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ABSTRACT

Amniotic fluid (AF) profiling provides a minimally invasive window into early fetal physiology. We
characterized the AF metabolome from first trimester (Day 68) Holstein dairy heifers (n=45),
considering fetal sex, conception method [in vitro fertilization (IVF) vs. artificial insemination
(Al)], and eventual pregnancy outcome as key variables. Multivariate statistics uncovered
differentially abundant metabolites for each comparison — including markers that preceded
spontaneous abortion — independently of recipient age, weight, gestation length, or fetal
genetics. Thereafter, a machine learning algorithm using panels of six metabolites accurately
predicted fetal sex (AUROC=0.76; P=0.023) and pregnancy viability (AUROC=0.81; P=0.018),
while corroborating conception method (AUROC=0.91; P=0.001). External validation using AF
(Day 42) from an independent cohort of beef heifers (n=22) reproduced the fetal sex classifier
with similarly high sensitivity and specificity (AUROC=0.85, P=0.029). These findings reveal
metabolic signatures that forecast fetal sex and pregnancy viability, while confirming distinct
metabolic imprints of assisted-conception modalities. These data lay the groundwork for next-
generation AF prenatal diagnostics in veterinary and human obstetrics.
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INTRODUCTION

Amniocentesis has enabled fetal genetic diagnosis in cattle and humans for decades [1-4].
However, the broader diagnostic potential of amniotic-fluid (AF) composition remains largely
unexplored. While AF is broadly isosmotic with fetal serum and undergoes gradual
compositional changes across gestation [5], it remains the primary conduit for maternal-fetal
biochemical exchange throughout gestation [6—9]. Accordingly, our overarching hypothesis was
that comprehensive metabolomic profiling of this readily accessible fluid — obtainable through
established, low-risk amniocentesis [10—12] — may provide new insights to refine prenatal

monitoring in livestock and, potentially, human medicine.

The USA cattle production industry, valued at ~ $ 88 billion annually [13], faces reproductive
efficiency challenges. Despite fertilization rates exceeding 80%, early pregnancy losses
approach 45% in dairy operations [14]. This paradox directly undermines farm profitability,
where reproductive performance is a core economic driver [15-17]. Ultrasound, the current
pregnancy surveillance standard, reveals gross fetal anatomy but cannot detect sub-clinical

metabolic disturbances and remains relatively operator dependent.

Meanwhile, human AF research is constrained by population heterogeneity and confounding
variables, such as maternal age, weight, ethnicity, and conception method [18-26]. Rodent
models offer experimental control but require pooling samples across multiple fetuses and
litters, compromising individual-level resolution [27,28]. Rodent models are also highly inbred,
poly-ovulatory, and exhibit much shorter gestation lengths, which complicate data extrapolation

to bovine and human pregnancies [29].

In contrast, bovine pregnancies provide ample AF volumes for individual fetus-level analysis.
Cattle also share key reproductive characteristics with humans, including mono-ovulation,
comparable gestation length, and an estrous cycle more broadly analogous to the menstrual
cycle [30-32]. Moreover, bovine embryonic epigenetic patterning more closely resembles
human patterns than murine models [33,34] while experimental conditions, including genetics,

nutrition, and environment can be effectively controlled.

We therefore applied ultra-high-throughput untargeted metabolomics, integrated with machine-

learning analytics, to interrogate early-gestation bovine AF, addressing three specific objectives.

We first investigated whether AF contains metabolomic signatures of fetal sex — information

valuable for livestock management [35]. Despite evidence that sex influences embryonic
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metabolism [36—42] and epigenetic patterning [43—45], bovine AF sexual dimorphism has been

examined in only one miRNA study [46].

Secondly, we examined metabolic differences between in vitro fertilization (IVF) and artificial
insemination (Al) derived pregnancies. In vitro embryo production (IVEP) now dominates
commercial cattle breeding [47], while human IVF exceeds 2.5 million cycles annually [48].
Understanding how assisted reproduction alters fetal metabolism [49-51], fetal epigenetics [52—

57], and endometrial responses [58,59] could improve protocols for both species.

Thirdly, we tested whether AF metabolites can forecast pregnancy viability. Previous research
identified four amino acids distinguishing viable from non-viable bovine pregnancies following
cloned embryo transfer [60]. However, the chromosomal instability of clones [61] limits practical
application. We therefore focused on spontaneous losses under standard commercial (IVF and

Al) conditions.

Here we show that bovine AF (Day 68) harbors metabolomic signatures that can predict fetal
sex and pregnancy outcome while corroborating conception method — independently of several
maternal traits and fetal genetics. Random Forest models built on six metabolites each —
including adenine, hypotaurine, methylguanosine, and phosphoserine, among others — achieved
high area under the receiver operating characteristic curve (AUROC) values between 0.76-0.91.
Furthermore, validation of the fetal sex classifier in an independent cohort confirmed model
robustness. These findings highlight concise panels with potential near-future application in
precision livestock management, where early and accurate prediction of calf sex and pregnancy
trajectory could inform breeding decisions, optimize resource allocation, and reduce economic
losses associated with undesired male calves or failed pregnancies. More broadly, this
approach and these data provide a translational framework for developing next-generation

prenatal diagnostics in human obstetrics.

MATERIALS AND METHODS
Overview

To systematically investigate AF metabolomic signatures, we established two experimental
cohorts. Initial pregnancies were generated in Holstein heifers (n=20) at the ST Genetics Ohio
Heifer Center (South Charleston, OH, USA) following estrous cycle synchronization and Al
using conventional (n=13) or sex-sorted (n=7) semen (Cohort 1A). During pregnancy, ovum

pickup (OPU) was performed on seven of these animals. Resulting oocytes were used for IVEP.
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These embryos were individually transferred into a separate group of synchronized recipient
Holstein heifers, generating a further 25 pregnancies (Cohort 1B). Amniocentesis was
performed on all animals (n=45) on Day 68 of pregnancy. Cohort 1 animals were maintained by
ad libitum access to a standard total mixed ration (TMR) corn silage-based diet. Cohort 1
samples were collected between 04.2020-12.2021 as approved by The Ohio State University

Institutional Animal Care and Use Committee.

For independent validation, 22 embryos were transferred individually into estrous synchronized
crossbred beef heifers (n=22) at the University College Dublin (UCD) Lyons Research Farm,
Dublin, Ireland. AF was recovered on Day 42 (Cohort 2). Cohort 2 animals were maintained on
a grass maize silage supplemented with a standard beef finishing concentrate. Cohort 2
samples were collected between 03.2022-08.2022 as approved by the UCD Animal Research
Ethics Committee and licensed by the Health Products Regulatory Authority, Ireland, under
Directive 2010/63/EU.

Experimental design

Cohort 1 AF samples were categorized according to multiple parameters to enable

comprehensive analyses. This is summarized in Figure 1 and described below.

Fetal sex. Male-carrying pregnancies (n=26) included fetuses derived by IVF (61.5%) and Al
(38.5%), utilizing conventional (84.6%) and sex-sorted (15.4%) semen. Among these, 96.2%
resulted in successful pregnancies, while 3.8% spontaneously aborted. Female-carrying
pregnancies (n=19) consisted of IVF (47.4%) and Al (52.6%) derived fetuses, derived using
conventional (84.2%) and sex-sorted (15.8%) semen. In this group, 73.7% carried to term, while

26.3% spontaneously aborted.

