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ABSTRACT

The Cerrado biome, a biodiversity hotspot, faces challenges such as soil degradation and water resource
depletion. Passive restoration is a strategy used to recover its ecosystem, with remote sensing technology
enabling monitoring of forest recovery and environmental changes. This study applied multi-temporal analysis
using environmental data and vegetation indices to assess a passive restoration area in a reserve at Brotas, Brazil.
Data were gathered from a meteorological station and Landsat-8 satellite images. Vegetation indices such as the
Simple Ratio Index (SRI), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index
(SAVI), and Enhanced Vegetation Index (EVI) were calculated and analyzed over time (2014-2020) by year and
season (winter and summer). The environmental analysis revealed seasonal differences, highlighting the contrast
between the dry winter months and wet summer months. All vegetation indices varied across years, SRI and EVI
also showing seasonal differences. A noticeable deviation was observed in 2014-2015, attributed to the severe
drought of 2014, with a lagged response in vegetation. Our results demonstrate that vegetation indices are
effective tools for assessing ecological resilience under climate extremes and can provide evidence for designing
public policies. Specially, linking passive restoration outcomes to land tenure security and watershed conser-
vation highlights the role of tenure — restoration nexus in ensuring log-term success. These findings have im-
plications for conservation policy in Brazil and elsewhere, reinforcing that ecological recovery strategies must be
integrated with land use and land tenure frameworks to achieve sustainable climate adaptation and ecosystem
services.

1. Introduction

serving as the source of numerous major rivers in Brazil due to its
highland and plateaus landscapes (Silva and Lacher, 2020). However,

The Cerrado biome is recognized as one of the world’s biodiversity
hotspots, it hosts a rich variety of fauna and flora, with approximately
160,000 species of plants, fungi, and animals, many of which are
endemic (Sano et al., 2019; Ratter et al., 1997). Beyond its ecological
significance, the Cerrado plays a crucial role in hydrological regulation,
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the biome faces increasing pressure from intensive agricultural activ-
ities, which have significantly degraded its soil and water resources
(Carvalho et al., 2023).

Land-use changes in the Cerrado have been linked to soil erosion,
reduced water quality, and altered hydrological dynamics, especially in
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areas lacking permanent vegetation cover (Hunke et al., 2015; Fonseca
et al.,, 2021). These disturbances compromise the biome’s ability to
provide essential ecosystem services, emphasizing the urgent need for
effective restoration strategies. Among these, passive restoration, which
relies on natural regeneration processes without human intervention,
has emerged as a cost-effective and ecologically viable option. This
approach is particularly effective in landscapes with moderate distur-
bance and low abiotic stress, allowing for biodiversity recovery and
ecosystem functionality (Morrison and Lindell, 2011).

Monitoring the success of passive restoration requires robust meth-
odologies to track vegetation recovery over time. Advances in remote
sensing technologies, particularly the use of satellite imagery, have
revolutionized the ability to assess ecological changes across large
spatial and temporal scales (Del Rio-Mena et al., 2020). Landsat
time-series data, for example, allow researchers to monitor forest dy-
namics, including disturbance events and recovery patterns, using
spectral indices sensitive to vegetation conditions and growth stages
(Griffiths et al., 2014; Nguyen et al., 2018). Commonly used vegetation
indices (VI), such as the Normalized Difference Vegetation Index (NDVI)
and the Soil-Adjusted Vegetation Index (SAVI), provide valuable in-
sights into vegetation health and biomass (Pickell et al., 2016; Boon-
prong et al., 2018). Furthermore, hydrological indicators such as the
Normalized Difference Water Index (NDWI) are sensitive to changes in
the liquid water content of vegetation canopies, making them valuable
tools for assessing plant health, water stress and soil moisture avail-
ability (Gao, 1996; Ashok et al., 2021). Integrating these indices with
temperature and precipitation data provides a comprehensive view of
ecosystem recovery processes under changing climatic conditions.

Beyond ecological and climatic factors, the success of restoration is
also strongly influenced by land governance. Recent studies emphasize
that land tenure - the way land is held, owned, and managed - plays a
critical role in determining whether restoration initiatives are sustained
over time (Chigbu et al., 2022; Chigbu, 2023, 2025). The so-called
tenure-restoration nexus highlights that insecure tenure arrangements
can undermine long-term ecological gains, while secure frameworks
foster continuity in conservation efforts and resilience under climate
change. This perspective is particularly relevant in Brazil, where in-
struments such as Private Natural Heritage Reserves (PRNPs) legally
safeguard conservation purposes even when ownership changes (Brazil
SNUC, 2000). This study aims to evaluate the passive restoration dy-
namics of the Cerrado biome within the Water Perennial Forest (Floresta
das Aguas Perenes), a Private Reserve of Natural Patrimony (PRNP) in
Sao Paulo, Brazil. Using satellite-derived vegetation and environmental
indices, we analyze multi-temporal patterns of temperature, and hu-
midity over a seven-year period to relate to vegetation indices of an area
with different stages of restoration. Our research contributes to under-
standing the interplay between passive restoration and hydrological
processes, and governance perspectives, offering insights to guide con-
servation and management strategies in degraded tropical savannas.

