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Abstract

Recently, heavy network traffic and significant data accumulation have been observed in smart energy-efficient
wireless sensor-based applications. These power-aware sensors devices form low-power Internet of Things
(IoT) ecosystem. In such applications, IoT nodes gather and analyze private data, which becomes a natural
target for cyber-attacks. Many intrusion detection systems (IDSs) are designed to address this issue, but the
majority of these systems are computationally expensive with high latency and fail to accurately identify
subcategories of cyber-attacks. Attribute selection would help in reducing the data required for attack
identification, thereby decreasing delays and memory usage for data storage, while also enhancing detection
performance. In this paper, an advanced and optimized IDS model for [oT applications was proposed, utilizing
a novel hybrid attribute selection method called credit gain function (CGF). This method incorporates
correlation feature selection (CFS) and gain ratio. The proposed attribute selector is used to optimize the dataset
through CGF, resulting in a memory-constrained dataset. By employing the proposed CFS method, a novel
IDS model based on the Deep-CNN technique is recommended for detecting and classifying cyber-attacks and
their sub-categories within an IoT environment. Performance analysis of the presented framework was
conducted using four public datasets—IoTID20, UNSW-nb15, NSL-KDD, and KDD—under various metrics,
employing different parameters for binary, multi-class, and sub-category classification. The evaluation
demonstrated that the proposed IDS model is highly capable, achieving a high accuracy, precision, recall, and
F-measure of 98.1%, 96.7%, 96.3%, and 96.8%, respectively. The optimal performance was attained when
implementing two convolutional layers and three dense layers of the CNN model with a batch size of 64.
Additionally, the presented framework was evaluated to be efficient, with a mean response delay of 2.8 seconds
and a low false positive rate of 0.002%. Consequently, the proposed intrusion detection model offers a
constructive solution for assessing different cyber-attacks in an IoT ecosystem.
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1. Introduction

With the worldwide proliferation of sensory applications, numerous cybersecurity vulnerabilities have
surfaced in current Internet of Things (IoT) infrastructures. Such security vulnerabilities pose a global
threat to undermine organizational structures like privacy and the mobility of functional units. These
security threats impact both technological elements as well as the financial well-being of any organization
[1]. Malicious attacks that attempt to exploit these vulnerabilities have brought many insecurities to
digital systems and architectural infrastructures [2, 3]. IoT devices gather, store, and analyze application
specific information in a distributed manner from diverse sources, making them an open target for
intruders because of their decentralized nature [4]. The successful establishment of smart sensory
connectivity has become heavily reliable on the security resilience of these networks [5]. Majority of
these smart devices are low powered which means they are inadequately powered and possess less
computation ability. Since these IoT devices are energy constrained with restricted functional power,
hence the effect of a cyber-attacks may lead to catastrophic impact on the IoT ecosystem. Thus, an
advanced and reliable approach for smart [oT system to identify cyber threats and ensure the security of
IoT networks against intruders is an essential requirement. In such a scenario, a computationally effective
network risks prediction model is needed that can process IoT network data traffic to detect and classify
cyber-attacks, ultimately enhancing IoT security [6].

A generic intrusion prediction model for smart [oT setups is shown in Fig. 1. This IoT setup could exist
in various application domains, such as connected healthcare, connected vehicles, supply chain
management, etc. The sensory elements are monitored by a detection unit, thereby generating
notifications to users or the responsive units to analyze potential security issues when the data traffic
pattern is detected as a threat. The detection module needs to be trained by a suitable predictive analytics
method with an appropriate classifier. Most of the misuse-oriented methods utilize pattern comparison to
verify if the potential data is a threat. The above units are required to accumulate the general data patterns
as well as the threat signals to build their detection framework.

IDS .
Trained
Patterns
./
/L Sensory
i loT
Learning )
Classifier Functional
#/ Modules
—
Threats
Response
Unit

Fig. 1. A typical intrusion detection system for IoT environment.

1.1 Motivation

Several research works [7-9] have attempted to design intrusion detection system (IDS) using different
predictive learning models that are able to forecast cyber-attacks with good accuracy. But in the context
of IoT networks, these conventional learning methods fail to exhibit reliable performance. Existing loT



Human-centric Computing and Information Sciences Page 3 /28
based intrusion detection models using predictive approaches presume the devices to possess identical

data patterns and packet types. But these sensory systems differ in terms of their hardware configurations,
computation costs, and capability to generate different features [10]. Upon aggregation of nodes,
attributes may become sparse, which impacts data modelling performance [11]. Thus, data accuracy is a
real challenge in IoT systems due to their dynamic nature [12]. Here, deep learning can be considered a
better alternative as it can generalize any intrusion detection problem with complex and multi-
dimensional data. Although few recent works [13, 14] have used advanced deep learning models, they
still face difficulty optimizing performance and identifying subcategories of cyber-attacks [15, 16].

The main limitation of the current IDS predictive approaches involving advanced prediction approaches
is that they suffer from performance constraints related to resource availability, computational overhead,
and dimensionality reduction, as well as failing to detect subcategories of cyber-attacks [17]. Therefore,
to optimize model sparsity, redundancy, data storage, and high dimensionality in IoT systems, an efficient
attribute selection method is needed for IDS systems.

1.2 Contributions

This paper introduces an advanced feature optimization method that is used for a deep learning IDS
model which is able to detect and classify various cyber vulnerabilities in a heterogeneous and dynamic
low powered IoT environment, as shown in Fig. 2. The paper utilizes a novel hybrid attribute selection
method called credit gain function (CGF), which combines correlation feature selection (CFS) with gain
ratio, thereby optimizing the scaled IoT dataset to retrieve relevant features. This CGF was then used to
propose a convolutional neural network (CNN)-based IDS approach with capability to identify and
classify multi-class risks for low powered IoT ecosystems. The primary contributions of this paper are
highlighted as follows:

o A novel CGF attribute selection method considers credit functions of correlated attributes as well as
the entropy-based gain ratio to derive an optimized dataset. This is needed because correlation
coefficient methods are not suitable if attributes are not normally distributed. Also, the gain ratio by
itself fails to perform well if the dataset has a high number of distinct values. In an IoT environment,
there is heavy fluctuation in accumulated values, which are seldom normalized. Thus, a hybrid
integration of both of the above attribute selection methods can overcome this concern. The proposed
CGF attribute selection method was evaluated and compared with different attribute selection
methods like info-gain, gain ratio, and chi-square methods, among others.

e A hybrid Deep-CNN based IDS which, in addition to the CGF, consists of multiple interconnected
convolutional layers and dense layers to identify cyber-attacks in an IoT system. The combination
helps alleviate the computational load of CNN, and has shown better performance when compared to
its counterparts.

¢ The hybrid Deep-CNN based IDS model was evaluated using four standard datasets—IoTID20,
UNSQ-nbl15, NSL-KDD, and KDD—through different performance metrics including accuracy,
precision, recall, F-measure, and false positive rate (FPR) for different scenarios including binary,
multi-class category, and multi-class subcategory attack identification as well as latency time. The
evaluation outcome demonstrates the effectiveness of the novel intrusion detection approach over
other traditional existing methods. Performance evaluation validates the reliability and robustness of
the deployed model, which can be used in modern smart sensory interfaces to identify malicious
threats.