Conception method. IVF-derived pregnancies (n=25) comprised male (65%) and female (35%)
fetuses, generated using conventional semen (100%) of which 88% resulted in successful
pregnancy and 22% spontaneously aborted. Al-derived pregnancies (n=20) comprised male
(50%) and female (50%) fetuses, generated using both conventional (65%) and sex-sorted

(35%) semen. Of these, 85% were successful compared to 15% spontaneous abortions.

Pregnancy outcome. Among successful pregnancies (n=39), 64.1% were male and 35.9% were
female. Of these, 56.4% were IVF-derived, and 43.6% were Al-derived. Additionally, 87.2%
were produced using conventional semen, while 12.8% used sex-sorted semen. Spontaneous
abortion (n=6) or successful pregnancy (n=39). The spontaneous abortion group (n=6)

comprised 16.7% male and 83.3% female fetuses, with 50% derived from IVF and 50% from All.
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Of these, 66.7% were generated using conventional semen, and 33.3% used sex-sorted semen.

Spontaneous abortions occurred at 208 + 55.7 days (mean = SD), ranging from Day 98-252.

Fetal genetics. Using semen from one sire throughout (controlling paternal effects) and
collecting oocytes from seven heifers for IVEP allowed tracking genetic relationships. For
example, oocytes from mothers producing Heifer 1 via Al also produced embryos transferred to
recipients resulting in Heifers 2-7. Therefore, Heifers 1-7 (Group A) are full genetic siblings. This

applies to Groups B-G, while Group H comprises paternal half-siblings (Fig. 1D).
Cohort 1A estrous cycle synchronization

Estrous cycles of 20 Holstein heifers were synchronized using a standard 5-day fixed-time
artificial insemination (FTAI) protocol [62]. In brief, each heifer received a progesterone (P4)-
controlled internal drug release (CIDR) device (1.38 g P4, Eazi-Breed, Zoetis, Florham Park,
NJ) inserted intravaginally on a random day of their estrous cycle, plus intramuscular
administration of gonadotropin releasing hormone (GnRH, 100ug gonadorelin acetate, Parnell,
Overland Park, KS), designated as Day -8. On Day -3, the CIDR was removed, and heifers
were administered prostaglandin F2a (PGF2a) intramuscularly (500 pg cloprostenol sodium,
Parnell, Overland Park, KS). A second, identical PGF2a injection followed 24 hours later. The
day of observed estrus was marked as Day 0 at which time GnRH was administered

intramuscularly to induce ovulation (Supplementary Figure 1A).
Cohort 1A artificial insemination

Thirteen of these synchronized heifers, selected at random, were artificially inseminated on Day
0 using conventional bull semen from the same sire (ST Genetics, Navasota, TX). More
specifically, semen was thawed by immersion in 35.5 °C water for 45 seconds before deposition
into the uterine cavity, guided by transrectal palpation. The remaining seven synchronized
heifers were identically artificially inseminated on Day 0 using sex-sorted semen from the same
sire as previously (SexedULTRA 4M™, ST Genetics, Navasota, TX).

Cohort 1A amniocentesis

Pregnancies were confirmed on gestational Day 60 by transrectal ultrasonography using a 5-9
MHz linear transducer coupled to an Ibex EVO Il display (E.l. Medical Imaging, Loveland, CO).
Amniocentesis was then performed on Day 68, following a previously described procedure [63].
In brief, heifers were restrained in a squeeze chute, and gentle massage of the ventral vulvar
area stimulated urination. An epidural block was administered by injecting 5 ml of 2 % lidocaine

(Aspen Veterinary Resources, Liberty, MO) into the inter-coccygeal space between the first and
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second vertebrae. Additionally, 10 mg xylazine (Rompun, Shawnee Mission, KS) was

administered intravenously as a sedative to further minimize stress.

A vaginal lavage was then performed by intravaginal infusion of 60 ml sterile 0.9 % sodium
chloride solution, while rectal contents were emptied to allow manipulation of the broad
ligament. After aseptic preparation, a 5-10 MHz convex transducer coupled to an Ibex EVO Il
display (E.l. Medical Imaging, Loveland, CO) was inserted into the vaginal canal up to the fornix.
Using transrectal manipulation of the broad ligament, the amniotic space was positioned against
the vaginal wall to enable safe insertion of a 20 G x 2” needle (WTA, College Station, TX) to

minimize risk of injury to the umbilical cord, placentomes, or fetus.

The amniocentesis needle was connected to 1.4 m tubing (WTA, College Station, TX) and a 3-
way stopcock (MILA International, Florence, KY) with two syringes attached to the remaining
ports. Upon entering the amniotic cavity, 5 ml AF was drawn into a 20 ml luer-lock syringe to
prime the line. The port was then switched to collect a final AF volume of approximately 40 ml
within a 50 ml luer-lock syringe (Air-Tite Products Co., Inc., Virginia Beach, VA). AF samples
were immediately aliquoted, snap frozen in liquid nitrogen [N2(/)], and stored in N2(/) until

transport for analysis.

Following amniocentesis, pain management was provided by intravenous administration of

flunixin meglumine (Vetameg, Aspen Veterinary Resources, Liberty, MO) at 50 mg-50kg™" body
weight, and oral administration of meloxicam (Unichem Pharmaceuticals Inc., East Brunswick,
NJ) at 50 mg-50kg™" body weight. All amniocentesis procedures were performed by one of two

experienced technicians.
Cohort 1A ovum pickup

During pregnancy, OPU was performed on seven heifers using a standard protocol [64,65].
Specifically, donors were restrained in a squeeze chute, and caudal epidural anesthesia was
administered as described above. The perineal area was then cleaned and disinfected using 70
% isopropyl alcohol. Oocyte retrieval was ultrasound-guided using a 5-9 MHz linear transducer,
coupled to an Ibex EVO Il display (E.I. Medical Imaging, Loveland, CO), inserted into the
vaginal fornix. Follicles were punctured with an 18 G x 5.5 cm needle (WTA, College Station,
TX) attached to a metal guide connected via plastic tubing to a 50 ml conical tube linked to a

vacuum pump (Cook Medical, Bloomington, IN), maintaining a constant flow rate of 12 ml-min™.

Plastic tubing was flushed with pre-warmed (38.5 °C) Dulbecco’s phosphate buffer solution

(DPBS) supplemented with 0.4% bovine serum albumin (BSA), 25 mg-I"' kanamycin sulphate
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and 5 IU-mlI"" sodium heparin at 36 + 1 °C. Then, follicular aspirates from each follicle over 3
mm in diameter were filtered using a 75 pm filter (oocyte aspiration dish with 3 mm grid,
Professional Embryo Transfer Supply, Canton, TX) and washed with pre-warmed oocyte
collection medium (Boviteq, Madison, WI). The contents of the filter were transferred to a square
grid dish to locate and harvest cumulus-oocyte complexes (COC) under a stereomicroscope.

