Please cite the Published Version

Absalon-Medina, Victor A, Sala, Rodrigo V., Pereira, Daniela C, Fricke, Vanessa C, Devkota, Iebu, Bonomo, Zachary L, Fuego, Dailin M, McDonald, Michael, Sánchez, José M, Rabaglino, Maria B, Matsakas, Antonios, Vourekas, Anastasios, Xing, Fu, Lonergan, Patrick, Ross, Pablo J and Simintiras, Constantine A (2025) Amniotic fluid metabolic biomarkers of fetal physiology and pregnancy success. Biology of Reproduction. ioaf236 ISSN 0006-3363

DOI: https://doi.org/10.1093/biolre/ioaf236

Publisher: Oxford University Press

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/642573/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an author accepted manuscript of an article published in Biology of Reproduction, by Oxford University Press. This version is deposited with a Creative Commons Attribution 4.0 licence [https://creativecommons.org/licenses/by/4.0/], in accordance with Man Met's Research Publications Policy. The version of record can be found on the publisher's website.

Data Access Statement: All data generated or analyzed during this study are included in this published article and corresponding supplementary information files.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

Amniotic fluid metabolic biomarkers of fetal physiology and pregnancy success

Victor A. Absalon-Medina^{1,2}, Rodrigo V. Sala¹, Daniela C. Pereira³, Vanessa C. Fricke¹, lebu Devkota⁴, Zachary L. Bonomo⁴, Dailin M. Fuego⁴, Michael McDonald⁵, José M. Sánchez⁶, Maria B. Rabaglino^{5,7}, Antonios Matsakas⁸, Anastasios Vourekas⁹, Xing Fu⁴, Rocio M. Rivera¹⁰, Patrick Lonergan⁵, Pablo J. Ross^{3,11} & Constantine A. Simintiras^{4,*}.

- ¹ ST Genetics, Ohio Heifer Center, South Charleston, OH, 45368, USA
- ² Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
- ³ ST Genetics, Navasota, TX, 77868, USA
- ⁴ School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA, 70803, USA
- ⁵ School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, C04V1W8, Ireland
- ⁶ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, 28040, Spain
- Department of Population Health Sciences, School of Veterinary Medicine, Utrecht University, Utrecht, 3584, Netherlands
- ⁸ Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- ¹⁰ Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- ¹¹ Department of Animal Science, University of California, Davis, CA, 95616, USA
- * Correspondence: csimintiras@agcenter.lsu.edu

ABSTRACT

- 1 Amniotic fluid (AF) profiling provides a minimally invasive window into early fetal physiology. We
- 2 characterized the AF metabolome from first trimester (Day 68) Holstein dairy heifers (n=45),
- 3 considering fetal sex, conception method [in vitro fertilization (IVF) vs. artificial insemination
- 4 (AI)], and eventual pregnancy outcome as key variables. Multivariate statistics uncovered
- 5 differentially abundant metabolites for each comparison including markers that preceded
- 6 spontaneous abortion independently of recipient age, weight, gestation length, or fetal
- 7 genetics. Thereafter, a machine learning algorithm using panels of six metabolites accurately
- 8 predicted fetal sex (AUROC=0.76; P=0.023) and pregnancy viability (AUROC=0.81; P=0.018),
- 9 while corroborating conception method (AUROC=0.91; P=0.001). External validation using AF
- 10 (Day 42) from an independent cohort of beef heifers (n=22) reproduced the fetal sex classifier
- with similarly high sensitivity and specificity (AUROC=0.85, P=0.029). These findings reveal
- metabolic signatures that forecast fetal sex and pregnancy viability, while confirming distinct
- metabolic imprints of assisted-conception modalities. These data lay the groundwork for next-
- queneration AF prenatal diagnostics in veterinary and human obstetrics.

KEYWORDS

- 15 Amniocentesis
- 16 Amniotic fluid
- 17 Bovine
- 18 Fetal metabolism
- 19 Fetal physiology
- 20 Machine learning
- 21 Metabolomics
- 22 Pregnancy diagnostics

INTRODUCTION

Amniocentesis has enabled fetal genetic diagnosis in cattle and humans for decades [1–4]. 23 However, the broader diagnostic potential of amniotic-fluid (AF) composition remains largely 24 unexplored. While AF is broadly isosmotic with fetal serum and undergoes gradual 25 compositional changes across gestation [5], it remains the primary conduit for maternal-fetal 26 biochemical exchange throughout gestation [6–9]. Accordingly, our overarching hypothesis was 27 that comprehensive metabolomic profiling of this readily accessible fluid – obtainable through 28 established, low-risk amniocentesis [10–12] – may provide new insights to refine prenatal 29 monitoring in livestock and, potentially, human medicine. 30 31 The USA cattle production industry, valued at ~ \$ 88 billion annually [13], faces reproductive efficiency challenges. Despite fertilization rates exceeding 80%, early pregnancy losses 32 approach 45% in dairy operations [14]. This paradox directly undermines farm profitability, 33 where reproductive performance is a core economic driver [15–17]. Ultrasound, the current 34 pregnancy surveillance standard, reveals gross fetal anatomy but cannot detect sub-clinical 35 36 metabolic disturbances and remains relatively operator dependent. 37 Meanwhile, human AF research is constrained by population heterogeneity and confounding 38 variables, such as maternal age, weight, ethnicity, and conception method [18–26]. Rodent 39 models offer experimental control but require pooling samples across multiple fetuses and litters, compromising individual-level resolution [27,28]. Rodent models are also highly inbred, 40 poly-ovulatory, and exhibit much shorter gestation lengths, which complicate data extrapolation 41 to bovine and human pregnancies [29]. 42 In contrast, bovine pregnancies provide ample AF volumes for individual fetus-level analysis. 43 44 Cattle also share key reproductive characteristics with humans, including mono-ovulation, comparable gestation length, and an estrous cycle more broadly analogous to the menstrual 45 46 cycle [30–32]. Moreover, bovine embryonic epigenetic patterning more closely resembles human patterns than murine models [33,34] while experimental conditions, including genetics, 47 48 nutrition, and environment can be effectively controlled. 49 We therefore applied ultra-high-throughput untargeted metabolomics, integrated with machinelearning analytics, to interrogate early-gestation bovine AF, addressing three specific objectives. 50 51 We first investigated whether AF contains metabolomic signatures of fetal sex – information 52 valuable for livestock management [35]. Despite evidence that sex influences embryonic

- 53 metabolism [36–42] and epigenetic patterning [43–45], bovine AF sexual dimorphism has been
- examined in only one miRNA study [46].
- Secondly, we examined metabolic differences between *in vitro* fertilization (**IVF**) and artificial
- insemination (AI) derived pregnancies. *In vitro* embryo production (**IVEP**) now dominates
- 57 commercial cattle breeding [47], while human IVF exceeds 2.5 million cycles annually [48].
- 58 Understanding how assisted reproduction alters fetal metabolism [49–51], fetal epigenetics [52–
- 59 57], and endometrial responses [58,59] could improve protocols for both species.
- Thirdly, we tested whether AF metabolites can forecast pregnancy viability. Previous research
- 61 identified four amino acids distinguishing viable from non-viable bovine pregnancies following
- cloned embryo transfer [60]. However, the chromosomal instability of clones [61] limits practical
- application. We therefore focused on spontaneous losses under standard commercial (IVF and
- 64 AI) conditions.
- Here we show that bovine AF (Day 68) harbors metabolomic signatures that can predict fetal
- 66 sex and pregnancy outcome while corroborating conception method independently of several
- 67 maternal traits and fetal genetics. Random Forest models built on six metabolites each -
- including adenine, hypotaurine, methylguanosine, and phosphoserine, among others achieved
- 69 high area under the receiver operating characteristic curve (AUROC) values between 0.76-0.91.
- 70 Furthermore, validation of the fetal sex classifier in an independent cohort confirmed model
- 71 robustness. These findings highlight concise panels with potential near-future application in
- 72 precision livestock management, where early and accurate prediction of calf sex and pregnancy
- 73 trajectory could inform breeding decisions, optimize resource allocation, and reduce economic
- 74 losses associated with undesired male calves or failed pregnancies. More broadly, this
- approach and these data provide a translational framework for developing next-generation
- prenatal diagnostics in human obstetrics.

MATERIALS AND METHODS

Overview

- 77 To systematically investigate AF metabolomic signatures, we established two experimental
- cohorts. Initial pregnancies were generated in Holstein heifers (n=20) at the ST Genetics Ohio
- 79 Heifer Center (South Charleston, OH, USA) following estrous cycle synchronization and Al
- using conventional (n=13) or sex-sorted (n=7) semen (Cohort 1A). During pregnancy, ovum
- 81 pickup (**OPU**) was performed on seven of these animals. Resulting oocytes were used for IVEP.

- These embryos were individually transferred into a separate group of synchronized recipient
 Holstein heifers, generating a further 25 pregnancies (Cohort 1B). Amniocentesis was
- performed on all animals (n=45) on Day 68 of pregnancy. Cohort 1 animals were maintained by
- ad libitum access to a standard total mixed ration (TMR) corn silage-based diet. Cohort 1
- samples were collected between 04.2020-12.2021 as approved by The Ohio State University
- 87 Institutional Animal Care and Use Committee.
- 88 For independent validation, 22 embryos were transferred individually into estrous synchronized
- crossbred beef heifers (n=22) at the University College Dublin (**UCD**) Lyons Research Farm,
- Dublin, Ireland. AF was recovered on Day 42 (Cohort 2). Cohort 2 animals were maintained on
- 91 a grass maize silage supplemented with a standard beef finishing concentrate. Cohort 2
- samples were collected between 03.2022-08.2022 as approved by the UCD Animal Research
- 93 Ethics Committee and licensed by the Health Products Regulatory Authority, Ireland, under
- 94 Directive 2010/63/EU.

Experimental design

- Cohort 1 AF samples were categorized according to multiple parameters to enable
- 96 comprehensive analyses. This is summarized in Figure 1 and described below.
- 97 Fetal sex. Male-carrying pregnancies (n=26) included fetuses derived by IVF (61.5%) and AI
- 98 (38.5%), utilizing conventional (84.6%) and sex-sorted (15.4%) semen. Among these, 96.2%
- 99 resulted in successful pregnancies, while 3.8% spontaneously aborted. Female-carrying
- pregnancies (n=19) consisted of IVF (47.4%) and AI (52.6%) derived fetuses, derived using
- conventional (84.2%) and sex-sorted (15.8%) semen. In this group, 73.7% carried to term, while
- 102 26.3% spontaneously aborted.
- 103 Conception method. IVF-derived pregnancies (n=25) comprised male (65%) and female (35%)
- fetuses, generated using conventional semen (100%) of which 88% resulted in successful
- pregnancy and 22% spontaneously aborted. Al-derived pregnancies (n=20) comprised male
- 106 (50%) and female (50%) fetuses, generated using both conventional (65%) and sex-sorted
- 107 (35%) semen. Of these, 85% were successful compared to 15% spontaneous abortions.
- 108 Pregnancy outcome. Among successful pregnancies (n=39), 64.1% were male and 35.9% were
- female. Of these, 56.4% were IVF-derived, and 43.6% were Al-derived. Additionally, 87.2%
- were produced using conventional semen, while 12.8% used sex-sorted semen. Spontaneous
- abortion (n=6) or successful pregnancy (n=39). The spontaneous abortion group (n=6)
- comprised 16.7% male and 83.3% female fetuses, with 50% derived from IVF and 50% from AI.

- 113 Of these, 66.7% were generated using conventional semen, and 33.3% used sex-sorted semen. 114 Spontaneous abortions occurred at 208 ± 55.7 days (mean ± SD), ranging from Day 98-252. Fetal genetics. Using semen from one sire throughout (controlling paternal effects) and 115 collecting oocytes from seven heifers for IVEP allowed tracking genetic relationships. For 116 example, oocytes from mothers producing Heifer 1 via Al also produced embryos transferred to 117 recipients resulting in Heifers 2-7. Therefore, Heifers 1-7 (Group A) are full genetic siblings. This 118 applies to Groups B-G, while Group H comprises paternal half-siblings (Fig. 1D). 119 Cohort 1A estrous cycle synchronization 120 Estrous cycles of 20 Holstein heifers were synchronized using a standard 5-day fixed-time artificial insemination (FTAI) protocol [62]. In brief, each heifer received a progesterone (P4)-121 controlled internal drug release (CIDR) device (1.38 g P4, Eazi-Breed, Zoetis, Florham Park, 122 NJ) inserted intravaginally on a random day of their estrous cycle, plus intramuscular 123 administration of gonadotropin releasing hormone (**GnRH**, 100µg gonadorelin acetate, Parnell, 124 125 Overland Park, KS), designated as Day -8. On Day -3, the CIDR was removed, and heifers were administered prostaglandin F2α (**PGF2α**) intramuscularly (500 μg cloprostenol sodium, 126 127 Parnell, Overland Park, KS). A second, identical PGF2α injection followed 24 hours later. The day of observed estrus was marked as Day 0 at which time GnRH was administered 128 129 intramuscularly to induce ovulation (Supplementary Figure 1A). Cohort 1A artificial insemination Thirteen of these synchronized heifers, selected at random, were artificially inseminated on Day 130 0 using conventional bull semen from the same sire (ST Genetics, Navasota, TX). More 131 specifically, semen was thawed by immersion in 35.5 °C water for 45 seconds before deposition 132 133 into the uterine cavity, guided by transrectal palpation. The remaining seven synchronized 134 heifers were identically artificially inseminated on Day 0 using sex-sorted semen from the same
 - Cohort 1A amniocentesis

135

136

Pregnancies were confirmed on gestational Day 60 by transrectal ultrasonography using a 5-9 137 MHz linear transducer coupled to an Ibex EVO II display (E.I. Medical Imaging, Loveland, CO). 138 Amniocentesis was then performed on Day 68, following a previously described procedure [63]. 139 In brief, heifers were restrained in a squeeze chute, and gentle massage of the ventral vulvar area stimulated urination. An epidural block was administered by injecting 5 ml of 2 % lidocaine 140 141

sire as previously (SexedULTRA 4M™, ST Genetics, Navasota, TX).