The overall structure of the article is presented as follows. Section 2 discusses an explanatory
background overview, along with a comparative analysis of relevant works summarizing the important
research gaps. The overall presented IDS model utilizing the IoT samples is detailed out in Section 3.
Subsequently, the evaluation outcomes and performance analysis are given in Section 4. Finally, the
paper is concluded in Section 5.
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2. Literature Survey

Recently, several constructive and relevant works have been carried out that are applicable to the
security issues of loT networks. Many novel smart privacy methodologies were developed by combining
machine intelligence with cybersecurity aspects [18]. Various innovative works are being undertaken for
security in the IoT utilizing data analytics and advanced cognitive methods. Here, we will shed some
light on existing works in the field of IDSs for the IoT using predictive learning models. Specifically, we
will focus on the classification models applied, including any attribute selection methods used, and
performance metrics such as the FPRs and the prediction accuracy.

Gao et al. [19] studied the recent development in IDSs, where they developed a multi-level tree
algorithm. Also, an ensemble model was designed to improve the performance by using methods like
random forest and deep neural networks as the base approach. The results showed that ensemble models
performed better than conventional approaches. In another work by Ding and Zhai [20], the performance
of conventional machine learning frameworks is analyzed. Later, they also developed a CNN model,
which, upon comparison with machine learning, generated optimal performance. Though their approach
exhibited a better accuracy rate than other conventional models, it should be enhanced to reduce network
risk. Ingre et al. [21] presented a decision tree-enabled threat analysis model using KDD samples. CFS
selected relevant attributes, and it showed the impact of this method on IDS performance.

Ever et al. [22] discussed an optimal classification method to build an IDS in their study. They applied
NSL-KDD data to train their framework. In [23], the authors applied a genetic algorithm to an [oT dataset
to select vital features and a support vector machine (SVM) classifier to identify the malicious packets
with a recorded accuracy of 97.3%. In another piece of research undertaken in [24], the authors developed
an Internetwork prediction model utilizing a variant of a neural network using NSL-KDD data on IoT
systems. The outcome of the research was subdivided into binary and multi-class classifications, giving
an accuracy rate of 83.28% and 81.29%, respectively. The authors in [25] proposed a CNN-based model
for detection of network intrusion using IoT-collected datasets. Attribute selection methods were used to
further optimize the data, and the prediction accuracy was found to be 97.7%. In [26], the authors applied
aneural network to detect intrusion categories using IoT-KDD data. Principal component analysis (PCA)
was the preprocessing method used to optimize the attributes, while the min-max method was used for
data normalization. Feed-forward neural networks (FFNN) and Levenberg-Marquardt (LM) back
propagation methods were used for classification, and the model gave around 97% accuracy. A novel
deep learning-based model was developed in [27] using the NSL-KDD dataset. Label encoding with
normalization was applied for preprocessing. Among all attacks predicted, the accuracy rate for denial-
of-service (DoS) attacks peaked at 97%. In [28], a research analysis was carried out using machine
intelligence-based intrusion detection using deep neural network (DNN) to verify the presence of any
malicious attacks. Four hidden layers were used, and the ReLU function was the activation function used
in the model. It recorded a maximum accuracy of around 99%.

In another work [29], the authors used the DNN model with DARPA 1999 data and used ReLU as the
activation function in the hidden layer while two neurons were in the outer layer. An accuracy of 93%
was determined. Basati and Faghih [30] developed a CNN-based IDS using deep attribute retrieval. It
focused on IoT modules that exhibit less computational power. The developed model was validated for
binary as well as multi-class labels. Rashid et al. [31] developed an ensemble-stacked technique using
trees to detect intrusion in an IoT ecosystem using heterogeneous datasets. Multiple feature selectors
were combined to optimize the model’s performance. Fatani et al. [32] presented a new hybrid attribute
reduction method for the IDS model, applying the pros of evolutionary computing. Some datasets, like
BoT-IoT and CIC 2017, were used for model validation. Alkahtani and Aldhyani [33] proposed popular
deep learning models like CNN, LSTM, and hybrid CNN-LSTM for intrusion prediction. The IoTID20
dataset was used for performance evaluation. Keserwani et al. [34] discussed an intrusion detection
approach to extract relevant IoT network features. The technique is comprised of a combination of the
evolutionary optimization method and the grey wolf optimization method. They used different datasets,
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like KDDCup99 and CICIDS-2017 data. Table 1 highlights the accuracy rate analysis of some recent
relevant works in context with IoT systems, where the utilization of any attribute selection is also
specified [21, 23-26, 29, 35-41].

Table 1. Accuracy analysis of important existing works on intrusion detection system using loT

Attribute Accuracy
Study Classification model applied

selection used (%)
Ingre et al. [21] No Decision tree and support vector machine (SVM) 96.40
Aslahi-Shahri et al. [23] Yes Genetic algorithm and SVM 97.30
Yin et al. [24] No Recurrent neural networks 83.28
Liu et al. [25] No Convolutional neural network (CNN) 97.70
Singh & Ahlawat [26] Yes Artificial neural network (ANN) with PCA 97.97
Vigneswaran et al. [27] No Deep neural network (DNN) with ReLU activation function 93
Taher et al. [35] No ANN, SVM 94
Shah & Trivedi [36] No Back propagation neural network 91
Yulianto et al. [37] No AdaBoost 81.83
Pelletier & Abualkibash [38] No ANN, Random forest (RF) 96.40
Hammad et al. [39] No SVM, J48, RF, Zero 96.70
Faker & Dogdu [40] No DNN, RF 97
Anmiri et al. [41] Yes SVM, MMIFS 86.46
CGF-Deep-CNN Yes DNN 98.10

Table 2. False positive rate analysis of some popular works related to IoT based IDS

Study Model used False positive rate (%)

Kanimozhi & Jacob [42] Deep neural network 15

Shone et al. [45] Stacked deep autoencoder network 2.15-14.58
Al-Zewairi et al. [43] Deep neural network 0.56

Fu et al. [44] Deep neural network 13.44

Farnaaz & Jabbar [46] Random forest 0.005
Hammad et al. [39] Decision tree 13

Pelletier & Abualkibach [38] Neural network 7.34
CGF-Deep-CNN Deep neural network 0.002

As highlighted in Table 1, there are many computational models used for IDS analysis in context to
IoT, but very few of them implement the dimensionality reduction method. Also, as observed from the
literature survey, existing models [38, 42, 43, 44] deal with classifying the cyber-attacks into binary
categories. Specifically, no work is done for multi-attack classification, making it incomplete and not so
scalable. Another important parameter is the FPR, which determines the number of normal events
observed by the IDS as intrusions. It is vital to reduce this metric as much as possible. Some relevant
works related to FPR analysis are shown in Table 2 [38, 39, 42-46], from which it can be noticed that
the reviewed IoT IDS systems have a high FPR of intrusion prediction (i.e., less reliable systems) [47].
It refers to the fact that any data pattern deviating from the general trend is tagged as a cyber threat, even
if it is not the scenario. This can be misleading as a result of false associations among less relevant
attributes. Implementing these traditional models on the existing unbalanced IDS datasets without any
preprocessing techniques or attribute selection methods results in high computational power with heavy
latency delays. Further computationally advanced models using Recurrent neural networks (RNN)
exhibit certain restrictions like higher computational expense due to its inability to stack up with other
models, low training speed, less memory space and challenging to train model on very larger data
sequence. Also multi-head attention mechanism used in transformers can be applied to deal with various
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input sequence in different ways but it needs massive computational steps and it exhibits higher attribute

redundancy. Hence, the existing models are less versatile and lack reliability. Thus, a more effective
computationally intelligent model is needed for optimum attribute retention, optimization of response
delay, and reduction of FPR using an advanced classification approach [48]. Table 3 highlights the
important symbols and abbreviations used in the proposed model section.

