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ABSTRACT 

Amniotic fluid (AF) profiling provides a minimally invasive window into early fetal physiology. We 1 
characterized the AF metabolome from first trimester (Day 68) Holstein dairy heifers (n=45), 2 
considering fetal sex, conception method [in vitro fertilization (IVF) vs. artificial insemination 3 
(AI)], and eventual pregnancy outcome as key variables. Multivariate statistics uncovered 4 
differentially abundant metabolites for each comparison – including markers that preceded 5 
spontaneous abortion – independently of recipient age, weight, gestation length, or fetal 6 
genetics. Thereafter, a machine learning algorithm using panels of six metabolites accurately 7 
predicted fetal sex (AUROC=0.76; P=0.023) and pregnancy viability (AUROC=0.81; P=0.018), 8 
while corroborating conception method (AUROC=0.91; P=0.001). External validation using AF 9 
(Day 42) from an independent cohort of beef heifers (n=22) reproduced the fetal sex classifier 10 
with similarly high sensitivity and specificity (AUROC=0.85, P=0.029). These findings reveal 11 
metabolic signatures that forecast fetal sex and pregnancy viability, while confirming distinct 12 
metabolic imprints of assisted-conception modalities. These data lay the groundwork for next-13 
generation AF prenatal diagnostics in veterinary and human obstetrics. 14 
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INTRODUCTION 

Amniocentesis has enabled fetal genetic diagnosis in cattle and humans for decades [1–4]. 23 

However, the broader diagnostic potential of amniotic-fluid (AF) composition remains largely 24 

unexplored. While AF is broadly isosmotic with fetal serum and undergoes gradual 25 

compositional changes across gestation [5], it remains the primary conduit for maternal-fetal 26 

biochemical exchange throughout gestation [6–9]. Accordingly, our overarching hypothesis was 27 

that comprehensive metabolomic profiling of this readily accessible fluid – obtainable through 28 

established, low-risk amniocentesis [10–12] – may provide new insights to refine prenatal 29 

monitoring in livestock and, potentially, human medicine. 30 

The USA cattle production industry, valued at ~ $ 88 billion annually [13], faces reproductive 31 

efficiency challenges. Despite fertilization rates exceeding 80%, early pregnancy losses 32 

approach 45% in dairy operations [14]. This paradox directly undermines farm profitability, 33 

where reproductive performance is a core economic driver [15–17]. Ultrasound, the current 34 

pregnancy surveillance standard, reveals gross fetal anatomy but cannot detect sub-clinical 35 

metabolic disturbances and remains relatively operator dependent. 36 

Meanwhile, human AF research is constrained by population heterogeneity and confounding 37 

variables, such as maternal age, weight, ethnicity, and conception method [18–26]. Rodent 38 

models offer experimental control but require pooling samples across multiple fetuses and 39 

litters, compromising individual-level resolution [27,28]. Rodent models are also highly inbred, 40 

poly-ovulatory, and exhibit much shorter gestation lengths, which complicate data extrapolation 41 

to bovine and human pregnancies [29]. 42 

In contrast, bovine pregnancies provide ample AF volumes for individual fetus-level analysis. 43 

Cattle also share key reproductive characteristics with humans, including mono-ovulation, 44 

comparable gestation length, and an estrous cycle more broadly analogous to the menstrual 45 

cycle [30–32]. Moreover, bovine embryonic epigenetic patterning more closely resembles 46 

human patterns than murine models [33,34] while experimental conditions, including genetics, 47 

nutrition, and environment can be effectively controlled. 48 

We therefore applied ultra-high-throughput untargeted metabolomics, integrated with machine-49 

learning analytics, to interrogate early-gestation bovine AF, addressing three specific objectives.  50 

We first investigated whether AF contains metabolomic signatures of fetal sex – information 51 

valuable for livestock management [35]. Despite evidence that sex influences embryonic 52 
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metabolism [36–42] and epigenetic patterning [43–45], bovine AF sexual dimorphism has been 53 

examined in only one miRNA study [46]. 54 

Secondly, we examined metabolic differences between in vitro fertilization (IVF) and artificial 55 

insemination (AI) derived pregnancies. In vitro embryo production (IVEP) now dominates 56 

commercial cattle breeding [47], while human IVF exceeds 2.5 million cycles annually [48]. 57 

Understanding how assisted reproduction alters fetal metabolism [49–51], fetal epigenetics [52–58 

57], and endometrial responses [58,59] could improve protocols for both species. 59 

Thirdly, we tested whether AF metabolites can forecast pregnancy viability. Previous research 60 

identified four amino acids distinguishing viable from non-viable bovine pregnancies following 61 

cloned embryo transfer [60]. However, the chromosomal instability of clones [61] limits practical 62 

application. We therefore focused on spontaneous losses under standard commercial (IVF and 63 

AI) conditions. 64 

Here we show that bovine AF (Day 68) harbors metabolomic signatures that can predict fetal 65 

sex and pregnancy outcome while corroborating conception method – independently of several 66 

maternal traits and fetal genetics. Random Forest models built on six metabolites each – 67 

including adenine, hypotaurine, methylguanosine, and phosphoserine, among others – achieved 68 

high area under the receiver operating characteristic curve (AUROC) values between 0.76-0.91. 69 

Furthermore, validation of the fetal sex classifier in an independent cohort confirmed model 70 

robustness. These findings highlight concise panels with potential near-future application in 71 

precision livestock management, where early and accurate prediction of calf sex and pregnancy 72 

trajectory could inform breeding decisions, optimize resource allocation, and reduce economic 73 

losses associated with undesired male calves or failed pregnancies. More broadly, this 74 

approach and these data provide a translational framework for developing next-generation 75 

prenatal diagnostics in human obstetrics. 76 

 

MATERIALS AND METHODS 

Overview 

To systematically investigate AF metabolomic signatures, we established two experimental 77 

cohorts. Initial pregnancies were generated in Holstein heifers (n=20) at the ST Genetics Ohio 78 

Heifer Center (South Charleston, OH, USA) following estrous cycle synchronization and AI 79 

using conventional (n=13) or sex-sorted (n=7) semen (Cohort 1A). During pregnancy, ovum 80 

pickup (OPU) was performed on seven of these animals. Resulting oocytes were used for IVEP. 81 
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These embryos were individually transferred into a separate group of synchronized recipient 82 

Holstein heifers, generating a further 25 pregnancies (Cohort 1B). Amniocentesis was 83 

performed on all animals (n=45) on Day 68 of pregnancy. Cohort 1 animals were maintained by 84 

ad libitum access to a standard total mixed ration (TMR) corn silage-based diet. Cohort 1 85 

samples were collected between 04.2020-12.2021 as approved by The Ohio State University 86 

Institutional Animal Care and Use Committee. 87 

For independent validation, 22 embryos were transferred individually into estrous synchronized 88 

crossbred beef heifers (n=22) at the University College Dublin (UCD) Lyons Research Farm, 89 

Dublin, Ireland. AF was recovered on Day 42 (Cohort 2). Cohort 2 animals were maintained on 90 

a grass maize silage supplemented with a standard beef finishing concentrate. Cohort 2 91 

samples were collected between 03.2022-08.2022 as approved by the UCD Animal Research 92 

Ethics Committee and licensed by the Health Products Regulatory Authority, Ireland, under 93 

Directive 2010/63/EU. 94 

Experimental design 

Cohort 1 AF samples were categorized according to multiple parameters to enable 95 

comprehensive analyses. This is summarized in Figure 1 and described below. 96 

Fetal sex. Male-carrying pregnancies (n=26) included fetuses derived by IVF (61.5%) and AI 97 

(38.5%), utilizing conventional (84.6%) and sex-sorted (15.4%) semen. Among these, 96.2% 98 

resulted in successful pregnancies, while 3.8% spontaneously aborted. Female-carrying 99 

pregnancies (n=19) consisted of IVF (47.4%) and AI (52.6%) derived fetuses, derived using 100 

conventional (84.2%) and sex-sorted (15.8%) semen. In this group, 73.7% carried to term, while 101 

