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Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has
been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tree species
diversity in local communities, which remains to be tested at the global scale. To address this gap, we analyzed
global forest inventory data and revealed that the relationship between tree species richness and EcM tree pro-
portion varied along environmental gradients. Specifically, the relationship is more negative at low latitudes and
in moist conditions but is unimodal at high latitudes and in arid conditions. The negative association of EcM tree
proportion on species diversity at low latitudes and in humid conditions is likely due to more negative plant-soil
microbial interactions in these regions. These findings extend our knowledge on the mechanisms shaping global
patterns in plant species diversity from a belowground view.
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INTRODUCTION

Forests contain the highest biomass among the terrestrial ecosys-
tems and are critical for both the mitigation of climate change and
biodiversity conservation (1). Yet, severe anthropogenic disturbances
have led to high risks of die-offs and even extinctions of tree species
and substantial loss of forests at the global scale (2-4). Understand-
ing the mechanisms underpinning tree species diversity in forest eco-
systems is fundamental for the conservation of tree species diversity,
and, hence, has intrigued ecologists in the past few decades. In gen-
eral, species diversity in local forest communities has been associ-
ated with factors such as temperature (5), rainfall (6, 7), and soil
fertility (8), as well as negative density dependence (9, 10). In con-
trast, the role of mutualistic interactions in mediating tree species
diversity has rarely been evaluated (11), although mutualistic bio-
logical interaction networks are also facing high risks of decline due
to global changes (12). Understanding the role of mutualistic bio-
logical interactions in maintaining tree diversity can facilitate the
protection and restoration of forest ecosystems. Mycorrhizal sym-
bioses are probably the most widely occurring mutualistic interac-
tions in terrestrial ecosystems, in which fungal partners provide
plants with soil nutrients and protection against soil-borne patho-
gens in return for carbon (13, 14). It is conceivable that such mutu-
alistic interactions by mycorrhizal symbioses can alleviate the effects
of negative biotic interactions (15), in particular, negative plant-soil
feedbacks. Therefore, mycorrhizal fungi are expected to weaken
negative density dependence of tree species and thus reduce tree
species diversity in forest communities (16, 17). Yet, the role of my-
corrhizal fungi in the maintenance of tree species diversity remains
to be evaluated.

Recent studies suggest that the alleviation of negative plant-soil
feedbacks varies between two main types of mycorrhizal fungi as-
sociated with tree species: ectomycorrhizal (EcM) and arbuscular
mycorrhizal (AM) fungi (18). Experiments and field observations
have found that EcM association can more strongly alleviate nega-
tive plant-soil feedbacks (17, 19) and hence conspecific negative
density dependence in forest communities (16, 20-24) than AM as-
sociation. These distinctions are presumed to stem from the greater
host specificity of EcM fungi (25) and their capacity to provide su-
perior physical protection against soil-borne pathogens by forming
a mantle around root tips of trees (11, 17). Consequently, a higher
proportion of EcM trees in forest communities is expected to lead to
a lower tree species richness (11, 26, 27) (termed as the EcM domi-
nance hypothesis hereafter, Fig. 1A). In contrast, the theory of niche
partitioning predicts that tree species richness will be higher in
communities with a mixture of both mycorrhizal types than in those
dominated by either AM or EcM trees (28-30). Niche partitioning
between EcM and AM tree species is expected because of their
abilities to access different pools of soil nutrients (31, 32). Specifi-
cally, EcM fungi can directly access soil organic nutrients by exuding
extracellular enzymes (33), whereas AM fungi have a greater affinity
to take up soil inorganic nutrients due to their limited enzymatic
capabilities (34). In addition, functional traits of plant leaves and
roots (e.g., nitrogen content) are usually different between EcM and
AM tree species (35, 36). These differences in plant functional traits
can increase the partitioning of nutrient uptake strategies between
EcM and AM trees, thereby promoting plant species coexistence
and leading to higher species richness in communities with mixed
mycorrhizal types (19, 26) (termed as the mycorrhizal mixture hy-
pothesis hereafter, Fig. 1B).
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Although the EcM dominance hypothesis has been proposed
repeatedly since the last century (11, 26, 27, 37), empirical studies
directly evaluating the relationship between tree species richness and
the relative proportion of EcM and AM trees are rare (21, 29). Spe-
cifically, a recent study conducted in the USA revealed a unimodal
relationship between tree species richness and EcM tree proportion,
challenging the EcM dominance hypothesis while supporting the
mycorrhizal mixture hypothesis (29). This finding raises questions
about the mechanisms by which the mutualistic interactions be-
tween plants and mycorrhizal fungi drive tree species coexistence
and species diversity within forest communities, as revealed by re-
cent plant-soil feedback experiments (17, 19) and seedling dynam-
ics analyses in forests (16, 21-24). To reconcile the inconsistencies
between the longstanding EcM dominance hypothesis and the re-
cently supported mycorrhizal mixture hypothesis, we propose that
these two hypotheses may not be mutually exclusive, and the alle-
viation of negative plant-soil feedbacks by EcM fungi and niche
partitioning between EcM and AM tree species may have jointly
determined tree species richness. If so, we expect an asymmetrical
unimodal relationship between the proportion of EcM trees and
tree species richness. Consequently, tree species richness would
peak in communities featuring a mixture of both mycorrhizal types
but would be comparatively lower in EcM-dominated than AM-
dominated forests (termed as the integrated hypothesis hereafter,
Fig. 1C) (29).