142 second vertebrae. Additionally, 10 mg xylazine (Rompun, Shawnee Mission, KS) was 143 administered intravenously as a sedative to further minimize stress. A vaginal lavage was then performed by intravaginal infusion of 60 ml sterile 0.9 % sodium 144 chloride solution, while rectal contents were emptied to allow manipulation of the broad 145 146 ligament. After aseptic preparation, a 5-10 MHz convex transducer coupled to an Ibex EVO II display (E.I. Medical Imaging, Loveland, CO) was inserted into the vaginal canal up to the fornix. 147 Using transrectal manipulation of the broad ligament, the amniotic space was positioned against 148 the vaginal wall to enable safe insertion of a 20 G x 2" needle (WTA, College Station, TX) to 149 minimize risk of injury to the umbilical cord, placentomes, or fetus. 150 151 The amniocentesis needle was connected to 1.4 m tubing (WTA, College Station, TX) and a 3way stopcock (MILA International, Florence, KY) with two syringes attached to the remaining 152 ports. Upon entering the amniotic cavity, 5 ml AF was drawn into a 20 ml luer-lock syringe to 153 prime the line. The port was then switched to collect a final AF volume of approximately 40 ml 154 within a 50 ml luer-lock syringe (Air-Tite Products Co., Inc., Virginia Beach, VA). AF samples 155 were immediately aliquoted, snap frozen in liquid nitrogen $[N_2(I)]$, and stored in $N_2(I)$ until 156 157 transport for analysis. 158 Following amniocentesis, pain management was provided by intravenous administration of 159 flunixin meglumine (Vetameg, Aspen Veterinary Resources, Liberty, MO) at 50 mg 50kg⁻¹ body 160 weight, and oral administration of meloxicam (Unichem Pharmaceuticals Inc., East Brunswick, NJ) at 50 mg·50kg⁻¹ body weight. All amniocentesis procedures were performed by one of two 161 162 experienced technicians. Cohort 1A ovum pickup 163 During pregnancy, OPU was performed on seven heifers using a standard protocol [64,65]. 164 Specifically, donors were restrained in a squeeze chute, and caudal epidural anesthesia was administered as described above. The perineal area was then cleaned and disinfected using 70 165 % isopropyl alcohol. Oocyte retrieval was ultrasound-guided using a 5-9 MHz linear transducer, 166 coupled to an Ibex EVO II display (E.I. Medical Imaging, Loveland, CO), inserted into the 167 vaginal fornix. Follicles were punctured with an 18 G x 5.5 cm needle (WTA, College Station, 168 TX) attached to a metal guide connected via plastic tubing to a 50 ml conical tube linked to a 169 vacuum pump (Cook Medical, Bloomington, IN), maintaining a constant flow rate of 12 ml·min⁻¹. 170 Plastic tubing was flushed with pre-warmed (38.5 °C) Dulbecco's phosphate buffer solution 171 (DPBS) supplemented with 0.4% bovine serum albumin (BSA), 25 mg·l⁻¹ kanamycin sulphate 172

- and 5 IU·ml⁻¹ sodium heparin at 36 ± 1 °C. Then, follicular aspirates from each follicle over 3
- mm in diameter were filtered using a 75 µm filter (oocyte aspiration dish with 3 mm grid,
- 175 Professional Embryo Transfer Supply, Canton, TX) and washed with pre-warmed oocyte
- collection medium (Boviteq, Madison, WI). The contents of the filter were transferred to a square
- grid dish to locate and harvest cumulus-oocyte complexes (**COC**) under a stereomicroscope.
- 178 OPU was performed by one of two experienced technicians.

Cohort 1B in vitro embryo production

- 179 In vitro embryo production was performed at the ST Genetics Texas laboratory following
- proprietary procedures. COC from each donor were matured in-transit over 24 h at 38.5 °C
- within maturation medium (ST Genetics, TX). Matured COC were then transferred into a pre-
- 182 equilibrated 60 μl drop of IVF medium (ST Genetics, TX) covered with mineral oil. Frozen-
- thawed sperm was purified using a double-density gradient approach (Nidacon International AB,
- Mölndal, Sweden) as previously described [66]. A final concentration of 10⁶ sperm·ml⁻¹ was
- achieved and fertilization took place for 8 h at 38.5 °C under 5 % CO₂ in air. Following
- fertilization, cumulus cells were removed, and embryos were cultured in a benchtop incubator
- 187 (WTA, College Station, TX) at 38.5 °C under 5 % O₂, 5 % CO₂, and balanced N₂ as premixed
- gas (Airgas, Dallas, TX). Cleavage rates were recorded 3 days after fertilization and blastocyst
- rates recorded at 7 days post-fertilization. Embryo stage and quality were morphologically
- determined according to International Embryo Transfer Society (**IETS**) guidelines.

Cohort 1B embryo transfer

- 191 Recipients for embryo transfer were synchronized using a standard 5-day fixed-time embryo
- transfer (FTET) protocol [62]. The heifers received a CIDR inserted intravaginally on a random
- day of their estrous cycle designated as Day -8. On Day -3, the CIDR was removed, and the
- heifers were administered an intramuscular injection of PGF2α. After 72 hours GnRH was
- administered intramuscularly to induce ovulation at which time marked as Day 0
- 196 (Supplementary Figure 1B). The presence of a corpus luteum (CL) on Day 5 was confirmed
- by transrectal ultrasonography. On Day 7 of the estrous cycle, Day 7 embryos were loaded
- individually into 0.25 ml French straws with holding medium (ST Genetics, TX). Loaded straws
- were placed in a portable incubator (Micro Q Technologies, Scottsdale, AZ) at 38.5 °C and
- transported to the farm. Prior to embryo transfer, regional anesthesia was administered through
- a caudal epidural injection as aforementioned. Each recipient received a single blastocyst,
- which was transferred into the uterine horn ipsilateral to the CL. Pregnancy was confirmed by

transrectal ultrasonography on Day 60 post-transfer and amniocentesis was performed on Day 68 as described above.

Cohort 2 estrous synchronization

- Genetically unrelated crossbred beef heifers (n=22), primarily Limousin, Charolais, or Aberdeen
- 206 Angus crosses were synchronized using an analogous and established [67–70] protocol
- 207 (Supplementary Figure 1C). In brief, heifers received a P4 releasing intravaginal device (PRID
- **E**) (1.55 g P4, Ceva Santé Animale, Libourne, France) on a random day of their estrous cycle,
- designated as Day -11, concomitantly with GnRH analogue (Ovarelin, 100 mg gonadorelin;
- 210 Ceva Santé Animale) intramuscular administration. After seven days, PGF2α (Enzaprost, 5 mL
- equivalent to 25 mg dinoprost; Ceva Santé Animale) was administered, before PRID removal
- the following day.

Cohort 2 in vitro embryo production

- 213 Blastocysts were produced in vitro using an analogous and established protocol [71]. Briefly,
- immature COC were collected by aspirating follicles from the ovaries of cattle slaughtered at a
- local abattoir (Kildare Chilling Company, Kildare, Ireland). COC were pooled, washed in PBS,
- and matured for 24 h in groups of 50 in 500 µl of TCM-199 (Sigma Aldrich, Arklow, Ireland),
- supplemented with 10 % fetal calf serum and 10 ng·ml⁻¹ epidermal growth factor (Sigma
- 218 Aldrich). Maturation took place at 39 °C in a humidified environment with 5 % CO₂ in air.
- 219 Mature COC were inseminated with frozen-thawed sperm (National Cattle Breeding Centre,
- 220 Kildare, Ireland) at a concentration of 10⁶ sperm·ml⁻¹. After 20 h of co-incubation at 39 °C under
- 5 % CO₂ in air, presumptive zygotes were denuded by vortex and cultured in 25 μl droplets of
- 222 IVC medium (Stroebech), supplemented with 3 mg·ml⁻¹ bovine serum albumin (Sigma Aldrich)
- at 39°C in a humidified atmosphere with 5 % CO₂ and 5 % O₂ under mineral oil. Embryos were
- cultured at a ratio of 1 embryo·µl⁻¹. Grade 1 blastocysts for transfer were collected on Day 7 and
- loaded into straws with embryo holding medium (IMV Technologies, L'Aigle, France).

Cohort 2 embryo transfer

- Heifers were monitored for signs of estrus five times daily, starting 30 h after PRID withdrawal.
- 227 All heifers observed standing estrus and thus received a single Day 7 in vitro-produced
- blastocyst on Day 7 or 9 of the estrous cycle, with Day 0 being considered the day of expected
- ovulation (approximately 28 h after estrus onset). Embryo transfer was performed as described
- above. Pregnancies were confirmed by transrectal ultrasonography on Day 28 of gestation, and
- all transfers were conducted by one of two experienced technicians.

Cohort 2 amniotic fluid recovery

AF was collected as previously described [72]. In brief, pregnant heifers were slaughtered on 232 Day 42 of gestation in a commercial European Union licensed abattoir. The reproductive tract 233 was recovered and kept on ice until processing for sample collection, within 30 min of slaughter. 234 The pregnant uterine horn was opened along the major curvature to retrieve fetal membranes. 235 For AF collection, a 30 G needle connected to a 1 ml syringe was used to pierce the amnion 236 and aspirate the fluid. AF was placed into RNase/DNase-free tubes (Thermo Fisher Scientific, 237 Waltham, USA), centrifuged at 16,000 x q for 10 min at 4 °C, and the supernatant placed into 238 new RNase/DNase-free tubes, snap-frozen in liquid nitrogen, and stored at -80 °C until analysis 239 Dependent experimental variable metrics Additional animal details and dependent experimental variable raw metrics are provided in 240 Supplementary Figure 1D (Cohort 1) and Supplementary Figure 1E (Cohort 2). 241 Mass spectrometry AF samples were first thawed on ice for 60 min, vortexed, and centrifuged briefly to remove 242 bubbles. After addition of 180 µl 80% methanol per 20 µl of each sample, samples were 243 incubated at 4°C for 1 h and then centrifuged at 3,220 x g for 15 min at room temperature. The 244 resulting supernatants were stored at -80°C until analysis. Therefore, these data represent the 245 methanol-extractable portion of the amniotic fluid metabolome. 246 247 Metabolic profiling was conducted at General Metabolics Inc. (Boston, MA) using flow-injection mass spectrometry (FI-MS) on an Agilent 6550 guadrupole time-of-flight (Q-TOF) system [73]. 248 249 similarly to Chen et al. [74]. In brief, the equipment was configured to scan in full MS mode at 1.4 Hz, operating in negative ionization with 4 GHz high resolution mode, across a mass range 250 of 50 to 1,000 m/z. The solvent, 60% isopropanol, was supplemented with 1 mM ammonium 251 fluoride (NH₄F) at pH 9.0, 10 nM hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazene, and 80 252 nM taurocholic acid, for mass calibration. 253 Samples (100 µl each) were injected in randomized order and data were acquired in profile 254 255 mode. Data were centroided before analysis using MATLAB (MathWorks). Missing values were 256 imputed using recursive analysis, and consensus centroids were identified across all samples. 257 lons were annotated based on accurate mass and isotopic patterns using the HMDB database (version 4.0) [75]. It is worth noting that due to the inherently weak chromatographic separation 258 often associated with global metabolomic profiling [76], compounds with identical molecular 259

260 formulae could not be distinguished. Therefore, annotation confidence was level 4, though, in 261 practice, it is generally higher for common metabolites [73]. A pooled aliquot of all experimental samples, serving as a technical replicate control, was run in 262 between the experimental samples at defined intervals. Based on these, the mean technical 263 (instrument) standard error was calculated at 2.8 %. 264 Metabolomic analyses Single-factor analyses were conducted using MetaboAnalyst 6.0 [77]. Initially, raw peak 265 266 intensities were filtered by interquartile range to account for variance, following standard recommendations for untargeted metabolomics datasets [78]. Based on our mean technical 267 268 standard error, a threshold of 5% was applied, leading to the exclusion of 68 metabolites. Data were then normalized to the median, log-transformed (base 10), and auto-scaled (mean-269 centered and divided by each variable standard deviation). 270 271 Thereafter, volcano plots were generated by unpaired t-test, with thresholds set at a P≤0.05, a 272 fold change of 1.0 (i.e. no change), and assuming equal group variance. Principal component 273 analysis (PCA) plots with 95% confidence intervals were created using permutational multivariate analysis of variance (PERMANOVA), with distributions based on Euclidean distance 274 from the first two principal components. 275 276 Sparse partial least squares discriminant analysis (sPLS-DA) was performed with 5 277 components and 10 variables per component. Model performance was evaluated using 5-fold cross-validation with an increasing number of components and a fixed 10 variables per 278 279 component. Hierarchical clustering dendrograms were generated using Euclidean distances and 280 the Ward method. Heatmaps were produced from normalized data, standardized by auto-scaled 281 metabolite features, with Euclidean distance and Ward clustering applied. 282 For metadata analyses, peak intensities were filtered, normalized, transformed, and scaled as 283 described above. A metadata heatmap was generated using Euclidean distance and Ward 284 clustering for both metabolites and metadata variables. Correlation coefficients were calculated using the Pearson R correlation measure. Linear models with covariate adjustment ($P \le 0.05$) 285 were applied using the *limma* linear regression approach, as previously described [76,79]. 286 287 For categorical enrichment analyses, compound names were first standardized against the HMDB, PubChem, and KEGG databases. Unstandardized compound names were excluded. 288 Peak intensities were then normalized, transformed, and scaled as in prior steps. Enrichment 289

testing was conducted based on the *global test* [80] against the RaMP-DB metabolite set library,

290

which integrates 3,694 features from KEGG (via HMDB), Reactome, and WikiPathways databases. Only metabolite sets with at least two entries were included. Enrichment values were calculated as the ratio of observed *vs.* expected metabolites within each pathway [81]. In contrast, pathway topology analyses were conducted by first standardizing compound names against the HMDB, PubChem, and KEGG databases, before peak intensity normalization, transformation, and scaling − all as above. The pathway analysis focused on significant (*P*≤0.05) metabolites rather than pre-selected ones, with enrichment performed using the *global test* as above. Topology was assessed using relative-betweenness centrality, and the reference metabolome included all compounds from the KEGG *Bos taurus* library. Scatter plots were generated to display all matched pathways, with *P*-values from the pathway enrichment analysis plotted against pathway impact values from the topology analysis.

