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ARTICLE INFO ABSTRACT

Keywords: The accelerating global population growth and expanding economic activities have resulted in a notable increase

Waste classification in waste generation, necessitating accurate and efficient waste classification systems for sustainable waste

PLDS'CNN'Ridge'ELM management. This research presents a novel two-stage waste classification model leveraging a Lightweight

Ig::s}:vii:le jzz?li:f::fze Parallel Depthjwise Sep.arable. Convolutional .Neural .Network (.PLDs-CNl\{), combined with a Ridge Reg.r(?ssion

And shapley additive explanations Extreme Learning Machine (Ridge-ELM) classifier, using waste images as input. The proposed system efficiently
classifies waste into four primary categories (hazardous, household, recyclable, and residual) in the first stage
and further refines the classification into twelve subcategories in the second stage. Featuring a lightweight ar-
chitecture of nine layers and about 1.09 million parameters, the PLDs-CNN model achieves high accuracy with
substantially reduced computational overhead, outperforming many deeper networks. In the four-class classi-
fication stage, the system achieves an average accuracy of 99 %, with precision, recall, F1-score, and receiver
operating characteristics (ROC)-area under the curve (AUC) values of 97.25 + 0.02 %, 96 + 0.03 %, 96.5 + 0.01
%, and 99.28 %, respectively. In the twelve-class classification, the model continues to deliver superior results,
with 96 % accuracy and equally strong precision, recall, and F1-score metrics. The system is supported by a real-
time hardware architecture, featuring a user-centric Graphical User Interface (GUI), a webcam-enabled conveyor
belt sorting mechanism, and a 2-axis pan-tilt system for automated waste sorting. Additionally, the model’s
interpretability is significantly improved through the integration of Shapley Additive Explanations (SHAP),
which provides important perspectives into the decision-making process, increasing transparency and trust-
worthiness in real-world applications. The proposed framework not only surpasses conventional methods in both
accuracy and computational efficiency but also emphasizes sustainability by facilitating cost-effective and
scalable waste management solutions aimed at promoting recycling and resource reuse.

1. Introduction 2015). Based on prior studies, it is expected that the worldwide pro-
duction of solid waste will reach 2.2 billion tons annually by 2025,

The rapid growth of global populations and economies has led to a which will require a budget of $375.5 billion for waste management
significant rise in resource consumption, resulting in a concerning in- (Hoornweg and Bhada-Tata, 2012). Thirty-four percent of the world’s
crease in waste generation (Abuga and Raghava, 2021; Ozkan et al., municipal solid garbage is produced by 16 % of the population in
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developed countries (Jaunich et al., 2019). Compared to the global
average waste of 0.74 kg per day, these countries generate almost 2.1 kg
of waste per person on a daily basis (Jaunich et al., 2019). Waste pro-
duction is anticipated to grow significantly, including in low- and
middle-income regions such as Africa and certain areas of Asia. These
countries produce approximately 35 % of the world’s solid waste (Kaza
and Bhada-Tata, 2018). Unfortunately, there is no efficient and auto-
mated system for waste disposal to address this ever-expanding problem
(Li and Zhang, 2024). In cities, waste handling authorities gather waste
materials from residential waste containers and manually sort them for
recycling purposes or dispose of them in landfills. The United Nations
Environment Program (UNEP) has identified this as a substantial issue
that has negative effects on economic progress, human communities,
and public well-being (Harris et al., 2021). The inadequate disposal of
waste, specifically through landfills and the burning process, presents a
substantial danger to urban ecosystems and the welfare of inhabitants
(Wang et al., 2020). The harmful effects of unlimited waste production,
such as the buildup of dangerous compounds and widespread plastic
pollution, emphasize the need for scientific solutions in waste manage-
ment. Recycling and composting are the primary methods of sustainable
waste management. However, less than 19 % of waste is reused through
recycling and composting globally, while approximately 40 % of waste
ends up in landfills (Kaza et al., 2018). A thorough knowledge of waste
classification is essential for the implementation of an efficient waste
control system, as there exists numerous distinct types of waste.
Therefore, many countries have initiated research on intelligent garbage
classification and recycling technologies (Carrera et al., 2022; Cheah
et al., 2022; Jiang et al., 2023; Kang et al., 2020; Lu et al., 2020).