26.3% spontaneously aborted. 102 

Conception method. IVF-derived pregnancies (n=25) comprised male (65%) and female (35%) 103 

fetuses, generated using conventional semen (100%) of which 88% resulted in successful 104 

pregnancy and 22% spontaneously aborted. AI-derived pregnancies (n=20) comprised male 105 

(50%) and female (50%) fetuses, generated using both conventional (65%) and sex-sorted 106 

(35%) semen. Of these, 85% were successful compared to 15% spontaneous abortions. 107 

Pregnancy outcome. Among successful pregnancies (n=39), 64.1% were male and 35.9% were 108 

female. Of these, 56.4% were IVF-derived, and 43.6% were AI-derived. Additionally, 87.2% 109 

were produced using conventional semen, while 12.8% used sex-sorted semen. Spontaneous 110 

abortion (n=6) or successful pregnancy (n=39). The spontaneous abortion group (n=6) 111 

comprised 16.7% male and 83.3% female fetuses, with 50% derived from IVF and 50% from AI. 112 
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Of these, 66.7% were generated using conventional semen, and 33.3% used sex-sorted semen. 113 

Spontaneous abortions occurred at 208 ± 55.7 days (mean ± SD), ranging from Day 98-252. 114 

Fetal genetics. Using semen from one sire throughout (controlling paternal effects) and 115 

collecting oocytes from seven heifers for IVEP allowed tracking genetic relationships. For 116 

example, oocytes from mothers producing Heifer 1 via AI also produced embryos transferred to 117 

recipients resulting in Heifers 2-7. Therefore, Heifers 1-7 (Group A) are full genetic siblings. This 118 

applies to Groups B-G, while Group H comprises paternal half-siblings (Fig. 1D). 119 

Cohort 1A estrous cycle synchronization 

Estrous cycles of 20 Holstein heifers were synchronized using a standard 5-day fixed-time 120 

artificial insemination (FTAI) protocol [62]. In brief, each heifer received a progesterone (P4)-121 

controlled internal drug release (CIDR) device (1.38 g P4, Eazi-Breed, Zoetis, Florham Park, 122 

NJ) inserted intravaginally on a random day of their estrous cycle, plus intramuscular 123 

administration of gonadotropin releasing hormone (GnRH, 100µg gonadorelin acetate, Parnell, 124 

Overland Park, KS), designated as Day -8. On Day -3, the CIDR was removed, and heifers 125 

were administered prostaglandin F2α (PGF2α) intramuscularly (500 μg cloprostenol sodium, 126 

Parnell, Overland Park, KS). A second, identical PGF2α injection followed 24 hours later. The 127 

day of observed estrus was marked as Day 0 at which time GnRH was administered 128 

intramuscularly to induce ovulation (Supplementary Figure 1A). 129 

Cohort 1A artificial insemination 

Thirteen of these synchronized heifers, selected at random, were artificially inseminated on Day 130 

0 using conventional bull semen from the same sire (ST Genetics, Navasota, TX). More 131 

specifically, semen was thawed by immersion in 35.5 °C water for 45 seconds before deposition 132 

into the uterine cavity, guided by transrectal palpation. The remaining seven synchronized 133 

heifers were identically artificially inseminated on Day 0 using sex-sorted semen from the same 134 

sire as previously (SexedULTRA 4M™, ST Genetics, Navasota, TX). 135 

Cohort 1A amniocentesis 

Pregnancies were confirmed on gestational Day 60 by transrectal ultrasonography using a 5-9 136 

MHz linear transducer coupled to an Ibex EVO II display (E.I. Medical Imaging, Loveland, CO). 137 

Amniocentesis was then performed on Day 68, following a previously described procedure [63]. 138 

In brief, heifers were restrained in a squeeze chute, and gentle massage of the ventral vulvar 139 

area stimulated urination. An epidural block was administered by injecting 5 ml of 2 % lidocaine 140 

(Aspen Veterinary Resources, Liberty, MO) into the inter-coccygeal space between the first and 141 
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second vertebrae. Additionally, 10 mg xylazine (Rompun, Shawnee Mission, KS) was 142 

administered intravenously as a sedative to further minimize stress. 143 

A vaginal lavage was then performed by intravaginal infusion of 60 ml sterile 0.9 % sodium 144 

chloride solution, while rectal contents were emptied to allow manipulation of the broad 145 

ligament. After aseptic preparation, a 5-10 MHz convex transducer coupled to an Ibex EVO II 146 

display (E.I. Medical Imaging, Loveland, CO) was inserted into the vaginal canal up to the fornix. 147 

Using transrectal manipulation of the broad ligament, the amniotic space was positioned against 148 

the vaginal wall to enable safe insertion of a 20 G x 2” needle (WTA, College Station, TX) to 149 

minimize risk of injury to the umbilical cord, placentomes, or fetus. 150 

The amniocentesis needle was connected to 1.4 m tubing (WTA, College Station, TX) and a 3-151 

way stopcock (MILA International, Florence, KY) with two syringes attached to the remaining 152 

ports. Upon entering the amniotic cavity, 5 ml AF was drawn into a 20 ml luer-lock syringe to 153 

prime the line. The port was then switched to collect a final AF volume of approximately 40 ml 154 

within a 50 ml luer-lock syringe (Air-Tite Products Co., Inc., Virginia Beach, VA). AF samples 155 

were immediately aliquoted, snap frozen in liquid nitrogen [N2(l)], and stored in N2(l) until 156 

transport for analysis. 157 

Following amniocentesis, pain management was provided by intravenous administration of 158 

flunixin meglumine (Vetameg, Aspen Veterinary Resources, Liberty, MO) at 50 mg·50kg-1 body 159 

weight, and oral administration of meloxicam (Unichem Pharmaceuticals Inc., East Brunswick, 160 

NJ) at 50 mg·50kg-1 body weight. All amniocentesis procedures were performed by one of two 161 

experienced technicians. 162 

Cohort 1A ovum pickup 

During pregnancy, OPU was performed on seven heifers using a standard protocol [64,65]. 163 

Specifically, donors were restrained in a squeeze chute, and caudal epidural anesthesia was 164 

administered as described above. The perineal area was then cleaned and disinfected using 70 165 

% isopropyl alcohol. Oocyte retrieval was ultrasound-guided using a 5-9 MHz linear transducer, 166 

coupled to an Ibex EVO II display (E.I. Medical Imaging, Loveland, CO), inserted into the 167 

vaginal fornix. Follicles were punctured with an 18 G x 5.5 cm needle (WTA, College Station, 168 

TX) attached to a metal guide connected via plastic tubing to a 50 ml conical tube linked to a 169 

vacuum pump (Cook Medical, Bloomington, IN), maintaining a constant flow rate of 12 ml·min-1. 170 

Plastic tubing was flushed with pre-warmed (38.5 °C) Dulbecco’s phosphate buffer solution 171 

(DPBS) supplemented with 0.4% bovine serum albumin (BSA), 25 mg·l-1 kanamycin sulphate 172 
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and 5 IU·ml-1 sodium heparin at 36 ± 1 °C. Then, follicular aspirates from each follicle over 3 173 

mm in diameter were filtered using a 75 µm filter (oocyte aspiration dish with 3 mm grid, 174 

Professional Embryo Transfer Supply, Canton, TX) and washed with pre-warmed oocyte 175 

collection medium (Boviteq, Madison, WI). The contents of the filter were transferred to a square 176 

grid dish to locate and harvest cumulus-oocyte complexes (COC) under a stereomicroscope. 177 

OPU was performed by one of two experienced technicians. 178 

Cohort 1B in vitro embryo production 

In vitro embryo production was performed at the ST Genetics Texas laboratory following 179 

proprietary procedures. COC from each donor were matured in-transit over 24 h at 38.5 °C 180 

within maturation medium (ST Genetics, TX). Matured COC were then transferred into a pre-181 

equilibrated 60 µl drop of IVF medium (ST Genetics, TX) covered with mineral oil. Frozen-182 

thawed sperm was purified using a double-density gradient approach (Nidacon International AB, 183 

Mölndal, Sweden) as previously described [66]. A final concentration of 106 sperm·ml-1 was 184 

achieved and fertilization took place for 8 h at 38.5 °C under 5 % CO2 in air. Following 185 

fertilization, cumulus cells were removed, and embryos were cultured in a benchtop incubator 186 