OPU was performed by one of two experienced technicians.
Cohort 1B in vitro embryo production

In vitro embryo production was performed at the ST Genetics Texas laboratory following
proprietary procedures. COC from each donor were matured in-transit over 24 h at 38.5 °C
within maturation medium (ST Genetics, TX). Matured COC were then transferred into a pre-
equilibrated 60 pl drop of IVF medium (ST Genetics, TX) covered with mineral oil. Frozen-
thawed sperm was purified using a double-density gradient approach (Nidacon International AB,
MéIndal, Sweden) as previously described [66]. A final concentration of 10° sperm-mlI”" was
achieved and fertilization took place for 8 h at 38.5 °C under 5 % CO: in air. Following
fertilization, cumulus cells were removed, and embryos were cultured in a benchtop incubator
(WTA, College Station, TX ) at 38.5 °C under 5 % O2, 5 % CO2, and balanced N2z as premixed
gas (Airgas, Dallas, TX). Cleavage rates were recorded 3 days after fertilization and blastocyst
rates recorded at 7 days post-fertilization. Embryo stage and quality were morphologically

determined according to International Embryo Transfer Society (IETS) guidelines.
Cohort 1B embryo transfer

Recipients for embryo transfer were synchronized using a standard 5-day fixed-time embryo
transfer (FTET) protocol [62]. The heifers received a CIDR inserted intravaginally on a random
day of their estrous cycle designated as Day -8. On Day -3, the CIDR was removed, and the
heifers were administered an intramuscular injection of PGF2a. After 72 hours GnRH was
administered intramuscularly to induce ovulation at which time marked as Day 0
(Supplementary Figure 1B). The presence of a corpus luteum (CL) on Day 5 was confirmed
by transrectal ultrasonography. On Day 7 of the estrous cycle, Day 7 embryos were loaded
individually into 0.25 ml French straws with holding medium (ST Genetics, TX). Loaded straws
were placed in a portable incubator (Micro Q Technologies, Scottsdale, AZ) at 38.5 °C and
transported to the farm. Prior to embryo transfer, regional anesthesia was administered through
a caudal epidural injection as aforementioned. Each recipient received a single blastocyst,

which was transferred into the uterine horn ipsilateral to the CL. Pregnancy was confirmed by
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transrectal ultrasonography on Day 60 post-transfer and amniocentesis was performed on Day

68 as described above.
Cohort 2 estrous synchronization

Genetically unrelated crossbred beef heifers (n=22), primarily Limousin, Charolais, or Aberdeen
Angus crosses were synchronized using an analogous and established [67—70] protocol
(Supplementary Figure 1C). In brief, heifers received a P4 releasing intravaginal device (PRID
E) (1.55 g P4, Ceva Santé Animale, Libourne, France) on a random day of their estrous cycle,
designated as Day -11, concomitantly with GnRH analogue (Ovarelin, 100 mg gonadorelin;
Ceva Santé Animale) intramuscular administration. After seven days, PGF2a (Enzaprost, 5 mL
equivalent to 25 mg dinoprost; Ceva Santé Animale) was administered, before PRID removal

the following day.
Cohort 2 in vitro embryo production

Blastocysts were produced in vitro using an analogous and established protocol [71]. Briefly,
immature COC were collected by aspirating follicles from the ovaries of cattle slaughtered at a
local abattoir (Kildare Chilling Company, Kildare, Ireland). COC were pooled, washed in PBS,
and matured for 24 h in groups of 50 in 500 pl of TCM-199 (Sigma Aldrich, Arklow, Ireland),
supplemented with 10 % fetal calf serum and 10 ng-ml”" epidermal growth factor (Sigma

Aldrich). Maturation took place at 39 °C in a humidified environment with 5 % CO: in air.

Mature COC were inseminated with frozen-thawed sperm (National Cattle Breeding Centre,
Kildare, Ireland) at a concentration of 10° sperm-ml™". After 20 h of co-incubation at 39 °C under
5 % COsz in air, presumptive zygotes were denuded by vortex and cultured in 25 ul droplets of
IVC medium (Stroebech), supplemented with 3 mg-ml”" bovine serum albumin (Sigma Aldrich)
at 39°C in a humidified atmosphere with 5 % CO. and 5 % Oz under mineral oil. Embryos were
cultured at a ratio of 1 embryo-ul™'. Grade 1 blastocysts for transfer were collected on Day 7 and

loaded into straws with embryo holding medium (IMV Technologies, L'Aigle, France).
Cohort 2 embryo transfer

Heifers were monitored for signs of estrus five times daily, starting 30 h after PRID withdrawal.
All heifers observed standing estrus and thus received a single Day 7 in vitro-produced
blastocyst on Day 7 or 9 of the estrous cycle, with Day 0 being considered the day of expected
ovulation (approximately 28 h after estrus onset). Embryo transfer was performed as described
above. Pregnancies were confirmed by transrectal ultrasonography on Day 28 of gestation, and

all transfers were conducted by one of two experienced technicians.
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Cohort 2 amniotic fluid recovery

AF was collected as previously described [72]. In brief, pregnant heifers were slaughtered on
Day 42 of gestation in a commercial European Union licensed abattoir. The reproductive tract
was recovered and kept on ice until processing for sample collection, within 30 min of slaughter.
The pregnant uterine horn was opened along the major curvature to retrieve fetal membranes.
For AF collection, a 30 G needle connected to a 1 ml syringe was used to pierce the amnion
and aspirate the fluid. AF was placed into RNase/DNase-free tubes (Thermo Fisher Scientific,
Waltham, USA), centrifuged at 16,000 x g for 10 min at 4 °C, and the supernatant placed into

new RNase/DNase-free tubes, snap-frozen in liquid nitrogen, and stored at -80 °C until analysis
Dependent experimental variable metrics

Additional animal details and dependent experimental variable raw metrics are provided in

Supplementary Figure 1D (Cohort 1) and Supplementary Figure 1E (Cohort 2).
Mass spectrometry

AF samples were first thawed on ice for 60 min, vortexed, and centrifuged briefly to remove
bubbles. After addition of 180 yl 80% methanol per 20 ul of each sample, samples were
incubated at 4°C for 1 h and then centrifuged at 3,220 x g for 15 min at room temperature. The
resulting supernatants were stored at -80°C until analysis. Therefore, these data represent the

methanol-extractable portion of the amniotic fluid metabolome.

Metabolic profiling was conducted at General Metabolics Inc. (Boston, MA) using flow-injection
mass spectrometry (FI-MS) on an Agilent 6550 quadrupole time-of-flight (Q-TOF) system [73],
similarly to Chen et al. [74]. In brief, the equipment was configured to scan in full MS mode at
1.4 Hz, operating in negative ionization with 4 GHz high resolution mode, across a mass range
of 50 to 1,000 m/z. The solvent, 60% isopropanol, was supplemented with 1 mM ammonium
fluoride (NH4F) at pH 9.0, 10 nM hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazene, and 80

nM taurocholic acid, for mass calibration.

Samples (100 ul each) were injected in randomized order and data were acquired in profile
mode. Data were centroided before analysis using MATLAB (MathWorks). Missing values were
imputed using recursive analysis, and consensus centroids were identified across all samples.
lons were annotated based on accurate mass and isotopic patterns using the HMDB database
(version 4.0) [75]. It is worth noting that due to the inherently weak chromatographic separation

often associated with global metabolomic profiling [76], compounds with identical molecular
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formulae could not be distinguished. Therefore, annotation confidence was level 4, though, in

practice, it is generally higher for common metabolites [73].

A pooled aliquot of all experimental samples, serving as a technical replicate control, was run in
between the experimental samples at defined intervals. Based on these, the mean technical

(instrument) standard error was calculated at 2.8 %.
Metabolomic analyses

Single-factor analyses were conducted using MetaboAnalyst 6.0 [77]. Initially, raw peak
intensities were filtered by interquartile range to account for variance, following standard
recommendations for untargeted metabolomics datasets [78]. Based on our mean technical
standard error, a threshold of 5% was applied, leading to the exclusion of 68 metabolites. Data
were then normalized to the median, log-transformed (base 10), and auto-scaled (mean-

centered and divided by each variable standard deviation).