Because biotic interactions usually vary along environmental
gradients (38-40), we anticipate that the support for each hypothe-
sis (Fig. 1, A to C) may vary depending on environmental condi-
tions. At low latitudes and in moist conditions, where biotic stresses
such as pathogens and herbivory are likely stronger (40, 41), the
alleviation of negative plant-soil feedbacks by EcM fungi would be
more pronounced. Thus, the EcM dominance hypothesis may be
better supported in these conditions. In contrast, at high latitudes or
in arid conditions, niche partitioning may become more important
in shaping tree species richness because environmental stress may
lead to decreased competition and increased cooperation (42). Last,
at mid-latitudes and in moderately moist conditions, the integrated
hypothesis may be more supported.

If mycorrhizal associations interact with environmental factors
to influence plant diversity as we hypothesized, regional-scale analy-
ses may fail to detect these interactions or may even reveal opposing
trends of plant diversity along the gradient of the proportion of EcM
trees (21, 29). Therefore, a global-scale evaluation is needed to rec-
oncile recent regional findings and predictions of the longstanding
EcM dominance hypothesis (21, 29). To test the relative roles of
these hypotheses in different forests (Fig. 1, A to C), we used a data-
set of global forest inventory plots (Fig. 1D) to evaluate the relation-
ships between the proportion of EcM trees and species richness in
local forest communities across gradients of latitudes and aridity.
Because tree species richness and the proportion of EcM trees may
respond similarly to environmental gradients on a global scale, our
analyses also controlled for these potential environmental factors
before testing the relationships between tree species richness and
the proportion of EcM trees.

RESULTS
To assess the relationship between the proportion of EcM trees
and species richness in forest communities, we used a generalized

20f13



SCIENCE ADVANCES | RESEARCH ARTICLE

A EcM dominance hypothesis B Mycorrhizal mixture hypothesis C Integrated hypothesis
100 100 100
[
S 751 754 754
o
<
e}
% 501 50 50
°
(%]
8 254 254 254
2 2
y =f(-x) y =flx-x)
14 14 14
0.00 025 0.50 0.75 1.00 0.00 025 050 0.75 1.00
EcM proportion
D E
5 ey,
& L
e ‘“".’ W “a
o 2 . ‘. @ 100
- sare o ¥ Q
& 'q_., A é
< . 2
8 10
Q.
(%]
.
4
i [ ] T T T T T
EcM stem proportlono.oo 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

EcM stem proportion

Fig. 1. Hypothetical relationships between the proportion of EcM tree individuals in a community and tree species richness; and forest plot data used to test the
predictions. (A to C) Species richness can show a negative (only includes a negative first order term, hypothesis 1, or ECM dominance hypothesis), symmetrically uni-
modal (includes both linear and quadratic terms but the absolute coefficients of both terms have similar magnitude, hypothesis 2, or mycorrhizal mixture hypothesis), or
asymmetrically unimodal (the absolute value of quadratic term being larger than that of the first-order term, hypothesis 3, or integrated hypothesis) relationship with the
proportion of EcM trees. (D) The global pattern of the proportion of EcM tree species based on stem abundance in our forest plot dataset (N = 4090). The green back-
ground on the map indicates forest regions classified by (43). (E) Raw relationship between the proportion of EcM tree individuals and tree species richness using the

generalized linear model without controlling for covariates (* = 0.59).