Table 3. Abbreviations used in the proposed model

Abbreviation Definition
BGP Border gateway protocol
VMNET Virtual machine networks
covr(F;, T) Covariance between attribute F; and the target 7'
5} Standard deviation
P Pearson correlation coefficient
ds Data samples
En(ds) Entropy value for categorization
F Attribute for which information gain is to be computed
splitInfo(attr) Criteria for splitting of attribute
LG Mean attribute-class correlation value
Amean Average value of all attribute-attribute correlations
CF Credit function of an attribute
A Attribute count in the present subset of attributes
GV Gain value
Acor Attributes count in the subset with optimum credit.
Apin(Acor) Attribute with minimum
! Samples present in the minor class
k Samples present in the major class
YA Attribute value post normalization
Z on Zero-mean normalization
ay Input to convolutional layer
Wik Kernel from 7 to &
by, Output of the 1D convolutional layer
Xy Bias of neuron in convolutional layer
Tk Output of the max-pooling layer
) Sigmoid activation function

3. Proposed ID Model: Intrusion Detection Model for IoT Applications

IoT applications are usually subject to certain constraints, including inter-connectivity, computation
capability, heterogeneous data, and energy aspects. Here, heterogeneous data are accumulated from
various sensors and connected modules. Hence, a more performance-driven and computationally
intelligent model that can optimize the computational power in an [oT ecosystem is required. This section
explains the proposed cyber-attacks analysis model for the smart environment using an integrated
preprocessing approach and a novel hybrid attribute selection method, which were then used in building
a new deep learning-based IDS for malicious attack classification.

3.1 Methodology and Workflow

The proposed CGF-Deep-CNN model, as depicted in Fig. 2, aims to deal with multiple class-based
cyber-attacks detection in constrained IoT systems. The model is an integrated framework comprising
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various interrelated steps. After an initial preprocessing of the raw data, one-hot encoding maps the

categorical features into numerical ones. A novel hybrid attribute selector (CGF) method is used to
eliminate less critical attributes from the cyber-attacks dataset used in the study, thereby providing more
reliable features (i.e., more reliable IDS). It not only optimizes the memory requirement but also reduces
the overall latency delay incurred in implementing the model. It is followed by using the near-miss
undersampling method to create a more balanced dataset. Further zero-mean normalization helps
standardize the data. Then the optimized Deep-CNN technique is applied to train the model and classify
the cyber-attacks.

7
One-Hot-Encoding ) Data Cleaning
and Mapping

\_ ToTID20
dataset
Credit Gain Function
(CGF) attribute selection
Data Balancing
Train-Test Layered | with Near Miss Zere 1\'/Iea'n
| Normalization

data split Undersampling

¢

‘ Optimized
= Deep-CNN model

Metrics based
Result
evaluation

Multi-classification
based Intrusion
detection

Fig. 2. The process flow of CGF-Deep-CNN model for cyber-attacks prediction in IoT.

3.2 Data Cleaning and Mapping

The raw and heterogeneous data samples of the IoT ecosystem are supposed to be cleaned at an early
stage before being used for training the model. An initial preprocessing task is done to restructure the
raw data into a suitable format. All possible null and undefined samples are identified and eliminated
from the dataset. Also, some missing and redundant values are detected and dropped using the Python
Pandas library module.

3.3 One-Hot-Encoding

To create any predictive model using machine learning or deep learning, the inputs and outputs should
have integral values [33]. The IoT datasets used here possesses some categorical attributes that need to
be mapped into numeric types.

One-hot-encoding is the encoding method used in this research to convert every non-numeric data
value into a corresponding binary array, thereby marking the class label as 1 and others as 0. For example,
nominal attributes in the NSL-KDD dataset like protocol, service and flag columns are subjected to one-
hot-encoding. For protocol attribute TCP (transmission control protocol), UDP (user datagram protocol),
and ICMP (Internet control message protocol) were defined. The one-hot-encoding of protocol attribute
substituted the nominal data with three numeric values as shown in Table 4.
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For the service attribute in NSL-KDD dataset, multiple service types were defined like "BGP,"

"VMNET," etc. Using one-hot-encoding process, these categorical values got replaced by their
corresponding numeric values as depicted in Table 5.

Similarly, for attribute flags in NSL-KDD data, multiple flags were represented such as "OTH,"
"RSTR" among others. The sample example to map categorical to numeric values using one-hot-
encoding is denoted in Table 6.

Also, the cyber-attacks detection accuracy is represented by analyzing each outcome against its actual
value. Thus, the real values are applied for one-hot-encoding so that "1" denotes the accurate attack label
and "0" represents otherwise.

Table 4. Sample of replacing categorical data of the protocol attribute with numeric values

Protocol type TCP_Protocol UDP_Protocol ICMP_Protocol
TCP 1 0 0
UDP 0 1 0
ICMP 0 0 1

Table 5. Sample of replacing categorical data of the service attribute with numeric values

Service type AOL_Service BGP_Service o0g 739 50_Service
AOL 1 0
BGP 0 1
739 50 0 0 a 1

Table 6. Sample of replacing categorical data of the flag attribute with numeric values

Flag type OTH_flag RSTO_flag SF_flag
OTH 1 0
RSTO 0 1

3.4 Novel Credit Gain Function Attribute Selection Method

Building an attribute optimized dataset is critical to improve the performance of any computational
model [49] especially for an IoT enabled IDS. Redundant attributes degrade the model’s reliability [47,
49]. In this study, Pearson correlation coefficient is coupled with gain ratio to form a new hybrid attribute
selection method called CGF:

_covr(F,T)

o(Fiop) " M

Pearson correlation coefficient is applied when two attributes have normalized distribution. The
coefficient between attribute F; and the target T for F;, F,,... F, which affects target T is denoted in
Equation (1) where covr(F;, T) defines the covariance while o is the standard deviation. It ranges
between 0 to 1. Based on it, the attributes ranking is determined and the top ranked attributes on basis of
0.2 correlation coefficient are selected as shown in Equation (1).

Final attributes selection from the dataset is based on the rule set as:

An attribute F; is selected if py; > 0.2 in new dataset
Else if
An attribute F; is rejected if pg; <0.2.
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Information gain ratio is the other base attribute selection method considered in this study. The
information gain of each attribute is computed on basis of its entropy. The feature possessing highest
information gain ratio is included in the resultant set. Entropy value for categorization is determined using
Equation (2), where ds denotes the data samples.

En(ds) = —(P(0)  log,(P(0)) + (P(0)  log,(P(0)) ) @)

If an attribute F has m unique values, the dataset may be divided into m dissimilar subsets. The
information gain of an attribute F is computed as shown in Equation (3), while the split information is
shown in Equation (4):

; ds;
Info — gain(ds, F) = —En(ds) — —* En(f) 3)
m
ds; das:
Splitinfo(Atr) = _Z;d_s] % logzd_g] )
=

The gain ratio is found by Equation (5) to normalize the information gain.

gain(ds, F)

Gainratio = Info — Splitinfo(Atr)

®)

Pearson correlation coefficient method is not suited if attributes are not normally distributed. Also, gain
ratio fails to perform well if the dataset has a high number of distinct values. In an [oT environment, there
is heavy fluctuation in accumulated values which are seldom normalized. Thus, a hybrid integration of
both the above attribute selection methods can overcome this concern. So to deal with the retrieval of
significant attributes in smart sensory settings, this study presents a novel integrated attribute extraction
approach called CGF method to pick up more supportive attributes to detect every type of IoT cyber
threats.