Thereafter, volcano plots were generated by unpaired t-test, with thresholds set at a P<0.05, a
fold change of 1.0 (i.e. no change), and assuming equal group variance. Principal component
analysis (PCA) plots with 95% confidence intervals were created using permutational
multivariate analysis of variance (PERMANOVA), with distributions based on Euclidean distance

from the first two principal components.

Sparse partial least squares discriminant analysis (sPLS-DA) was performed with 5
components and 10 variables per component. Model performance was evaluated using 5-fold
cross-validation with an increasing number of components and a fixed 10 variables per
component. Hierarchical clustering dendrograms were generated using Euclidean distances and
the Ward method. Heatmaps were produced from normalized data, standardized by auto-scaled

metabolite features, with Euclidean distance and Ward clustering applied.

For metadata analyses, peak intensities were filtered, normalized, transformed, and scaled as
described above. A metadata heatmap was generated using Euclidean distance and Ward
clustering for both metabolites and metadata variables. Correlation coefficients were calculated
using the Pearson R correlation measure. Linear models with covariate adjustment (P<0.05)

were applied using the limma linear regression approach, as previously described [76,79].

For categorical enrichment analyses, compound names were first standardized against the
HMDB, PubChem, and KEGG databases. Unstandardized compound names were excluded.
Peak intensities were then normalized, transformed, and scaled as in prior steps. Enrichment

testing was conducted based on the global test [80] against the RaMP-DB metabolite set library,

10



291
292
293

294
295
296
297
298
299
300
301

302
303
304
305
306
307
308

309
310
311
312
313
314
315

316
317

which integrates 3,694 features from KEGG (via HMDB), Reactome, and WikiPathways
databases. Only metabolite sets with at least two entries were included. Enrichment values

were calculated as the ratio of observed vs. expected metabolites within each pathway [81].

In contrast, pathway topology analyses were conducted by first standardizing compound names
against the HMDB, PubChem, and KEGG databases, before peak intensity normalization,
transformation, and scaling — all as above. The pathway analysis focused on significant
(P<0.05) metabolites rather than pre-selected ones, with enrichment performed using the global
test as above. Topology was assessed using relative-betweenness centrality, and the reference
metabolome included all compounds from the KEGG Bos taurus library. Scatter plots were
generated to display all matched pathways, with P-values from the pathway enrichment analysis

plotted against pathway impact values from the topology analysis.
Machine-learning based biomarker identification

Biomarker analyses were performed using MetaboAnalyst 6.0, leveraging the receiver operating
characteristic (ROC) curve-based model evaluation function. Initially, raw peak intensities were
filtered, normalized, transformed, and scaled as described above. Metabolites were then
manually selected for ROC analysis, which was conducted using the Random Forests
multivariate algorithm. Specifically, 100 cross-validations were performed, with results averaged
to generate ROC curves with 95% confidence intervals and predictive accuracy values.

Empirical P-values were calculated from 1,000 AUROC permutations.

RESULTS
Metadata summary

Ultra-high-throughput untargeted metabolomic profiling of AF collected from Holstein heifers
(n=45) on Day 68 of pregnancy (Cohort 1) identified 1,358 metabolites, with 1,335 annotated
(Supplementary Table 1). Following variance filtration, 68 metabolites (5%) were excluded,
leaving 1,290 metabolites for analysis. The mean (+ SD) age (591.5 + 73.7 days) and weight
(502.4 + 74.5 kg) of recipient heifers at the time of amniocentesis were similar, and among
successful pregnancies, gestation length (274.5 £ 4.9 days) and calf birth weight (41.9 £ 7.7 kg)

were comparable (Supplementary Figure 1D).
Amniotic fluid composition is sexually dimorphic

We first compared the AF metabolome from male vs. female fetuses. Initial principal component

(PCA; Supplementary Figure 2A) and hierarchical clustering (Supplementary Figure 2B)
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analyses revealed high AF composition overlap between both groups. As such, the overall AF
metabolic landscapes between male vs. female fetuses are very similar. However, subsequent
sparse partial least squares discriminant analysis (sPLS-DA) — a supervised machine learning
algorithm effective in separating non-linear clustered signals [82—-84] — segregated the AF

metabolic signatures of the two groups (Fig. 2A), albeit with a high mean cross-validation (CV)

error rate of 42.2 % (Supplementary Figure 2C).

AF metabolome correlations between fetal sex and (a) discrete covariates [pregnancy outcome
(Fig. 2B), conception method (Fig. 2C), semen source (Fig. 2D), fetal genetics (Fig. 2E)], and
(b) continuous variable metadata [recipient weight (Fig. 2F), recipient age (Fig. 2G), gestation
length (Fig. 2H), offspring birthweight (Fig. 2I)] variables were low, with a mean (£ SD)
correlation coefficient (R) of 0.12 + 0.2. This demonstrates no significant association between

these parameters and fetal sex in terms of AF composition.

Before covariate adjustment, 15 metabolite (1.2 % of total) relative concentrations differed
(P<0.05) between AF from male and female fetuses (Fig. 2J-K). Qualitative enrichment analysis
highlighted tRNA-derived modified nucleoside, estrone, and estrogen metabolism as over-
represented pathways (Fig. 2L). A semi-quantitative targeted pathway analysis further revealed
metabolites corresponding to a-linolenic acid and unsaturated fatty acid metabolism as

differentially abundant in the same comparison (Supplementary Figure 2D).

Subsequent linear covariate adjustment metabolomic analysis, to increase precision and reduce
bias [85], isolated 13 differentially abundant (P<0.05) AF metabolites (1 % of total) by fetal sex —
independently of fetal conception method, semen type, pregnancy outcome, and fetal genetics
(Fig. 2M). These include hexonic acid, isoeugenol phenylacetate, and methylguanosine. Figure
2N further highlights the lack of association between these metabolite concentrations and
recipient age, weight, and gestation length. Therefore, despite high overlap between AF
metabolomes from male and female fetuses, there are select differences, underscoring sexually

dimorphic fetal metabolism.
In vitro fertilization alters amniotic fluid composition

We next compared the AF metabolome from fetuses derived using IVF vs. Al. Initial PCA
(Supplementary Figure 3A) and hierarchical clustering (Supplementary Figure 3B) revealed
similarly high AF composition overlap between both groups, which could be overcome using
sPLS-DA (Fig. 3A). The associated mean sPLS-DA CV error was 23.6 % (Supplementary
Figure 3C). Therefore, consistent with fetal sex, the overall AF metabolic profiles of IVF- and Al-

derived fetuses are similar, but not identical.
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350  AF metabolome correlations between fetal conception method and (a) discrete covariate

351  [pregnancy outcome (Fig. 3B), fetal sex (Fig. 3C), semen source (Fig. 3D), fetal genetics (Fig.
352 3E)], and (b) continuous variable metadata [recipient weight (Fig. 3F), recipient age (Fig. 3G),
353  gestation length (Fig. 3H), offspring birthweight (Fig. 31)] variables were low. More specifically, a
354  mean (x SD) correlation coefficient (R) of 0.05 £ 0.40 indicates no significant association

355  between these parameters and conception method in terms of AF composition.

356  Prior to covariate adjustment, 49 metabolite (3.8 % of total) relative concentrations differed
357  (P<0.05) between AF from Al- and IVF-derived fetuses (Fig. 3J-K). Qualitative enrichment
358  analysis highlighted three pathways related to pyrimidine metabolism, three related to

359 inflammation, and three related to ceramide signaling as over-represented (Fig. 3L). Semi-
360  quantitative targeted pathway analysis further confirmed pyrimidine and sphingolipid (including

361  ceramide) metabolism impact (Supplementary Figure 3D).