linear model with a log link and a negative binomial distribution
of model residuals. To reduce the potential impacts of different
sampling efforts across regions on our analysis, we down-sampled
the global forest plots (N = 442,384; fig. S1) to 4090 plots (see Materials
and Methods; Fig. 1D). In the down-sampled dataset, 579 plots
were distributed in boreal forests, 2457 in temperate forests, and
1054 in tropical forests. Communities with a low proportion of
EcM trees (high proportion of AM trees; fig. S3A) had a wide
range of species richness ranging from very low to very high,
whereas communities with a high proportion of EcM trees consis-
tently had relatively low tree species richness (Fig. 1E and fig. S3B).
Because tree species richness was also related to climatic, topo-
graphical, soil, and inventory-survey variables (Fig. 2A), we also
included these potential covariates into our statistical models. We
found significant interactions between the proportion of EcM
trees and absolute latitude and the aridity index in their associa-
tion with tree species richness (P < 0.001; Fig. 2, A to D, and
table S2). Moving from low to high latitudes or from moist to arid
conditions (especially at middle to high latitudes), the relation-
ships between tree species richness and EcM tree proportion
changed gradually from negative to unimodal (Fig. 2, B to D, and
fig. S4). Our results did not change systematically when EcM tree
proportion was quantified by basal area instead of the number of
tree individuals, and species diversity within communities was
quantified by Shannon and Simpson indices instead of tree species
richness (see fig. S5).
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To further account for other potential variables influencing tree
species richness across latitudinal regions, such as geographic his-
tory and variation in species pool size across regions, we conducted
similar generalized linear model analyses within each biome and
ecoregion using all forest plots (N = 442,384) (43). An ecoregion is
a geographic unit within a biome with limited extent and character-
ized by similar climate, soil, vegetation, and geographic history (43).
The latitudinal variation in the relationships between EcM tree pro-
portion and tree species richness across different biomes and ecore-
gions was similar to that shown in the global analysis. Specifically,
the relationships changed from negative in biomes or ecoregions at
low latitudes to unimodal or positively unimodal in biomes or
ecoregions at high latitudes (figs. S6 and S7). For instance, in tropi-
cal and subtropical moist broadleaved forests, tree species richness
exhibited a negative correlation with EcM tree proportion (linear
EcM = —1.58 and quadratic EcM = —0.38). Conversely, in boreal
forests, tree species richness displayed a positively unimodal rela-
tionship with EcM tree proportion (linear EcM = 13.05 and qua-
dratic ECM = —8.63). Although not statistically significant, the
relationships between EcM tree proportion and tree species richness
across different biomes and ecoregions tended to be negatively uni-
modal in moist conditions and positively unimodal in arid condi-
tions (figs. S6 and S7).

To evaluate the relative importance of EcM tree proportion on
species richness compared with other covariates, we used random
forest models at the global and regional scales. At the global scale,
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although soil, topographical covariates, diameter threshold, and
plot size all showed associations with tree species richness (Fig. 3),
EcM tree proportion had a stronger association with tree species
richness than all but the climatic covariates (i.e., mean annual
temperature and aridity index) (Fig. 3A). In addition, the relative
importance of EcM tree proportion increased from tropical to tem-
perate to boreal forests (Fig. 3, B to D).

To further evaluate whether climate (temperature and aridity in-
dex) and soil properties (total soil nitrogen and soil pH) could influ-
ence species richness indirectly by mediating EcM tree proportion,
we conducted structural equation models. We found that climate
and soil properties were associated to tree species richness both di-
rectly and indirectly by affecting EcM tree proportion at the global
and regional scales (Fig. 4). The relationships between EcM tree pro-
portion (considering both linear and quadratic terms) and tree spe-
cies richness ranged from unimodal to negative (Fig. 4, B to D).
Compared to environmental variables, the effect of EcM tree pro-
portion on tree species richness was stronger in tropical and boreal
forests (Fig. 4, B to D), consistent with findings from random forest
models. Direct effects showed that temperature was the strongest
factor associated to tree species richness in boreal forests, while
multiple climate and soil variables had strong effects in tropical
forests (Fig. 4, B to D). In addition, temperature showed strong
indirect effects on tree species richness through its influence on
EcM tree proportion at the global and regional scales (Fig. 4).
While the aridity index and soil pH exhibited weak indirect effects,
total soil nitrogen had a strong indirect effect on tree species richness