Machine-learning based biomarker identification

Biomarker analyses were performed using MetaboAnalyst 6.0, leveraging the receiver operating characteristic (**ROC**) curve-based model evaluation function. Initially, raw peak intensities were filtered, normalized, transformed, and scaled as described above. Metabolites were then manually selected for ROC analysis, which was conducted using the *Random Forests* multivariate algorithm. Specifically, 100 cross-validations were performed, with results averaged to generate ROC curves with 95% confidence intervals and predictive accuracy values. Empirical *P*-values were calculated from 1,000 AUROC permutations.

RESULTS

Metadata summary

Ultra-high-throughput untargeted metabolomic profiling of AF collected from Holstein heifers (n=45) on Day 68 of pregnancy (Cohort 1) identified 1,358 metabolites, with 1,335 annotated (**Supplementary Table 1**). Following variance filtration, 68 metabolites (5%) were excluded, leaving 1,290 metabolites for analysis. The mean (\pm SD) age (591.5 \pm 73.7 days) and weight (502.4 \pm 74.5 kg) of recipient heifers at the time of amniocentesis were similar, and among successful pregnancies, gestation length (274.5 \pm 4.9 days) and calf birth weight (41.9 \pm 7.7 kg) were comparable (**Supplementary Figure 1D**).

Amniotic fluid composition is sexually dimorphic

- We first compared the AF metabolome from male *vs.* female fetuses. Initial principal component
- 317 (PCA; Supplementary Figure 2A) and hierarchical clustering (Supplementary Figure 2B)

318 analyses revealed high AF composition overlap between both groups. As such, the overall AF 319 metabolic landscapes between male vs. female fetuses are very similar. However, subsequent 320 sparse partial least squares discriminant analysis (sPLS-DA) – a supervised machine learning algorithm effective in separating non-linear clustered signals [82–84] – segregated the AF 321 metabolic signatures of the two groups (Fig. 2A), albeit with a high mean cross-validation (CV) 322 error rate of 42.2 % (Supplementary Figure 2C). 323 AF metabolome correlations between fetal sex and (a) discrete covariates [pregnancy outcome 324 (Fig. 2B), conception method (Fig. 2C), semen source (Fig. 2D), fetal genetics (Fig. 2E)], and 325 (b) continuous variable metadata [recipient weight (Fig. 2F), recipient age (Fig. 2G), gestation 326 length (Fig. 2H), offspring birthweight (Fig. 2I)] variables were low, with a mean (± SD) 327 328 correlation coefficient (R) of 0.12 ± 0.2. This demonstrates no significant association between 329 these parameters and fetal sex in terms of AF composition. Before covariate adjustment, 15 metabolite (1.2 % of total) relative concentrations differed 330 (P≤0.05) between AF from male and female fetuses (Fig. 2J-K). Qualitative enrichment analysis 331 332 highlighted tRNA-derived modified nucleoside, estrone, and estrogen metabolism as over-333 represented pathways (Fig. 2L). A semi-quantitative targeted pathway analysis further revealed metabolites corresponding to α-linolenic acid and unsaturated fatty acid metabolism as 334 335 differentially abundant in the same comparison (Supplementary Figure 2D). Subsequent linear covariate adjustment metabolomic analysis, to increase precision and reduce 336 bias [85], isolated 13 differentially abundant ($P \le 0.05$) AF metabolites (1 % of total) by fetal sex – 337 independently of fetal conception method, semen type, pregnancy outcome, and fetal genetics 338 (Fig. 2M). These include hexonic acid, isoeugenol phenylacetate, and methylguanosine. Figure 339 340 2N further highlights the lack of association between these metabolite concentrations and recipient age, weight, and gestation length. Therefore, despite high overlap between AF 341 342 metabolomes from male and female fetuses, there are select differences, underscoring sexually 343 dimorphic fetal metabolism. In vitro fertilization alters amniotic fluid composition We next compared the AF metabolome from fetuses derived using IVF vs. AI. Initial PCA 344 (Supplementary Figure 3A) and hierarchical clustering (Supplementary Figure 3B) revealed 345 similarly high AF composition overlap between both groups, which could be overcome using 346

12

Figure 3C). Therefore, consistent with fetal sex, the overall AF metabolic profiles of IVF- and Al-

sPLS-DA (Fig. 3A). The associated mean sPLS-DA CV error was 23.6 % (Supplementary

derived fetuses are similar, but not identical.

347348

349

350 AF metabolome correlations between fetal conception method and (a) discrete covariate 351 [pregnancy outcome (Fig. 3B), fetal sex (Fig. 3C), semen source (Fig. 3D), fetal genetics (Fig. 352 3E)], and (b) continuous variable metadata [recipient weight (Fig. 3F), recipient age (Fig. 3G), gestation length (Fig. 3H), offspring birthweight (Fig. 3I)] variables were low. More specifically, a 353 mean (\pm SD) correlation coefficient (R) of 0.05 \pm 0.40 indicates no significant association 354 between these parameters and conception method in terms of AF composition. 355 Prior to covariate adjustment, 49 metabolite (3.8 % of total) relative concentrations differed 356 (P≤0.05) between AF from AI- and IVF-derived fetuses (Fig. 3J-K). Qualitative enrichment 357 358 analysis highlighted three pathways related to pyrimidine metabolism, three related to inflammation, and three related to ceramide signaling as over-represented (Fig. 3L). Semi-359 360 quantitative targeted pathway analysis further confirmed pyrimidine and sphingolipid (including 361 ceramide) metabolism impact (Supplementary Figure 3D). After similar covariate adjustment, 12 AF metabolites (0.9 % of total) were differentially 362 abundant ($P \le 0.05$) based on fetal conception method – independently of fetal sex, semen type, 363 pregnancy outcome, and fetal genetics (Fig. 3M). These include thymine, C16:3, and 364 365 oxocortisol. Figure 3N further highlights the lack of association between these metabolite relative concentrations and continuous metadata. Thus, much like with fetal sex, there is 366 367 significant overlap in the AF metabolomes of AI and IVF-derived fetuses; however, specific differences highlight a metabolic impact of IVF. 368 Pregnancy outcome is reflected in the amniotic fluid metabolome Next, we retrospectively analyzed the AF metabolome from successful and spontaneously 369 aborted pregnancies. Like previously, PCA (Supplementary Figure 4A) and hierarchical 370 371 clustering (Supplementary Figure 4B) showed high AF composition overlap between both groups, although sPLS-DA was able to differentiate the AF metabolomes from pregnancies of 372 divergent viability (Fig. 4A) with a lower mean CV error of 14.7 % (Supplementary Figure 4C). 373 Therefore, while the overall AF metabolic profiles of pregnancies of divergent viability are very 374 375 similar, select differences are apparent. AF metabolome correlations between pregnancy outcome and (a) discrete covariate [fetal sex 376 (Fig. 4B), conception method (Fig. 4C), semen source (Fig. 4D), fetal genetics (Fig. 4E)], and 377 (b) continuous variable metadata [recipient weight (Fig. 4F), recipient age (Fig. 4G), gestation 378 379 length (Fig. 4H), offspring birthweight (Fig. 4I)] variables were similarly low, with a mean (± SD) 380 correlation coefficient (R) of 0.17 ± 0.32. This is unsurprising given that gestation lengths and

birth weights could only be determined from successful pregnancies. Incidentally, the strongest

381

382 correlation observed among successful pregnancies was between offspring birth weight and 383 gestation length (R=0.716; **Supplementary Figure 5A**), as expected. Before covariate adjustment, 35 metabolite (2.7 % of total) relative concentrations differed 384 (P≤0.05) between AF from successful vs. nonviable pregnancies (Fig. 4J-K). Qualitative 385 enrichment analysis highlighted three pathways related to purine metabolism, two related to 386 defective solute carriers, and two related to molybdenum cofactor imbalances as over-387 represented (Fig. 4D). This was largely reflected in a semi-quantitative targeted pathway 388 analysis, as purine metabolism – to which molybdenum cofactor dependent enzymes are 389 central [86] – ranked highly (Supplementary Figure 4D). 390 391 After covariate adjustment, 28 metabolites (2.2 % of total) were differentially abundant (P≤0.05) based on pregnancy viability, independently of discrete covariates (Fig. 4M). These include 392 393 pentosidine, allantoin, and hydroxyphenylacetothiohydroximate (C17239). Figure 4N further highlights the lack of association between these metabolite relative concentrations and 394 395 continuous metadata variables. Thus, similarly to fetal sex and conception method, there is significant overlap in the AF 396 397 metabolomes of fetuses of divergent competence; however, specific differences suggest these 398 metabolites may be promising biomarkers of pregnancy viability. Furthermore, extrapolated 399 metabolic pathways of likely importance to fetal survival are presented in Figure 5. These were manually constructed and primarily revolve around the tricarboxylic acid, urea, methionine, and 400 purine nucleotide cycle interconversions. 401 Machine-learning based biomarker identification 402 We next used the receiver operating characteristics (ROC) curve with the Random Forest 403 machine learning algorithm approach to highlight metabolite relative concentrations that may 404 confirm fetal conception method and predict fetal sex and pregnancy outcome. Biomarker area under the ROC curve (AUROC) values can be generally classified as excellent (0.9-1.0), good 405 (0.8-0.9), fair (0.7-0.8), poor (0.6-0.7), or fail (0.5-0.6) [87]. We also performed a cross-validation 406 (CV) analysis to evaluate the predictive accuracy of each model. 407 The relative concentrations of six AF metabolites (Fig. 6Ai) could predict fetal sex with an 408 AUROC of 0.76 (P=0.023) (Fig. 6Aii) and CV predictive accuracy of 0.68 (Fig. 6Aiii). Regarding 409 410 conception method, the relative concentrations of six different AF metabolites (Fig. 6Bi) could confirm whether a fetus was derived by AI or IVF with an AUROC of 0.91 (P=0.001) (Fig. 6Bii) 411 412 and CV of 0.83 (Fig. 6Biii). Finally, the relative concentrations of another six AF metabolites

(Fig. 6Ci) could predict whether a pregnancy would be successful or not with an AUROC of 0.81 (*P*=0.018) (Fig. 6Cii) and CV of 0.70 (Fig. 6Ciii).

Biomarker model confirmation

To further test these data, AF was collected from an independent group of crossbred beef 415 heifers (n=22) on Day 42 of pregnancy, carrying male or female fetuses (Cohort 2). Mean (± 416 SD) age (757.0 ± 58.6 days) and weight (586.1 ± 27.0 kg) of recipient heifers at the time of 417 418 amniocentesis were similar. However, mean Cohort 2 recipient ages (Supplementary Figure 419 5B) and weights (Supplementary Figure 5C) differed to Cohort 1 (P≤0.0001). Cohort 2 pregnancies were established by embryo transfer following IVF using conventional semen from 420 421 a different single sire to Cohort 1, producing 17 male and 5 female fetuses. AF from Cohort 2 was identically subjected to high-throughput untargeted metabolomics. Comparative analyses of 422 AF metabolomic profiles from both cohorts revealed greater variation between cohorts than 423 between fetal sexes, as indicated by hierarchical clustering (Fig. 6D) and sPLS-DA (Fig. 6E). 424 Despite this cohort-specific variation, the same six AF metabolites used to predict fetal sex in 425 Cohort 1 (Fig. 6Fi) achieved similarly high predictive performance in Cohort 2, with an AUROC 426 427 of 0.85 (P = 0.029) (Fig. 6Fii) and a cross-validated accuracy of 0.78 (Fig. 6Fiii).

DISCUSSION

432

433

434

435436

437

438

439

440

These data provide compelling evidence that, while the overall AF metabolome is highly similar across different conditions, specific metabolomic changes are associated with fetal sex, conception method, and pregnancy outcome. These findings deepen our understanding of fetal development and highlight potential biomarkers that could be used in reproductive management

Amniotic fluid composition is sexually dimorphic

Sex-specific differences during development are well-established. However, a better comprehension of the sexually dimorphic aspects of pregnancy is crucial for advancing individualized prenatal care and elucidating sex-specific health trajectories. Here we found that the *tRNA derived modified nucleosides* pathway was most differentially enriched in AF by fetal sex, driven largely by elevated methylguanosine in female *vs.* male pregnancies. Methylation of guanosine at the N⁷ position [N⁷-methylguanosine (**m**⁷**G**)] at nucleotide 46 of tRNA (**m**⁷**G-46**) is one of the most prevalent and conserved tRNA modifications [88,89]. It plays a vital role in regulating steady-state tRNA levels, which affect cell growth and behavior [90,91], including in

and prenatal diagnostics, particularly for predicting mammalian fetal sex and pregnancy viability.