2. Materials and methods
2.1. Study area

The study was carried out in Water Perennial Forest (Floresta das
Aguas Perenes), which is a Private Reserve of Natural Patrimony (PRNP)
located in Brotas County, Sao Paulo, Brazil (22°11.754'S and
48°6.523'W, 647 m above sea level). In 2011, it was designated as High
Conservation Value Forest by the Forest Stewardship Council because it
provides basic environmental services such as watershed protection.
PRNP covers more than 809 ha of the Cerrado area, and its phytophy-
siognomy is classified as secondary Cerrado vegetation stricto sensu
(where trees cover more than 30 % of the ground, but a fair amount of
grass grows on open savanna) and Cerradao (closed woodland savanna
without grass coverage) (Ratter et al., 1997; Oliveira and Marquis, 2002;
Durigan et al.,, 2012). The climate in Brotas County is Cwa
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(Koppen/Geiger’s classification), which means that annual precipitation
reaches 1337 mm, and the mean annual temperature is 20°C (INMET,
2022). Quartzarenic Neosol prevails as the most common soil type in
this area (Santos et al., 2018).

Seeking to observe a climatic pattern that could indicates a season-
ality in the temperature and humidity/water of the PRNP, we analyzed
the differences in these two environmental factors over the course of a
year, so this seasonality could be a factor in the vegetation index
analysis.

2.2. Environmental index analysis

The precipitation data used in this study was obtained by the weather
station datalogger (ID=83726) in the nearest city of the PRNP,
belonging to the Brazilian Meteorological National Institute (INMET —
Instituto Nacional de Meteorologia) located in Sao Carlos — SP county
(INMET,2022). This data was analyzed by monthly descriptive metrics.

All images analyzed came from Landsat-8 satellite (USGS - USGS -
USGS - United States Geological Survey, 2022). For the temperature and
water index analysis was used images from 2013 to 2019, the image gray
levels (NC) were converted to radiance and calculated the surface
temperature in Kelvin with subsequent transformation to degrees
Celsius (°C) with equations 1 and 2 presented in Table 1. The Normal-
ized Difference Water Index (NDWI), which is related to vegetation
moisture, was obtained by equation 3 in Table 1 to represent the
moisture in the study area.

Subsequently, the descriptive metrics of these two environmental
variables were calculated for each month, therefore an algebraic map
operation was used to show how the average monthly temperature is
distributed spatially and seasonally across the study area.

2.3. Vegetation indices analysis

For the multi-temporal analysis of the vegetation indices, images
from 2014 to 2020 were used, for each year was collected images on the
dry (Jun-Jul) and wet (Dec-Jan) seasons. Regarding the layers used, the
blue, green, red and infrared bands (NIR) were selected, which are the
images used by the algorithms for determining land use and occupation.

After obtaining the images, it was processed in a GIS environment
using QGIS 3.22 with GRASS 7.8.2 software, so that the images were
cropped to the perimeter of the PRNP. The Semi-Automatic Classifica-
tion Plugin (SCP) was used for classification, which allows supervised
classification of the type of land cover. The blue, green, red and infrared
(NIR) band images were merged, and then an image with the merged

Table 1.
Equations of environmental and vegetation indices.
Index type Variable Equation Ref.
Environmental Atmosphere LA= ML x Qcal + Al (U.s.
indices spectral radiance Geological
(LA) Survey, 2019)
Brightness Tb = (K2/Ln(k1/L) + (Chander et al.,
temperature (Tb) 1) 2009)
Normalized NDWI = (NIR — (Wabhelo et al.,
difference water SWIR)/(NIR — SWIR) 2024)
index
Vegetation Simple Ratio SRI = Pnir/Pred (Jensen, 2000)
indices Vegetation
Normalized NVDI = Pnir - Pred / (Rouse et al.,
Difference Pnir + Pred 1973)

Vegetation Index
Soil-Adjusted
Vegetation Index

SAVI = (1 +L) * ((Pnir-
Pred) / (Pnir + Pred +

(Huete, 1988)

L)
Enhanced EVI =G * ((Pnir - (Justice et al.,
Vegetation Index Pred) / (Pnir + 1988)

(C1*Pred) - (C2
*Pblue) + L)
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bands was generated.