F = A * ACyean
JA+ A = DAA poan

(6)

The credit value of the correlation coefficient method computes the most interrelated attributes. But
sometimes, the selected features are absent from the final dataset. The gain value is also computed for
every attribute to determine the ultimate variable set. So the least gain ratio metric of the attribute set
calculated with credit value is considered to be the gain ratio threshold to pick final attributes from the
raw data. Hence, along with the credit metric, the gain value is also determined to find out the final
attributes. The credit metric evaluates the associations among the input features as well as the output
labels. An attribute is tagged as redundant if other attributes of the dataset exhibit a high correlation with
it. In Equation (6), A denotes the attribute count in the present subset, AC,,.4, represents the mean
attribute-class correlation value, and A,,.., is the average value of all attribute-attribute correlations.
Using the credit function (CF), the attribute subset with the maximum credit function may be computed.
In the CFS method, the selection outcome depends on the credit metric, which is a practical concern. To
overcome this issue, in our CGF algorithm, the CF of each attribute is also considered.

The gain value (GV) for every attribute can be computed using Equation (7) which also helps in
overcoming the overfitting issue in predictive models. Equation (8) highlights the information outcome
by partitioning the data samples (DS) into the v sets, that correspond to the result on attribute A. The GV
can be computed by entropy (A4) — entropy (4, DS).

gain(DS)

= J v 7
v split_Info,DS’ )
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v
split_Info,DS = _Z% x log, IL;_S;I_ @®)
=1

The pseudocode for the CGF method is shown in Pseudocode 1. In the CGF algorithm, initial attribute
set is preprocessed and uploaded as the set of features as shown in Step 1. The optimum subset possessing
best credit function based on higher correlation index is revealed in Step 2. Validation of the dataset is
done in Step 3 to check if the optimized feature set belongs to the original features of the dataset. The
least gain value of attributes is computed in Step 4. Eventually attributes with gain value more than the
least gain function value and threshold are chosen as the final attributes in Step 5 and Step 6. Ultimately
top attributes are noted in Step 7 and the algorithm terminates. In short, the least gain function in attribute
set found utilizing credit function is applied as the threshold of gain value to pick the optimum set of
attributes. Hence, the hybrid method considers both credit function as well as the gain value factors to
find the optimal attribute set.

Pseudocode 1. Credit gain function (CGF)
Input:  Initial Attribute set (Ainit)
Output: Selected Attribute set (Agel)
Step 1:  Preprocess and scan the initial attribute set Aini
Ainit = {al, a2,...., ak}, k = initial attribute count
Step 2:  Retrieve attributes with maximum correlation as per credit function (Acor)
Acor = {al, a2,.....am}, m = attributes count in the subset with optimum credit.
Step 3:  Validate Acor © Ajnit
Step 4:  Compute least Gain value of attributes in Acor,, Amin(Acor)
Step 5:  Apply equation 2 to compute gain value for all attribute of Ainit
GV = {(al, gl), (a2, g2),.....(ak, gk)}, gi is the gain value for ai (1 <I<k)
Step 6:  Select attributes from GV whose gain value exceeds Amin(Acor)
Step 7:  Output final selected attributes: Age1 = {sl, s2,....sf}, f = final selected attributes
Step 8:  Terminate

Applying the hybrid CGF attribute selection method in our study is a good option when used with a
combined CNN model and deep learning model. As deep learning needs a large dataset, removing less
relevant attributes prior to model training is better since it minimizes memory requirements and consumes
less time. Also, since the deep learning algorithm is a black-box model, determining the least relevant
attributes is difficult. So applying the hybrid CGF method helps uncover the most significant and least
significant attributes in the dataset. This will be useful in excluding these features from future data
collection and thus making the final IDS system more reliable. The complexity analysis of each step of
the CGF algorithm presented in Pseudocode 1 is summarized in Table 7.

Table 7. Complexity analysis of each step of the CGF algorithm

Step Complexity
Preprocess and scan initial attribute set O(k)
Retrieve attributes with maximum correlation O(m)
Validate if A, is subset of A, O(m)
Compute least gain value of attributes in A, O(m)
Compute gain value for all attributes in A;,;, O(k)
Select attributes with gain value exceeding A,,in (Acor) O(k)
Output final selected attributes Oo(f)
Terminate o(1)

k is the initial attribute count, m is the count of attributes in the subset with optimum credit (Acor). Here f'is the count of final
selected attributes while O(1) indicates constant time complexity.
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3.5 Data Balancing with Near Miss Undersampling

It has been discovered that the IoT dataset is unbalanced, which will result in incorrect recognition of
the majority of instance classes. Thus, an under-sampling method can be applied to process the training
set. Here near-miss under sampling (see Pseudocode 2) is used to select samples among larger class labels
that have the least mean distance to the three nearest samples from less dense class labels. At first, it
computes the distances between all samples from the major class and the samples from the minor class.
Then it selects the k samples from the major class that exhibit the least distance from the minor class. If
[ samples are present in the minor class, the method will return [ * k samples from the major class.

Pseudocode 2. Near miss undersampling

Step 1: Computes distance between all points in major class with points in minor class.
Step 2:  Select major class samples with least distance from minor class.
Step 3: Pick these k classes and store it for removal.

Step 4: Return [ * k samples of major class if there exists [ samples of minor class

Near miss undersampling is used in this study as an effective method to handle skewed dataset. It
selects instances from the majority class based on their Euclidean distance from instances in the minority
class. The basic idea is to keep instances that are close to the minority class and discard instances that are
far away from them. The complexity analysis of each step of the near miss undersampling algorithm
presented in Pseudocode 1 is summarized in Table 8.

Table 8. Complexity analysis of each step of the near miss undersampling algorithm

Step Complexity

Compute distance between all points O(M*N)
Select major class samples with least distance O(M*log(M))
Store selected samples for removal O(K)
Return [ * k samples if [ samples in minor class O(K)
Compute distance between all points O(M*N)
Select major class samples with least distance O(M*log(M))
Store selected samples for removal O(K)

M is the number of instances in the majority label. N is the number of instances in the minority label and K is the number of
instances selected for removal and returned.

3.6 Zero-Mean Normalization

The next phase in the CGF-Deep-CNN model is the data normalization and it is needed as in the IoT
dataset there exists larger differences between attribute values. Here zero-mean normalization is used to
minimize the difference in varying directions for enhanced performance. The zero-mean normalization
analyzes the samples by altering the mean value to 0 and the standard deviation to 1. Equation (9) is as
follows:

Zmn - Z”m

Z o = P €
where Z',, and 0 refers to the mean and standard deviation for the m-th attribute Z,,, while Z',,,,, denotes

the attribute value post normalization.
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3.7 Train-Test Layered Data Splitting

Data splitting into training and testing data is a vital step to determine the model’s performance. Any
random data partitioning may lead to unpredictable outcome. So, to prevent this, a layered approach is
applied which partitions the dataset into identical homogeneous instances. In the study, the layered
approach partitions the sample set into 70% training and 30% testing data for each category as shown in
Table 9.

