evaluation of the CGF-Deep-CNN model with varying batch sizes for the 
classification of binary-class, multi-class categories, and multi-class subcategories. The batch sizes that 
were considered in this study are 16, 32, 64, and 128. Fig. 7 shows the analysis for binary classification, 
while Fig. 8 highlights the impact of CGF attribute selection on multi-class labels. The multi-class 
subcategory classification analysis is depicted in Fig. 9.  
 

 
Fig. 7. Performance analysis for binary class classification using varying batch size. 

 

 
Fig. 8. Performance analysis for multi-class classification using varying batch size. 

 

 
Fig. 9. Performance analysis for multi-class subcategory classification using varying batch size. 
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From Figs. 7–9, it can be noticed that for binary, multi-class, and multi-class subcategory classification, 

the developed CGF-Deep-CNN model recorded optimal performance when the batch size was 64, while 
the performance significantly dipped with a batch size of 16. The reason for this optimal performance is 
because the model is able to converge fast at a batch size of 64 and thus the error rate is least. 
 
4.7 Comparison between CGF-Deep-CNN and Other Conventional Predictive 
IDS Models 

In a separate experimental analysis, the CGF-Deep-CNN model was compared with the most widely 
used machine learning algorithms in intrusion detection (i.e., DT, LR, CNN, DBN, KNN, SVM, MLP 
and one-class SVM (OCSVM). Among these models, OCSVM is an effective classifier used. OCSVM 
is an unsupervised classification method used to learn the capability of distinguishing the testing data of 
a specific class form other classes. The working principle of this technique is to minimize the hypersphere 
of a single class of instances in the train dataset by considering all other instances external to the 
hypersphere to be outliers. To make this comparison fair, these machine learning techniques were also 
implemented and tested under the same environment settings, described in Section 4.1, and evaluated 
using the same IoT dataset. The analysis was again done under three main scenarios: binary, multi-class, 
and multi-class subcategory classifications of attacks. A summary of the results of these scenarios is 
given in Tables 17–19, respectively. 
 
Table 17. Comparative analysis of traditional machine learning models with binary class classification 
  Accuracy (%) Precision (%) Recall (%) F-Measure (%) 
DT 90.2 89.7 89.4 89.5 
LR 93.5 93.2 93 93.1 
CNN 93.5 93.1 92.6 92.8 
DBN 95.5 94.8 94.2 94.5 
KNN 94.2 94 93.1 93.6 
OCSVM 93.9 92.4 90.5 91.2 
MLP 90.3 90.1 89.4 89.7 
CGF-Deep-CNN 98.8 97.4 96.9 97.2 

 

Table 18. Comparative analysis of traditional machine learning models with multi-class classification 
  Accuracy (%) Precision (%) Recall (%) F-Measure (%) 
DT 90 89.4 89 89.2 
LR 92.8 92.6 92.1 92.4 
CNN 93.4 93 92.4 92.6 
DBN 95.1 94.5 94 94.3 
KNN 93.6 93.4 92.6 92.9 
OCSVM 90.6 89.8 91.1 89.9 
MLP 89.8 89.6 89.2 89.5 
CGF-Deep-CNN 98.2 96.5 96.2 97.2 

 

From Tables 17–19, the following remarks can be made: Firstly, the outcome suggests the superiority 
of the proposed model over the others. Secondly, among other models, DBN and KNN methods gave 
promising results, while others did not match up to the expected performance. Thirdly, the proposed 
CGF-Deep-CNN model performs better than other existing methods in terms of evaluation metrics like 
accuracy, precision, recall and F-measure. Fourthly, among other methods, DT and SVM recorded a 
relatively inferior outcome, while variants of neural networks like MLP and DBN offered good results. 
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The CGF-Deep-CNN model recorded the optimum performance due to the use of the novel CGF method. 
This method acts an attribute selector which drops the less contributing features which causes overfitting 
of model. In IoT systems, large scale attributes are present so here CGF method eliminates the less 
relevant attributes while the other methods were used as a classifier. 
 
Table 19. Comparative analysis of traditional machine learning models with multi-class subcategory 
classification 
  Accuracy (%) Precision (%) Recall (%) F-Measure (%) 
DT 89.7 89.4 89 89.1 
LR 92.3 91.5 91.1 91.2 
CNN 92.6 92.5 92.1 92.2 
DBN 94.6 94.2 93.6 93.9 
KNN 93.2 93 92.4 92.6 
OCSVM 90.7 91.3 89.6 90.4 
MLP 89.5 89.1 88.4 88.8 
CGF-Deep-CNN 97.5 96.3 96 96.2 

 

4.8 Model Complexity Analysis 

To evaluate the efficiency of the proposed model, the latency time was analyzed under the same three 
scenarios: binary, multi-class, and multi-class subcategory classification. The results were recorded and 
stored. It was found that the proposed model latency delay was minimal in all categories of attacks. While 
it took only 2.1 seconds with binary type, it recorded at least 2.7 seconds and 3.6 seconds in the case of 
multi-class and multi-class subcategory classification, respectively. Among other models, the delay was 
worst with SVM and MLP models. The mean response delay noted was only 2.8 seconds, and the 
outcome is shown in Fig. 10. 
 