The amount of waste produced in Bangladesh increased from
1100000 tons in 1970-14778497 tons in 2012, indicating a 134300 ton
annual increase (Ashikuzzaman and Howlader, 2020; Kaza et al., 2018;
Shams et al., 2017). According to recent data, the average amount of
solid waste produced per person in different areas of Bangladesh varies
between 0.2 and 0.56 kg (Ahsan et al., 2014). Dhaka, the capital city,
generated an average of 6448.37 tons of solid waste each day from 2016
to 2017 (Jerin et al., 2022). Although the City Corporation collects
approximately 50 % of Dhaka’s waste, a substantial portion—estimated
between 40 % and 60 %—remains uncollected and is subject to
improper disposal practices. This uncollected waste consists of approx-
imately 80 % organic material (Ahsan et al., 2014). By 2025, the urban
population is expected to reach 78.44 million, and the rate of trash
production is estimated to increase to 220 kg per capita per year (Habib
et al., 2021). The government has initiated the implementation of the
National 3R (Reduce, Reuse, and Recycle) Strategy to solve the waste
management problem (Haque and Razy, 2021). Another organization,
“Waste Concern”, is a social business enterprise that has emerged to
address the issue of municipal garbage accumulation by collaborating
with families. The United Nations International Children’s Emergency
Fund (UNICEF) has also implemented recycling programs and waste
management initiatives together with city corporations and municipal-
ities. Nevertheless, there are currently insufficient efforts to improve
these standards. Factors such as land scarcity and insufficient technical
skills have further worsened the problem of dealing with large amounts
of garbage. To effectively address the escalating waste management
challenges in Bangladesh, the integration of advanced technologies such
as automated sorting systems, sensor-based methods, and artificial in-
telligence (AI) presents a promising solution to improve waste separa-
tion and  recycling accuracy. Bangladesh’s significant
constraints—characterized by limited financial and technical resources
alongside inadequate waste sorting infrastructure—make it a critical
context for assessing the feasibility and impact of cost-effective,
Al-driven waste classification systems. Selecting Bangladesh as a case
study not only reflects the urgent need for innovative waste manage-
ment strategies within the country but also allows the findings to be
generalized to other low- and middle-income nations facing similar
environmental and infrastructural challenges.
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As previously indicated, in most cases, manual waste sorting pro-
cesses are still employed by authorities. However, in smart cities, the
development of automated circular economy (CE) systems for waste
management is essential to maintain sustainability. Automatic waste
classification systems provide efficient and accurate waste categoriza-
tion, significantly reducing manual labor and processing time. By inte-
grating Al, this system can effectively recover valuable resources for
recycling and reuse and minimize environmental impact while offering
long-term cost savings and scalability. The advancement of AI has
introduced novel concepts to this domain. Several researchers have
successfully employed Convolutional Neural Networks (CNN) for pre-
cise waste categorization (Lin et al., 2022; Y.-L. Zhang et al., 2023; Lin
et al., 2022b), resulting in a range of notable accomplishments. For
waste detection and classification, some studies have employed You
Only Look Once (YOLO)-based models (Y. Chen et al., 2023; Mao et al.,
2022; Qiao et al., 2023; J. Yang et al., 2023; Q. Zhang et al., 2022; Qiao
et al., 2023) Some also employed Transfer Learning (TL) based models
(Mao et al., 2021; Q. Zhang et al., 2021), which have shown high ac-
curacy performance, ranging from 87 % to 96 %. Nevertheless, these TL
models possess higher parameters (1.2-1.3 million) (Z. Chen et al.,
2022; Feng et al., 2022), and the process of determining them necessi-
tates a substantial number of floating-point operations (Gaba et al.,
2022). Additionally, majority of the current research used datasets with
limited classes (3-6 classes) and a limited number of images (fewer than
5000 images). As a result, implementing real-world applications based
on these models is a challenging task. Hence, researchers have begun
investigating computationally efficient models for waste classification,
specifically designed for deployment on resource-limited platforms such
as embedded devices. Nevertheless, more research on lightweight waste
classification models is needed. The existing lightweight models have
shown lower classification accuracy (83-95 %) on large datasets, which
can lead to the misclassification of waste elements. Additionally, many
of the existing studies did not explore the potential for real-life imple-
mentation of the proposed models (Z. Chen et al., 2022; Feng et al.,
2022; Gaba et al., 2022; Mao et al., 2021; Z. Yang and Li, 2020; Q. Zhang
et al., 2021). To overcome these challenges, it is imperative to imple-
ment a lightweight model with minimal parameters, layers, and size.