Table 9. [oTDT20 dataset division into 70:30 train and test ratio using layered splitting approach

Type Class Training set Testing set

Binary Anomaly 409739 175603
Normal 28051 12022

Category Mirai 290716 124593
Scan 52685 22580
DoS 41574 17817
MITM ARP Spoofing 24763 10614
Normal 28051 12022

Subcategory Mirai-UDP Flooding 128232 54957
Mirai-Hostbruteforceg 84825 36353
Mirai-HTTP Flooding 39072 16746
Mirai-Ackflooding 38586 16538
DoS-Synflooding 41574 17817
Scan Port OS 37151 15922
Scan Hostport 15534 6658
MITM ARP Spoofing 24763 10614
Normal 28051 12022

In the study, besides using the [oTDT20 dataset, three different datasets are also applied to the model
for precise identification of network risks and comparison purpose. These datasets include UNSQ-nb15,
NSL-KDD, and KDD which are discussed below:

KDD dataset: This dataset was developed in 1999 and it has 41 preprocessed attributes for each
network link. This dataset is segregated into four labels which include basic attributes, content attributes,
time specific network attributes and host specific network attributes. It comprises a total of 4,898,430
attributes.

NSL-KDD dataset: This dataset consists of selected samples from KDD data where only relevant
samples of the KDD data are included in the training data. Here the selected samples are dependent upon
the proportion of samples in the KDD set. Total samples in both training and testing set are logical for
which it is well suited to evaluate the complete dataset without picking small subsets.

UNSW-nb15 dataset: This dataset is consists of none network risks categories with 49 attributes along
with several usual and network risks events with as many as 2,540,044 samples. A total of 221,876
samples are normal, while 321,283 samples are network risk-based records in the dataset.

3.8 Optimized Deep-CNN Model: CNN Model Integrated with DNN

Once the data is scaled and feature optimized, it can be subjected to classification. In the proposed
work, a new hybrid deep learning framework is deployed that consists of a CNN model integrated with
a DNN to identify cyber-attacks in smart systems, as shown in Fig. 3. Here the model is equipped with
binary convolution layers and max-pooling layers, flattened with multiple dense layers. The outcome of
the first convolution layer is the input to the max-pooling layer. Here, the pool size is kept at four as it
helps to overcome overfitting and also create accurate sub-samples. The second convolutional layer is
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operational, with the kernel size of 3 and 32 filters being utilized to generate the output. The outcome

from second convolutional layer acts as the input to the max-pooling layer. In this layer, a pool size of 2
was applied and it generated the result. This combination is better suited for the model as it helps alleviate
the computational load of CNN. Also, it perfectly coordinates with the data samples to build a precise
activation map. The convolutional layer acts as the convergent layer for relevant attributes and also
decreases the anonymous noise. The 1D convolutional layer is shown in Equations (10) and (11):

ap = x, + Z(Si: Wik), (10)
=1
b = f (@), an

where a;, act as the input to convolutional layer. Outcome from preceding phase is denoted as s;, wy, is
the kernel from i to k. x;, is the bias of neuron in convolutional layer. The ReLLU activation is denoted as
f(. The main benefit of using ReLU activation function is that it does not activate all neurons
simultaneously. Equation (12) defines the ReLU. by, is the output of the 1D convolutional layer. Output
to the convolutional layer is the input in the pooling layer demonstrated in Equation (13). The maximal
value from region S containing the output values to convolutional layer is chosen. 7, is the output of the
max-pooling layer.

f) = max(0,yy), (12)
=1 |z. (13)
k 1;9[ k

Flatten DNN

Max
— Pooling Pooling
Input Output

Max

Convolution Convolution

Fig. 3. Architecture of the proposed Deep-CNN model.

The flatten converts the output structure of the final pooling layer into a 1D array. Flatten output
becomes the first dense layer’s input. Consequentially the inputs to dense layers are processed. The ReLU
activation function is utilized in dense layers. The last dense layer which generates outcome for binary
classification uses sigmoid function while for multi-class category, it uses softmax function. Sigmoid and
softmax are shown in Equations (14) and (15):

ny) = T+ e (14)
eyi

softmax(y); = ST (15)
j=1

Primarily three layers are used in the model which include convolution layer, max-pooling layer, and
flatten layer. The convolution layer is the main layer of the Deep-CNN model and it comprises series of
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kernels. It performs linear multiplications of weights to retrieve high end features from the input data.

Max-pooling is used after convolutional layer and it acts as a pooling task to compute the highest value
for portions of a feature map which forms a pooled feature map. Then the flatten layer is applied to map
this feature map to a template that is interpretable for dense layers. It levels the feature map to a single
dimensional array.

An overview of the parameters involved in the proposed CGF-Deep-CNN model for cyber-attacks
detection in IoT systems is shown in Table 10. Understanding these parameters is crucial for grasping
the inner workings of the model and its potential effectiveness in detecting malicious activities.

Table 10. Discussion on parameters of the model

Model parameter Definition

Dimensionality The input data consists of IoT network attributes, typically represented as a 2D
matrix.

Size The input size varies depending on the dataset, with dimensions such as 80x256
for the IoTID20 dataset.

Number of convolutional layers The model comprises multiple convolutional layers responsible for feature
extraction.

Kernel size Each convolutional layer applies a set of filters to the input data, with a specified
kernel size.

Number of filters The number of filters determines the depth of feature maps generated by each

convolutional layer.

Number of pooling layers Pooling layers are interspersed between convolutional layers to reduce spatial
dimensions and control overfitting.

Pooling method Max-pooling is commonly used to downsample feature maps by selecting the
maximum value within each pool.

Number of dense layers Dense layers follow the convolutional layers to perform classification based on
extracted features.

Number of neurons Each dense layer consists of a specified number of neurons, representing the
hidden units that contribute to feature transformation.

Activation function Activation functions such as ReLU are applied to introduce nonlinearity into the

model.

4. Experimental Results and Performance Analysis

This section discusses the evaluation of the CGF selection method and the IDS detection model (CGF-
Deep-CNN model). The experimental evaluation is conducted using Intel Core 17-9750H processor at
2.80 GHz and 16 GB of memory. Python was installed on the Windows 10 operating system. The
suggested novel IDS model used [oTID20 data [50] for its evaluation. Both the CGF selection method
and the IDS detection model (CGF-Deep-CNN model) were assessed under various scenarios: binary,
multi-class categories, and multi-class subcategories classifications, as well as comparison with related
methods. The performance of these scenarios was evaluated using metrics such as accuracy, precision,
recall, and F-measure, as well as the FPR for the IDS detection model.