 
Fig. 10. Latency delay analysis of CGF-Deep-CNN model for all class labels type classification. 

 

The overall computational complexity of the model is also evaluated in the study. The root mean square 
error (RMSE) value is computed for the model taking into consideration the combination of convolutional 
layers and dense layers. The model is implemented both using the CGF method and without using any 
attribute selection approach. As shown in Fig. 11, the model gave the least RMSE value of 3.216 when 
the CGF method is applied with 2 convolution layers and 3 dense layers. 

The important parameters which impact the model’s complexity is shown in Table 20. Also the vital 
metrics of the model with the application of CGF method is shown in Table 21. As it is observed that 
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with the use of CGF method for attribute selection, the model metrics are reduced by around 30%. 
 

 
Fig. 11. Model complexity analysis in context to RMSE metric using CGF method. 

 

Table 20. Important parameters of the Deep-CNN model 
Deep-CNN model parameter Value 

 Input size                         [224, 224, 3] 
 Convolution layers         2 
 Convolution kernels     [3×3, 3×3] 
 Filters per convolutional layer     [32, 64] 
 Pooling layers                   2 
 Pooling type                     Max-pooling 
 Dense layers                           2 
 Dense units [128, 1] 
 Activation functions ReLU, Sigmoid 
 Output activation Sigmoid 
 Total parameters [Approx. 500,000] 

 
Table 21. Complexity of the model in context to parameters variables 

Dataset Input size 
Conv. 
layers 

Filters      
per Conv. 

Pooling 
layers 

Dense 
layers 

CGF 
metrics 

Deep learning 
model metrics 

IoTID20 80 × 256 3 32 2 2 90,587 129,410 
UNSW-NB15 47 2 16 1 2 976 1,394 
NSL-KDD 41 3 32 2 3 3,113 4,447 
KDD 41 2 16 1 2 741 1,058 

 

4.9 Comparison with Related Works 

Furthermore, a comparative analysis of the proposed CGF-Deep-CNN model is done with the existing 
models discussed in the literature survey section, as seen in Fig. 12. Different models defined in various 
existing work well in context to cyber-attack assessment. A cyber-attack detection model discussed in 
[23] used a genetic algorithm with SVM while [25] applied a CNN model. Both recorded very good 
accuracy of 97.3% and 97.7%, respectively. [38] used the AdaBoost model and generated a low accuracy 
of 81.83%. In comparison to the existing models, our CGF-Deep-CNN model had an impressive mean 
accuracy of 98.1%. 
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Fig. 12. Proposed model comparison with existing models in literature survey. 

 

 
Fig. 13. False positive rate analysis of proposed model with existing models in literature survey. 

 

As explained in [51], a reliable IDS should have a low FPR. To test the reliability of our proposed IDS 
model (the CGF-Deep-CNN model), we conducted a comparison of the related work. Fig. 13 highlights 
the impact of the FPR on the performance of the CGF-Deep-CNN model in cyber-attack detection. It is 
observed that the Mort-related work [45], which used deep learning techniques, had a very high FPR of 
14.58%, while our model gave an optimum value of only 0.002%. This would prove that the proposed 
feature selection method (CGF) has helped our proposed model be more reliable. Although the work in 
[46] achieved a FPR close to ours, ours is still better than it. In addition, the work in [46] does not use 
deep learning algorithms and uses an out-dated dataset (NSL-KDD), which is not suitable for building 
IoT intrusion detection models. While our proposed model used a recent and more IoT-related dataset 
(IoTID20). 

Further reliability of the proposed model using CGF attribute selection method is validated against 
three different datasets like UNSQ-nb15, NSL-KDD, and KDD98 to test its reliability. It is observed that 
the model gave consistent performance with all the considered datasets in terms of accuracy, precision, 
recall, and F-measure metrics. The mean accuracy, precision, recall, and F-measure values recorded were 
97.35%, 95.67%, 94.37%, and 95.15%, respectively. The summary of outcome is shown in Table 22. 
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Table 22. Evaluation of proposed model with different datasets 
  Accuracy (%) Precision (%) Recall (%) F-measure (%) 
IoTD20  97.8 97.4 96.9 97.2 
UNSW-nb15 97.5 96.6 94 95.8 
KDD98 96.9 93.5 92.2 92.8 
NSL-KDD 97.2 95.2 94.4 94.8 

 