362  After similar covariate adjustment, 12 AF metabolites (0.9 % of total) were differentially

363  abundant (P<0.05) based on fetal conception method — independently of fetal sex, semen type,
364  pregnancy outcome, and fetal genetics (Fig. 3M). These include thymine, C16:3, and

365  oxocortisol. Figure 3N further highlights the lack of association between these metabolite

366  relative concentrations and continuous metadata. Thus, much like with fetal sex, there is

367  significant overlap in the AF metabolomes of Al and IVF-derived fetuses; however, specific

368  differences highlight a metabolic impact of IVF.
Pregnancy outcome is reflected in the amniotic fluid metabolome

369  Next, we retrospectively analyzed the AF metabolome from successful and spontaneously

370  aborted pregnancies. Like previously, PCA (Supplementary Figure 4A) and hierarchical

371  clustering (Supplementary Figure 4B) showed high AF composition overlap between both

372 groups, although sPLS-DA was able to differentiate the AF metabolomes from pregnancies of
373  divergent viability (Fig. 4A) with a lower mean CV error of 14.7 % (Supplementary Figure 4C).
374  Therefore, while the overall AF metabolic profiles of pregnancies of divergent viability are very

375  similar, select differences are apparent.

376 AF metabolome correlations between pregnancy outcome and (a) discrete covariate [fetal sex
377  (Fig. 4B), conception method (Fig. 4C), semen source (Fig. 4D), fetal genetics (Fig. 4E)], and
378  (b) continuous variable metadata [recipient weight (Fig. 4F), recipient age (Fig. 4G), gestation
379  length (Fig. 4H), offspring birthweight (Fig. 4l)] variables were similarly low, with a mean (£ SD)
380  correlation coefficient (R) of 0.17 + 0.32. This is unsurprising given that gestation lengths and

381  birth weights could only be determined from successful pregnancies. Incidentally, the strongest
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correlation observed among successful pregnancies was between offspring birth weight and

gestation length (R=0.716; Supplementary Figure 5A), as expected.

Before covariate adjustment, 35 metabolite (2.7 % of total) relative concentrations differed
(P<0.05) between AF from successful vs. nonviable pregnancies (Fig. 4J-K). Qualitative
enrichment analysis highlighted three pathways related to purine metabolism, two related to
defective solute carriers, and two related to molybdenum cofactor imbalances as over-
represented (Fig. 4D). This was largely reflected in a semi-quantitative targeted pathway
analysis, as purine metabolism — to which molybdenum cofactor dependent enzymes are

central [86] — ranked highly (Supplementary Figure 4D).

After covariate adjustment, 28 metabolites (2.2 % of total) were differentially abundant (P<0.05)
based on pregnancy viability, independently of discrete covariates (Fig. 4M). These include
pentosidine, allantoin, and hydroxyphenylacetothiohydroximate (C17239). Figure 4N further
highlights the lack of association between these metabolite relative concentrations and

continuous metadata variables.

Thus, similarly to fetal sex and conception method, there is significant overlap in the AF
metabolomes of fetuses of divergent competence; however, specific differences suggest these
metabolites may be promising biomarkers of pregnancy viability. Furthermore, extrapolated
metabolic pathways of likely importance to fetal survival are presented in Figure 5. These were
manually constructed and primarily revolve around the tricarboxylic acid, urea, methionine, and

purine nucleotide cycle interconversions.
Machine-learning based biomarker identification

We next used the receiver operating characteristics (ROC) curve with the Random Forest
machine learning algorithm approach to highlight metabolite relative concentrations that may
confirm fetal conception method and predict fetal sex and pregnancy outcome. Biomarker area
under the ROC curve (AUROC) values can be generally classified as excellent (0.9-1.0), good
(0.8-0.9), fair (0.7-0.8), poor (0.6-0.7), or fail (0.5-0.6) [87]. We also performed a cross-validation

(CV) analysis to evaluate the predictive accuracy of each model.

The relative concentrations of six AF metabolites (Fig. 6Ai) could predict fetal sex with an
AUROC of 0.76 (P=0.023) (Fig. 6Aii) and CV predictive accuracy of 0.68 (Fig. 6Aiii). Regarding
conception method, the relative concentrations of six different AF metabolites (Fig. 6Bi) could
confirm whether a fetus was derived by Al or IVF with an AUROC of 0.91 (P=0.001) (Fig. 6Bii)

and CV of 0.83 (Fig. 6Biii). Finally, the relative concentrations of another six AF metabolites
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(Fig. 6Ci) could predict whether a pregnancy would be successful or not with an AUROC of
0.81 (P=0.018) (Fig. 6Cii) and CV of 0.70 (Fig. 6Ciii).

Biomarker model confirmation

To further test these data, AF was collected from an independent group of crossbred beef
heifers (n=22) on Day 42 of pregnancy, carrying male or female fetuses (Cohort 2). Mean (+
SD) age (757.0 + 58.6 days) and weight (586.1 + 27.0 kg) of recipient heifers at the time of
amniocentesis were similar. However, mean Cohort 2 recipient ages (Supplementary Figure
5B) and weights (Supplementary Figure 5C) differed to Cohort 1 (P<0.0001). Cohort 2
pregnancies were established by embryo transfer following IVF using conventional semen from
a different single sire to Cohort 1, producing 17 male and 5 female fetuses. AF from Cohort 2
was identically subjected to high-throughput untargeted metabolomics. Comparative analyses of
AF metabolomic profiles from both cohorts revealed greater variation between cohorts than
between fetal sexes, as indicated by hierarchical clustering (Fig. 6D) and sPLS-DA (Fig. 6E).
Despite this cohort-specific variation, the same six AF metabolites used to predict fetal sex in
Cohort 1 (Fig. 6Fi) achieved similarly high predictive performance in Cohort 2, with an AUROC
of 0.85 (P = 0.029) (Fig. 6Fii) and a cross-validated accuracy of 0.78 (Fig. 6Fiii).

DISCUSSION

These data provide compelling evidence that, while the overall AF metabolome is highly similar
across different conditions, specific metabolomic changes are associated with fetal sex,
conception method, and pregnancy outcome. These findings deepen our understanding of fetal
development and highlight potential biomarkers that could be used in reproductive management

and prenatal diagnostics, particularly for predicting mammalian fetal sex and pregnancy viability.
Amniotic fluid composition is sexually dimorphic

Sex-specific differences during development are well-established. However, a better
comprehension of the sexually dimorphic aspects of pregnancy is crucial for advancing
individualized prenatal care and elucidating sex-specific health trajectories. Here we found that
the tRNA derived modified nucleosides pathway was most differentially enriched in AF by fetal
sex, driven largely by elevated methylguanosine in female vs. male pregnancies. Methylation of
guanosine at the N position [N’-methylguanosine (m’G)] at nucleotide 46 of tRNA (m’G-46) is
one of the most prevalent and conserved tRNA modifications [88,89]. It plays a vital role in

regulating steady-state tRNA levels, which affect cell growth and behavior [90,91], including in
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mammalian stem cells [92,93]. This methylation is catalyzed by the METTL1-WDR4 complex
[94]. Intriguingly, cell-free METTL1 mRNA transcript levels are reduced in AF from pregnancies
with Turner syndrome (gonadal dysgenesis) offspring [95], suggestive of a causal link between

tRNA guanosine methylation and sex-specific fetal development regulation.