(WTA, College Station, TX ) at 38.5 °C under 5 % O2, 5 % CO2, and balanced N2 as premixed 187 

gas (Airgas, Dallas, TX). Cleavage rates were recorded 3 days after fertilization and blastocyst 188 

rates recorded at 7 days post-fertilization. Embryo stage and quality were morphologically 189 

determined according to International Embryo Transfer Society (IETS) guidelines. 190 

Cohort 1B embryo transfer 

Recipients for embryo transfer were synchronized using a standard 5-day fixed-time embryo 191 

transfer (FTET) protocol [62]. The heifers received a CIDR inserted intravaginally on a random 192 

day of their estrous cycle designated as Day -8. On Day -3, the CIDR was removed, and the 193 

heifers were administered an intramuscular injection of PGF2α. After 72 hours GnRH was 194 

administered intramuscularly to induce ovulation at which time marked as Day 0 195 

(Supplementary Figure 1B). The presence of a corpus luteum (CL) on Day 5 was confirmed 196 

by transrectal ultrasonography. On Day 7 of the estrous cycle, Day 7 embryos were loaded 197 

individually into 0.25 ml French straws with holding medium (ST Genetics, TX). Loaded straws 198 

were placed in a portable incubator (Micro Q Technologies, Scottsdale, AZ) at 38.5 °C and 199 

transported to the farm. Prior to embryo transfer, regional anesthesia was administered through 200 

a caudal epidural injection as aforementioned. Each recipient received a single blastocyst, 201 

which was transferred into the uterine horn ipsilateral to the CL. Pregnancy was confirmed by 202 
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transrectal ultrasonography on Day 60 post-transfer and amniocentesis was performed on Day 203 

68 as described above. 204 

Cohort 2 estrous synchronization 

Genetically unrelated crossbred beef heifers (n=22), primarily Limousin, Charolais, or Aberdeen 205 

Angus crosses were synchronized using an analogous and established [67–70] protocol 206 

(Supplementary Figure 1C). In brief, heifers received a P4 releasing intravaginal device (PRID 207 

E) (1.55 g P4, Ceva Santé Animale, Libourne, France) on a random day of their estrous cycle, 208 

designated as Day -11, concomitantly with GnRH analogue (Ovarelin, 100 mg gonadorelin; 209 

Ceva Santé Animale) intramuscular administration. After seven days, PGF2α (Enzaprost, 5 mL 210 

equivalent to 25 mg dinoprost; Ceva Santé Animale) was administered, before PRID removal 211 

the following day. 212 

Cohort 2 in vitro embryo production 

Blastocysts were produced in vitro using an analogous and established protocol [71]. Briefly, 213 

immature COC were collected by aspirating follicles from the ovaries of cattle slaughtered at a 214 

local abattoir (Kildare Chilling Company, Kildare, Ireland). COC were pooled, washed in PBS, 215 

and matured for 24 h in groups of 50 in 500 μl of TCM-199 (Sigma Aldrich, Arklow, Ireland), 216 

supplemented with 10 % fetal calf serum and 10 ng·ml-1 epidermal growth factor (Sigma 217 

Aldrich). Maturation took place at 39 °C in a humidified environment with 5 % CO2 in air.  218 

Mature COC were inseminated with frozen-thawed sperm (National Cattle Breeding Centre, 219 

Kildare, Ireland) at a concentration of 106 sperm·ml-1. After 20 h of co-incubation at 39 °C under 220 

5 % CO2 in air, presumptive zygotes were denuded by vortex and cultured in 25 μl droplets of 221 

IVC medium (Stroebech), supplemented with 3 mg·ml-1 bovine serum albumin (Sigma Aldrich) 222 

at 39°C in a humidified atmosphere with 5 % CO2 and 5 % O2 under mineral oil. Embryos were 223 

cultured at a ratio of 1 embryo·μl-1. Grade 1 blastocysts for transfer were collected on Day 7 and 224 

loaded into straws with embryo holding medium (IMV Technologies, L'Aigle, France). 225 

Cohort 2 embryo transfer 

Heifers were monitored for signs of estrus five times daily, starting 30 h after PRID withdrawal. 226 

All heifers observed standing estrus and thus received a single Day 7 in vitro-produced 227 

blastocyst on Day 7 or 9 of the estrous cycle, with Day 0 being considered the day of expected 228 

ovulation (approximately 28 h after estrus onset). Embryo transfer was performed as described 229 

above. Pregnancies were confirmed by transrectal ultrasonography on Day 28 of gestation, and 230 

all transfers were conducted by one of two experienced technicians. 231 
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Cohort 2 amniotic fluid recovery 

AF was collected as previously described [72]. In brief, pregnant heifers were slaughtered on 232 

Day 42 of gestation in a commercial European Union licensed abattoir. The reproductive tract 233 

was recovered and kept on ice until processing for sample collection, within 30 min of slaughter. 234 

The pregnant uterine horn was opened along the major curvature to retrieve fetal membranes. 235 

For AF collection, a 30 G needle connected to a 1 ml syringe was used to pierce the amnion 236 

and aspirate the fluid. AF was placed into RNase/DNase-free tubes (Thermo Fisher Scientific, 237 

Waltham, USA), centrifuged at 16,000 x g for 10 min at 4 °C, and the supernatant placed into 238 

new RNase/DNase-free tubes, snap-frozen in liquid nitrogen, and stored at -80 °C until analysis 239 

Dependent experimental variable metrics 

Additional animal details and dependent experimental variable raw metrics are provided in 240 

Supplementary Figure 1D (Cohort 1) and Supplementary Figure 1E (Cohort 2). 241 

Mass spectrometry 

AF samples were first thawed on ice for 60 min, vortexed, and centrifuged briefly to remove 242 

bubbles. After addition of 180 µl 80% methanol per 20 µl of each sample, samples were 243 

incubated at 4°C for 1 h and then centrifuged at 3,220 x g for 15 min at room temperature. The 244 

resulting supernatants were stored at -80°C until analysis. Therefore, these data represent the 245 

methanol-extractable portion of the amniotic fluid metabolome. 246 

Metabolic profiling was conducted at General Metabolics Inc. (Boston, MA) using flow-injection 247 

mass spectrometry (FI-MS) on an Agilent 6550 quadrupole time-of-flight (Q-TOF) system [73], 248 

similarly to Chen et al. [74]. In brief, the equipment was configured to scan in full MS mode at 249 

1.4 Hz, operating in negative ionization with 4 GHz high resolution mode, across a mass range 250 

of 50 to 1,000 m/z. The solvent, 60% isopropanol, was supplemented with 1 mM ammonium 251 

fluoride (NH4F) at pH 9.0, 10 nM hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazene, and 80 252 

nM taurocholic acid, for mass calibration. 253 

Samples (100 µl each) were injected in randomized order and data were acquired in profile 254 

mode. Data were centroided before analysis using MATLAB (MathWorks). Missing values were 255 

imputed using recursive analysis, and consensus centroids were identified across all samples. 256 

Ions were annotated based on accurate mass and isotopic patterns using the HMDB database 257 

(version 4.0) [75]. It is worth noting that due to the inherently weak chromatographic separation 258 

often associated with global metabolomic profiling [76], compounds with identical molecular 259 
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formulae could not be distinguished. Therefore, annotation confidence was level 4, though, in 260 

practice, it is generally higher for common metabolites [73]. 261 

A pooled aliquot of all experimental samples, serving as a technical replicate control, was run in 262 

between the experimental samples at defined intervals. Based on these, the mean technical 263 