Jiang et al., Sci. Adv. 11, eadt5743 (2025) 13 June 2025

in tropical forests (Fig. 4). Both mean annual temperature and
aridity index generally had positive direct effects on tree species
richness at the global and regional scales (Fig. 4). However, tem-
perature and the aridity index negatively affected EcM tree propor-
tion, while the effect of total soil nitrogen on EcM tree proportion
shifted from positive in boreal forests to negative in tropical forests
(Fig. 4, B to D).

DISCUSSION

A lower tree species diversity due to EcM tree dominance in forest
communities has repeatedly been hypothesized to be due to the fact
that EcM fungi have stronger ability than AM fungi to weaken nega-
tive plant-soil feedbacks by specialized soil-borne pathogens (27).
However, empirical evidence supporting the EcM dominance hy-
pothesis is lacking, and recent regional studies in temperate forests
have even produced conflicting results (21, 29). By leveraging a da-
taset of global forest inventory plots, we found that after controlling
for other environmental variables, the relationship between the pro-
portion of EcM trees and species richness depended on latitude and
aridity. Specifically, our results showed that at low latitudes and in
moist conditions, this relationship was more negative, which sup-
ported the EcM dominance hypothesis. At high latitudes and in arid
conditions where abiotic environments are more stressful, both
EcM- and AM-dominated communities had low richness, and a
mixture of the two major mycorrhizal types was associated with
high tree species richness. Therefore, the findings at high latitudes
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and in arid conditions supported the mycorrhizal mixture hypoth-
esis rather than the EcM dominance hypothesis. At intermediate
latitudes and under intermediate aridity conditions, the relationship
between tree species richness and the proportion of EcM trees was
negatively unimodal, which supported the integrated hypothesis.
This finding suggests that the EcM dominance hypotheses and the
mycorrhizal mixture hypothesis may jointly work at intermediate
latitudes and under intermediate aridity conditions, leading to a
negatively unimodal relationship between tree species richness and
the proportion of EcM trees in plant communities. Therefore, our
results based on a global forest inventory dataset suggest that in-
stead of favoring one of the three hypotheses proposed (Fig. 1, A to
C), the mechanisms by which mycorrhizal fungi influence plant
species diversity vary with environmental conditions. The impor-
tance of the EcM dominance hypothesis decreases and that of the
mycorrhizal mixture hypothesis increases toward higher latitude
and more arid conditions.

The variations in the relative importance of the three hypotheses
along the gradients of latitudes and aridity may be due to an increas-
ing importance of negative biotic interactions in maintaining tree
species richness in forest communities as abiotic conditions become
less stressful (42). Specifically, at low latitudes and in moist condi-
tions, where environments are less stressful, negative plant-soil
feedback and negative conspecific density dependence are relatively
stronger (38, 39, 44-46). For example, in all three tropical biomes,
EcM tree seedlings typically show a higher survival probability near
their conspecific adults compared to AM tree seedlings (16, 47, 48).
This stronger benefits from their conspecific adults for EcM than
AM seedlings is primarily attributed to a stronger host specificity of
EcM fungi (i.e., seedling survival will differ near conspecific versus
heterospecific adults) and their superior physical root protection
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compared to AM fungi (17, 25). In other words, the stronger nega-
tive biotic interactions at low latitudes and in moist conditions pro-
vide stronger potential for EcM fungi to alleviate these interactions.
Therefore, the increase in the proportion of EcM trees at low lati-
tudes and in moist conditions will substantially reduce the strength
of negative plant-soil feedback, which subsequently leads to lower
species richness in forest communities and a negative relationship
between tree species richness and the proportion of EcM trees.
Another possible explanation of the negative relationship be-
tween tree species richness and EcM tree proportion in tropical
forests is the relatively smaller species pool of EcM tree species at
low latitudes compared to AM tree species (fig. S8). For example, if
a tropical moist forest community is dominated by EcM trees, the
species richness of this community will be low because available
EcM tree species dispersing from EcM species pool is low. However,
the pattern of low tree species richness in EcM-dominated com-
munities can be formed by the following ecological processes in
two stages. First, EcM trees became dominant in forest communi-
ties, which could be potentially driven by abiotic environments
and/or local ecological processes such as positive plant-soil feed-
back. However, recent studies have found that the dominance of
EcM trees in moist forests at low latitudes has a weak relationship
with climate or soil conditions (49, 50). Instead, positive plant-soil
feedbacks of EcM tree species may be an important process that
leads to their dominance in these forests (51, 52). Second, EcM-
dominated forest communities exhibit low tree species richness.
This low species richness may be determined by the smaller species
pool of EcM tree species and/or local ecological processes. There-
fore, the differences in plant-soil feedbacks between EcM and AM
tree species should be considered as the dominant factor in at least
one of these two stages. In addition, the smaller species pool of EcM
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A Global
Fisher's C = 8.42 and P = 0.39