4.1 Dataset Details

The standardized data samples used here is the [oTID20 dataset, which was gathered to detect cyber-
attacks in [oT systems [50]. This dataset includes advanced intercommunication data as well as new data
on network interference analysis. It comprises 83 IoT network attributes with three class labels, which
are binary, category, and subcategory; summary of the [ocTDT20 dataset is given in Table 11.
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Table 11. Cyber-attacks class information of IoTID20 dataset

Binary Category Subcategory
Normal Normal Normal
Anomaly DoS DoS-Synflooding
Mirai Mirai-Ackflooding

Mirai-HTTP Flooding

Mirai-Hostbruteforceg

Mirai-UDP Flooding
MITM MITM ARP Spoofing
Scan Scan Port OS

Scan Hostport

4.2 Result Evaluation Metrics

Validation of the proposed technique was conducted using accuracy (Ac), Precision (Pr), Recall (Re),
F-measure (FM), FPR, training delay (Td), and multi-class accuracy (MCA). Certain metrics like true
positive(), false negative(), false positive(), and true negative() are utilized to determine the performance
values. True positive are the samples accurately detected to be general pattern. The samples that falsely
classify the general pattern as a malicious threat is treated as false negatives. False positives denote cyber-
attacks that are inaccurately categorized as general patterns. True negatives denote samples that are
accurately categorized as potential threats. These validation parameters are represented in Equations
(16)—(20).

o + T

A= Tvv+ ¢ (16)
Pr =(,0-I-L‘P a7

¢
Rc e (18)
FM =2 % % (19)
MCA = e (20)

o+T +¥+ ¢

4.3 Experimental Evaluation of Conversion of 1D Data to 2D Image Data

The process of converting 1D data into image-like data, as described in the CNN model structure, is a
common technique used. This conversion allows the model to leverage CNNs, which are particularly
effective in image processing tasks. In this study of anomaly detection in network traffic data, the raw
data is preprocessed and mapped into image-like representations before feeding them into CNN model.
This preprocessing step involves transforming the sequential data of network packets into 2D or 3D
matrices, where each element represents a specific aspect of the network traffic. A major issue observed
sometimes during the process is loss in information in the data. However, in this research study
information loss is quite negligible since high resolution image is used in the study and also the data is
normalized before being converted to image.

The values represented in Table 12 denotes the conversion of 1D data into image-like data, where for
the IoTID20 dataset, each data point is converted into a 3D array to represent RGB channels, while for
the other datasets, each data point is represented as a single pixel in a 2D image. As observed, there is
very negligible reduction in information during this conversion process.
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Table 12. Information loss analysis with network attack datasets during 1D to 2D data mapping

Dataset Original data size Converted image size Information loss (%)
10TID20 80 x 256 80 x 256 x 3 1.6
UNSW-NBI15 47 47 x 1 x 1 1.4
NSL-KDD 41 41 x1x1 1.4
KDD 41 41 x1x1 1.5

Further, experimental evaluation of CGF method is performed with vital dimensionality reduction
methods like PCA and autoencoder based methods in context to information loss. It is important to note
that while PCA and CGF are linear dimensionality reduction techniques, autoencoder is a nonlinear
method. Despite being linear, both PCA and CGF achieve significant reduction in information loss, making
them suitable choices for dimensionality reduction tasks. However, Autoencoder, being a nonlinear
method, offers even lower information loss, indicating its potential for capturing complex relationships
in the data. But using autoencoder incurs heavy computational cost while it needs more time with
resources like learning rate, loss function among others for model training and fine-tuning as compared
to other techniques. Table 13 illustrates the comparison of information loss for different dimensionality
reduction methods, including PCA, CGF, and autoencoder. The results indicate that all three methods
exhibit very low information loss, with CGF and autoencoder demonstrating slightly better performance
compared to PCA. But due to higher computational cost, CGF can be judged the better option.

Table 13. Information loss with network attack datasets with dimensionality reduction methods

Information loss (%)

Dataset
PCA Autoencoder CGF
10TID20 22 1.3 1.6
UNSW-NBI15 1.9 1.2 1.4
NSL-KDD 2.1 1.1 1.4
KDD 2.4 1.3 1.5

4.4 Experimental Analysis of Attribute Selection Methods

The novel attribute selector CGF method is evaluated against other feature selection methods. In binary
classification, the CGF method outperformed other attribute selection techniques. It generated an
optimum accuracy of 98.1%, and its corresponding values for precision, recall, and F-measure were
97.4%, 96.9%, and 97.2%, respectively. The reason for such promising performance is due to the fact
that the CGF method removes the loosely related attributes from the dataset and it reduces the overfitting
of model. The information gain and gain ratio methods also gave reasonably good performances. Fig. 4
shows the overall outcome.

As far as multi-class classification is concerned, the proposed CGF method recorded the highest
accuracy of 96.8% while both info gain and gain ratio gave identical accuracy of 96.4% as observed from
Fig. 5. Accordingly, the precision, recall, and F-measure with CGF method were 96.5%, 96.2%, and
96.3%, respectively.

In the scenario of multi-class sub-label classification as seen in Fig. 6, the CGF attribute selection
method recorded the best performance, with 96.5%, 96.3%, 96.0%, and 96.2% being the accuracy,
precision, recall, and F-measure, respectively. The gain ratio provided the next-best performance. As
seen from the results, the CGF method outperforms other attribute selection methods for different class
labels. The reason for such promising performance is due to the fact that the CGF method removes the
loosely related attributes from the dataset and it reduces the overfitting of model.
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Fig. 4. Performance metrics analysis for binary class label classification using CGF method.
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Fig. 5. Performance metrics analysis for multi-class label classification using CGF method.
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Fig. 6. Performance metrics analysis for multi-class sub-label classification using CGF method.
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4.5 Experimental Analysis of Convolutional and Dense Layers of CNN Model

The validation of CGF-Deep-CNN was done for one and two convolutional layers, followed by fully
connected dense -6 layers. As seen in Table 14, for binary class label classification the performance of
the proposed model with two layers of convolution layers and three dense layers was the best. With three
dense layers, the proposed CGF-Deep-CNN model noted an impressive 97.4% accuracy. Similarly, the
precision, recall, and F-measure values were also 97.4%, 96.9%, and 97.2%, respectively.

Table 15 depicts the performance with a multi-class classification. Again, here also, it is observed that
the CGF-Deep-CNN model recorded its best performance with three dense layers and two convolutional
layers. The accuracy, precision, recall, and F-measure values were noted to be 96.8%, 96.5%, 96.2%, and
96.3%, respectively.

Table 16 shows the performance with multi-class sub-label classification with multiple subcategories.
Again, CGF-Deep-CNN model recorded an optimum outcome with slight decrease in metrics score.
While the multi-class accuracy was recorded to be 96.5%, the corresponding precision, recall, and F-
measure values were 96.3%, 96.0%, and 96.2%, respectively.

Table 14. Performance analysis of CGF-Deep-CNN with binary class label classification

Accuracy (%) Precision (%) Recall (%) F-Measure (%)
1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv
1-Dense 92.5 94.4 88.3 89.5 90.3 91.3 89.7 91.1
2-Dense 93.4 93.6 90.2 92.7 90.1 91.2 90.4 90.8
3-Dense 97.3 98.8 97.2 97.4 96.1 96.9 96.7 97.2
4-Dense 97.1 97.4 95.8 96.4 95.2 95.9 953 95.7
5-Dense 94.3 95.1 90.2 90.4 89.4 90.1 88.9 89.8
6-Dense 94.1 94.3 93.3 95.5 92.9 94.7 93.1 94.5

Table 15. Performance analysis of CGF-Deep-CNN with multi-class label classification

Accuracy (%) Precision (%) Recall (%) F-Measure (%)
1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv
1-Dense 92.1 94.2 87.7 88.4 90.1 90.7 89.2 90.6
2-Dense 93.1 93.2 89.7 92.2 90 90.6 89.3 90.2
3-Dense 97.3 98.2 96.1 96.5 95.6 96.2 95.5 96.3
4-Dense 96.3 96.6 95.8 96.2 94.2 95.3 94.4 95.2
5-Dense 94.1 94.6 88.1 89.5 87.6 89.4 87.8 89.3
6-Dense 93.3 93.9 92.6 94.3 90.5 93.7 92.2 93.7