(instrument) standard error was calculated at 2.8 %. 264 

Metabolomic analyses 

Single-factor analyses were conducted using MetaboAnalyst 6.0 [77]. Initially, raw peak 265 

intensities were filtered by interquartile range to account for variance, following standard 266 

recommendations for untargeted metabolomics datasets [78]. Based on our mean technical 267 

standard error, a threshold of 5% was applied, leading to the exclusion of 68 metabolites. Data 268 

were then normalized to the median, log-transformed (base 10), and auto-scaled (mean-269 

centered and divided by each variable standard deviation). 270 

Thereafter, volcano plots were generated by unpaired t-test, with thresholds set at a P≤0.05, a 271 

fold change of 1.0 (i.e. no change), and assuming equal group variance. Principal component 272 

analysis (PCA) plots with 95% confidence intervals were created using permutational 273 

multivariate analysis of variance (PERMANOVA), with distributions based on Euclidean distance 274 

from the first two principal components.  275 

Sparse partial least squares discriminant analysis (sPLS-DA) was performed with 5 276 

components and 10 variables per component. Model performance was evaluated using 5-fold 277 

cross-validation with an increasing number of components and a fixed 10 variables per 278 

component. Hierarchical clustering dendrograms were generated using Euclidean distances and 279 

the Ward method. Heatmaps were produced from normalized data, standardized by auto-scaled 280 

metabolite features, with Euclidean distance and Ward clustering applied. 281 

For metadata analyses, peak intensities were filtered, normalized, transformed, and scaled as 282 

described above. A metadata heatmap was generated using Euclidean distance and Ward 283 

clustering for both metabolites and metadata variables. Correlation coefficients were calculated 284 

using the Pearson R correlation measure. Linear models with covariate adjustment (P≤0.05) 285 

were applied using the limma linear regression approach, as previously described [76,79]. 286 

For categorical enrichment analyses, compound names were first standardized against the 287 

HMDB, PubChem, and KEGG databases. Unstandardized compound names were excluded. 288 

Peak intensities were then normalized, transformed, and scaled as in prior steps. Enrichment 289 

testing was conducted based on the global test [80] against the RaMP-DB metabolite set library, 290 
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which integrates 3,694 features from KEGG (via HMDB), Reactome, and WikiPathways 291 

databases. Only metabolite sets with at least two entries were included. Enrichment values 292 

were calculated as the ratio of observed vs. expected metabolites within each pathway [81]. 293 

In contrast, pathway topology analyses were conducted by first standardizing compound names 294 

against the HMDB, PubChem, and KEGG databases, before peak intensity normalization, 295 

transformation, and scaling – all as above. The pathway analysis focused on significant 296 

(P≤0.05) metabolites rather than pre-selected ones, with enrichment performed using the global 297 

test as above. Topology was assessed using relative-betweenness centrality, and the reference 298 

metabolome included all compounds from the KEGG Bos taurus library. Scatter plots were 299 

generated to display all matched pathways, with P-values from the pathway enrichment analysis 300 

plotted against pathway impact values from the topology analysis. 301 

Machine-learning based biomarker identification 

Biomarker analyses were performed using MetaboAnalyst 6.0, leveraging the receiver operating 302 

characteristic (ROC) curve-based model evaluation function. Initially, raw peak intensities were 303 

filtered, normalized, transformed, and scaled as described above. Metabolites were then 304 

manually selected for ROC analysis, which was conducted using the Random Forests 305 

multivariate algorithm. Specifically, 100 cross-validations were performed, with results averaged 306 

to generate ROC curves with 95% confidence intervals and predictive accuracy values. 307 

Empirical P-values were calculated from 1,000 AUROC permutations. 308 

 

RESULTS 

Metadata summary 

Ultra-high-throughput untargeted metabolomic profiling of AF collected from Holstein heifers 309 

(n=45) on Day 68 of pregnancy (Cohort 1) identified 1,358 metabolites, with 1,335 annotated 310 

(Supplementary Table 1). Following variance filtration, 68 metabolites (5%) were excluded, 311 

leaving 1,290 metabolites for analysis. The mean (± SD) age (591.5 ± 73.7 days) and weight 312 

(502.4 ± 74.5 kg) of recipient heifers at the time of amniocentesis were similar, and among 313 

successful pregnancies, gestation length (274.5 ± 4.9 days) and calf birth weight (41.9 ± 7.7 kg) 314 

were comparable (Supplementary Figure 1D). 315 

Amniotic fluid composition is sexually dimorphic 

We first compared the AF metabolome from male vs. female fetuses. Initial principal component 316 

(PCA; Supplementary Figure 2A) and hierarchical clustering (Supplementary Figure 2B) 317 
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analyses revealed high AF composition overlap between both groups. As such, the overall AF 318 

metabolic landscapes between male vs. female fetuses are very similar. However, subsequent 319 

sparse partial least squares discriminant analysis (sPLS-DA) – a supervised machine learning 320 

algorithm effective in separating non-linear clustered signals [82–84] – segregated the AF 321 

metabolic signatures of the two groups (Fig. 2A), albeit with a high mean cross-validation (CV) 322 

error rate of 42.2 % (Supplementary Figure 2C). 323 

AF metabolome correlations between fetal sex and (a) discrete covariates [pregnancy outcome 324 

(Fig. 2B), conception method (Fig. 2C), semen source (Fig. 2D), fetal genetics (Fig. 2E)], and 325 

(b) continuous variable metadata [recipient weight (Fig. 2F), recipient age (Fig. 2G), gestation 326 

length (Fig. 2H), offspring birthweight (Fig. 2I)] variables were low, with a mean (± SD) 327 

correlation coefficient (R) of 0.12 ± 0.2. This demonstrates no significant association between 328 

these parameters and fetal sex in terms of AF composition. 329 

Before covariate adjustment, 15 metabolite (1.2 % of total) relative concentrations differed 330 

(P≤0.05) between AF from male and female fetuses (Fig. 2J-K). Qualitative enrichment analysis 331 

highlighted tRNA-derived modified nucleoside, estrone, and estrogen metabolism as over-332 

represented pathways (Fig. 2L). A semi-quantitative targeted pathway analysis further revealed 333 

metabolites corresponding to ⍺-linolenic acid and unsaturated fatty acid metabolism as 334 

differentially abundant in the same comparison (Supplementary Figure 2D). 335 

Subsequent linear covariate adjustment metabolomic analysis, to increase precision and reduce 336 

bias [85], isolated 13 differentially abundant (P≤0.05) AF metabolites (1 % of total) by fetal sex – 337 

independently of fetal conception method, semen type, pregnancy outcome, and fetal genetics 338 

(Fig. 2M). These include hexonic acid, isoeugenol phenylacetate, and methylguanosine. Figure 339 

2N further highlights the lack of association between these metabolite concentrations and 340 

recipient age, weight, and gestation length. Therefore, despite high overlap between AF 341 

metabolomes from male and female fetuses, there are select differences, underscoring sexually 342 

dimorphic fetal metabolism. 343 

In vitro fertilization alters amniotic fluid composition 

We next compared the AF metabolome from fetuses derived using IVF vs. AI. Initial PCA 344 

(Supplementary Figure 3A) and hierarchical clustering (Supplementary Figure 3B) revealed 345 

similarly high AF composition overlap between both groups, which could be overcome using 346 

sPLS-DA (Fig. 3A). The associated mean sPLS-DA CV error was 23.6 % (Supplementary 347 

Figure 3C). Therefore, consistent with fetal sex, the overall AF metabolic profiles of IVF- and AI-348 

derived fetuses are similar, but not identical. 349 



 13 

AF metabolome correlations between fetal conception method and (a) discrete covariate 350 

[pregnancy outcome (Fig. 3B), fetal sex (Fig. 3C), semen source (Fig. 3D), fetal genetics (Fig. 351 

3E)], and (b) continuous variable metadata [recipient weight (Fig. 3F), recipient age (Fig. 3G), 352 

gestation length (Fig. 3H), offspring birthweight (Fig. 3I)] variables were low. More specifically, a 353 

mean (± SD) correlation coefficient (R) of 0.05 ± 0.40 indicates no significant association 354 

between these parameters and conception method in terms of AF composition. 355 

Prior to covariate adjustment, 49 metabolite (3.8 % of total) relative concentrations differed 356 