-0.26%**

MAT Al Soil N Soil pH

C Temperate

Fisher's C = 6.22 and P = 0.62 0.36™*

0.06*** 0.14%**

Fisher's C = 3.49 and P=0.90

B Boreal
Fisher's C = 7.06 and P = 0.53

1.55%**

0.88%**
<

0.43%*

MAT Al

D Tropical

—0.15%**

MAT Al Soil N Soil pH

MAT Al Soil N Soil pH

Fig. 4. Direct and indirect effects of environmental variables on species richness in forest communities. (A) Global model; (B) boreal model; (C) temperate model;
(D) tropical model. The goodness of fit for structural equation models is indicated by the Fisher’s C value with P > 0.05 suggesting good fit of models and no missing paths.
Brown and blue solid lines represent significantly positive and negative relationships (P < 0.05), respectively. Dashed gray lines represent nonsignificant relationships
(P > 0.05). Arrow width is proportional to strength if there is a significant relationship. SR, species richness; EcM and EcM2 indicate the linear and quadratic propor-
tions of ectomycorrhizal trees; MAT, mean annual temperature; Al, aridity index; soil N, total soil nitrogen. The path from the linear to the quadratic proportion of
ectomycorrhizal trees must be included in the model by piecewiseSEM package (72) due to their mathematical relationship (not causality). Paths linking environmen-
tal variables to ECM2 were removed because they were not significant. Including all potential paths in the models would also prevent the calculation of Fisher’s C. *P < 0.05,

**P < 0.01, ***P < 0.001.

than AM tree species in tropical moist forests may itself be influ-
enced by positive plant-soil feedbacks of EcM tree species, which
may then reduce local species richness. Together, the support for
the EcM dominance hypothesis at low latitudes and moist condi-
tions aligns with recent evidence from experimental and field
studies (16, 17, 19, 21-24). These studies, which have usually been
conducted using tree seedlings, show that EcM tree species often
exhibit weak negative or even positive plant-soil feedbacks and
hence experience weaker conspecific negative density dependence
than AM tree species in forests. Consequently, we suggest that the
more negative relationship between tree species richness and the
proportion of EcM trees in tropical forest communities compared
with other forests is likely driven by local ecological processes
(Fig. 1A), in particular, positive plant-soil feedback, rather than by
a smaller species pool of EcM than of AM tree species.