Using SCP, 10-15 samples were separated and classified as:
advanced restoration, medium restoration, initial restoration, and
exposed soil (Fig. 1), so that the program can classify the remaining
areas. These samples were classified according to their color and texture
of the merged image, compared with Google Earth satellite image and
with on-site visits to the PRNP. Finally, the maximum similarity algo-
rithm was selected, that is, the most similar possible, and the land use
map was generated. The vegetation indices used are described in
equations 4-7 in Table 1.

To assess the influence of years and seasons, an analysis was con-
ducted using Generalized Linear Models (GLM) (Fox, 2016), where
Gaussian identity and Gaussian inverse frequency distributions were
tested, with the help of R v4.3.1. software (R CORE, 2022). Model se-
lection was done using Akaike’s Information Criterion (AIC) (Akaike,
1992) and by graphical analysis through Semi-Normal Plots with
Simulation Envelopes (hnp: Half-Normal, 2022). Tukey’s test was sub-
sequently applied with the aid of the ‘multcomp’ package (Multcomp,
2024).

3. Results
3.1. Environmental indices over the years

The lowest monthly precipitation records occurred in June (41 mm),
July (29 mm), and August (32 mm), classified as the dry season. Even
though there is not abundant precipitation in June, July, and August, the
interaction of vegetation with the water drainage network within the
PRNP area significantly contributes to moisture and temperature bal-
ance, playing a crucial role in ecological equilibrium.

The monthly average maximum temperatures varied from 22.1°C
(£1.9) in June to 34.6°C (£0.0) in November, while the average mini-
mum temperatures ranged from 17.1°C (£1.6) in June to 26.8°C (+2.8)
in October. June had the smallest temperature range (5°C), in contrast to
November, which showed a range of 8.1°C. The maximum temperatures
occurred in October, November, and December, while minimum tem-
peratures occurred in May and June. When analyzing the average
temperature in the PRNP, we observe that, particularly in the warmer
months (August to February), the temperature decreases as it gets closer

Advanced
restoration

Medium

restoration
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to bodies of water. (Fig. 2), showing the higher temperatures in the areas
at the ends of the river basin, therefore, the highest areas and closest to
the springs and far from the densest bodies of water where the tem-
perature is lower.

The highest NDWI values, which is related to vegetation moisture,
occurred in October, November, and December, followed by January,
February, March, April, and May. It is also observed that the period from
June to September showed the lowest NDWI values (Fig. 3).

3.2. Vegetation indices over the years

For all vegetation indices, the best model was the Gaussian inverse
frequency. The SRI (Fig. 4) showed a statistically significant difference
across the years (p = 2.979e-07) and seasons (p = 0.001014). The years
2014 and 2015 did not differ significantly from each other but showed a
significant difference (p < 0.001) when compared with all other years
(2016-2020).

The NDVI (Fig. 5) showed a statistically significant difference only
across years (p = 2.513e-06). Similarly with SRI, 2014 and 2015 did not
differ significantly from each other, but both differed significantly
(p < 1e-04) from all other years (2016-2020).

The SAVI (Fig. 6) showed statistically significant differences across
the years (p = 0.02654). The year 2014 differed significantly from all
the years, excepted 2015. The other years showed not statistically sig-
nificant difference between themselves.

The EVI (Fig. 7) showed statistically significant differences across
years (p = 6.389e-06) and seasons (p = 1.175e-06). Different from the
other indices, this index revealed significant differences between the
years 2014 and 2015.

Therefore, all vegetation indices had significant difference in years,
but only the SRI and EVI had difference in season (Dry/Wet), also the
indices showed a distinguish result for the years 2014 and 2015, but only
in EVI index they differentiated from each other.

Regarding the current land use of the PRNP, using the last imagens —
from 2020 — most of the area is characterized as being in an initial
(35.4 %) and a medium (45.2 %) stages of restoration, with a smaller
area in an advance stage (19.4 %) of restoration, and there was no area
(0 %) of exposed soil in the PRNP. It is important to highlight the rela-
tionship between watercourses and restoration, as restoration tends to

Initial Exposed

restoration soil

Fig. 1. Classification of restoration stages.
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follow the course of these water bodies as we can see in Fig. 8.
4. Discussion