Table 16. Performance analysis of CGF-Deep-CNN with multi-class sub-label classification

Accuracy (%) Precision (%) Recall (%) F-Measure (%)
1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv 1-Conv 2-Conv
1-Dense 92.1 94.1 87.2 88.1 90 90.3 89 90.2
2-Dense 92.4 93 89.1 91.7 88.6 90.1 89.1 89.7
3-Dense 97.3 97.5 94.9 96.3 95.2 96 95 96.2
4-Dense 95.3 96.2 95.2 95.8 94.1 95.1 94.2 95
5-Dense 934 94.2 87.7 89.2 87.3 89.2 87.2 89

6-Dense 93.1 933 923 94.1 90.3 932 91.4 93.1
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4.6 Experimental Analysis of the CGF-Deep-CNN Model with Varying Batch Size

This section provides an evaluation of the CGF-Deep-CNN model with varying batch sizes for the
classification of binary-class, multi-class categories, and multi-class subcategories. The batch sizes that
were considered in this study are 16, 32, 64, and 128. Fig. 7 shows the analysis for binary classification,
while Fig. 8 highlights the impact of CGF attribute selection on multi-class labels. The multi-class
subcategory classification analysis is depicted in Fig. 9.

——— e 072
B o g o2
89.4

89.2

e R — s
89.6

90.2

84 86 88 20 92 94 96 98 100

F-Measure

Recall

97.4

Accuracy

H128 m64 m32 m16

Fig. 7. Performance analysis for binary class classification using varying batch size.

F-Measure

Recall 96.2

Precision

Accuracy 98.2

00
o
00
(5,
[C]
o

95 100

H128 m64 m32 m16

Fig. 8. Performance analysis for multi-class classification using varying batch size.
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Fig. 9. Performance analysis for multi-class subcategory classification using varying batch size.
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From Figs. 7-9, it can be noticed that for binary, multi-class, and multi-class subcategory classification,
the developed CGF-Deep-CNN model recorded optimal performance when the batch size was 64, while
the performance significantly dipped with a batch size of 16. The reason for this optimal performance is
because the model is able to converge fast at a batch size of 64 and thus the error rate is least.

4.7 Comparison between CGF-Deep-CNN and Other Conventional Predictive
IDS Models

In a separate experimental analysis, the CGF-Deep-CNN model was compared with the most widely
used machine learning algorithms in intrusion detection (i.e., DT, LR, CNN, DBN, KNN, SVM, MLP
and one-class SVM (OCSVM). Among these models, OCSVM is an effective classifier used. OCSVM
is an unsupervised classification method used to learn the capability of distinguishing the testing data of
a specific class form other classes. The working principle of this technique is to minimize the hypersphere
of a single class of instances in the train dataset by considering all other instances external to the
hypersphere to be outliers. To make this comparison fair, these machine learning techniques were also
implemented and tested under the same environment settings, described in Section 4.1, and evaluated
using the same IoT dataset. The analysis was again done under three main scenarios: binary, multi-class,
and multi-class subcategory classifications of attacks. A summary of the results of these scenarios is
given in Tables 17—19, respectively.

Table 17. Comparative analysis of traditional machine learning models with binary class classification

Accuracy (%) Precision (%) Recall (%) F-Measure (%)
DT 90.2 89.7 89.4 89.5
LR 93.5 93.2 93 93.1
CNN 93.5 93.1 92.6 92.8
DBN 95.5 94.8 94.2 94.5
KNN 94.2 94 93.1 93.6
OCSVM 93.9 92.4 90.5 91.2
MLP 90.3 90.1 89.4 89.7
CGF-Deep-CNN 98.8 97.4 96.9 97.2

Table 18. Comparative analysis of traditional machine learning models with multi-class classification

Accuracy (%) Precision (%) Recall (%) F-Measure (%)
DT 90 89.4 89 89.2
LR 92.8 92.6 92.1 92.4
CNN 93.4 93 92.4 92.6
DBN 95.1 94.5 94 94.3
KNN 93.6 93.4 92.6 92.9
OCSVM 90.6 89.8 91.1 89.9
MLP 89.8 89.6 89.2 89.5
CGF-Deep-CNN 98.2 96.5 96.2 97.2

From Tables 17-19, the following remarks can be made: Firstly, the outcome suggests the superiority
of the proposed model over the others. Secondly, among other models, DBN and KNN methods gave
promising results, while others did not match up to the expected performance. Thirdly, the proposed
CGF-Deep-CNN model performs better than other existing methods in terms of evaluation metrics like
accuracy, precision, recall and F-measure. Fourthly, among other methods, DT and SVM recorded a
relatively inferior outcome, while variants of neural networks like MLP and DBN offered good results.
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The CGF-Deep-CNN model recorded the optimum performance due to the use of the novel CGF method.
This method acts an attribute selector which drops the less contributing features which causes overfitting
of model. In IoT systems, large scale attributes are present so here CGF method eliminates the less
relevant attributes while the other methods were used as a classifier.

Table 19. Comparative analysis of traditional machine learning models with multi-class subcategory
classification

Accuracy (%) Precision (%) Recall (%) F-Measure (%)
DT 89.7 89.4 89 89.1
LR 92.3 91.5 91.1 91.2
CNN 92.6 92.5 92.1 922
DBN 94.6 94.2 93.6 93.9
KNN 93.2 93 92.4 92.6
OCSVM 90.7 91.3 89.6 90.4
MLP 89.5 89.1 88.4 88.8
CGF-Deep-CNN 97.5 96.3 96 96.2

4.8 Model Complexity Analysis

To evaluate the efficiency of the proposed model, the latency time was analyzed under the same three
scenarios: binary, multi-class, and multi-class subcategory classification. The results were recorded and
stored. It was found that the proposed model latency delay was minimal in all categories of attacks. While
it took only 2.1 seconds with binary type, it recorded at least 2.7 seconds and 3.6 seconds in the case of
multi-class and multi-class subcategory classification, respectively. Among other models, the delay was
worst with SVM and MLP models. The mean response delay noted was only 2.8 seconds, and the
outcome is shown in Fig. 10.
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Fig. 10. Latency delay analysis of CGF-Deep-CNN model for all class labels type classification.

The overall computational complexity of the model is also evaluated in the study. The root mean square
error (RMSE) value is computed for the model taking into consideration the combination of convolutional
layers and dense layers. The model is implemented both using the CGF method and without using any
attribute selection approach. As shown in Fig. 11, the model gave the least RMSE value of 3.216 when
the CGF method is applied with 2 convolution layers and 3 dense layers.

The important parameters which impact the model’s complexity is shown in Table 20. Also the vital
metrics of the model with the application of CGF method is shown in Table 21. As it is observed that
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with the use of CGF method for attribute selection, the model metrics are reduced by around 30%.
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Fig. 11. Model complexity analysis in context to RMSE metric using CGF method.