With increasing latitudes and aridity, we found that the impor-
tance of the EcM dominance hypothesis declined, whereas that of
the niche partitioning hypothesis enhanced. At high latitudes and in
arid conditions where environments are relatively more stressful for
trees, negative biotic interactions such as competition and negative
plant-soil feedback of tree species may be weak, as indicated by
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previous studies (42). Instead, positive interactions and niche parti-
tioning may be more important. Therefore, in stressful conditions,
AM tree species may not have strong negative plant-soil feedbacks
and negative density dependence to promote species coexistence as
they do in tropical forests. In other words, because of the weak nega-
tive density dependence among AM trees in stressful environ-
ments (such as high latitudes and more arid conditions), the forest
communities in these regions would have low tree species richness
even when the communities are dominated by AM trees. This will
result in higher tree species richness in communities with mixed my-
corrhizal types than in either AM- or EcM-dominated communities.
In addition, a more rapid decrease in the regional species pool of AM
than EcM tree species along the latitudinal gradient may also con-
tribute to the increased importance of mycorrhizal mixture hypoth-
esis at high latitudes (fig. S8) and a unimodal relationship between
the proportion of EcM trees and species richness. Overall, we used
global data to analyze the relationship between species richness and
EcM tree proportion and its variation along the gradients of latitudes
and aridity index by assuming the relative importance of niche
partitioning and plant-soil feedbacks. However, the numbers of for-
est plots in tropical regions and the Southern Hemisphere were low
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compared with northern temperate regions. Incorporating more for-
est plots in these regions in the future would help reduce uncertainty
in our analyses. Moreover, it is challenging to reveal the mechanisms
underlying this relationship using inventory data. Dynamic data
from repeated censuses of plant survival and recruitment or experi-
ments could help elucidate the mechanistic relationship between
species richness and EcM tree proportion.

In addition to EcM tree proportion, environmental variables,
particularly climate and soil, also play a substantial role in shaping
tree species richness. At low latitudes, the stronger influence of en-
vironmental variables than of EcM tree proportion is likely due
to the more complex soil and climate conditions in these regions.
These complex conditions may also lead to multiple environmental
variables colimiting tree species richness in tropical forests, whereas
boreal forests are primarily influenced by temperature (6). While
these direct effects of climate and soil variables on tree species rich-
ness via physiological limitations have been well-documented (6),
their indirect effects, mediated through biotic interactions (with
EcM tree proportion serving as a proxy in this study), are rarely
evaluated. For instance, climate (e.g., temperature and aridity index)
can influence EcM tree proportion by its effects on litter decomposi-
tion (53, 54). In addition, we found that effects of soil properties on
EcM tree proportion, particularly total soil nitrogen, shifted from
positive at high latitudes to negative at low latitudes. This latitudinal
variation suggests that the role of EcM trees in biogeochemical
cycling differs between low- and high-latitude forests (54, 55), high-
lighting the ecological complexity and functional variability of EcM
trees in different regions.

In summary, we used a dataset of global forest plots to test hy-
potheses regarding the relationships between tree mycorrhizal sym-
bioses and tree species richness. Our analyses revealed that the
relative importance of EcM dominance (i.e., the EcM dominance
hypothesis) versus niche partitioning between EcM and AM species
(i.e., the mycorrhizal mixture hypothesis) varied along gradients
of latitude and aridity. Specifically, the EcM dominance hypothesis,
which predicts a negative relationship between tree species richness
and the proportion of EcM trees within communities, was more
strongly supported at low latitudes and in moist conditions where
strong negative biotic interactions are common. In contrast, the my-
corrhizal mixture hypothesis provided a better explanation for varia-
tions in tree species richness at high latitudes and in arid conditions.
We suggest that the impact of tree mycorrhizal types on the mainte-
nance of tree species richness within forest communities depends on
environmental conditions. This finding provides a global perspec-
tive on how belowground mycorrhizal fungi influence the mainte-
nance of aboveground plant diversity and extends the classical EcM
dominance hypothesis (27). While many other ecological and his-
torical variables shaping global plant species diversity have been
well-evaluated in previous studies (5), our research highlights that
mutualistic interactions between plants and mycorrhizal fungi are a
crucial addition to our understanding of global patterns in tree spe-
cies diversity across terrestrial ecosystems.