Water bodies can cool the surrounding environment, reducing tem-
peratures by 2-6°C (Manteghi et al., 2015; Yang et al., 2020). They also
provide essential moisture, which supports diverse vegetation and en-
hances local biodiversity (Lixin et al., 2012), both of which are critical
for plant growth, particularly in arid regions (Elnashar et al., 2021).
Which are characterized by low rainfall and high evaporation rates, face
significant water scarcity, in such areas, water bodies play a vital role
mitigating these challenges, thus water and soil conservation systems

are crucial for sustaining vegetation and preventing land degradation
(Elnashar et al., 2021). The proximity to water provides additional
benefits that enhance the success of ecological recovery, such as changes
in soil enzyme activities, which may be key drivers of increases in soil
available nutrients like NOs-N and NH4+*-N (Liu et al., 2021). Water
bodies also influence the distribution and density of seed banks, which
are crucial for vegetation recovery (Cui et al., 2013). Moreover, riparian
vegetation plays a vital role in maintaining water bodies. Vegetation
along riverbanks significantly reduces erosion, supports plant growth,
and decreases water turbidity (McMahon et al., 2019).

The environmental results of temperature and NDWI show that the
study area is influenced by climate factors throughout the year.
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Although climate change has altered ecological patterns and seasonal
water availability (Hajek and Knapp, 2021), a clear seasonality is still
present and can be used to interpret vegetation responses. In this regard,
only two vegetation indices (SRI and EVI) captured seasonal differences,
while NDVI and SAVI showed significant variation only across years.
This is consistent with findings of a positive correlation between NDVI
and SAVI reported by Shibani et al.(2023), indicating that, therefore
only one of them could be used to give the same information. The
divergent vegetation responses observed in 2014 and 2015, largely
shaped by the severe drought of 2014, also illustrate how ecological
resilience interacts with governance structures. While biophysical fac-
tors explained much of the variability in vegetation indices, the

long-term capacity of landscapes to withstand and recover from extreme
climatic events depends on tenure security and land-use arrangements.
In contexts where land tenure is insecure, restoration investments tend
to be limited or short-term, reducing the effectiveness of passive resto-
ration strategies during drought episodes. Conversely, secure tenure
frameworks can promote continuity in land stewardship, ensuring that
regeneration processes initiated before climatic disturbances are main-
tained and expanded thereafter. Thus, the drought detected in our
indices not only reflects ecological vulnerability but also underscores the
need to integrate land tenure considerations into restoration planning
and climate adaptation policies. The SRI, also known as RVI (Ratio
Vegetation Index), showed both interannual and seasonal differences.
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This can be explained by its lack of normalization, making it more
sensitive to variations in the NIR and red band reflectance (Wei et al.,
2017). The EVI, on the other hand, improves upon NDVI by reducing
atmospheric and canopy background noise, making it more reliable in
dense vegetation areas (Avtar et al., 2014; Hu et al., 2021). Indeed, EVI
was the only index to detect differences between 2014 and 2015, sug-
gesting that it may be more effective in advanced restoration areas, even
though such areas accounted for only 19,4 % of the PRNP in 2020. This
supports the view that EVI is particularly responsive in environments
with greater vegetation cover, which are more sensitive to climate
variability (You et al., 2017).

All vegetation indices revealed statistical difference across the years,
confirming that they capture spatiotemporal variations influenced by
precipitation, temperature, and soil moisture (Lou et al., 2021). Similar
patterns have been reported in semi-arid regions, where vegetation
indices often show lagged responses to rainfall and temperature anom-
alies (Olmos-Trujillo et al., 1939). The atypical behavior of 2014-2015
is consistent with the severe hydrological drought that occurred in the
study region during 2014 (Marengo et al., 2015; Marengo and Alves,
2015; Fearnside and Laurance, 2015). Reduced precipitation and
delayed soil moisture recovery vegetation stressed, a process captured
by the indices analyzed here. César and de, (2017) quantified this
anomaly, reporting that precipitation in 2014 was nearly half of the
usual levels, with only 679.2 mm compared to the historical average of
1128.9 mm. Numerous studies have demonstrated the influence of
precipitation and soil moisture on vegetation indices, confirming their
sensitivity to environmental changes (Liu et al., 2021; Ji and Peters,
2003; Li et al., 2015; Rousta et al., 2020; Wang et al., 2020). The

divergent vegetation responses observed in 2014 and 2015, largely
shaped by this severe drought, also illustrate how ecological resilience
interacts with governance structures. While biophysical factors
explained much of the variability in vegetation indices, the long-term
capacity of landscapes to withstand and recover from extreme climatic
events depends on tenure security and land-use arrangements. In con-
texts where land tenure is insecure, restoration investments tend to be
limited or short-term, reducing the effectiveness of passive restoration
strategies during drought episodes. Conversely, secure tenure frame-
works can promote continuity in land stewardship, ensuring that
regeneration processes initiated before climatic disturbances are main-
tained and expanded thereafter. Thus, the drought signal detected in our
indices not only reflects ecological vulnerability but also underscores the
need to integrate land tenure considerations into restoration planning
and climate adaptation policies.