441 mammalian stem cells [92,93]. This methylation is catalyzed by the METTL1-WDR4 complex 442 [94]. Intriguingly, cell-free METTL1 mRNA transcript levels are reduced in AF from pregnancies with Turner syndrome (gonadal dysgenesis) offspring [95], suggestive of a causal link between 443 tRNA guanosine methylation and sex-specific fetal development regulation. 444 The tRNA m⁷G-46 modification is also implicated in autophagy regulation [96]. Sexually 445 dimorphic placental autophagy has been observed in response to stress [97,98]. Moreover, 446 miscarriage, which occurs more frequently in pregnancies with male fetuses [99-101], is often 447 closely associated with placental autophagy [102]. It is therefore plausible that the sexual 448 dimorphism in AF methylguanosine levels observed here arises from differential placental 449 regulation of m⁷G-46 tRNA. This is consistent with the facts that, during the first-trimester, 450 451 human placental DNA methylation is sexually dimorphic [103], and AF composition primarily 452 reflects placental transudate from maternal circulation [104]. Given the numerous parallels between pregnancy and cancer [105], it is intriguing that m⁷G is 453 also secreted by malignant cancer cells [106]. Cellular mechanisms influenced by m⁷G-46 454 tRNA, common to both pregnancy and cancer, include immune evasion, proliferation, and 455 456 migration [107]. As such, sexually dimorphic methylguanosine levels in AF may partially reflect, or contribute to, the phenomenon of accelerated male vs. female fetal development [108]. 457 Further linking tRNA modifications to sexually dimorphic fetal development is the identification of 458 queuosine, a modified nucleoside found at nucleotides 34-37 (the 'wobble' positions [109]) of 459 460 specific tRNAs, in bovine AF [110], albeit not in this study. Queuosine-modified tRNAs have been shown to promote sex-dependent learning and memory formation in mice [111], and 461 462 queuosine-modified tRNA glycosylation is required for post-embryonic growth in zebrafish [112]. Together, these findings implicate epitranscriptomic modifications in fetal development sexual 463 dimorphism. However, whether AF composition is a cause or effect of these modifications 464 465 remains an open question.

In vitro fertilization alters amniotic fluid composition

466

467

468469

470471

472

Elucidating the molecular determinants of altered development in a subset of offspring conceived via IVF is of significant public health importance, particularly given the growing use of assisted reproductive technologies [113]. More specifically, understanding these biomarkers and mechanisms is crucial for enhancing clinical practices and reducing the risk of adverse outcomes for offspring. After controlling for discrete confounding variables, we found 12 differentially abundant AF metabolites based on fetal conception method. The most significant was thymine, elevated in the AF of AI *vs.* IVF pregnancies. Thymine derivatives are present in

473 urine as a byproduct of DNA damage repair (DDR) mechanism activity [114-116]. Thus, it is 474 tempting to suggest that DDR is more efficient in Al vs. IVF pregnancies. Supporting this is a recent finding that plastics used in IVF alter placental gene expression in mice, with DNA repair 475 being a main enriched gene set [117]. 476 The elevated arginyl-glutamic acid (Arg-GIn) dipeptide in Al pregnancies further supports the 477 hypothesis that natural conception provides metabolic advantages. Arg-Gln demonstrates 478 protective effects on developing organs [118,119] and positively correlates with birth weight in 479 women [120]. Given the economic importance of calf birth weight in cattle production, 480 481 understanding these metabolomic differences could inform selection strategies for embryo transfer recipients and optimize protocols to maximize offspring viability. 482 483 Dipeptides are generally produced through aminopeptidase-catalyzed protein cleavage [121], with aminopeptidase M known to be present in human AF [122]. This raises the intriguing 484 question of whether Arq-Gln is synthesized within AF itself. This would suggest that AF 485 486 possesses a degree of metabolic semi-autonomy and would parallel the metabolic capabilities of uterine fluid, which has been shown to support specific biochemical processes independently 487 [123]. If confirmed, the ability of AF to semi-autonomously metabolize metabolites such as Arg-488 Gln would suggest a more active role in fetal development and nutrient processing than 489 490 previously understood, influencing fetal growth and development in novel ways. Pregnancy outcome is reflected in the amniotic fluid metabolome 491 During this study, a subset of pregnancies from which AF was collected resulted in spontaneous 492 abortion, providing an opportunity to investigate biomarkers related to pregnancy outcome. Identifying these markers is critical for the early detection of potential pregnancy complications 493 494 and developing tailored interventions to improve pregnancy success in both women and cattle. This is particularly significant given that over 3 million stillbirths occur globally each year [124] 495 and the economic significance of livestock reproductive management to agriculture. 496 We found that the molybdenum cofactor biosynthesis pathway was most differentially enriched 497 498 in AF when stratified by subsequent pregnancy outcome. This is primarily attributable to reduced xanthine and elevated urate levels (amniotic hyperuricemia) in spontaneously aborted 499 500 vs. successful pregnancies. Xanthine oxidase (XO), one of only four molybdenum cofactor enzymes in higher-order mammals [125], primarily catalyzes two reactions: the conversion of 501 502 hypoxanthine to xanthine and the oxidation of xanthine to urate [126]. XO is derived from 503 xanthine dehydrogenase under hypoxic conditions through phosphorylation [127]. Thus, it is 504 unsurprising that intrapartum hypoxia – a condition associated with pregnancy loss [128] – is

506 supported by the finding that maternal administration of allopurinol, a XO inhibitor that 507 transverses the placenta in several species [130–133], generally yields positive outcomes in pregnancies complicated by intrapartum hypoxia [133–138]. While intrapartum hypoxia occurs 508 in 0.1 to 1.2 % of human pregnancies [139], our findings indicate that it may be more prevalent 509 in cattle. This possibility is further supported by human data showing that second-trimester 510 amniotic hyperuricemia predicts infant birth weight in normotensive women, independently of 511 many systemic maternal factors such as insulin resistance [140]. 512 513 Although the specific causes of spontaneous abortion in this study are unknown, our data suggest that disrupted AF urate homeostasis is associated with adverse pregnancy outcomes. 514 515 These findings also indicate that aspects of pregnancy loss may be conserved between women and cattle. Moreover, several differentially abundant AF metabolites identified in this study are 516 metabolically related (Fig. 5), suggesting shared pathways that may be linked to pregnancy 517 518 failure. However, at this point this is quite speculative; thus, further research is needed to confirm these potential causal associations. It is also worth noting that since AF was sampled at 519 Day 68 – well in advance of when spontaneous abortions subsequently occurred – these data 520 suggest that early AF molecular signatures are predictive of later pregnancy loss, rather than 521 522 reflecting iatrogenic effects of the amniocentesis procedure itself.

linked to increased fetal XO activity [129] and, by extrapolation, amniotic hyperuricemia. This is

Machine-learning based biomarker identification and model validation

505

523

524525

526

527

528

529530

531

532533

534535

536

Statistically significant values often make poor biomarker predictors, and *vice versa* [141–144]. For example, Zheng *et al.* [143] constructed a model using five genetic variants identified in a genome-wide association study on prostate cancer, concluding that these variants did not enhance predictive power. Similarly, Gränsbo *et al.* demonstrated that while chromosome 9p21 was significantly associated with cardiovascular disease, it did not improve risk prediction [144]. To determine whether this phenomenon also applied to our metabolomic dataset, we used *Random Forest*, an established [145] machine learning algorithm, coupled with model performance evaluation using the ROC curve analysis, to identify potential AF biomarkers of fetal physiology. Indeed, we observed that statistical significance did not align with predictive efficacy. For example, urate levels, which were strongly statistically associated with pregnancy outcome (*P*=0.0036), produced a relatively poor AUROC value of 0.67. Nonetheless, independent panels consisting of just six AF metabolite relative concentrations confirmed fetal conception method and sex and further predict pregnancy success with relatively high sensitivity and specificity (**Fig. 6**).

Recognizing the importance of model validation in independent populations [146], we 537 538 subsequently analyzed AF samples collected on Day 42 of pregnancy from an independent 539 herd of crossbred beef heifers in Ireland. Initial sPLS-DA revealed clear separation of AF profiles between the two cohorts. This likely reflects a combination of factors, including 540 differences in sampling stage (Day 68 vs. Day 42), breed-related genetic variation, maternal 541 characteristics (e.g., age and weight; Supplementary Figures 5A-B), diet, and environmental 542 and/or management conditions. These influences collectively shape AF composition, producing 543 distinct molecular fingerprints detectable in multivariate analyses. 544 Nonetheless, the same six metabolites used to predict fetal sex in the first cohort (AUROC = 545 0.76), predicted fetal sex in second cohort with a better AUROC of 0.85. These findings confirm 546 547 that the relative concentrations of just six AF metabolites are efficacious biomarkers of fetal sex 548 across two completely independent groups of cattle. This also engenders confidence in the 549 identified biomarkers for predicting pregnancy success, as the sPLS-DA CV error rate values 550 and AUROC measures for pregnancy outcome prediction are more favorable than for fetal sex prediction. 551

Study limitations

552

553

554

555

556557

558

559

560

561

562

563

564

565

566567

568

Firstly, although we use the term 'metabolomics', the presented data pertain specifically to the methanol-extractable fraction of the AF metabolome. Moreover, assigning putative compound identifiers (annotation) to peak areas presents significant challenges in semi-quantitative highthroughput untargeted metabolomics analyses [147]. Using standard libraries can lead to misannotations of up to 27.8% [148], primarily due to the highly instrument- and setting-specific nature of metabolite fragmentation spectra [149]. Consequently, conducting targeted quantitative metabolomics against specific standards for select metabolites is important for validating annotations and establishing precise metabolite concentrations. Secondly, while our data hold potential bovine diagnostic relevance, their applicability to human medicine and biological mechanisms requires further investigation. Although there are several similarities between bovine and human pregnancies, notable differences exist. For instance, in cattle, AF begins to accumulate after amnion closure around Day 22 and transitions from predominantly maternal plasma transudate to include increasing fetal urine contribution after renal maturation around Day 40 [150], whereas in humans, amnion closure occurs around Day 12 [151]. Also, the bovine placenta is semi-invasive synepitheliochorial, while the human placenta is hemochorial. Such distinctions, among others, highlight that direct extrapolation between bovine and human pregnancy, and *vice versa*, is often inappropriate. Nevertheless,

while definitive translational conclusions cannot be drawn, our mention of human pregnancy is intended to place the study in a broader comparative context. Given that many aspects of mammalian development are conserved [152,153], bovine AF analysis may still serve as a valuable resource for nominating candidate biomarkers for subsequent investigation in human studies. Thirdly, the etiologies of pregnancy loss are numerous and complex. Although we identified AF metabolites correlating with spontaneous abortion, our sample size is relatively small. Larger and more sex-balanced cohort studies are essential to enhance the robustness of these data and to assess whether the identified AF metabolites can serve as reliable biomarkers for the early detection of adverse pregnancy outcomes across various pathologies. Fourthly, to increase our sample size for male and female pregnancies, seven pregnancies were generated with sex-sorted semen. Although (a) our conventional and sex-sorted semen originated from the same sire, (b) analysis revealed no correlation between semen source and any measured outcomes, and (c) pregnancy rates following artificial insemination with sexsorted vs. conventional semen are comparable [154,155], altered embryonic gene expression has been reported in bovine embryos produced from sex-sorted vs. conventional semen [156]. Therefore, this may be considered a confounding factor affecting our results. Lastly, and on a similar note, we compared AI vs. IVF derived pregnancies. While effects of AI vs. natural service

Future directions

569

570

571

572

573

574

575

576577

578

579

580

581582

583

584

585586

587

588

589590

591

592593

594

595

596

597598

599

A potentially worthwhile area for further research, not previously discussed, is exploring the influence of the AF microbiome on maternal and fetal physiology. Although this topic is contentious [28,158–160], our data indicate the presence of microbiota-associated compounds in bovine AF. Such inquiries could uncover novel determinants of fetal growth and development. From an applied standpoint, we acknowledge that untargeted MS metabolomics may not be a practical diagnostic modality for routine farm use. A logical next step is to refine these findings into targeted, low-cost, and rapid assays that can be deployed at scale. Such tools would align with emerging precision agriculture approaches, where inexpensive, high-throughput diagnostics have the potential to offset the substantial economic burden of suboptimal reproductive outcomes. Similarly, testing maternal blood, in addition to AF, for biomarkers, as demonstrated in a recent study [72], could provide a less invasive approach to assessing fetal physiology and pregnancy trajectories. Finally, a long-term objective could be to develop AF

are not apparent [157], this could be considered a potential confounding factor.

transfusions to enhance pregnancy outcomes and improve postnatal well-being in both livestock and humans.

Summary

600

601

602

603604

605

606

607

608

609610

611

612613

614

615

AF is a valuable yet under-utilized biological resource [161]. This study demonstrates that bovine AF contains reproducible metabolomic biomarkers capable of predicting fetal sex, distinguishing conception method, and forecasting pregnancy outcome with high accuracy. Using machine learning, we identified panels of just six metabolites that achieved strong predictive performance (AUROC values of 0.76-0.91), with the fetal sex model maintaining robust accuracy when validated in an independent cohort of different breed cattle. These findings have immediate practical applications for the livestock industry, where implementation could significantly improve reproductive efficiency and reduce the substantial economic losses associated with early pregnancy failure rates. Beyond agricultural applications, these data could serve as a translational model for human prenatal biomarker development, leveraging the reproductive similarities between species while benefiting from the controlled experimental conditions possible in livestock. The validated framework presented here provides a foundation for developing minimally invasive prenatal diagnostics that could optimize both assisted reproductive technologies and pregnancy management strategies across mammalian species.