The present study proposed a two-stage parallel lightweight depth
wise separable CNN (PLDs-CNN) model. The motivation behind this
study is that the existing manual waste classification system is not
capable of rapidly categorizing waste materials and directing them to-
ward the recycling process automatically. Hence, there is a need for an
Al-based system that can perform this task accurately and rapidly. The
PLDs-CNN feature extractor, which integrates depth-wise separable
convolution layers, is both lightweight and demonstrates high perfor-
mance with low computational requirements. All these characteristics
make the proposed model faster and more accurate, which can improve
the productivity of waste identification. The implementation of SHAP
(Shapley Additive Explanations) and a laboratory-scale hardware sys-
tem validates the application of the proposed model in real-world set-
tings. The major contributions of this paper are outlined as follows.

1. Efficient Parallel Lightweight CNN Architecture (PLDs-CNN): A
novel two-stage parallel CNN architecture has been designed using
depthwise separable convolutions and multiscale kernels to capture
diverse spatial features while significantly reducing parameter count
and computational complexity. This allows for fast, low-resource
inference, making it well-suited for real-time applications, particu-
larly on resource-constrained edge devices.

2. Enhanced Classifier Integration via Modified Ridge-ELM: The
traditional softmax classifier is replaced with a Ridge-ELM, which
provides significantly faster training (no backpropagation), better
generalization, and superior multiclass classification performance.
Ridge regularization improves stability and robustness in learning,
especially when dealing with complex or high-dimensional features.
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3. Interpretability with SHAP in Real-Time: For the first time in
waste classification, the model integrates Shapley Additive Expla-
nations (SHAP) to offer real-time, pixel-level interpretability. This
contributes to transparency throughout the decision-making phase
and increases trust in practical deployment settings.

4. Hardware Implementation with GUI for Real-World Validation:
The proposed model has been deployed on hardware with a real-time
graphical user interface, validating its operational usability. Despite
being a lightweight model, it demonstrates high accuracy and fast
response, confirming its practical viability.

Section 2 of this research presents an in-depth overview of the prior
relevant studies conducted on this topic. Section 3 presents the proposed
methodology, which includes a comprehensive framework, a descrip-
tion of the dataset, feature extraction methods, and performance met-
rics. Section 4 provides a detailed presentation of the comprehensive
classification results, along with a detailed explanation of the inter-
pretability of the proposed framework using SHAP and hardware-
software structure for real-life implementation. Concluding remarks
are detailed in Section 5.

2. Overview of previous work

To date, researchers have proposed several lightweight and deep
learning (DL) models for automated classification of wastes (Q. Zhang
et al., 2021; S. Zhang et al., 2021). Mao et al., developed an enhanced
DenseNet121 model by applying a genetic algorithm to optimize its fully
connected layer. Their work utilized the TrashNet dataset, which in-
cludes 2527 images categorized into six classes (Mao et al., 2021). To
improve classification accuracy, data augmentation techniques were
applied to expand the training set. The resulting model achieved an
impressive accuracy of 99.60 %, with a training duration of 5542 s.
Another method for waste classification was proposed by Zhang et al.
(Q. Zhang et al., 2021), who employed a DenseNet169 model with
transfer learning. This study used the NWNU-TRASH dataset, consisting
of 2528 images divided into five classes, with a 70/30 training-testing
split. Their model attained an accuracy exceeding 82 %, out-
performing multiple previous approaches. Nevertheless, this method
faced limitations due to the relatively small dataset, imbalanced class
distribution, and the model’s high complexity from a large parameter
count, which posed challenges for practical deployment. Khan et al.
(2022) proposed another waste classification approach, called recycling
waste classification using emperor penguin optimizer with DL
(RWC-EPODL), which utilizes the emperor penguin optimizer model to
generate bioenergy from recyclable garbage. This model employed
AX-RetinaNet for object identification and used a stacked auto-encoder
(SAE) for classification. The study achieved a success rate of 98.96 % on
Kaggle’s garbage categorization dataset, which comprises 750 images
categorized into six distinct classes. Lin et al. (Lin et al., 2022) employed
different Residual Neural Network (ResNet) architectures derived from
TL models to classify waste on the TrashNet dataset. Although they
achieved 88.8 % accuracy, the extensive parameter count negatively
impacts the model’s performance. On average, it took approximately
700 s to train for one epoch.