Fig. 2 illustrates seasonal temperature differences in the study re-
gion. Winter months, such as June and July, exhibited lower tempera-
tures compared to summer months, like December and January.
However, only the SRI and EVI indices showed significant differences
between seasons, contrasting with other studies (Guha and Govil, 2020;
Pandey et al., 2024), which observed seasonal differences using NDVI.
One possible explanation is the influence of moisture availability. In the
study region, winter coincides with the dry season, and NDWI values
confirmed lower vegetation moisture from June to September. This
likely reduced the sensitivity of some indices, as reported in previous
studies (Sun et al., 2013; Wang and Qu, 2007). Integrating vegetation
indices with climatic indicators such as temperature and soil moisture is
therefore crucial for accurately interpreting restoration trajectories and
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guiding land management decisions(Khikmah et al., 2024).

These findings confirm that vegetation indices are valuable tools for
assessing environmental restoration processes over time. However, such
ecological improvements can only be sustained if the land in question
has tenure security that allows ecosystems to play their role indefinitely,
without an “expiration date.” Unfortunately, in many contexts this is not
the case. Reports such as those from the Intergovernmental Panel on
Climate Change (IPCC) emphasize that climate change adaptation must
address not only land use but also land tenure, yet policy debates have
disproportionately focused on land use, with comparatively less atten-
tion to tenure (Chigbu, 2025). In the process of natural regeneration
aimed at achieving land degradation neutrality (LDN), tenure plays a
crucial role through the so-called tenure-restoration nexus (Chigbu
etal., 2022). Tenure insecurity may manifest in diverse forms, including
the absence of land titles, short-term tenancy contracts, restrictions on
transferability, and risks of expropriation or eviction (Lovo, 2016; Chi-
lombo, 2021). These conditions undermine long-term investments in
restoration and conservation, highlighting the need to strengthen
governance frameworks that safeguard land stewardship. A clearer un-
derstanding of the tenure-restoration connection is vital for academics,
practitioners, and policymakers. By clarifying this relationship, resto-
ration can gain greater prominence in development debates, especially
from land administration and management perspectives (Chigbu, 2023).
In Brazil, initiatives such as the creation of Private Natural Heritage
Reserves (PRNPs) demonstrate how public policies can institutionalize
long-term conservation: even if land ownership changes, the restoration
purpose remains safeguarded, ensuring that conservation goals are
maintained across generations (Brazil SNUC, 2000).

5. Conclusions

All the vegetation indices analyzes in our study demonstrated
sensitivity to temporal variations, capturing the ecological effects of the
extreme drought of 2014 and its delayed impacts in subsequent years.
Among them, only the SRI and EVI were able to effectively detect sea-
sonal differences between the summer and winter periods, underscoring
their suitability for monitoring restoration dynamics in seasonally dry
environments. Methodologically, our approach highlights the value of
integrating multi-temporal remote sensing data, environmental in-
dicators, and statistical modeling to provide robust assessments of pas-
sive restoration processes. Beyond methodological contributions, the
study emphasizes that restoration outcomes are not merely ecological,
but also strongly shaped by land governance. By linking the vegetation
responses observed here to the broader literature on the tenure-resto-
ration nexus, we demonstrate that restoration success depends not only
on ecological conditions but also on land tenure security and policy
frameworks that ensure continuity over time. In the Brazilian context,
initiatives such as Private Natural Heritage Reserves exemplify how
tenure instruments can safeguard restoration purposes despite changes
in ownership, contributing to long-term climate adaptation and
ecosystem service provision. Nevertheless, some limitations must be
acknowledged. The use of Landsat imagery (30 m resolution) constrains
the detection of fine-scale ecological processes, and the absence of local
socioeconomic data on land tenure and management limited our ability
to directly test governance-ecology linkages. Future research should
combine satellite-based indicators with detailed field data on tenure
arrangements, land management practices, and socioeconomic drivers
to strengthen the integration of ecological monitoring and policy anal-
ysis. Our findings reinforce that passive restoration in the Cerrado is
both feasible and detectable through vegetation indices, but its sus-
tainability is inseparable from secure land tenure and supportive policy
frameworks. Integrating ecological and governance perspectives is thus
essential for achieving land degradation neutrality and climate resil-
ience in Brazil and comparable savanna ecosystems worldwide.
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