DATA AVAILAVBILITY STATEMENT

All data generated or analyzed during this study are included in this published article and corresponding supplementary information files.

CONFLICT OF INTEREST STATEMENT

VAAM, RVS, DCP, VCF, and PJR are employees of ST Genetics Inc. VAAM, PJR, and CAS are co-inventors of a provisional US patent application #63/826,092 based on these data.

AUTHOR CONTRIBUTIONS

- 620 Conceptualization: VAAM, PL, PJR, CAS. Collaborative Facilitation: RMR. Investigation: VAAM,
- RVS, DCP, VCF, MM, JMS, MBR. Formal analysis: CAS with support from ID, ZLB, DMF, and
- 622 AM. Initial manuscript preparation: CAS. Manuscript review and editing: All authors. Funding
- acquisition and resources: JMS, MBR, AV, XF, PL, PJR, CAS. Supervision: PL, PJR, CAS.

ACKNOWLEDGEMENTS

524	This work was funded in part by: • Enterprise Ireland Talent Attraction CAM Program (ATI2019-
625	T2-BIO-12966) to JMS (PI) and PL (Co-I); • The European Research Council H2020-MSCA-
626	Individual Fellowship (101021311) to MBR (PI) and PL (Co-I), • The State of Louisiana Board of
627	Regents [LEQSF(2023-26)-RD-A-03] to CAS (PI) and XF (Co-I); • The Audubon Center for
528	Research of Endangered Species (GR-00013800) to CAS (PI) and XF (Co-I); • The Joe W. and
529	Dorothy Dorsett Brown Foundation to CAS (BG008584) (PI); • The United States Department of
630	Agriculture (USDA) Research Capacity (Hatch) funds (LAB-94578) to CAS (PI); and • The
531	Louisiana State University Agricultural Center Collaborative Research Program (PG010315)
632	awarded to CAS (PI), AV (Co-I), and XF (Co-I).

REFERENCES

- 633 [1] Bongso TA, Basrur PK. Prenatal diagnosis of sex in cattle by amniocentesis. Vet Rec 1975; 96:124–126.
- Vos PL, Pieterse MC, van der Weyden GC, Taverne MA. Bovine fetal fluid collection: Transvaginal, ultrasound-guided puncture technique. Vet Rec 1990; 127:502–504.
- 637 [3] Leibo SP, Rall WF. Prenatal diagnosis of sex in bovine fetuses by amniocentesis. Theriogenology 1990; 33:531–552.
- 639 [4] Simoni G, Colognato R. The amniotic fluid-derived cells: The biomedical challenge for the third millennium. J Prenat Med 2009; 3:34–36.
- Baetz AL, Hubbert WT, Graham CK. Changes of biochemical constituents in bovine fetal fluids with gestational age. Am J Vet Res 1976; 37:1047–1052.
- 643 [6] Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: Not just fetal urine anymore. J Perinatol 2005; 25:341–348.
- Michaels J-EA, Dasari S, Pereira L, Reddy AP, Lapidus JA, Lu X, Jacob T, Thomas A, Rodland M, Roberts CT, Gravett MG, Nagalla SR. Comprehensive proteomic analysis of the human amniotic fluid proteome: Gestational age-dependent changes. J Proteome Res 2007; 6:1277–1285.
- [8] Bhatti G, Romero R, Gomez-Lopez N, Chaiworapongsa T, Than NG, Theis KR, Galaz J, Gotsch F,
 Pique-Regi R, Berry SM, Kavdia M, Tarca AL. The amniotic fluid proteome changes with term
 labor and informs biomarker discovery in maternal plasma. Sci Rep 2023; 13:3136.
- [9] Shorey-Kendrick LE, Crosland BA, Spindel ER, McEvoy CT, Wilmarth PA, Reddy AP, Zientek KD,
 Roberts VHJ, D'Mello RJ, Ryan KS, Olyaei AF, Hagen OL, et al. The amniotic fluid proteome
 changes across gestation in humans and rhesus macaques. Sci Rep 2023; 13:17039.
- [10] Eddleman KA, Malone FD, Sullivan L, Dukes K, Berkowitz RL, Kharbutli Y, Porter TF, Luthy DA,
 Comstock CH, Saade GR, Klugman S, Dugoff L, et al. Pregnancy loss rates after midtrimester
 amniocentesis. Obstet Gynecol 2006; 108:1067–1072.
- 657 [11] Nizard J. Amniocentesis: Technique and education. Curr Opin Obstet Gynecol 2010; 22:152–154.
- Kalogiannidis I, Prapa S, Dagklis T, Karkanaki A, Petousis S, Prapas Y, Prapas N. Amniocentesisrelated adverse outcomes according to placental location and risk factors for fetal loss after midtrimester amniocentesis. Clin Exp Obstet Gynecol 2011; 38:239–242.
- United States Department of Agriculture (USDA) Economic Research Service (ERS) | The Cattle and beef sector at a glance n.d.
- 663 [14] Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PLJ, Melo LF, Ochoa JC, Santos JEP, Sartori R. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 2016; 86:239–253.
- Kalantari AS, Cabrera VE. Stochastic economic evaluation of dairy farm reproductive performance.
 Can J Anim Sci 2015; 95:59–70.
- 668 [16] Cardoso Consentini CE, Wiltbank MC, Sartori R. Factors that optimize reproductive efficiency in dairy herds with an emphasis on timed artificial insemination programs. Animals 2021; 11:301.
- 670 [17] Pohler KG, Reese ST, Franco GA, Oliveira RV, Paiva R, Fernandez L, de Melo G, Vasconcelos JLM, Cooke R, Poole RK. New approaches to diagnose and target reproductive failure in cattle. Anim Reprod 2020; 17:e20200057.
- 673 [18] Romero R, Mazaki-Tovi S, Vaisbuch E, Kusanovich JP, Chaiworapongsa T, Gomez R, Nien JK, Yoon BH, Mazor M, Luo J, Banks D, Ryals J, et al. Metabolomics in premature labor: A novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med 2010; 23:1344–1359.
- 677 [19] Cooper RS. Race in biological and biomedical research. Cold Spring Harb Perspect Med 2013; 3:a008573.
- 679 [20] Menon R, Jones J, Gunst PR, Kacerovsky M, Fortunato SJ, Saade GR, Basraon S. Amniotic fluid 680 metabolomic analysis in spontaneous preterm birth. Reprod Sci 2014; 21:791–803.

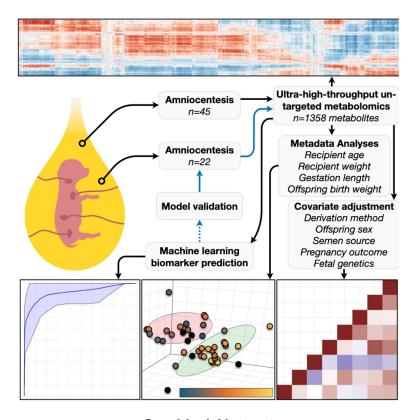
- Leary C, Leese HJ, Sturmey RG. Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Human Reproduction 2015; 30:122–132.
- Baraldi E, Giordano G, Stocchero M, Moschino L, Zaramella P, Tran MR, Carraro S, Romero R, Gervasi MT. Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. PLoS One 2016; 11:e0164211.
- Virgiliou C, Gika HG, Witting M, Bletsou AA, Athanasiadis A, Zafrakas M, Thomaidis NS, Raikos N, Makrydimas G, Theodoridis GA. Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery. J Proteome Res 2017; 16:898–910.
- 689 [24] Shirasuna K, Iwata H. Effect of aging on the female reproductive function. Contracept Reprod Med 2017; 2:23.
- [25] Hallingström M, Barman M, Savolainen O, Viklund F, Kacerovsky M, Brunius C, Jacobsson B.
 Metabolomic profiles of mid-trimester amniotic fluid are not associated with subsequent
 spontaneous preterm delivery or gestational duration at delivery. J Matern Fetal Neonatal Med
 2022; 35:2054–2062.
- 695 [26] Hornaday KK, Wood EM, Slater DM. Is there a maternal blood biomarker that can predict 696 spontaneous preterm birth prior to labour onset? A systematic review. PLoS One 2022; 697 17:e0265853.
- 698 [27] Bourdin-Pintueles A, Galineau L, Nadal-Desbarats L, Dupuy C, Bodard S, Busson J, Lefèvre A, Emond P, Mavel S. Maternal rat metabolomics: Amniotic fluid and placental metabolic profiling workflows. J Proteome Res 2021; 20:3853–3864.
- 701 [28] Winters AD, Romero R, Greenberg JM, Galaz J, Shaffer ZD, Garcia-Flores V, Kracht DJ, Gomez 702 Lopez N, Theis KR. Does the amniotic fluid of mice contain a viable microbiota? Front Immunol
 703 2022; 13:820366.
- 704 [29] Carter AM. Animal models of human pregnancy and placentation: alternatives to the mouse. Reproduction 2020; 160:R129–R143.
- 706 [30] Ménézo YJR, Hérubel F. Mouse and bovine models for human IVF. Reprod Biomed Online 2002; 4:170–175.
- 708 [31] Malhi PS, Adams GP, Singh J. Bovine model for the study of reproductive aging in women: Follicular, luteal, and endocrine characteristics. Biol Reprod 2005; 73:45–53.
- 710 [32] Abedal-Majed MA, Cupp AS. Livestock animals to study infertility in women. Anim Front 2019; 711 9:28–33.
- Halstead MM, Ma X, Zhou C, Schultz RM, Ross PJ. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat Commun 2020; 11:4654.
- Zhou C, Halstead MM, Bonnet-Garnier A, Schultz RM, Ross PJ. Histone remodeling reflects
 conserved mechanisms of bovine and human preimplantation development. EMBO Rep 2023;
 24:e55726.
- 717 [35] Holden SA, Butler ST. Review: Applications and benefits of sexed semen in dairy and beef herds. Animal 2018; 12:s97–s103.
- 719 [36] Tiffin GJ, Rieger D, Betteridge KJ, Yadav BR, King WA. Glucose and glutamine metabolism in pre-720 attachment cattle embryos in relation to sex and stage of development. J Reprod Fertil 1991; 721 93:125–132.
- Ray PF, Conaghan J, Winston RM, Handyside AH. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J Reprod Fertil 1995; 104:165–171.
- Gutiérrez-Adán A, Oter M, Martínez-Madrid B, Pintado B, De La Fuente J. Differential expression of two genes located on the X chromosome between male and female in vitro-produced bovine embryos at the blastocyst stage. Mol Reprod Dev 2000; 55:146–151.
- Taylor DM, Handyside AH, Ray PF, Dibb NJ, Winston RM, Ao A. Quantitative measurement of transcript levels throughout human preimplantation development: Analysis of hypoxanthine phosphoribosyl transferase. Mol Hum Reprod 2001; 7:147–154.

- 731 [40] Wrenzycki C, Lucas-Hahn A, Herrmann D, Lemme E, Korsawe K, Niemann H. In vitro production 732 and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and 733 Xist in preimplantation bovine embryos. Biol Reprod 2002; 66:127–134.
- Jiménez A, Madrid-Bury N, Fernández R, Pérez-Garnelo S, Moreira P, Pintado B, de la Fuente J, Gutiérrez-Adán A. Hyperglycemia-induced apoptosis affects sex ratio of bovine and murine preimplantation embryos. Mol Reprod Dev 2003; 65:180–187.
- 737 [42] Sturmey RG, Bermejo-Alvarez P, Gutierrez-Adan A, Rizos D, Leese HJ, Lonergan P. Amino acid 738 metabolism of bovine blastocysts: a biomarker of sex and viability. Mol Reprod Dev 2010; 77:285– 739 296.
- Kobayashi S, Isotani A, Mise N, Yamamoto M, Fujihara Y, Kaseda K, Nakanishi T, Ikawa M,
 Hamada H, Abe K, Okabe M. Comparison of gene expression in male and female mouse
 blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr
 Biol 2006; 16:166–172.
- 744 [44] Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A. Epigenetic differences 745 between male and female bovine blastocysts produced in vitro. Physiol Genomics 2008; 32:264– 746 272.
- 747 [45] Silver MJ, Saffari A, Kessler NJ, Chandak GR, Fall CHD, Issarapu P, Dedaniya A, Betts M, Moore SE, Routledge MN, Herceg Z, Cuenin C, et al. Environmentally sensitive hotspots in the methylome of the early human embryo. Elife 2022; 11:e72031.
- [46] Li Y, Sun Y, Zhang X, Wang X, Yang P, Guan X, Wang Y, Zhou X, Hu P, Jiang T, Xu Z.
 Relationship between amniotic fluid metabolic profile with fetal gender, maternal age, and gestational week. BMC Pregnancy Childbirth 2021; 21:638.
- Viana J. Statistics of embryo production and transfer in domestic farm animals: The main trends for the world embryo industry still stand. Embryo Technology Newsletter 2023; 4:20–38.
- 755 [48] Fauser BC. Towards the global coverage of a unified registry of IVF outcomes. Reprod Biomed Online 2019; 38:133–137.
- 757 [49] Sakka SD, Loutradis D, Kanaka-Gantenbein C, Margeli A, Papastamataki M, Papassotiriou I,
 758 Chrousos GP. Absence of insulin resistance and low-grade inflammation despite early metabolic
 759 syndrome manifestations in children born after in vitro fertilization. Fertil Steril 2010; 94:1693—
 760 1699.
- 761 [50] Chen M, Wu L, Zhao J, Wu F, Davies MJ, Wittert GA, Norman RJ, Robker RL, Heilbronn LK.
 762 Altered glucose metabolism in mouse and humans conceived by IVF. Diabetes 2014; 63:3189–3198.
- Donjacour A, Liu X, Lin W, Simbulan R, Rinaudo PF. In vitro fertilization affects growth and glucose metabolism in a sex-specific manner in an outbred mouse model. Biol Reprod 2014; 90:80.
- Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: A call for investigation. Am J Hum Genet 2004; 74:599–609.
- 769 [53] Pisarska MD, Chan JL, Lawrenson K, Gonzalez TL, Wang ET. Genetics and epigenetics of infertility and treatments on outcomes. J Clin Endocrinol Metab 2019; 104:1871–1886.
- 771 [54] Novakovic B, Lewis S, Halliday J, Kennedy J, Burgner DP, Czajko A, Kim B, Sexton-Oates A,
 772 Juonala M, Hammarberg K, Amor DJ, Doyle LW, et al. Assisted reproductive technologies are
 773 associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat
 774 Commun 2019; 10:3922.
- 775 [55] Håberg SE, Page CM, Lee Y, Nustad HE, Magnus MC, Haftorn KL, Carlsen EØ, Denault WRP,
 776 Bohlin J, Jugessur A, Magnus P, Gjessing HK, et al. DNA methylation in newborns conceived by
 777 assisted reproductive technology. Nat Commun 2022; 13:1896.
- 778 [56] Tobi EW, Almqvist C, Hedman A, Andolf E, Holte J, Olofsson JI, Wramsby H, Wramsby M, Pershagen G, Heijmans BT, Iliadou AN. DNA methylation differences at birth after conception through ART. Hum Reprod 2020; 36:248–259.