The tRNA m’G-46 modification is also implicated in autophagy regulation [96]. Sexually
dimorphic placental autophagy has been observed in response to stress [97,98]. Moreover,
miscarriage, which occurs more frequently in pregnancies with male fetuses [99-101], is often
closely associated with placental autophagy [102]. It is therefore plausible that the sexual
dimorphism in AF methylguanosine levels observed here arises from differential placental
regulation of m’G-46 tRNA. This is consistent with the facts that, during the first-trimester,
human placental DNA methylation is sexually dimorphic [103], and AF composition primarily

reflects placental transudate from maternal circulation [104].

Given the numerous parallels between pregnancy and cancer [105], it is intriguing that m’G is
also secreted by malignant cancer cells [106]. Cellular mechanisms influenced by m’G-46
tRNA, common to both pregnancy and cancer, include immune evasion, proliferation, and
migration [107]. As such, sexually dimorphic methylguanosine levels in AF may partially reflect,
or contribute to, the phenomenon of accelerated male vs. female fetal development [108].
Further linking tRNA modifications to sexually dimorphic fetal development is the identification of
queuosine, a modified nucleoside found at nucleotides 34-37 (the ‘wobble’ positions [109]) of
specific tRNAs, in bovine AF [110], albeit not in this study. Queuosine-modified tRNAs have
been shown to promote sex-dependent learning and memory formation in mice [111], and
queuosine-modified tRNA glycosylation is required for post-embryonic growth in zebrafish [112].
Together, these findings implicate epitranscriptomic modifications in fetal development sexual
dimorphism. However, whether AF composition is a cause or effect of these modifications

remains an open question.
In vitro fertilization alters amniotic fluid composition

Elucidating the molecular determinants of altered development in a subset of offspring
conceived via IVF is of significant public health importance, particularly given the growing use of
assisted reproductive technologies [113]. More specifically, understanding these biomarkers
and mechanisms is crucial for enhancing clinical practices and reducing the risk of adverse
outcomes for offspring. After controlling for discrete confounding variables, we found 12
differentially abundant AF metabolites based on fetal conception method. The most significant

was thymine, elevated in the AF of Al vs. IVF pregnancies. Thymine derivatives are present in
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urine as a byproduct of DNA damage repair (DDR) mechanism activity [114—116]. Thus, it is
tempting to suggest that DDR is more efficient in Al vs. IVF pregnancies. Supporting this is a
recent finding that plastics used in IVF alter placental gene expression in mice, with DNA repair

being a main enriched gene set [117].

The elevated arginyl-glutamic acid (Arg-Gln) dipeptide in Al pregnancies further supports the
hypothesis that natural conception provides metabolic advantages. Arg-GIn demonstrates
protective effects on developing organs [118,119] and positively correlates with birth weight in
women [120]. Given the economic importance of calf birth weight in cattle production,
understanding these metabolomic differences could inform selection strategies for embryo

transfer recipients and optimize protocols to maximize offspring viability.

Dipeptides are generally produced through aminopeptidase-catalyzed protein cleavage [121],
with aminopeptidase M known to be present in human AF [122]. This raises the intriguing
question of whether Arg-GIn is synthesized within AF itself. This would suggest that AF
possesses a degree of metabolic semi-autonomy and would parallel the metabolic capabilities
of uterine fluid, which has been shown to support specific biochemical processes independently
[123]. If confirmed, the ability of AF to semi-autonomously metabolize metabolites such as Arg-
GIn would suggest a more active role in fetal development and nutrient processing than

previously understood, influencing fetal growth and development in novel ways.
Pregnancy outcome is reflected in the amniotic fluid metabolome

During this study, a subset of pregnancies from which AF was collected resulted in spontaneous
abortion, providing an opportunity to investigate biomarkers related to pregnancy outcome.
Identifying these markers is critical for the early detection of potential pregnancy complications
and developing tailored interventions to improve pregnancy success in both women and cattle.
This is particularly significant given that over 3 million stillbirths occur globally each year [124]

and the economic significance of livestock reproductive management to agriculture.

We found that the molybdenum cofactor biosynthesis pathway was most differentially enriched
in AF when stratified by subsequent pregnancy outcome. This is primarily attributable to
reduced xanthine and elevated urate levels (amniotic hyperuricemia) in spontaneously aborted
vs. successful pregnancies. Xanthine oxidase (XO), one of only four molybdenum cofactor
enzymes in higher-order mammals [125], primarily catalyzes two reactions: the conversion of
hypoxanthine to xanthine and the oxidation of xanthine to urate [126]. XO is derived from
xanthine dehydrogenase under hypoxic conditions through phosphorylation [127]. Thus, it is

unsurprising that intrapartum hypoxia — a condition associated with pregnancy loss [128] — is
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linked to increased fetal XO activity [129] and, by extrapolation, amniotic hyperuricemia. This is
supported by the finding that maternal administration of allopurinol, a XO inhibitor that
transverses the placenta in several species [130-133], generally yields positive outcomes in
pregnancies complicated by intrapartum hypoxia [133—138]. While intrapartum hypoxia occurs
in 0.1 to 1.2 % of human pregnancies [139], our findings indicate that it may be more prevalent
in cattle. This possibility is further supported by human data showing that second-trimester
amniotic hyperuricemia predicts infant birth weight in normotensive women, independently of

many systemic maternal factors such as insulin resistance [140].

Although the specific causes of spontaneous abortion in this study are unknown, our data
suggest that disrupted AF urate homeostasis is associated with adverse pregnancy outcomes.
These findings also indicate that aspects of pregnancy loss may be conserved between women
and cattle. Moreover, several differentially abundant AF metabolites identified in this study are
metabolically related (Fig. 5), suggesting shared pathways that may be linked to pregnancy
failure. However, at this point this is quite speculative; thus, further research is needed to
confirm these potential causal associations. It is also worth noting that since AF was sampled at
Day 68 — well in advance of when spontaneous abortions subsequently occurred — these data
suggest that early AF molecular signatures are predictive of later pregnancy loss, rather than

reflecting iatrogenic effects of the amniocentesis procedure itself.
Machine-learning based biomarker identification and model validation

Statistically significant values often make poor biomarker predictors, and vice versa [141-144].
For example, Zheng et al. [143] constructed a model using five genetic variants identified in a
genome-wide association study on prostate cancer, concluding that these variants did not
enhance predictive power. Similarly, Gransbo et al. demonstrated that while chromosome 9p21

was significantly associated with cardiovascular disease, it did not improve risk prediction [144].

To determine whether this phenomenon also applied to our metabolomic dataset, we used
Random Forest, an established [145] machine learning algorithm, coupled with model
performance evaluation using the ROC curve analysis, to identify potential AF biomarkers of
fetal physiology. Indeed, we observed that statistical significance did not align with predictive
efficacy. For example, urate levels, which were strongly statistically associated with pregnancy
outcome (P=0.0036), produced a relatively poor AUROC value of 0.67. Nonetheless,
independent panels consisting of just six AF metabolite relative concentrations confirmed fetal
conception method and sex and further predict pregnancy success with relatively high sensitivity

and specificity (Fig. 6).
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Recognizing the importance of model validation in independent populations [146], we
subsequently analyzed AF samples collected on Day 42 of pregnancy from an independent
herd of crossbred beef heifers in Ireland. Initial sSPLS-DA revealed clear separation of AF
profiles between the two cohorts. This likely reflects a combination of factors, including
differences in sampling stage (Day 68 vs. Day 42), breed-related genetic variation, maternal
characteristics (e.g., age and weight; Supplementary Figures 5A-B), diet, and environmental
and/or management conditions. These influences collectively shape AF composition, producing

distinct molecular fingerprints detectable in multivariate analyses.