(P≤0.05) between AF from AI- and IVF-derived fetuses (Fig. 3J-K). Qualitative enrichment 357 

analysis highlighted three pathways related to pyrimidine metabolism, three related to 358 

inflammation, and three related to ceramide signaling as over-represented (Fig. 3L). Semi-359 

quantitative targeted pathway analysis further confirmed pyrimidine and sphingolipid (including 360 

ceramide) metabolism impact (Supplementary Figure 3D). 361 

After similar covariate adjustment, 12 AF metabolites (0.9 % of total) were differentially 362 

abundant (P≤0.05) based on fetal conception method – independently of fetal sex, semen type, 363 

pregnancy outcome, and fetal genetics (Fig. 3M). These include thymine, C16:3, and 364 

oxocortisol. Figure 3N further highlights the lack of association between these metabolite 365 

relative concentrations and continuous metadata. Thus, much like with fetal sex, there is 366 

significant overlap in the AF metabolomes of AI and IVF-derived fetuses; however, specific 367 

differences highlight a metabolic impact of IVF. 368 

Pregnancy outcome is reflected in the amniotic fluid metabolome 

Next, we retrospectively analyzed the AF metabolome from successful and spontaneously 369 

aborted pregnancies. Like previously, PCA (Supplementary Figure 4A) and hierarchical 370 

clustering (Supplementary Figure 4B) showed high AF composition overlap between both 371 

groups, although sPLS-DA was able to differentiate the AF metabolomes from pregnancies of 372 

divergent viability (Fig. 4A) with a lower mean CV error of 14.7 % (Supplementary Figure 4C). 373 

Therefore, while the overall AF metabolic profiles of pregnancies of divergent viability are very 374 

similar, select differences are apparent. 375 

AF metabolome correlations between pregnancy outcome and (a) discrete covariate [fetal sex 376 

(Fig. 4B), conception method (Fig. 4C), semen source (Fig. 4D), fetal genetics (Fig. 4E)], and 377 

(b) continuous variable metadata [recipient weight (Fig. 4F), recipient age (Fig. 4G), gestation 378 

length (Fig. 4H), offspring birthweight (Fig. 4I)] variables were similarly low, with a mean (± SD) 379 

correlation coefficient (R) of 0.17 ± 0.32. This is unsurprising given that gestation lengths and 380 

birth weights could only be determined from successful pregnancies. Incidentally, the strongest 381 
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correlation observed among successful pregnancies was between offspring birth weight and 382 

gestation length (R=0.716; Supplementary Figure 5A), as expected. 383 

Before covariate adjustment, 35 metabolite (2.7 % of total) relative concentrations differed 384 

(P≤0.05) between AF from successful vs. nonviable pregnancies (Fig. 4J-K). Qualitative 385 

enrichment analysis highlighted three pathways related to purine metabolism, two related to 386 

defective solute carriers, and two related to molybdenum cofactor imbalances as over-387 

represented (Fig. 4D). This was largely reflected in a semi-quantitative targeted pathway 388 

analysis, as purine metabolism – to which molybdenum cofactor dependent enzymes are 389 

central [86] – ranked highly (Supplementary Figure 4D). 390 

After covariate adjustment, 28 metabolites (2.2 % of total) were differentially abundant (P≤0.05) 391 

based on pregnancy viability, independently of discrete covariates (Fig. 4M). These include 392 

pentosidine, allantoin, and hydroxyphenylacetothiohydroximate (C17239). Figure 4N further 393 

highlights the lack of association between these metabolite relative concentrations and 394 

continuous metadata variables. 395 

Thus, similarly to fetal sex and conception method, there is significant overlap in the AF 396 

metabolomes of fetuses of divergent competence; however, specific differences suggest these 397 

metabolites may be promising biomarkers of pregnancy viability. Furthermore, extrapolated 398 

metabolic pathways of likely importance to fetal survival are presented in Figure 5. These were 399 

manually constructed and primarily revolve around the tricarboxylic acid, urea, methionine, and 400 

purine nucleotide cycle interconversions. 401 

Machine-learning based biomarker identification 

We next used the receiver operating characteristics (ROC) curve with the Random Forest 402 

machine learning algorithm approach to highlight metabolite relative concentrations that may 403 

confirm fetal conception method and predict fetal sex and pregnancy outcome. Biomarker area 404 

under the ROC curve (AUROC) values can be generally classified as excellent (0.9-1.0), good 405 

(0.8-0.9), fair (0.7-0.8), poor (0.6-0.7), or fail (0.5-0.6) [87]. We also performed a cross-validation 406 

(CV) analysis to evaluate the predictive accuracy of each model. 407 

The relative concentrations of six AF metabolites (Fig. 6Ai) could predict fetal sex with an 408 

AUROC of 0.76 (P=0.023) (Fig. 6Aii) and CV predictive accuracy of 0.68 (Fig. 6Aiii). Regarding 409 

conception method, the relative concentrations of six different AF metabolites (Fig. 6Bi) could 410 

confirm whether a fetus was derived by AI or IVF with an AUROC of 0.91 (P=0.001) (Fig. 6Bii) 411 

and CV of 0.83 (Fig. 6Biii). Finally, the relative concentrations of another six AF metabolites 412 
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(Fig. 6Ci) could predict whether a pregnancy would be successful or not with an AUROC of 413 

0.81 (P=0.018) (Fig. 6Cii) and CV of 0.70 (Fig. 6Ciii). 414 

Biomarker model confirmation 

To further test these data, AF was collected from an independent group of crossbred beef 415 

heifers (n=22) on Day 42 of pregnancy, carrying male or female fetuses (Cohort 2). Mean (± 416 

SD) age (757.0 ± 58.6 days) and weight (586.1 ± 27.0 kg) of recipient heifers at the time of 417 

amniocentesis were similar. However, mean Cohort 2 recipient ages (Supplementary Figure 418 

5B) and weights (Supplementary Figure 5C) differed to Cohort 1 (P≤0.0001). Cohort 2 419 

pregnancies were established by embryo transfer following IVF using conventional semen from 420 

a different single sire to Cohort 1, producing 17 male and 5 female fetuses. AF from Cohort 2 421 

was identically subjected to high-throughput untargeted metabolomics. Comparative analyses of 422 

AF metabolomic profiles from both cohorts revealed greater variation between cohorts than 423 

between fetal sexes, as indicated by hierarchical clustering (Fig. 6D) and sPLS-DA (Fig. 6E). 424 

Despite this cohort-specific variation, the same six AF metabolites used to predict fetal sex in 425 

Cohort 1 (Fig. 6Fi) achieved similarly high predictive performance in Cohort 2, with an AUROC 426 

of 0.85 (P = 0.029) (Fig. 6Fii) and a cross-validated accuracy of 0.78 (Fig. 6Fiii). 427 

 

DISCUSSION 

These data provide compelling evidence that, while the overall AF metabolome is highly similar 428 

across different conditions, specific metabolomic changes are associated with fetal sex, 429 

conception method, and pregnancy outcome. These findings deepen our understanding of fetal 430 

development and highlight potential biomarkers that could be used in reproductive management 431 

and prenatal diagnostics, particularly for predicting mammalian fetal sex and pregnancy viability. 432 

Amniotic fluid composition is sexually dimorphic 

Sex-specific differences during development are well-established. However, a better 433 

comprehension of the sexually dimorphic aspects of pregnancy is crucial for advancing 434 

individualized prenatal care and elucidating sex-specific health trajectories. Here we found that 435 

the tRNA derived modified nucleosides pathway was most differentially enriched in AF by fetal 436 

sex, driven largely by elevated methylguanosine in female vs. male pregnancies. Methylation of 437 

guanosine at the N7 position [N7-methylguanosine (m7G)] at nucleotide 46 of tRNA (m7G-46) is 438 

one of the most prevalent and conserved tRNA modifications [88,89]. It plays a vital role in 439 

regulating steady-state tRNA levels, which affect cell growth and behavior [90,91], including in 440 
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mammalian stem cells [92,93]. This methylation is catalyzed by the METTL1-WDR4 complex 441 