- 781 [57] Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Epigenetic changes and assisted reproductive technologies. Epigenetics 2019; 15:12–25.
- 783 [58] Mansouri-Attia N, Sandra O, Aubert J, Degrelle S, Everts RE, Giraud-Delville C, Heyman Y, Galio L, Hue I, Yang X, Tian XC, Lewin HA, et al. Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc Natl Acad Sci USA 2009; 106:5687–5692.
- 786 [59] Bauersachs S, Ulbrich SE, Zakhartchenko V, Minten M, Reichenbach M, Reichenbach H-D, Blum H, Spencer TE, Wolf E. The endometrium responds differently to cloned versus fertilized embryos. Proc Natl Acad Sci U S A 2009; 106:5681–5686.
- Zhou W, Gosch G, Guerra T, Broek D, Wu G, Walker S, Polejaeva I. Amino acid profiles in first trimester amniotic fluids of healthy bovine cloned pregnancies are similar to those of IVF pregnancies, but not nonviable cloned pregnancies. Theriogenology 2014; 81:225–229.
- 792 [61] Malin K, Witkowska-Piłaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology 2022; 189:246–254.
- 794 [62] Sala RV, Melo LF, Motta JCL, Leffers-Neto L, Carrenho-Sala LC, Fosado M, Moreno JF, Baruselli PS, Wiltbank MC, García-Guerra A. Optimization of a 5-day fixed-time embryo transfer (FTET) protocol in heifers I. Manipulation of circulating progesterone through reutilization of intravaginal progesterone devices during FTET. Theriogenology 2020; 156:171–180.
- 798 [63] Absalón-Medina V, Sala R, Bond R. Antimicrobial prophylaxis post-amniocentesis procedures in cattle: A randomized controlled equivalence study. Veterinary and Animal Science 2022; 15:100225.
- 801 [64] Pieterse MC, Vos PL, Kruip TA, Wurth YA, van Beneden TH, Willemse AH, Taverne MA.
 802 Transvaginal ultrasound guided follicular aspiration of bovine oocytes. Theriogenology 1991;
 803 35:857–862.
- Estrada-Cortés E, Jannaman EA, Block J, Amaral TF, Hansen PJ. Programming of postnatal phenotype caused by exposure of cultured embryos from Brahman cattle to colony-stimulating factor 2 and serum. J Anim Sci 2021; 99:skab180.
- 807 [66] Tríbulo P, Rivera RM, Ortega Obando MS, Jannaman EA, Hansen PJ. Production and culture of the bovine embryo. Methods Mol Biol 2019; 2006:115–129.
- 809 [67] Simintiras CA, Sánchez JM, McDonald M, Martins T, Binelli M, Lonergan P. Biochemical 810 characterization of progesterone-induced alterations in bovine uterine fluid amino acid and 811 carbohydrate composition during the conceptus elongation window. Biology of Reproduction 2018.
- Simintiras CA, Sánchez JM, McDonald M, Lonergan P. Progesterone alters the bovine uterine fluid lipidome during the period of elongation. Reproduction 2019; 157:399–411.
- Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Sci Rep 2019; 9:7716.
- 817 [70] Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The biochemistry surrounding bovine conceptus elongation. Biology of Reproduction 2019; 101:328–337.
- 819 [71] Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, 820 fertilization or early embryo development in vitro versus in vivo: Implications for blastocyst yield 821 and blastocyst quality. Mol Reprod Dev 2002; 61:234–248.
- 822 [72] Sánchez JM, Gómez-Redondo I, Browne JA, Planells B, Gutiérrez-Adán A, Lonergan P.
 823 MicroRNAs in amniotic fluid and maternal blood plasma associated with sex determination and early gonad differentiation in cattle. Biol Reprod 2021; 105:345–358.
- Fuhrer T, Heer D, Begemann B, Zamboni N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal Chem 2011; 83:7074–7080.
- [74] Chen L, Zhernakova DV, Kurilshikov A, Andreu-Sánchez S, Wang D, Augustijn HE, Vich Vila A,
 Weersma RK, Medema MH, Netea MG, Kuipers F, Wijmenga C, et al. Influence of the
 microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat
 Med 2022; 28:2333–2343.

- Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res 2018; 46:D608–D617.
- Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, Xia J. Using MetaboAnalyst 5.0 for LC– HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc 2022; 17:1735–1761.
- Pang Z, Lu Y, Zhou G, Hui F, Xu L, Viau C, Spigelman AF, MacDonald PE, Wishart DS, Li S, Xia J. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res 2024; 52:W398–W406.
- Hackstadt AJ, Hess AM. Filtering for increased power for microarray data analysis. BMC Bioinformatics 2009; 10:11.
- Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43:e47.
- 846 [80] Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. A global test for groups of genes: 847 Testing association with a clinical outcome. Bioinformatics 2004; 20:93–99.
- 848 [81] Lu Y, Pang Z, Xia J. Comprehensive investigation of pathway enrichment methods for functional interpretation of LC–MS global metabolomics data. Brief Bioinform 2022; 24:bbac553.
- 850 [82] Barker M, Rayens W. Partial least squares for discrimination. Journal of Chemometrics 2003; 851 17:166–173.
- 852 [83] Lê Cao K-A, Boitard S, Besse P. Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 2011; 12:253.
- Ruiz-Perez D, Guan H, Madhivanan P, Mathee K, Narasimhan G. So you think you can PLS-DA?

 BMC Bioinformatics 2020; 21:2.
- Kahan BC, Jairath V, Doré CJ, Morris TP. The risks and rewards of covariate adjustment in randomized trials: An assessment of 12 outcomes from 8 studies. Trials 2014; 15:139.
- Coughlan MP, Rajagopalan KV, Handler P. The role of molybdenum in xanthine oxidase and related enzymes: Reactivity with cyanide, arsenite, and methanol. Journal of Biological Chemistry 1969; 244:2658–2663.
- 861 [87] Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics 2013; 9:280–299.
- [88] Edmonds CG, Crain PF, Gupta R, Hashizume T, Hocart CH, Kowalak JA, Pomerantz SC, Stetter
 KO, McCloskey JA. Posttranscriptional modification of tRNA in thermophilic archaea
 (Archaebacteria). J Bacteriol 1991; 173:3138–3148.
- Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. tRNAdb 2009: Compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 2009; 37:D159-162.
- 868 [90] Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-869 methylguanosine modification of yeast tRNA. RNA 2002; 8:1253–1266.
- 870 [91] Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM. Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 2006; 21:87–96.
- [92] Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-mediated m7G tRNA
 methylome Is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell 2018; 71:244-255.e5.
- 878 [94] Ruiz-Arroyo VM, Raj R, Babu K, Onolbaatar O, Roberts PH, Nam Y. Structures and mechanisms of tRNA methylation by METTL1–WDR4. Nature 2023; 613:383–390.
- Cheng T, Li X, Chen J, Yang L, Liu J, Song G, Ma H. Investigation of hub genes involved in Turner syndrome using biological informatics methods. Medicine (Baltimore) 2022; 101:e29069.


- Han H, Zheng S, Lin S. N7-methylguanosine (m7G) tRNA modification: A novel autophagy modulator in cancer. Autophagy n.d.; 19:360–362.
- 884 [97] Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy 2016; 12:752–769.
- Jeong DS, Lee J-Y, Kim MH, Oh JH. Regulation of sexually dimorphic placental adaptation in LPS exposure-induced intrauterine growth restriction. Molecular Medicine 2023; 29:114.
- 889 [99] Ingemarsson I. Gender aspects of preterm birth. BJOG 2003; 110 Suppl 20:34–38.
- 890 [100] Di Renzo GC, Rosati A, Sarti RD, Cruciani L, Cutuli AM. Does fetal sex affect pregnancy outcome? Gend Med 2007; 4:19–30.
- [101] Orzack SH, Stubblefield JW, Akmaev VR, Colls P, Munné S, Scholl T, Steinsaltz D, Zuckerman JE. The human sex ratio from conception to birth. Proceedings of the National Academy of Sciences 2015; 112:E2102–E2111.
- Zhou P, Wang J, Wang J, Liu X. When autophagy meets placenta development and pregnancy complications. Front Cell Dev Biol 2024; 12.
- [103] Gonzalez TL, Willson BE, Wang ET, Taylor KD, Novoa A, Swarna A, Ortiz JC, Zeno GJ, Jefferies
 CA, Lawrenson K, Rotter JI, Chen Y-DI, et al. Sexually dimorphic DNA methylation and gene
 expression patterns in human first trimester placenta. Biol Sex Differ 2024; 15:63.
- 900 [104] Beall MH, van den Wijngaard JPHM, van Gemert MJC, Ross MG. Amniotic fluid water dynamics. 901 Placenta 2007; 28:816–823.
- 902 [105] Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and pregnancy: Parallels in growth, 903 invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin Proc 904 2009; 84:985–1000.
- [106] Luo Y, Yao Y, Wu P, Zi X, Sun N, He J. The potential role of N7-methylguanosine (m7G) in cancer. J Hematol Oncol 2022; 15:63.
- 907 [107] Añazco-Guenkova AM, Miguel-López B, Monteagudo-García Ó, García-Vílchez R, Blanco S. The 908 impact of tRNA modifications on translation in cancer: Identifying novel therapeutic avenues. NAR 909 Cancer 2024; 6:zcae012.
- 910 [108] Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJP. Boys live dangerously in the womb. Am J Hum Biol 2010; 22:330–335.
- 912 [109] Suzuki T. The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375–392.
- [110] Katze JR, Farkas WR. A factor in serum and amniotic fluid is a substrate for the tRNA-modifying
 enzyme tRNA-guanine transferase. Proc Natl Acad Sci U S A 1979; 76:3271–3275.
- [111] Cirzi C, Dyckow J, Legrand C, Schott J, Guo W, Perez Hernandez D, Hisaoka M, Parlato R, Pitzer C, van der Hoeven F, Dittmar G, Helm M, et al. Queuosine-tRNA promotes sex-dependent learning and memory formation by maintaining codon-biased translation elongation speed. EMBO J 2023; 42:e112507.
- [112] Zhao X, Ma D, Ishiguro K, Saito H, Akichika S, Matsuzawa I, Mito M, Irie T, Ishibashi K,
 Wakabayashi K, Sakaguchi Y, Yokoyama T, et al. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell 2023; 186:5517-5535.e24.
- 923 [113] Pinborg A, Wennerholm U-B, Bergh C. Long-term outcomes for children conceived by assisted reproductive technology. Fertil Steril 2023; 120:449–456.
- 925 [114] Adelman R, Saul RL, Ames BN. Oxidative damage to DNA: Relation to species metabolic rate and life span. Proc Natl Acad Sci U S A 1988; 85:2706–2708.
- 927 [115] Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal 2003; 17:1195–1214.
- 929 [116] Cadet J, Davies KJA. Oxidative DNA damage and repair: An introduction. Free Radic Biol Med 2017; 107:2–12.