Nonetheless, the same six metabolites used to predict fetal sex in the first cohort (AUROC =
0.76), predicted fetal sex in second cohort with a better AUROC of 0.85. These findings confirm
that the relative concentrations of just six AF metabolites are efficacious biomarkers of fetal sex
across two completely independent groups of cattle. This also engenders confidence in the
identified biomarkers for predicting pregnancy success, as the sPLS-DA CV error rate values
and AUROC measures for pregnancy outcome prediction are more favorable than for fetal sex

prediction.
Study limitations

Firstly, although we use the term ‘metabolomics’, the presented data pertain specifically to the
methanol-extractable fraction of the AF metabolome. Moreover, assigning putative compound
identifiers (annotation) to peak areas presents significant challenges in semi-quantitative high-
throughput untargeted metabolomics analyses [147]. Using standard libraries can lead to
misannotations of up to 27.8% [148], primarily due to the highly instrument- and setting-specific
nature of metabolite fragmentation spectra [149]. Consequently, conducting targeted
quantitative metabolomics against specific standards for select metabolites is important for

validating annotations and establishing precise metabolite concentrations.

Secondly, while our data hold potential bovine diagnostic relevance, their applicability to human
medicine and biological mechanisms requires further investigation. Although there are several
similarities between bovine and human pregnancies, notable differences exist. For instance, in
cattle, AF begins to accumulate after amnion closure around Day 22 and transitions from
predominantly maternal plasma transudate to include increasing fetal urine contribution after
renal maturation around Day 40 [150], whereas in humans, amnion closure occurs around Day
12 [151]. Also, the bovine placenta is semi-invasive synepitheliochorial, while the human
placenta is hemochorial. Such distinctions, among others, highlight that direct extrapolation

between bovine and human pregnancy, and vice versa, is often inappropriate. Nevertheless,
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while definitive translational conclusions cannot be drawn, our mention of human pregnancy is
intended to place the study in a broader comparative context. Given that many aspects of
mammalian development are conserved [152,153], bovine AF analysis may still serve as a
valuable resource for nominating candidate biomarkers for subsequent investigation in human

studies.

Thirdly, the etiologies of pregnancy loss are numerous and complex. Although we identified AF
metabolites correlating with spontaneous abortion, our sample size is relatively small. Larger
and more sex-balanced cohort studies are essential to enhance the robustness of these data
and to assess whether the identified AF metabolites can serve as reliable biomarkers for the

early detection of adverse pregnancy outcomes across various pathologies.

Fourthly, to increase our sample size for male and female pregnancies, seven pregnancies
were generated with sex-sorted semen. Although (a) our conventional and sex-sorted semen
originated from the same sire, (b) analysis revealed no correlation between semen source and
any measured outcomes, and (c) pregnancy rates following artificial insemination with sex-
sorted vs. conventional semen are comparable [154,155], altered embryonic gene expression
has been reported in bovine embryos produced from sex-sorted vs. conventional semen [156].
Therefore, this may be considered a confounding factor affecting our results. Lastly, and on a
similar note, we compared Al vs. IVF derived pregnancies. While effects of Al vs. natural service

are not apparent [157], this could be considered a potential confounding factor.
Future directions

A potentially worthwhile area for further research, not previously discussed, is exploring the
influence of the AF microbiome on maternal and fetal physiology. Although this topic is
contentious [28,158—-160], our data indicate the presence of microbiota-associated compounds

in bovine AF. Such inquiries could uncover novel determinants of fetal growth and development.

From an applied standpoint, we acknowledge that untargeted MS metabolomics may not be a
practical diagnostic modality for routine farm use. A logical next step is to refine these findings
into targeted, low-cost, and rapid assays that can be deployed at scale. Such tools would align
with emerging precision agriculture approaches, where inexpensive, high-throughput
diagnostics have the potential to offset the substantial economic burden of suboptimal
reproductive outcomes. Similarly, testing maternal blood, in addition to AF, for biomarkers, as
demonstrated in a recent study [72], could provide a less invasive approach to assessing fetal

physiology and pregnancy trajectories. Finally, a long-term objective could be to develop AF
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transfusions to enhance pregnancy outcomes and improve postnatal well-being in both livestock

and humans.
Summary

AF is a valuable yet under-utilized biological resource [161]. This study demonstrates that
bovine AF contains reproducible metabolomic biomarkers capable of predicting fetal sex,
distinguishing conception method, and forecasting pregnancy outcome with high accuracy.
Using machine learning, we identified panels of just six metabolites that achieved strong
predictive performance (AUROC values of 0.76-0.91), with the fetal sex model maintaining
robust accuracy when validated in an independent cohort of different breed cattle. These
findings have immediate practical applications for the livestock industry, where implementation
could significantly improve reproductive efficiency and reduce the substantial economic losses
associated with early pregnancy failure rates. Beyond agricultural applications, these data could
serve as a translational model for human prenatal biomarker development, leveraging the
reproductive similarities between species while benefiting from the controlled experimental
conditions possible in livestock. The validated framework presented here provides a foundation
for developing minimally invasive prenatal diagnostics that could optimize both assisted

reproductive technologies and pregnancy management strategies across mammalian species.
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FIGURE LEGENDS

Figure 1. Experimental design summary. (A) Amniotic fluids from Holstein heifers (n=45) were
metabolically profiled. Data were analyzed considering continuous (metadata) and discrete
(covariate) variables. A machine learning approach was then used to predict biomarkers of fetal
sex, conception [in vitro fertilization (IVF) vs. artificial insemination (Al)], and pregnancy
outcome. Predicted biomarkers of fetal sex were validated using amniotic fluid from an
independent group of heifers (n=22). (B) Correlation heatmap of metabolite relative abundance.
(C) Metadata and correlation heatmap of amniotic fluid samples from heifers (H) 1 to 45. (D)
Schematic depiction of sample generation. Thirteen (13) heifers were artificially inseminated
with conventional semen (CS). Ovum pick-up (OPU) from seven recipients, followed by IVF and
embryo transfer (ET), was performed to generate additional samples (Groups A-G). Finally, 7
heifers were artificially inseminated using sex-sorted (SS) semen. Distinctions between female

(?) and male (J) fetuses are also provided.

Figure 2. Amniotic fluid metabolome analysis by fetal sex. (A) Metabolome sparse partial least
squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of pregnancy
from heifers gestating a male (blue) vs. female (pink) fetus. Individual heifer identifiers (H1-45)
and 95% confidence region ellipses also provided. (B-1) Metabolome correlation coefficients
between fetal sex and (B) pregnancy outcome, (C) conception method [in vitro fertilization (IVF)
vs. artificial insemination (Al)], (D) semen source [sexed (SS) vs. conventional (CS)], (E) fetal
genetics, (F) recipient weight, (G) recipient age, (H) gestation length, and (1) offspring birth
weight. Inserts (top left) correspond to sample H5. (J) Volcano plot of differentially abundant
(P<0.05) metabolites before covariate adjustment with (K) boxplots of select corresponding
metabolite normalized relative concentrations (NRC). (L) Pathway enrichment analysis of
differentially abundant metabolites. (M) Linear model of differentially abundant metabolites
before and after discrete covariate adjustment. (N) Scatterplots of select metabolite NRC
against continuous metadata. Asterisks denote predicted metabolites. Additional abbreviation:
3-(6-hydroxy-7-methoxy-2H-1,3-benzodioxol-5-yl)prop-2-enal (HMDB0128662).