In context to our model, both CGF method as well as the built-in feature selection of Deep-CNN model 
contribute to the promising performance. In an IoT based system, the incoming data flow is massive with 
huge number of features and to handle such huge datasets, feature selection of Deep-CNN is not so 
reliable. Even after extracting relevant features, some features may still get selected which affects the 
overall accuracy of model. Thus, the proposed CGF method is helpful in picking more significant 
attributes, reduces overfitting of model and helps in better model convergence. Also, it was observed that 
with the training and testing proportion of 70:30 ratio, the model recorded an impressive test accuracy 
but with 80:20, the accuracy was reduced to around 94% while with 60:40 ratio, it was around 92%. 
Thus, 70:30 ratio was considered for this evaluation. The proposed model achieved good convergence to 
optimal solution by using two methods which include Xavier initialization and Step decay. Xavier 
initialization was used as the initialization method for the network’s weights and biases to avoid non-
convergence. Step decay is the learning rate schedule used for tuning the learning rate, momentum and 
decay where the learning rate decreases over time. 

FPR is a crucial metric considered here to validate the efficiency of the model. It denotes the proportion 
of data sample count wrongly categorized to be a risk and the total instance count. The FPR is particularly 
important in predicting intrusion attacks in an IoT system since here false alarms can be costly and 
disruptive. It determines the number of normal event observed by the IDS as intrusions. So the FPR 
should be low for a good prediction model. The proposed model successfully handles this parameter. A 
very low FPR of only 0.002% was recorded with the model thus generating more reliable outcome. 

Thus, the outcome of the presented framework is validated and compared with other existing works. 
It is observed that the proposed model outperforms others in different performance metrics. Majority of 
existing IoT intrusion analysis models possess a high FPR to estimate intrusions. Using such models on 
unbalanced IDS datasets result in consuming heavy computational power and also it leads to more 
processing delay period. Hence the existing models are less versatile and they lack reliability. In 
comparison, the proposed model acts as a more effective computationally intelligent model with a novel 
integrated attribute selection capability with efficient preprocessing using near miss undersampling and 
normalization approach to optimize the response delay and reduce the FPR using an advanced 
classification approach. The complexity of the model was tested with different combination of 
convolution and dense layers with the presence of attribute selection method using RMSE metric. The 
model improved the prediction accuracy, reduced the FPR and it works well in different datasets thus 
making it more reliable.  

The proposed model is developed to be deployed for both small as well as large scale networks. The 
use of CGF method helps in eliminating less contributing features from the large datasets generated in an 
IoT system. The model can also be implemented as a remote application but to accomplish it, a remote 
support interface (RSI) needs to be integrated to adapt to the network fluctuation issues: 

l It is needed to deal with network speed fluctuations. It would acts as an alarm to enable for remote 
diagnosis of these fluctuations and be able to optimize network connectivity settings or even be able 
to suggest to user. 

l It can enforce security protocols which can help in verification of the firewall and antivirus settings 
automatically. 

l It can enable the usage of standardized applications thereby providing remote installation and 
upgradation functionality. 
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5. Conclusion 

Preventing attacks on smart IoT systems and ensuring their data security have become some of the 
most critical needs in recent times. This study presents a new, efficient, and IoT-friendly IDS model for 
low-powered IoT devices. The model is built using a novel attribute selection method known as CGF, 
along with Deep-CNN algorithms. The proposed CGF attribute selection method was evaluated and 
compared with various other attribute selection methods, such as info-gain, gain ratio, and chi-square 
methods. The CGF method did better in terms of accuracy, precision, recall, and F-measure for both 
binary and multi-class category and subcategory attacks. The proposed IDS model was evaluated using 
four standard datasets—IoTID20, UNSW-nb15, NSL-KDD, and KDD—under different scenarios, 
including binary, multi-class category and subcategory classifications. It achieved a mean accuracy, 
precision, recall, and F-measure of 97.03%, 96.7%, 96.3%, and 96.8%, respectively. Additionally, a 
minimal FPR of 0.0025 was observed, enhancing the reliability of our model. Furthermore, experimental 
validation was conducted by varying the layers of the CNN model to determine the optimal solution. The 
study found that the CNN model exhibited its best performance with two convolutional layers and three 
dense layers. The model achieved optimal outcomes with a batch size of 64 for Deep-CNN. Evaluation 
demonstrated the superiority of the developed model, as it outperformed other comparative methods 
across the applied metrics. A latency analysis was also done. The results showed that detecting binary, 
multi-class, and multi-class subcategory classifications took 2.1 seconds, 2.7 seconds, and 3.6 seconds, 
respectively, for a mean delay of 2.8 seconds. So, it would be inferred that the designed CGF-Deep-CNN 
model is reliable and can be used in a real-world setting to find malicious attacks and intrusions in a smart 
and lightweight IoT ecosystem. 
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