MATERIALS AND METHODS

Forest inventory data

In this study, we assembled 442,384 ground-sourced forest invento-
ry plots from 50 countries in five continents (fig. S1). The compila-
tion of this comprehensive database is made possible by the Global
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Forest Biodiversity Initiative (GFBI) and the Science-i cyberinfra-
structure. We also used an additional complementary forest inven-
tory dataset with 1177 plots from China (56), 225 plots in Gentry
(57), as well as 222 plots in SALVIAS (58) and 78 plots from TEAM
accessed in BIEN dataset (59) (Fig. 1D). The final dataset consists of
tree stem-level records of species identity and diameter at breast
height (DBH, usually measured at 1.3 m above ground). In addition,
we obtained plot-level attributes including plot ID, plot coordinates
(longitude and latitude), plot size (hectare), and tree DBH threshold
above which all trees in a plot were measured (centimeter). The sam-
ple intensity of forest plots is uneven across geographical regions
(53, 60). To eliminate the potential impacts of sample effort on our
analysis, we down-sampled the forest plots in GFBI by randomly
subsampling three, five, or eight plots (depending on the total sam-
ple size in these regions) within a 2° by 2° grid in North America and
Europe where sample plots are most densely distributed. Our
subsample consisted of 4090 plots with 579 plots in boreal forests,
2457 plots in temperate forests, and 1054 plots in tropical forests.
The number of plots may vary slightly across analyses depending on
the availability of environmental variables. We defined boreal forests
as the regions with absolute latitude >50°, temperate forests as the
regions with absolute latitude ranging between 23.5° and 50°, and
tropical forests as the regions with absolute latitude <23.5° (36). We
standardized the species names in our forest plots using the TNRS
package (61) in R language (62).

Tree mycorrhizal type

We assigned the mycorrhizal type for each tree species using the
FungalRoot dataset (18). In this dataset, each tree species is listed
as EcM or “other species” The latter are mainly AM species and a
low proportion of ericoid-mycorrhizal and some non-mycorrhizal
species (totaling 2.6%). Initially, we categorized species by their
mycorrhizal type at the genus level because mycorrhizal types are
generally phylogenetically conserved within genera (18, 63, 64).
Second, for the few groups in which mycorrhizal types were not
consistent within a genus such as EcM-AM, we used species-level
mycorrhizal types. For species classified as EcM-AM, we divided
the stem number and basal area equally, attributing half to EcM
trees and half to AM trees. By using the updated FungalRoot data-
base to classify tree mycorrhizal types, we obtained the geographic
pattern of EcM tree proportions, which is generally consistent with
previous studies (53), with only minor differences. We then calcu-
lated the EcM tree proportion within each forest community using
two metrics: (i) the ratio of EcM tree stem count to the total stem
count and (ii) the ratio of the basal area occupied by EcM tree spe-
cies to the total basal area in each plot. These two measures were
used because EcM tree species on average have larger individual
basal area than AM tree species; thus, the first ratio is generally
smaller than the second ratio.

Covariates

To control for the effects of covariates potentially modifying the re-
lationship between tree species richness and the EcM tree propor-
tion, we considered 17 covariates in total, including absolute latitude,
2 climatic variables, 2 topographical variables, 11 soil variables, and
2 vegetation-survey variables. The climatic variables were mean an-
nual temperature and aridity index, which were considered the
most important variables influencing the global pattern of tree
species richness in forest communities (6) and are associated with
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the distributions of EcM trees (53, 55). We used aridity index in-
stead of precipitation because aridity index can better represent a
balance between water supply and demand than precipitation. Low
values of aridity index indicate dry conditions, and high values of
aridity index indicate humid conditions. Mean annual temperature
and aridity index were obtained from the CHELSA database and
(65) with a spatial resolution of 30 s. Soil variables in six depths from
0 to 200 cm were obtained from the SoilGrids250m (66), which
were aggregated in a resolution of 30 s. These variables included
soil bulk density, soil cation exchange capacity, soil volumetric
fraction of coarse fragments, total soil nitrogen, soil pH, the soil
clay content, soil sand content, soil silt content, and soil organic
carbon content. In our analyses, we used the average values of
these soil variables across the six soil depth levels. Topographical
variables included elevation and slope, which were extracted from the
EarthEnv with a resolution of 30 s (67). Vegetation survey vari-
ables included DBH threshold and plot size that were obtained
from original survey records. We extracted all abiotic variables
from raster datasets to each plot based on longitude and latitude
using the terra package (68) in R.