[94]. Intriguingly, cell-free METTL1 mRNA transcript levels are reduced in AF from pregnancies 442 

with Turner syndrome (gonadal dysgenesis) offspring [95], suggestive of a causal link between 443 

tRNA guanosine methylation and sex-specific fetal development regulation. 444 

The tRNA m7G-46 modification is also implicated in autophagy regulation [96]. Sexually 445 

dimorphic placental autophagy has been observed in response to stress [97,98]. Moreover, 446 

miscarriage, which occurs more frequently in pregnancies with male fetuses [99–101], is often 447 

closely associated with placental autophagy [102]. It is therefore plausible that the sexual 448 

dimorphism in AF methylguanosine levels observed here arises from differential placental 449 

regulation of m7G-46 tRNA. This is consistent with the facts that, during the first-trimester, 450 

human placental DNA methylation is sexually dimorphic [103], and AF composition primarily 451 

reflects placental transudate from maternal circulation [104]. 452 

Given the numerous parallels between pregnancy and cancer [105], it is intriguing that m7G is 453 

also secreted by malignant cancer cells [106]. Cellular mechanisms influenced by m7G-46 454 

tRNA, common to both pregnancy and cancer, include immune evasion, proliferation, and 455 

migration [107]. As such, sexually dimorphic methylguanosine levels in AF may partially reflect, 456 

or contribute to, the phenomenon of accelerated male vs. female fetal development [108]. 457 

Further linking tRNA modifications to sexually dimorphic fetal development is the identification of 458 

queuosine, a modified nucleoside found at nucleotides 34-37 (the ‘wobble’ positions [109]) of 459 

specific tRNAs, in bovine AF [110], albeit not in this study. Queuosine-modified tRNAs have 460 

been shown to promote sex-dependent learning and memory formation in mice [111], and 461 

queuosine-modified tRNA glycosylation is required for post-embryonic growth in zebrafish [112]. 462 

Together, these findings implicate epitranscriptomic modifications in fetal development sexual 463 

dimorphism. However, whether AF composition is a cause or effect of these modifications 464 

remains an open question. 465 

In vitro fertilization alters amniotic fluid composition 

Elucidating the molecular determinants of altered development in a subset of offspring 466 

conceived via IVF is of significant public health importance, particularly given the growing use of 467 

assisted reproductive technologies [113]. More specifically, understanding these biomarkers 468 

and mechanisms is crucial for enhancing clinical practices and reducing the risk of adverse 469 

outcomes for offspring. After controlling for discrete confounding variables, we found 12 470 

differentially abundant AF metabolites based on fetal conception method. The most significant 471 

was thymine, elevated in the AF of AI vs. IVF pregnancies. Thymine derivatives are present in 472 
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urine as a byproduct of DNA damage repair (DDR) mechanism activity [114–116]. Thus, it is 473 

tempting to suggest that DDR is more efficient in AI vs. IVF pregnancies. Supporting this is a 474 

recent finding that plastics used in IVF alter placental gene expression in mice, with DNA repair 475 

being a main enriched gene set [117]. 476 

The elevated arginyl-glutamic acid (Arg-Gln) dipeptide in AI pregnancies further supports the 477 

hypothesis that natural conception provides metabolic advantages. Arg-Gln demonstrates 478 

protective effects on developing organs [118,119] and positively correlates with birth weight in 479 

women [120]. Given the economic importance of calf birth weight in cattle production, 480 

understanding these metabolomic differences could inform selection strategies for embryo 481 

transfer recipients and optimize protocols to maximize offspring viability. 482 

Dipeptides are generally produced through aminopeptidase-catalyzed protein cleavage [121], 483 

with aminopeptidase M known to be present in human AF [122]. This raises the intriguing 484 

question of whether Arg-Gln is synthesized within AF itself. This would suggest that AF 485 

possesses a degree of metabolic semi-autonomy and would parallel the metabolic capabilities 486 

of uterine fluid, which has been shown to support specific biochemical processes independently 487 

[123]. If confirmed, the ability of AF to semi-autonomously metabolize metabolites such as Arg-488 

Gln would suggest a more active role in fetal development and nutrient processing than 489 

previously understood, influencing fetal growth and development in novel ways. 490 

Pregnancy outcome is reflected in the amniotic fluid metabolome 

During this study, a subset of pregnancies from which AF was collected resulted in spontaneous 491 

abortion, providing an opportunity to investigate biomarkers related to pregnancy outcome. 492 

Identifying these markers is critical for the early detection of potential pregnancy complications 493 

and developing tailored interventions to improve pregnancy success in both women and cattle. 494 

This is particularly significant given that over 3 million stillbirths occur globally each year [124] 495 

and the economic significance of livestock reproductive management to agriculture. 496 

We found that the molybdenum cofactor biosynthesis pathway was most differentially enriched 497 

in AF when stratified by subsequent pregnancy outcome. This is primarily attributable to 498 

reduced xanthine and elevated urate levels (amniotic hyperuricemia) in spontaneously aborted 499 

vs. successful pregnancies. Xanthine oxidase (XO), one of only four molybdenum cofactor 500 

enzymes in higher-order mammals [125], primarily catalyzes two reactions: the conversion of 501 

hypoxanthine to xanthine and the oxidation of xanthine to urate [126]. XO is derived from 502 

xanthine dehydrogenase under hypoxic conditions through phosphorylation [127]. Thus, it is 503 

unsurprising that intrapartum hypoxia – a condition associated with pregnancy loss [128] – is 504 
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linked to increased fetal XO activity [129] and, by extrapolation, amniotic hyperuricemia. This is 505 

supported by the finding that maternal administration of allopurinol, a XO inhibitor that 506 

transverses the placenta in several species [130–133], generally yields positive outcomes in 507 

pregnancies complicated by intrapartum hypoxia [133–138]. While intrapartum hypoxia occurs 508 

in 0.1 to 1.2 % of human pregnancies [139], our findings indicate that it may be more prevalent 509 

in cattle. This possibility is further supported by human data showing that second-trimester 510 

amniotic hyperuricemia predicts infant birth weight in normotensive women, independently of 511 

many systemic maternal factors such as insulin resistance [140]. 512 

Although the specific causes of spontaneous abortion in this study are unknown, our data 513 

suggest that disrupted AF urate homeostasis is associated with adverse pregnancy outcomes. 514 

These findings also indicate that aspects of pregnancy loss may be conserved between women 515 

and cattle. Moreover, several differentially abundant AF metabolites identified in this study are 516 

metabolically related (Fig. 5), suggesting shared pathways that may be linked to pregnancy 517 

failure. However, at this point this is quite speculative; thus, further research is needed to 518 

confirm these potential causal associations. It is also worth noting that since AF was sampled at 519 

Day 68 – well in advance of when spontaneous abortions subsequently occurred – these data 520 

suggest that early AF molecular signatures are predictive of later pregnancy loss, rather than 521 

reflecting iatrogenic effects of the amniocentesis procedure itself. 522 

Machine-learning based biomarker identification and model validation 

Statistically significant values often make poor biomarker predictors, and vice versa [141–144]. 523 

For example, Zheng et al. [143] constructed a model using five genetic variants identified in a 524 

genome-wide association study on prostate cancer, concluding that these variants did not 525 

enhance predictive power. Similarly, Gränsbo et al. demonstrated that while chromosome 9p21 526 

was significantly associated with cardiovascular disease, it did not improve risk prediction [144]. 527 

To determine whether this phenomenon also applied to our metabolomic dataset, we used 528 

Random Forest, an established [145] machine learning algorithm, coupled with model 529 

performance evaluation using the ROC curve analysis, to identify potential AF biomarkers of 530 

fetal physiology. Indeed, we observed that statistical significance did not align with predictive 531 

efficacy. For example, urate levels, which were strongly statistically associated with pregnancy 532 

outcome (P=0.0036), produced a relatively poor AUROC value of 0.67. Nonetheless, 533 

independent panels consisting of just six AF metabolite relative concentrations confirmed fetal 534 

conception method and sex and further predict pregnancy success with relatively high sensitivity 535 

and specificity (Fig. 6). 536 
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Recognizing the importance of model validation in independent populations [146], we 537 

subsequently analyzed AF samples collected on Day 42 of pregnancy from an independent 538 

herd of crossbred beef heifers in Ireland. Initial sPLS-DA revealed clear separation of AF 539 

profiles between the two cohorts. This likely reflects a combination of factors, including 540 

differences in sampling stage (Day 68 vs. Day 42), breed-related genetic variation, maternal 541 

characteristics (e.g., age and weight; Supplementary Figures 5A-B), diet, and environmental 542 

and/or management conditions. These influences collectively shape AF composition, producing 543 

distinct molecular fingerprints detectable in multivariate analyses. 544 

Nonetheless, the same six metabolites used to predict fetal sex in the first cohort (AUROC = 545 