- [117] Kouakou F, Denizot A-L, L'Hostis A, Colet J, Jacques S, Sallem A, Ziyyat A, Vaiman D, Wolf J-P.
 Plastic used in in vitro fertilization procedures induces massive placental gene expression alterations. EBioMedicine 2023; 91:104572.
- 934 [118] Neu J, Afzal A, Pan H, Gallego E, Li N, Li Calzi S, Caballero S, Spoerri PE, Shaw LC, Grant MB.
 935 The dipeptide Arg-Gln inhibits retinal neovascularization in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2006; 47:3151–3155.
- [119] Li N, Ma L, Liu X, Shaw L, Calzi SL, Grant MB, Neu J. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuates hyperoxia-induced small intestinal injury in neonatal mice. J Pediatr Gastroenterol Nutr 2012; 54:499–504.
- [120] Fang Y, Yin W, He C, Shen Q, Xu Y, Liu C, Zhou Y, Liu G, Zhao Y, Zhang H, Zhao K. Adverse impact of phthalate and polycyclic aromatic hydrocarbon mixtures on birth outcomes: A
 metabolome exposome-wide association study. Environmental Pollution 2024; 357:124460.
- 943 [121] Taylor A. Aminopeptidases: Structure and function. FASEB J 1993; 7:290–298.
- [122] Talabani H, Dreux S, Luton D, Simon-Bouy B, Le Fiblec B, Col J-Y, Guibourdenche J, Oury J-F,
 Muller F. Fetal anal incontinence evaluated by amniotic fluid digestive enzyme assay in
 myelomeningocele spina bifida. Pediatr Res 2005; 58:766–770.
- 947 [123] Simintiras CA, Drum JN, Liu H, Sofia Ortega M, Spencer TE. Uterine lumen fluid is metabolically semi-autonomous. Commun Biol 2022; 5:191.
- 949 [124] Stanton C, Lawn JE, Rahman H, Wilczynska-Ketende K, Hill K. Stillbirth rates: Delivering estimates in 190 countries. The Lancet 2006; 367:1487–1494.
- 951 [125] Hille R, Nishino T, Bittner F. Molybdenum enzymes in higher organisms. Coord Chem Rev 2011; 255:1179–1205.
- 953 [126] Bonini MG, Miyamoto S, Mascio PD, Augusto O. Production of the carbonate radical anion during 954 xanthine oxidase turnover in the presence of bicarbonate. Journal of Biological Chemistry 2004; 955 279:51836–51843.
- 956 [127] Kayyali US, Donaldson C, Huang H, Abdelnour R, Hassoun PM. Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia. J Biol Chem 2001; 276:14359–14365.
- 958 [128] Derrick M, Englof I, Drobyshevsky A, Luo K, Yu L, Tan S. Intrauterine fetal demise can be remote from the inciting insult in an animal model of hypoxia–ischemia. Pediatr Res 2012; 72:154–160.
- [129] Kane AD, Camm EJ, Richter HG, Lusby C, Tijsseling D, Kaandorp JJ, Derks JB, Ozanne SE,
 Giussani DA. Maternal-to-fetal allopurinol transfer and xanthine oxidase suppression in the late
 gestation pregnant rat. Physiol Rep 2013; 1:e00156.
- 963 [130] Boda D, Németh I, Hencz P, Dénes K. Effect of allopurinol treatment in premature infants with idiopathic respiratory distress syndrome. Dev Pharmacol Ther 1984; 7:357–367.
- [131] Masaoka N, Nakajima Y, Hayakawa Y, Ohgame S, Hamano S, Nagaishi M, Yamamoto T.
 Transplacental effects of allopurinol on suppression of oxygen free radical production in chronically instrumented fetal lamb brains during intermittent umbilical cord occlusion. J Matern Fetal
 Neonatal Med 2005; 18:1–7.
- yan Dijk AJ, Parvizi N, Taverne M a. M, Fink-Gremmels J. Placental transfer and pharmacokinetics
 of allopurinol in late pregnant sows and their fetuses. J Vet Pharmacol Ther 2008; 31:489–495.
- [133] Torrance HL, Benders MJ, Derks JB, Rademaker CMA, Bos AF, Van Den Berg P, Longini M,
 Buonocore G, Venegas M, Baquero H, Visser GHA, Van Bel F. Maternal allopurinol during fetal
 hypoxia lowers cord blood levels of the brain injury marker S-100B. Pediatrics 2009; 124:350–357.
- 974 [134] Peeters-Scholte C, Braun K, Koster J, Kops N, Blomgren K, Buonocore G, van Buul-Offers S, 975 Hagberg H, Nicolay K, van Bel F, Groenendaal F. Effects of allopurinol and deferoxamine on 976 reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res 977 2003; 54:516–522.
- 978 [135] Benders MJNL, Bos AF, Rademaker CMA, Rijken M, Torrance HL, Groenendaal F, van Bel F.
 979 Early postnatal allopurinol does not improve short term outcome after severe birth asphyxia. Arch
 980 Dis Child Fetal Neonatal Ed 2006; 91:F163-165.

- 981 [136] Chaudhari T, McGuire W. Allopurinol for preventing mortality and morbidity in newborn infants with suspected hypoxic-ischaemic encephalopathy. Cochrane Database Syst Rev 2008:CD006817.
- [137] Kaandorp JJ, Benders MJNL, Rademaker CMA, Torrance HL, Oudijk MA, de Haan TR,
 Bloemenkamp KWM, Rijken M, van Pampus MG, Bos AF, Porath MM, Oetomo SB, et al.
 Antenatal allopurinol for reduction of birth asphyxia induced brain damage (ALLO-Trial); a
 randomized double blind placebo controlled multicenter study. BMC Pregnancy Childbirth 2010;
 10:8.
- [138] Kaandorp JJ, van Bel F, Veen S, Derks JB, Groenendaal F, Rijken M, Roze E, Venema MMAU,
 Rademaker CMA, Bos AF, Benders MJNL. Long-term neuroprotective effects of allopurinol after
 moderate perinatal asphyxia: Follow-up of two randomised controlled trials. Arch Dis Child Fetal
 Neonatal Ed 2012; 97:F162-166.
- P32 [139] Ravichandran L, Allen VM, Allen AC, Vincer M, Baskett TF, Woolcott CG. Incidence, intrapartum risk factors, and prognosis of neonatal hypoxic-ischemic encephalopathy among infants born at 35 weeks gestation or more. Journal of Obstetrics and Gynaecology Canada 2020; 42:1489–1497.
- 995 [140] Gao T, Zablith NR, Burns DH, Skinner CD, Koski KG. Second trimester amniotic fluid transferrin 996 and uric acid predict infant birth outcomes. Prenat Diagn 2008; 28:810–814.
- 997 [141] Lo A, Chernoff H, Zheng T, Lo S-H. Why significant variables aren't automatically good predictors. 998 Proceedings of the National Academy of Sciences 2015; 112:13892–13897.
- Jakobsdottir J, Gorin MB, Conley YP, Ferrell RE, Weeks DE. Interpretation of genetic association studies: Markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet 2009; 5:e1000337.
- In Italian
 Itali
- 1005 [144] Gränsbo K, Almgren P, Sjögren M, Smith JG, Engström G, Hedblad B, Melander O. Chromosome 1006 9p21 genetic variation explains 13% of cardiovascular disease incidence but does not improve risk 1007 prediction. J Intern Med 2013; 274:233–240.
- 1008 [145] Zou KH, O'Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 2007; 115:654–657.
- 1010 [146] Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: What, why, how, when and where? Clin Kidney J 2020; 14:49–58.
- 1012 [147] Kind T, Fiehn O. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 2007; 8:105.
- 1014 [148] Zhou Z, Luo M, Zhang H, Yin Y, Cai Y, Zhu Z-J. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat Commun 2022; 13:6656.
- 1016 [149] Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, Liu N, Zhu Z-J. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun 2019; 10:1516.
- 1018 [150] Li N, Wells DN, Peterson AJ, Lee RSF. Perturbations in the biochemical composition of fetal fluids are apparent in surviving bovine somatic cell nuclear transfer pregnancies in the first half of gestation. Biology of Reproduction 2005; 73:139–148.
- 1021 [151] Shamsnajafabadi H, Soheili Z-S. Amniotic fluid characteristics and its application in stem cell therapy: A review. Int J Reprod Biomed 2022; 20:627–643.
- 1023 [152] Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet 2021; 53:925–934.
- [153] Gerri C, McCarthy A, Mei Scott G, Regin M, Stamatiadis P, Brumm S, Simon CS, Lee J,
 Montesinos C, Hassitt C, Hockenhull S, Hampshire D, et al. A conserved role of the Hippo
 signalling pathway in initiation of the first lineage specification event across mammals.
 Development 2023; 150:dev201112.
- 1029 [154] Thomas JM, Locke JWC, Bonacker RC, Knickmeyer ER, Wilson DJ, Vishwanath R, Arnett AM,
 1030 Smith MF, Patterson DJ. Evaluation of SexedULTRA 4M[™] sex-sorted semen in timed artificial insemination programs for mature beef cows. Theriogenology 2019; 123:100–107.

- 1032 [155] VanWye GM, Andersen CM, Smith EG, Erwin ZL, Spinka C, Poock SE, Thomas JM. Evaluation of later timepoints for fixed-time artificial insemination of beef heifers and cows when using sexsorted semen. Theriogenology 2024; 214:334–341.
- 1035 [156] Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proceedings of the National Academy of Sciences 2010; 107:3394–3399.
- 1038 [157] Marrella MA, White RR, Dias NW, Timlin C, Pancini S, Currin J, Clark S, Stewart JL, Mercadante VRG, Bradford HL. Comparison of reproductive performance of Al- and natural service-sired beef females under commercial management. Transl Anim Sci 2021; 5:txab114.
- 1041 [158] Liu Y, Li X, Zhu B, Zhao H, Ai Q, Tong Y, Qin S, Feng Y, Wang Y, Wang S, Ma J, Yang H.
 1042 Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple
 1043 methods of microbiologic inquiry. Am J Obstet Gynecol 2020; 223:248.e1-248.e21.
- 1044 [159] Stinson LF, Boyce MC, Payne MS, Keelan JA. The not-so-sterile womb: Evidence that the human fetus Is exposed to bacteria prior to birth. Front Microbiol 2019; 10.
- 1046 [160] Urushiyama D, Suda W, Ohnishi E, Araki R, Kiyoshima C, Kurakazu M, Sanui A, Yotsumoto F, Murata M, Nabeshima K, Yasunaga S, Saito S, et al. Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci Rep 2017; 7:12171.
- 1049 [161] Hui L, Bianchi DW. Cell-free fetal nucleic acids in amniotic fluid. Hum Reprod Update 2011; 17:362–371.