Statistical analyses

To evaluate the relationship between tree species richness and the
EcM tree proportion, we used generalized linear models with tree
species richness (i.e., number of tree species with DBH > DBH
threshold) as the response variable and linear and quadratic terms
of the EcM tree proportion and the abovementioned covariates as
the predictors. We assumed a negative binomial distribution for re-
siduals because Poisson-distributed residuals were overdispersed. To
simplify the models and to avoid collinearity among the predictors,
we only included the two soil variables that showed the strongest cor-
relations with tree species richness (soil clay content and soil cation
exchange capacity; see fig. S2). To account for spatial autocorrelation,
we included a spatial covariate term in the model with a 2000-km
neighborhood distance and weighted using inverse distance (69). To
evaluate whether the relationship between tree species richness and
the EcM tree proportion varied across the gradients of latitude and
aridity conditions, we performed a model selection procedure by in-
cluding interactions between EcM tree proportion, absolute latitude,
and aridity index, which finally suggest a three-way interaction term
in our model with the lowest Akaike information criterion (AIC) val-
ues (table S1). Because of the collinearity between absolute latitude
and temperature, we excluded mean annual temperature in our mod-
el. The variance inflation factors of covariates, except for the interac-
tion terms and the quadratic terms in our models, were all below 3.1,
suggesting low collinearity among them. In addition, we also used
basal area instead of stem counts for the calculation of the EcM tree
proportion as independent variable and Shannon and Simpson indi-
ces of tree species diversity instead of species richness as dependent
variables. The results based on these variables were presented in the
Supplemental Materials. The Shannon and Simpson indices were ad-
justed by adding an offset of one and analyzed with generalized linear
models assuming Gamma-distributed residuals.

To further assess the consistency of the observed EcM proportion-
tree richness relationships across narrower environmental gradients,
we also conducted a generalized linear model within each biome
and ecoregion (43). The predictors included linear and quadratic
terms of EcM tree proportion, mean annual temperature and aridity
index, elevation, slope, soil clay, soil cation exchange capacity, DBH
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threshold, and plot size. Biome and ecoregion classifications for
each plot were derived from data provided in (43). Notably, within
this dataset, each ecoregion exhibited a more constrained variation
in environmental conditions and biogeographic history that nested
within biomes. For our analysis, we used a generalized linear model
with Poisson-distributed residuals (or negative binomial-distributed
residuals if overdispersed) for each biome and ecoregion, provided
that the sample size was >100 plots and the range of EcM tree
proportion was >0.5. For these separate analyses, we used all plots
instead of the down-sampled dataset to retain more biomes and
ecoregions (uneven sampling among separate analysis was consid-
ered unproblematic). Subsequently, to explore the potential shifts in
the EcM tree proportion-tree species richness relationships along the
gradients of latitude and aridity, we used Pearson correlation coeffi-
cients to examine the associations between the linear plus quadratic
slopes of EcM tree proportion and absolute latitudes and aridity index.

Random forests were used to explore the relative importance of
the proportion of EcM trees on tree species richness in comparison
with other covariates at the global scale and in boreal, temperate,
and tropical forests separately. Consistent with the generalized lin-
ear models introduced above, we included the linear term of the
EcM tree proportion, as well as covariates as the predictors in these
random forest models. The quadratic term of the EcM tree propor-
tion was removed because random forests could fit nonlinear rela-
tionships well. The random forest models were calculated using the
randomForest R package (70). We used default hyperparameters of
the randomForest function in the randomForest package (70): number
of trees = 500, number of variables randomly sampled at each split =
number of predictors / 3, and relative importance of predictors =
mean decrease in node impurity.

Although we anticipated that climate, soil, and the proportion
of EcM trees would affect tree species richness, it was also possible
that the climate and soil could influence the proportion of EcM
trees within communities and hence indirectly influence tree spe-
cies richness. To evaluate the direct and indirect effects of climate
and soil via the proportion of EcM trees on species richness, we
used structural equation modeling to assess these effects at the
global scale and in boreal, temperate, and tropical forests separate-
ly. We tested how climate (represented by mean annual tempera-
ture and aridity index) and soil variables influenced tree species
richness directly and indirectly by affecting the EcM tree propor-
tion. Here, we used total soil nitrogen and soil pH to represent soil
properties as previous studies have found their associations with
EcM tree proportion (55, 71). Since EcM tree proportion could
also influence soil properties, we tested alternative structural equa-
tion models incorporating paths from EcM tree proportion to soil
properties. However, our structural equation models with paths
from soil properties to EcM tree proportion showed lower AIC
values (table S3), indicating a better fit compared to the alterna-
tive models. Consequently, we reported results based on structural
equation models with paths from soil properties to EcM tree pro-
portion. The structural equation models were performed using the
piecewiseSEM R package (72).

Supplementary Materials
This PDF file includes:

Figs.S1to S8

Tables S1 to S3
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