Table 20. Important parameters of the Deep-CNN model

Deep-CNN model parameter Value
Input size [224, 224, 3]
Convolution layers 2
Convolution kernels [3%x3, 3x3]
Filters per convolutional layer [32, 64]
Pooling layers 2
Pooling type Max-pooling
Dense layers 2
Dense units [128, 1]
Activation functions ReLU, Sigmoid
Output activation Sigmoid
Total parameters [Approx. 500,000]

Table 21. Complexity of the model in context to parameters variables

Conv. Filters Pooling Dense CGF Deep learning
Dataset Input size
layers per Conv. layers layers metrics model metrics
IoTID20 80 x 256 3 32 2 2 90,587 129,410
UNSW-NBI15 47 2 16 1 2 976 1,394
NSL-KDD 41 3 32 2 3 3,113 4,447
KDD 41 2 16 1 2 741 1,058

4.9 Comparison with Related Works

Furthermore, a comparative analysis of the proposed CGF-Deep-CNN model is done with the existing
models discussed in the literature survey section, as seen in Fig. 12. Different models defined in various
existing work well in context to cyber-attack assessment. A cyber-attack detection model discussed in
[23] used a genetic algorithm with SVM while [25] applied a CNN model. Both recorded very good
accuracy of 97.3% and 97.7%, respectively. [38] used the AdaBoost model and generated a low accuracy
of 81.83%. In comparison to the existing models, our CGF-Deep-CNN model had an impressive mean
accuracy of 98.1%.
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Fig. 13. False positive rate analysis of proposed model with existing models in literature survey.

As explained in [51], a reliable IDS should have a low FPR. To test the reliability of our proposed IDS
model (the CGF-Deep-CNN model), we conducted a comparison of the related work. Fig. 13 highlights
the impact of the FPR on the performance of the CGF-Deep-CNN model in cyber-attack detection. It is
observed that the Mort-related work [45], which used deep learning techniques, had a very high FPR of
14.58%, while our model gave an optimum value of only 0.002%. This would prove that the proposed
feature selection method (CGF) has helped our proposed model be more reliable. Although the work in
[46] achieved a FPR close to ours, ours is still better than it. In addition, the work in [46] does not use
deep learning algorithms and uses an out-dated dataset (NSL-KDD), which is not suitable for building
IoT intrusion detection models. While our proposed model used a recent and more IoT-related dataset
(I0TID20).

Further reliability of the proposed model using CGF attribute selection method is validated against
three different datasets like UNSQ-nb15, NSL-KDD, and KDD9S to test its reliability. It is observed that
the model gave consistent performance with all the considered datasets in terms of accuracy, precision,
recall, and F-measure metrics. The mean accuracy, precision, recall, and F-measure values recorded were
97.35%, 95.67%, 94.37%, and 95.15%, respectively. The summary of outcome is shown in Table 22.
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Table 22. Evaluation of proposed model with different datasets

Accuracy (%) Precision (%) Recall (%) F-measure (%)
10TD20 97.8 97.4 96.9 97.2
UNSW-nbl5 97.5 96.6 94 95.8
KDD98 96.9 93.5 92.2 92.8
NSL-KDD 97.2 95.2 94.4 94.8

In context to our model, both CGF method as well as the built-in feature selection of Deep-CNN model
contribute to the promising performance. In an IoT based system, the incoming data flow is massive with
huge number of features and to handle such huge datasets, feature selection of Deep-CNN is not so
reliable. Even after extracting relevant features, some features may still get selected which affects the
overall accuracy of model. Thus, the proposed CGF method is helpful in picking more significant
attributes, reduces overfitting of model and helps in better model convergence. Also, it was observed that
with the training and testing proportion of 70:30 ratio, the model recorded an impressive test accuracy
but with 80:20, the accuracy was reduced to around 94% while with 60:40 ratio, it was around 92%.
Thus, 70:30 ratio was considered for this evaluation. The proposed model achieved good convergence to
optimal solution by using two methods which include Xavier initialization and Step decay. Xavier
initialization was used as the initialization method for the network’s weights and biases to avoid non-
convergence. Step decay is the learning rate schedule used for tuning the learning rate, momentum and
decay where the learning rate decreases over time.

FPR is a crucial metric considered here to validate the efficiency of the model. It denotes the proportion
of data sample count wrongly categorized to be a risk and the total instance count. The FPR is particularly
important in predicting intrusion attacks in an IoT system since here false alarms can be costly and
disruptive. It determines the number of normal event observed by the IDS as intrusions. So the FPR
should be low for a good prediction model. The proposed model successfully handles this parameter. A
very low FPR of only 0.002% was recorded with the model thus generating more reliable outcome.

Thus, the outcome of the presented framework is validated and compared with other existing works.
It is observed that the proposed model outperforms others in different performance metrics. Majority of
existing IoT intrusion analysis models possess a high FPR to estimate intrusions. Using such models on
unbalanced IDS datasets result in consuming heavy computational power and also it leads to more
processing delay period. Hence the existing models are less versatile and they lack reliability. In
comparison, the proposed model acts as a more effective computationally intelligent model with a novel
integrated attribute selection capability with efficient preprocessing using near miss undersampling and
normalization approach to optimize the response delay and reduce the FPR using an advanced
classification approach. The complexity of the model was tested with different combination of
convolution and dense layers with the presence of attribute selection method using RMSE metric. The
model improved the prediction accuracy, reduced the FPR and it works well in different datasets thus
making it more reliable.

The proposed model is developed to be deployed for both small as well as large scale networks. The
use of CGF method helps in eliminating less contributing features from the large datasets generated in an
IoT system. The model can also be implemented as a remote application but to accomplish it, a remote
support interface (RSI) needs to be integrated to adapt to the network fluctuation issues:

o It is needed to deal with network speed fluctuations. It would acts as an alarm to enable for remote
diagnosis of these fluctuations and be able to optimize network connectivity settings or even be able
to suggest to user.

« It can enforce security protocols which can help in verification of the firewall and antivirus settings
automatically.

e It can enable the usage of standardized applications thereby providing remote installation and
upgradation functionality.
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5. Conclusion

Preventing attacks on smart IoT systems and ensuring their data security have become some of the
most critical needs in recent times. This study presents a new, efficient, and loT-friendly IDS model for
low-powered IoT devices. The model is built using a novel attribute selection method known as CGF,
along with Deep-CNN algorithms. The proposed CGF attribute selection method was evaluated and
compared with various other attribute selection methods, such as info-gain, gain ratio, and chi-square
methods. The CGF method did better in terms of accuracy, precision, recall, and F-measure for both
binary and multi-class category and subcategory attacks. The proposed IDS model was evaluated using
four standard datasets—IoTID20, UNSW-nb15, NSL-KDD, and KDD—under different scenarios,
including binary, multi-class category and subcategory classifications. It achieved a mean accuracy,
precision, recall, and F-measure of 97.03%, 96.7%, 96.3%, and 96.8%, respectively. Additionally, a
minimal FPR of 0.0025 was observed, enhancing the reliability of our model. Furthermore, experimental
validation was conducted by varying the layers of the CNN model to determine the optimal solution. The
study found that the CNN model exhibited its best performance with two convolutional layers and three
dense layers. The model achieved optimal outcomes with a batch size of 64 for Deep-CNN. Evaluation
demonstrated the superiority of the developed model, as it outperformed other comparative methods
across the applied metrics. A latency analysis was also done. The results showed that detecting binary,
multi-class, and multi-class subcategory classifications took 2.1 seconds, 2.7 seconds, and 3.6 seconds,
respectively, for a mean delay of 2.8 seconds. So, it would be inferred that the designed CGF-Deep-CNN
model is reliable and can be used in a real-world setting to find malicious attacks and intrusions in a smart
and lightweight IoT ecosystem.
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