FIGURES

Graphical Abstract

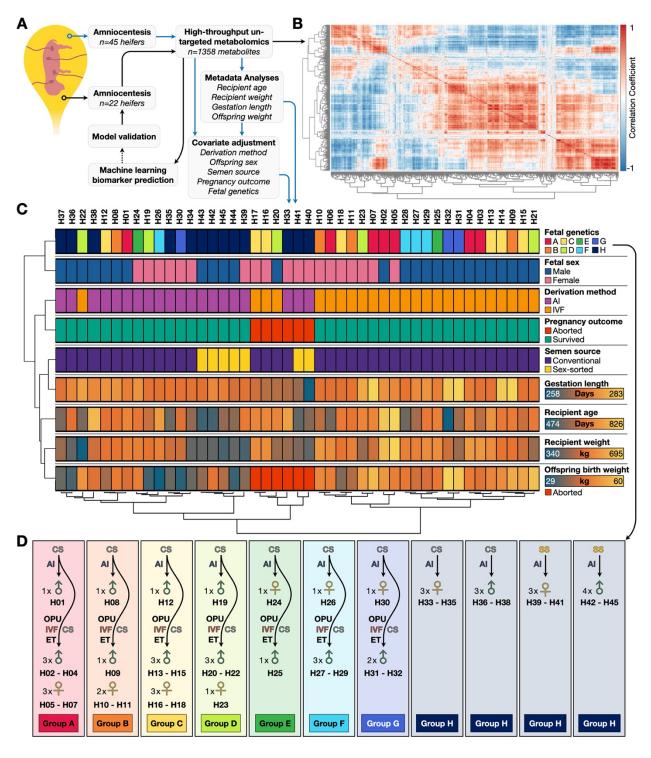


Figure 1

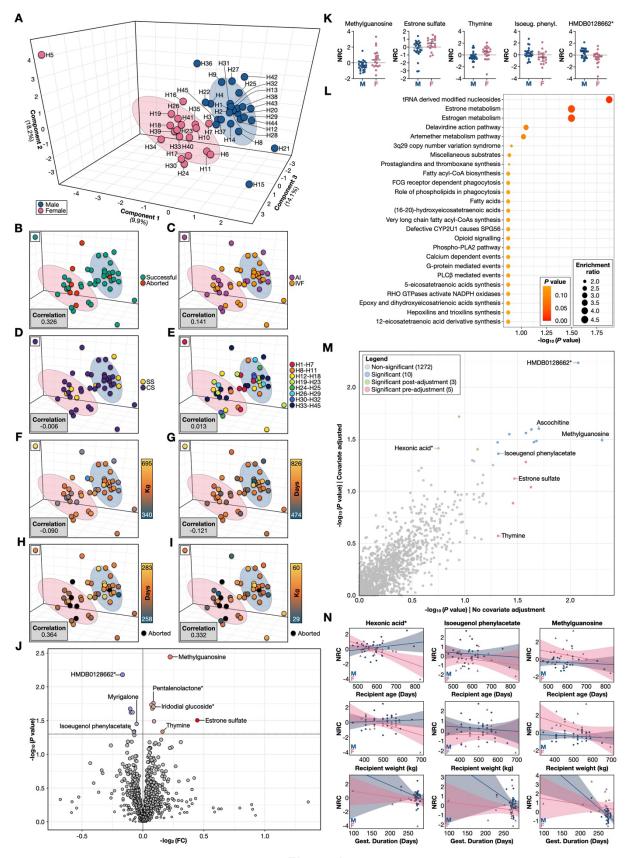


Figure 2

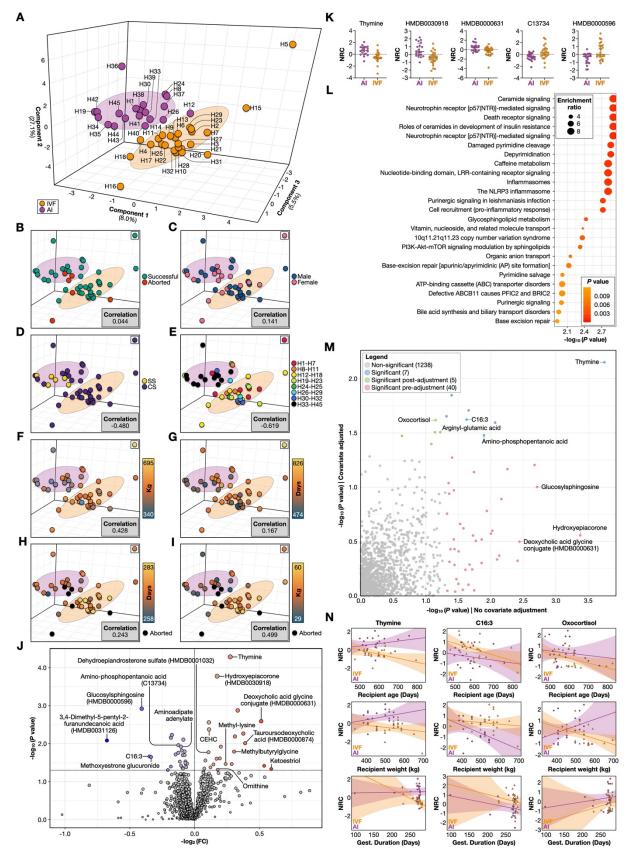


Figure 3

Figure 4

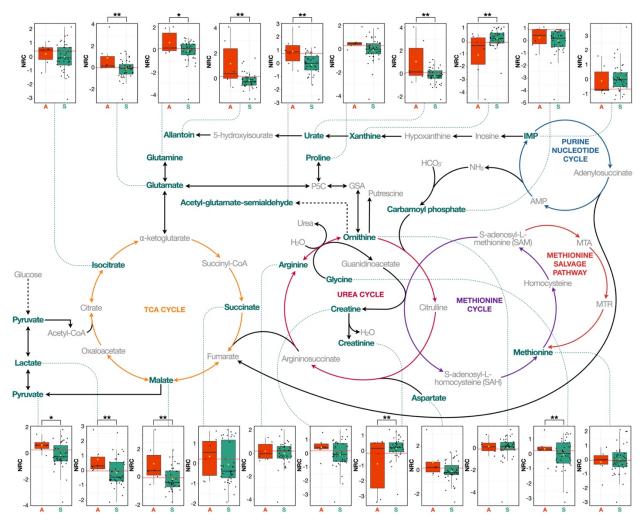


Figure 5

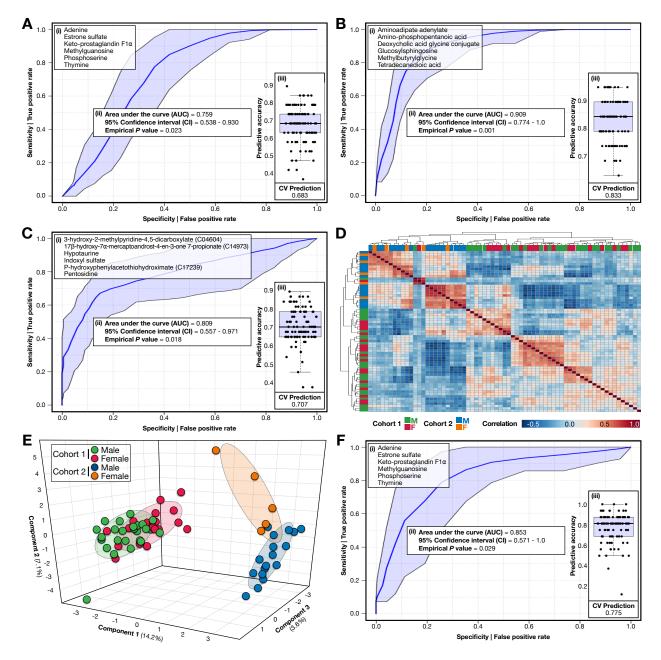


Figure 6

FIGURE LEGENDS

Figure 1. Experimental design summary. (A) Amniotic fluids from Holstein heifers (n=45) were 1051 1052 metabolically profiled. Data were analyzed considering continuous (metadata) and discrete 1053 (covariate) variables. A machine learning approach was then used to predict biomarkers of fetal sex, conception [in vitro fertilization (IVF) vs. artificial insemination (AI)], and pregnancy 1054 outcome. Predicted biomarkers of fetal sex were validated using amniotic fluid from an 1055 1056 independent group of heifers (n=22). (B) Correlation heatmap of metabolite relative abundance. 1057 (C) Metadata and correlation heatmap of amniotic fluid samples from heifers (H) 1 to 45. (D) 1058 Schematic depiction of sample generation. Thirteen (13) heifers were artificially inseminated 1059 with conventional semen (CS). Ovum pick-up (OPU) from seven recipients, followed by IVF and 1060 embryo transfer (ET), was performed to generate additional samples (Groups A-G). Finally, 7 1061 heifers were artificially inseminated using sex-sorted (SS) semen. Distinctions between female 1062 (9) and male (0) fetuses are also provided. 1063 Figure 2. Amniotic fluid metabolome analysis by fetal sex. (A) Metabolome sparse partial least 1064 squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of pregnancy 1065 from heifers gestating a male (blue) vs. female (pink) fetus. Individual heifer identifiers (H1-45) 1066 and 95% confidence region ellipses also provided. (B-I) Metabolome correlation coefficients between fetal sex and (B) pregnancy outcome, (C) conception method [in vitro fertilization (IVF) 1067 1068 vs. artificial insemination (AI)], (D) semen source [sexed (SS) vs. conventional (CS)], (E) fetal 1069 genetics, (F) recipient weight, (G) recipient age, (H) gestation length, and (I) offspring birth 1070 weight. Inserts (top left) correspond to sample H5. (J) Volcano plot of differentially abundant 1071 (P≤0.05) metabolites before covariate adjustment with (K) boxplots of select corresponding metabolite normalized relative concentrations (NRC). (L) Pathway enrichment analysis of 1072 1073 differentially abundant metabolites. (M) Linear model of differentially abundant metabolites 1074 before and after discrete covariate adjustment. (N) Scatterplots of select metabolite NRC 1075 against continuous metadata. Asterisks denote predicted metabolites. Additional abbreviation: 3-(6-hydroxy-7-methoxy-2H-1,3-benzodioxol-5-yl)prop-2-enal (HMDB0128662). 1076 1077 Figure 3. Amniotic fluid metabolome analysis by conception method. (A) Metabolome sparse partial least squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of 1078 1079 pregnancy from heifers gestating an in vitro fertilization (IVF) vs. artificial insemination (AI) 1080 derived fetus. Individual heifer identifiers (H1-45) and 95% confidence region ellipses also 1081 provided. (B-I) Metabolome correlation coefficients between fetal conception method and (B) 1082 pregnancy outcome, (C) fetal sex, (D) semen source [sexed (SS) vs. conventional (CS)], (E)

1084 weight. Inserts (top right) correspond to sample H5. (J) Volcano plot of differentially abundant 1085 $(P \le 0.05)$ metabolites before adjustment with (**K**) boxplots of select corresponding metabolite normalized relative concentrations (NRC). (L) Pathway enrichment analysis of differentially 1086 1087 abundant metabolites. (M) Linear model of differentially abundant metabolites before and after discrete covariate adjustment. (N) Scatterplots of select metabolite NRC against continuous 1088 1089 metadata. 1090 Figure 4. Amniotic fluid metabolome analysis by pregnancy outcome. (A) Metabolome sparse partial least squares discriminant analysis (sPLS-DA) of amniotic fluid collected on Day 68 of 1091 1092 pregnancy from heifers that subsequently delivered successfully (green) or spontaneously 1093 aborted (red). Individual heifer identifiers (H1-45) and 95% confidence region ellipses also 1094 provided. (B-I) Metabolome correlation coefficients between pregnancy outcome and (B) fetal 1095 sex, (C) conception method [in vitro fertilization (IVF) vs. artificial insemination (AI)], (D) semen 1096 source [sexed (SS) vs. conventional (CS)], (E) fetal genetics, (F) recipient weight, (G) recipient 1097 age, (H) gestation length, and (I) offspring birth weight. (J) Volcano plot of differentially 1098 abundant ($P \le 0.05$) metabolites before adjustment, with (**K**) boxplots of select corresponding 1099 metabolite normalized relative concentrations (NRC). (L) Pathway enrichment analysis of 1100 differentially abundant metabolites. (M) Linear model of differentially abundant metabolites 1101 before and after discrete covariate adjustment. (N) Scatterplots of select metabolite NRC 1102 against continuous metadata. Asterisks denote predicted metabolites. Additional abbreviations: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate (HMDB0006955). 1103 1104 hydroxyphenylacetothiohydroximate (C17239), and methoxyestrone glucuronide (C11132). Figure 5. Predicted metabolic pathways underpinning differential fetal metabolism from 1105 1106 spontaneously aborted vs. successful pregnancies. Boxplots of select corresponding metabolite 1107 normalized relative concentrations (NRC) from aborted (A) vs. successful (S) pregnancies also 1108 provided. Asterisks denote significance ($P \le 0.05$) before (**) and after (*) covariate adjustment. 1109 Additional abbreviations: 5'-methylthioadenosine (MTA), adenosine monophosphate (AMP), coenzyme A (CoA), glutamate-5-semi-aldehyde (GSA), inosine monophosphate (IMP), 1110 methylthioribose (MTR), pyrroline 5-carboxylate (P5C), and tricarboxylic acid (TCA). 1111 1112 Figure 6. Computational biomarker prediction for fetal physiology and pregnancy success. (A-C) Receiver operating characteristic (ROC) curves generated using the Random Forest 1113 1114 machine learning algorithm by input of 6 metabolites [inserts (i)] to predict (A) fetal sex (male vs. female), (B) conception method (in vitro fertilization vs. artificial insemination), and (C) 1115

fetal genetics, (F) recipient weight, (G) recipient age, (H) gestation length, and (I) offspring birth

1083

1116 pregnancy outcome (spontaneously aborted vs. successful) for heifer Cohort 1 (n=45). 1117 Corresponding area under the curve (AUC) and empirical P values provided [inserts (ii)]. Inserts 1118 (iii) depict corresponding cross-validation (CV) predictive accuracies. (D) Hierarchical clustering 1119 heatmap of amniotic fluid profiles from male vs. female carrying pregnancies from the initial 1120 (Cohort 1) and model validation (Cohort 2) animals. (E) Metabolome sparse partial least squares discriminant analysis (sPLS-DA) of amniotic fluid from male and female fetuses from 1121 1122 Cohorts 1 and 2 (F) ROC curve generated using the same 6 metabolites as in panel (A) to 1123 predict fetal sex in Cohort 2 (n=22). Supplementary Figure 1. Animal details. (A) Cohort 1A animal synchronization protocol for 1124 1125 artificial insemination (AI). (B) Cohort 1B animal synchronization protocol for embryo transfer 1126 (ET). (C) Cohort 2 animal synchronization protocol for ET. (D) Cohort 1 animal and pregnancy 1127 details, including fetal sex, conception method, semen source, and outcome (discrete covariate data), in addition to recipient weight (RW), recipient age (RA), gestation length (GL), and 1128 1129 offspring birth weight (BW) (continuous metadata). (E) Cohort 2 animal and pregnancy details, 1130 including fetal sex and the day of ET into recipient heifers, in addition to recipient breed, type, 1131 RW, and RA. Additional abbreviations: male (M), female (F), conventional (Conv.), spontaneous abortion (SA), prostaglandin F2α (PGF2α), gonadotropin releasing hormone (GnRH), and 1132 1133 progesterone-controlled internal drug release device (CIDR), Aberdeen Angus cross (AAX), Charolais cross (CHX), Limousin cross (LMX), Aberdeen Angus (AA), and Hereford cross 1134 1135 (HEX). 1136 Supplementary Figure 2. Amniotic fluid metabolome by fetal sex. (A) Principal component 1137 analysis (PCA) of amniotic fluid profiles from male (blue) vs. female (pink) carrying pregnancies. (B) Hierarchical clustering heatmap of amniotic fluid metabolomic profiles. (C) Sparse partial 1138 1139 least squares discriminant analysis (sPLS-DA) cross-validation classification error rates. (D) 1140 Targeted pathway impact analysis, integrating pathway enrichment and topology analyses. Supplementary Figure 3. Amniotic fluid metabolome by conception method. (A) Principal 1141 1142 component analysis (PCA) of amniotic fluid profiles from in vitro fertilization (IVF; orange) vs. 1143 artificial insemination (AI; purple) derived pregnancies. (B) Hierarchical clustering heatmap of amniotic fluid metabolomic profiles. (C) Sparse partial least squares discriminant analysis 1144 (sPLS-DA) cross-validation classification error rates. (D) Targeted pathway impact analysis, 1145 integrating pathway enrichment and topology analyses. 1146 1147 Supplementary Figure 4. Amniotic fluid metabolome by pregnancy. (A) Principal component 1148 analysis (PCA) of amniotic fluid profiles from spontaneously aborted (red) vs. successful (green)

1149	pregnancies. (B) Hierarchical clustering heatmap of amniotic fluid metabolomic profiles. (C)
1150	Sparse partial least squares discriminant analysis (sPLS-DA) cross-validation classification error
1151	rates. (D) Targeted pathway impact analysis, integrating pathway enrichment and topology
1152	analyses.
1153	Supplementary Figure 1. Animal metadata summary. (A) Cohort 1 animal variables correlation
1154	heatmap.(B) Comparison of mean recipient ages between Cohorts 1 and 2 ($P \le 0.0001$). (C)
1155	Comparison of mean recipient weights between Cohorts 1 and 2 (<i>P</i> ≤0.0001).
1156	Supplementary Table 1. Raw metabolomic master dataset. Internal standard (IS1-IS10),
1157	animal Cohort 1 (H1-45), and Cohort 2 (H46-67) amniotic fluid metabolite peak intensities.