0.76), predicted fetal sex in second cohort with a better AUROC of 0.85. These findings confirm 546 

that the relative concentrations of just six AF metabolites are efficacious biomarkers of fetal sex 547 

across two completely independent groups of cattle. This also engenders confidence in the 548 

identified biomarkers for predicting pregnancy success, as the sPLS-DA CV error rate values 549 

and AUROC measures for pregnancy outcome prediction are more favorable than for fetal sex 550 

prediction. 551 

Study limitations 

Firstly, although we use the term ‘metabolomics’, the presented data pertain specifically to the 552 

methanol-extractable fraction of the AF metabolome. Moreover, assigning putative compound 553 

identifiers (annotation) to peak areas presents significant challenges in semi-quantitative high-554 

throughput untargeted metabolomics analyses [147]. Using standard libraries can lead to 555 

misannotations of up to 27.8% [148], primarily due to the highly instrument- and setting-specific 556 

nature of metabolite fragmentation spectra [149]. Consequently, conducting targeted 557 

quantitative metabolomics against specific standards for select metabolites is important for 558 

validating annotations and establishing precise metabolite concentrations. 559 

Secondly, while our data hold potential bovine diagnostic relevance, their applicability to human 560 

medicine and biological mechanisms requires further investigation. Although there are several 561 

similarities between bovine and human pregnancies, notable differences exist. For instance, in 562 

cattle, AF begins to accumulate after amnion closure around Day 22 and transitions from 563 

predominantly maternal plasma transudate to include increasing fetal urine contribution after 564 

renal maturation around Day 40 [150], whereas in humans, amnion closure occurs around Day 565 

12 [151]. Also, the bovine placenta is semi-invasive synepitheliochorial, while the human 566 

placenta is hemochorial. Such distinctions, among others, highlight that direct extrapolation 567 

between bovine and human pregnancy, and vice versa, is often inappropriate. Nevertheless, 568 
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while definitive translational conclusions cannot be drawn, our mention of human pregnancy is 569 

intended to place the study in a broader comparative context. Given that many aspects of 570 

mammalian development are conserved [152,153], bovine AF analysis may still serve as a 571 

valuable resource for nominating candidate biomarkers for subsequent investigation in human 572 

studies. 573 

Thirdly, the etiologies of pregnancy loss are numerous and complex. Although we identified AF 574 

metabolites correlating with spontaneous abortion, our sample size is relatively small. Larger 575 

and more sex-balanced cohort studies are essential to enhance the robustness of these data 576 

and to assess whether the identified AF metabolites can serve as reliable biomarkers for the 577 

early detection of adverse pregnancy outcomes across various pathologies. 578 

Fourthly, to increase our sample size for male and female pregnancies, seven pregnancies 579 

were generated with sex-sorted semen. Although (a) our conventional and sex-sorted semen 580 

originated from the same sire, (b) analysis revealed no correlation between semen source and 581 

any measured outcomes, and (c) pregnancy rates following artificial insemination with sex-582 

sorted vs. conventional semen are comparable [154,155], altered embryonic gene expression 583 

has been reported in bovine embryos produced from sex-sorted vs. conventional semen [156]. 584 

Therefore, this may be considered a confounding factor affecting our results. Lastly, and on a 585 

similar note, we compared AI vs. IVF derived pregnancies. While effects of AI vs. natural service 586 

are not apparent [157], this could be considered a potential confounding factor. 587 

Future directions 

A potentially worthwhile area for further research, not previously discussed, is exploring the 588 

influence of the AF microbiome on maternal and fetal physiology. Although this topic is 589 

contentious [28,158–160], our data indicate the presence of microbiota-associated compounds 590 

in bovine AF. Such inquiries could uncover novel determinants of fetal growth and development.  591 

From an applied standpoint, we acknowledge that untargeted MS metabolomics may not be a 592 

practical diagnostic modality for routine farm use. A logical next step is to refine these findings 593 

into targeted, low-cost, and rapid assays that can be deployed at scale. Such tools would align 594 

with emerging precision agriculture approaches, where inexpensive, high-throughput 595 

diagnostics have the potential to offset the substantial economic burden of suboptimal 596 

reproductive outcomes. Similarly, testing maternal blood, in addition to AF, for biomarkers, as 597 

demonstrated in a recent study [72], could provide a less invasive approach to assessing fetal 598 

physiology and pregnancy trajectories. Finally, a long-term objective could be to develop AF 599 
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transfusions to enhance pregnancy outcomes and improve postnatal well-being in both livestock 600 

and humans. 601 

Summary 

AF is a valuable yet under-utilized biological resource [161]. This study demonstrates that 602 

bovine AF contains reproducible metabolomic biomarkers capable of predicting fetal sex, 603 

distinguishing conception method, and forecasting pregnancy outcome with high accuracy. 604 

Using machine learning, we identified panels of just six metabolites that achieved strong 605 

predictive performance (AUROC values of 0.76-0.91), with the fetal sex model maintaining 606 

robust accuracy when validated in an independent cohort of different breed cattle. These 607 

findings have immediate practical applications for the livestock industry, where implementation 608 

could significantly improve reproductive efficiency and reduce the substantial economic losses 609 

associated with early pregnancy failure rates. Beyond agricultural applications, these data could 610 

serve as a translational model for human prenatal biomarker development, leveraging the 611 

reproductive similarities between species while benefiting from the controlled experimental 612 

conditions possible in livestock. The validated framework presented here provides a foundation 613 

for developing minimally invasive prenatal diagnostics that could optimize both assisted 614 

reproductive technologies and pregnancy management strategies across mammalian species. 615 
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FIGURE LEGENDS 

Figure 1. Experimental design summary. (A) Amniotic fluids from Holstein heifers (n=45) were 1051 

metabolically profiled. Data were analyzed considering continuous (metadata) and discrete 1052 

(covariate) variables. A machine learning approach was then used to predict biomarkers of fetal 1053 

sex, conception [in vitro fertilization (IVF) vs. artificial insemination (AI)], and pregnancy 1054 

outcome. Predicted biomarkers of fetal sex were validated using amniotic fluid from an 1055 

independent group of heifers (n=22). (B) Correlation heatmap of metabolite relative abundance. 1056 

(C) Metadata and correlation heatmap of amniotic fluid samples from heifers (H) 1 to 45. (D) 1057 

Schematic depiction of sample generation. Thirteen (13) heifers were artificially inseminated 1058 

with conventional semen (CS). Ovum pick-up (OPU) from seven recipients, followed by IVF and 1059 

embryo transfer (ET), was performed to generate additional samples (Groups A-G). Finally, 7 1060 

heifers were artificially inseminated using sex-sorted (SS) semen. Distinctions between female 1061 

(♀) and male (♂) fetuses are also provided. 1062 

Figure 2. Amniotic fluid metabolome analysis by fetal sex. (A) Metabolome sparse partial least 1063 

squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of pregnancy 1064 

from heifers gestating a male (blue) vs. female (pink) fetus. Individual heifer identifiers (H1-45) 1065 

and 95% confidence region ellipses also provided. (B-I) Metabolome correlation coefficients 1066 

between fetal sex and (B) pregnancy outcome, (C) conception method [in vitro fertilization (IVF) 1067 

vs. artificial insemination (AI)], (D) semen source [sexed (SS) vs. conventional (CS)], (E) fetal 1068 

genetics, (F) recipient weight, (G) recipient age, (H) gestation length, and (I) offspring birth 1069 

weight. Inserts (top left) correspond to sample H5. (J) Volcano plot of differentially abundant 1070 

(P≤0.05) metabolites before covariate adjustment with (K) boxplots of select corresponding 1071 

metabolite normalized relative concentrations (NRC). (L) Pathway enrichment analysis of 1072 

differentially abundant metabolites. (M) Linear model of differentially abundant metabolites 1073 

before and after discrete covariate adjustment. (N) Scatterplots of select metabolite NRC 1074 

against continuous metadata. Asterisks denote predicted metabolites. Additional abbreviation: 1075 