Figure 3. Amniotic fluid metabolome analysis by conception method. (A) Metabolome sparse
partial least squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of
pregnancy from heifers gestating an in vitro fertilization (IVF) vs. artificial insemination (Al)
derived fetus. Individual heifer identifiers (H1-45) and 95% confidence region ellipses also
provided. (B-1) Metabolome correlation coefficients between fetal conception method and (B)

pregnancy outcome, (C) fetal sex, (D) semen source [sexed (SS) vs. conventional (CS)], (E)
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fetal genetics, (F) recipient weight, (G) recipient age, (H) gestation length, and (l) offspring birth
weight. Inserts (top right) correspond to sample H5. (J) Volcano plot of differentially abundant
(P<0.05) metabolites before adjustment with (K) boxplots of select corresponding metabolite
normalized relative concentrations (NRC). (L) Pathway enrichment analysis of differentially
abundant metabolites. (M) Linear model of differentially abundant metabolites before and after
discrete covariate adjustment. (N) Scatterplots of select metabolite NRC against continuous

metadata.

Figure 4. Amniotic fluid metabolome analysis by pregnancy outcome. (A) Metabolome sparse
partial least squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of
pregnancy from heifers that subsequently delivered successfully (green) or spontaneously
aborted (red). Individual heifer identifiers (H1-45) and 95% confidence region ellipses also
provided. (B-1) Metabolome correlation coefficients between pregnancy outcome and (B) fetal
sex, (C) conception method [in vitro fertilization (IVF) vs. artificial insemination (Al)], (D) semen
source [sexed (SS) vs. conventional (CS)], (E) fetal genetics, (F) recipient weight, (G) recipient
age, (H) gestation length, and (l) offspring birth weight. (J) Volcano plot of differentially
abundant (P<0.05) metabolites before adjustment, with (K) boxplots of select corresponding
metabolite normalized relative concentrations (NRC). (L) Pathway enrichment analysis of
differentially abundant metabolites. (M) Linear model of differentially abundant metabolites
before and after discrete covariate adjustment. (N) Scatterplots of select metabolite NRC
against continuous metadata. Asterisks denote predicted metabolites. Additional abbreviations:
3-hydroxy-2-methylpyridine-4,5-dicarboxylate (HMDB0006955),
hydroxyphenylacetothiohydroximate (C17239), and methoxyestrone glucuronide (C11132).

Figure 5. Predicted metabolic pathways underpinning differential fetal metabolism from
spontaneously aborted vs. successful pregnancies. Boxplots of select corresponding metabolite
normalized relative concentrations (NRC) from aborted (A) vs. successful (S) pregnancies also
provided. Asterisks denote significance (P<0.05) before (**) and after (*) covariate adjustment.
Additional abbreviations: 5-methylthioadenosine (MTA), adenosine monophosphate (AMP),
coenzyme A (CoA), glutamate-5-semi-aldehyde (GSA), inosine monophosphate (IMP),
methylthioribose (MTR), pyrroline 5-carboxylate (P5C), and tricarboxylic acid (TCA).

Figure 6. Computational biomarker prediction for fetal physiology and pregnancy success. (A-
C) Receiver operating characteristic (ROC) curves generated using the Random Forest
machine learning algorithm by input of 6 metabolites [inserts (i)] to predict (A) fetal sex (male vs.

female), (B) conception method (in vitro fertilization vs. artificial insemination), and (C)
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pregnancy outcome (spontaneously aborted vs. successful) for heifer Cohort 1 (n=45).
Corresponding area under the curve (AUC) and empirical P values provided [inserts (ii)]. Inserts
(iii) depict corresponding cross-validation (CV) predictive accuracies. (D) Hierarchical clustering
heatmap of amniotic fluid profiles from male vs. female carrying pregnancies from the initial
(Cohort 1) and model validation (Cohort 2) animals. (E) Metabolome sparse partial least
squares discriminant analysis (sSPLS-DA) of amniotic fluid from male and female fetuses from
Cohorts 1 and 2 (F) ROC curve generated using the same 6 metabolites as in panel (A) to
predict fetal sex in Cohort 2 (n=22).

Supplementary Figure 1. Animal details. (A) Cohort 1A animal synchronization protocol for
artificial insemination (Al). (B) Cohort 1B animal synchronization protocol for embryo transfer
(ET). (C) Cohort 2 animal synchronization protocol for ET. (D) Cohort 1 animal and pregnancy
details, including fetal sex, conception method, semen source, and outcome (discrete covariate
data), in addition to recipient weight (RW), recipient age (RA), gestation length (GL), and
offspring birth weight (BW) (continuous metadata). (E) Cohort 2 animal and pregnancy details,
including fetal sex and the day of ET into recipient heifers, in addition to recipient breed, type,
RW, and RA. Additional abbreviations: male (M), female (F), conventional (Conv.), spontaneous
abortion (SA), prostaglandin F2a (PGF2a), gonadotropin releasing hormone (GnRH), and
progesterone-controlled internal drug release device (CIDR), Aberdeen Angus cross (AAX),
Charolais cross (CHX), Limousin cross (LMX), Aberdeen Angus (AA), and Hereford cross
(HEX).

Supplementary Figure 2. Amniotic fluid metabolome by fetal sex. (A) Principal component
analysis (PCA) of amniotic fluid profiles from male (blue) vs. female (pink) carrying pregnancies.
(B) Hierarchical clustering heatmap of amniotic fluid metabolomic profiles. (C) Sparse partial
least squares discriminant analysis (sSPLS-DA) cross-validation classification error rates. (D)

Targeted pathway impact analysis, integrating pathway enrichment and topology analyses.

Supplementary Figure 3. Amniotic fluid metabolome by conception method. (A) Principal
component analysis (PCA) of amniotic fluid profiles from in vitro fertilization (IVF; orange) vs.
artificial insemination (Al; purple) derived pregnancies. (B) Hierarchical clustering heatmap of
amniotic fluid metabolomic profiles. (C) Sparse partial least squares discriminant analysis
(sPLS-DA) cross-validation classification error rates. (D) Targeted pathway impact analysis,

integrating pathway enrichment and topology analyses.

Supplementary Figure 4. Amniotic fluid metabolome by pregnancy. (A) Principal component

analysis (PCA) of amniotic fluid profiles from spontaneously aborted (red) vs. successful (green)
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pregnancies. (B) Hierarchical clustering heatmap of amniotic fluid metabolomic profiles. (C)
Sparse partial least squares discriminant analysis (sPLS-DA) cross-validation classification error
rates. (D) Targeted pathway impact analysis, integrating pathway enrichment and topology

analyses.

Supplementary Figure 1. Animal metadata summary. (A) Cohort 1 animal variables correlation
heatmap.(B) Comparison of mean recipient ages between Cohorts 1 and 2 (P < 0.0001). (C)

Comparison of mean recipient weights between Cohorts 1 and 2 (P<0.0001).

Supplementary Table 1. Raw metabolomic master dataset. Internal standard (1S1-1S10),
animal Cohort 1 (H1-45), and Cohort 2 (H46-67) amniotic fluid metabolite peak intensities.
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