3-(6-hydroxy-7-methoxy-2H-1,3-benzodioxol-5-yl)prop-2-enal (HMDB0128662). 1076 

Figure 3. Amniotic fluid metabolome analysis by conception method. (A) Metabolome sparse 1077 

partial least squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of 1078 

pregnancy from heifers gestating an in vitro fertilization (IVF) vs. artificial insemination (AI) 1079 

derived fetus. Individual heifer identifiers (H1-45) and 95% confidence region ellipses also 1080 

provided. (B-I) Metabolome correlation coefficients between fetal conception method and (B) 1081 

pregnancy outcome, (C) fetal sex, (D) semen source [sexed (SS) vs. conventional (CS)], (E) 1082 
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fetal genetics, (F) recipient weight, (G) recipient age, (H) gestation length, and (I) offspring birth 1083 

weight. Inserts (top right) correspond to sample H5. (J) Volcano plot of differentially abundant 1084 

(P≤0.05) metabolites before adjustment with (K) boxplots of select corresponding metabolite 1085 

normalized relative concentrations (NRC). (L) Pathway enrichment analysis of differentially 1086 

abundant metabolites. (M) Linear model of differentially abundant metabolites before and after 1087 

discrete covariate adjustment. (N) Scatterplots of select metabolite NRC against continuous 1088 

metadata. 1089 

Figure 4. Amniotic fluid metabolome analysis by pregnancy outcome. (A) Metabolome sparse 1090 

partial least squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of 1091 

pregnancy from heifers that subsequently delivered successfully (green) or spontaneously 1092 

aborted (red). Individual heifer identifiers (H1-45) and 95% confidence region ellipses also 1093 

provided. (B-I) Metabolome correlation coefficients between pregnancy outcome and (B) fetal 1094 

sex, (C) conception method [in vitro fertilization (IVF) vs. artificial insemination (AI)], (D) semen 1095 

source [sexed (SS) vs. conventional (CS)], (E) fetal genetics, (F) recipient weight, (G) recipient 1096 

age, (H) gestation length, and (I) offspring birth weight. (J) Volcano plot of differentially 1097 

abundant (P≤0.05) metabolites before adjustment, with (K) boxplots of select corresponding 1098 

metabolite normalized relative concentrations (NRC). (L) Pathway enrichment analysis of 1099 

differentially abundant metabolites. (M) Linear model of differentially abundant metabolites 1100 

before and after discrete covariate adjustment. (N) Scatterplots of select metabolite NRC 1101 

against continuous metadata. Asterisks denote predicted metabolites. Additional abbreviations: 1102 

3-hydroxy-2-methylpyridine-4,5-dicarboxylate (HMDB0006955), 1103 

hydroxyphenylacetothiohydroximate (C17239), and methoxyestrone glucuronide (C11132). 1104 

Figure 5. Predicted metabolic pathways underpinning differential fetal metabolism from 1105 

spontaneously aborted vs. successful pregnancies. Boxplots of select corresponding metabolite 1106 

normalized relative concentrations (NRC) from aborted (A) vs. successful (S) pregnancies also 1107 

provided. Asterisks denote significance (P≤0.05) before (**) and after (*) covariate adjustment. 1108 

Additional abbreviations: 5′-methylthioadenosine (MTA), adenosine monophosphate (AMP), 1109 

coenzyme A (CoA), glutamate-5-semi-aldehyde (GSA), inosine monophosphate (IMP), 1110 

methylthioribose (MTR), pyrroline 5-carboxylate (P5C), and tricarboxylic acid (TCA). 1111 

Figure 6. Computational biomarker prediction for fetal physiology and pregnancy success. (A-1112 

C) Receiver operating characteristic (ROC) curves generated using the Random Forest 1113 

machine learning algorithm by input of 6 metabolites [inserts (i)] to predict (A) fetal sex (male vs. 1114 

female), (B) conception method (in vitro fertilization vs. artificial insemination), and (C) 1115 
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pregnancy outcome (spontaneously aborted vs. successful) for heifer Cohort 1 (n=45). 1116 

Corresponding area under the curve (AUC) and empirical P values provided [inserts (ii)]. Inserts 1117 

(iii) depict corresponding cross-validation (CV) predictive accuracies. (D) Hierarchical clustering 1118 

heatmap of amniotic fluid profiles from male vs. female carrying pregnancies from the initial 1119 

(Cohort 1) and model validation (Cohort 2) animals. (E) Metabolome sparse partial least 1120 

squares discriminant analysis (sPLS-DA) of amniotic fluid from male and female fetuses from 1121 

Cohorts 1 and 2 (F) ROC curve generated using the same 6 metabolites as in panel (A) to 1122 

predict fetal sex in Cohort 2 (n=22). 1123 

Supplementary Figure 1. Animal details. (A) Cohort 1A animal synchronization protocol for 1124 

artificial insemination (AI). (B) Cohort 1B animal synchronization protocol for embryo transfer 1125 

(ET). (C) Cohort 2 animal synchronization protocol for ET. (D) Cohort 1 animal and pregnancy 1126 

details, including fetal sex, conception method, semen source, and outcome (discrete covariate 1127 

data), in addition to recipient weight (RW), recipient age (RA), gestation length (GL), and 1128 

offspring birth weight (BW) (continuous metadata). (E) Cohort 2 animal and pregnancy details, 1129 

including fetal sex and the day of ET into recipient heifers, in addition to recipient breed, type, 1130 

RW, and RA. Additional abbreviations: male (M), female (F), conventional (Conv.), spontaneous 1131 

abortion (SA), prostaglandin F2α (PGF2α), gonadotropin releasing hormone (GnRH), and 1132 

progesterone-controlled internal drug release device (CIDR), Aberdeen Angus cross (AAX), 1133 

Charolais cross (CHX), Limousin cross (LMX), Aberdeen Angus (AA), and Hereford cross 1134 

(HEX). 1135 

Supplementary Figure 2. Amniotic fluid metabolome by fetal sex. (A) Principal component 1136 

analysis (PCA) of amniotic fluid profiles from male (blue) vs. female (pink) carrying pregnancies. 1137 

(B) Hierarchical clustering heatmap of amniotic fluid metabolomic profiles. (C) Sparse partial 1138 

least squares discriminant analysis (sPLS-DA) cross-validation classification error rates. (D) 1139 

Targeted pathway impact analysis, integrating pathway enrichment and topology analyses. 1140 

Supplementary Figure 3. Amniotic fluid metabolome by conception method. (A) Principal 1141 

component analysis (PCA) of amniotic fluid profiles from in vitro fertilization (IVF; orange) vs. 1142 

artificial insemination (AI; purple) derived pregnancies. (B) Hierarchical clustering heatmap of 1143 

amniotic fluid metabolomic profiles. (C) Sparse partial least squares discriminant analysis 1144 

(sPLS-DA) cross-validation classification error rates. (D) Targeted pathway impact analysis, 1145 

integrating pathway enrichment and topology analyses. 1146 

Supplementary Figure 4. Amniotic fluid metabolome by pregnancy. (A) Principal component 1147 

analysis (PCA) of amniotic fluid profiles from spontaneously aborted (red) vs. successful (green) 1148 
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pregnancies. (B) Hierarchical clustering heatmap of amniotic fluid metabolomic profiles. (C) 1149 

Sparse partial least squares discriminant analysis (sPLS-DA) cross-validation classification error 1150 

rates. (D) Targeted pathway impact analysis, integrating pathway enrichment and topology 1151 

analyses. 1152 

Supplementary Figure 1. Animal metadata summary. (A) Cohort 1 animal variables correlation 1153 

heatmap.(B) Comparison of mean recipient ages between Cohorts 1 and 2 (P ≤ 0.0001). (C) 1154 

Comparison of mean recipient weights between Cohorts 1 and 2 (P≤0.0001).  1155 

Supplementary Table 1. Raw metabolomic master dataset. Internal standard (IS1-IS10), 1156 

animal Cohort 1 (H1-45), and Cohort 2 (H46-67) amniotic fluid metabolite peak intensities. 1157 