Using modern technologies, some researchers have created intelli-
gent waste categorization tools that have developed automated and
effective garbage classification systems in real life. These solutions are
intended to improve garbage management procedures using advanced
algorithms to achieve higher classification accuracy and promote a
sustainable environment. Chen et al. (Z. Chen et al., 2022) proposed a
garbage classification network (GCNet) based on improved Shuf-
fleNetv2. By employing the parallel mixed attention mechanism
(PMAM), incorporating novel activation functions Rectified linear unit
(FReLU), and leveraging TL, they enhanced the model’s performance
and achieved an exceptional accuracy of 97.9 % on their custom dataset.
The dataset comprises 4256 photos, which were divided into 14 distinct
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subcategories. The proposed model can categorize waste into four
separate groups: recyclable waste, wet waste, hazardous waste, and dry
waste. The categorization process required 0.88 s, utilizing 1.3 million
parameters. Similarly, Fan et al. (2023) designed an intelligent garbage
bin that separates regular household waste into four categories. The
system consists of an automated image classification system that utilizes
a Raspberry Pi unit, a digital camera, and three rotating plates. The
image classification technique used the EfficientNetB2 model in com-
bination with the PMAM to obtain high accuracy. Additionally, re-
searchers have proposed a background noise removal (BNR) approach to
address the impact of environmental factors on garbage recognition.
Their results showed a classification accuracy of 93.38 % on the Huawei
Cloud Garbage Classification dataset. Feng et al. (2022) employed the
Generalized Error Correction Model (GECM)-EfficientNet model for
effective waste classification to create an intelligent waste bin and
achieved high accuracy (94.54 % and 94.23 %) on self-built and
TrashNet datasets with 1.23 million parameters. Based on EfficientNet,
GECM-EfficientNet uses TL, efficient channel attention (ECA) and co-
ordinate attention (CA) modules and streamlining techniques to achieve
better accuracy and real-time performance. The waste bin had a camera
and servos for sorting waste into fan-shaped bins. It was operated by a
Raspberry Pi 4B.

Jin et al. (2023) designed a device utilizing DL techniques to facili-
tate sustainable garbage recycling. Their model utilized MobileNetV2 as
the main framework, incorporating one convolutional block attention
module (CBAM), one principal component analysis (PCA) module, and
one fully connected classification layer. The proposed approach signif-
icantly decreases the time required for garbage identification by 170 ms
compared to the conventional MobileNetV2 network and effectively
categorizes garbage into four distinct categories. Using the Huawei
Cloud Garbage dataset, which includes 14683 pictures, the recom-
mended approach achieved 90.7 % accuracy. Similarly, Zhang et al. (S.
Zhang et al., 2021) developed an automated waste sorting device for
categorizing domestic waste. The authors presented a two-step trash
recognition-retrieval technique adopting the Visual Geometry Group
(VGG16) model. A dataset including 1040 waste images was created,
and various data augmentation technique was employed. To mitigate
the issue of overfitting, they utilized the ten-fold cross-validation tech-
nique. The model categorized 13 different forms of waste into four
distinct categories. According to the experimental results, the model’s
average accuracy was 94.71 %.

Abdulkareem et al. (2024) introduced a two-stage intelligent waste
decision framework using DL models and Multi-Criteria Decision Mak-
ing (MCDM). This work introduced a Multi-Fused Decision Matrix
(MFDM) to evaluate and select optimal deep Waste Sorting Models
(WSMs) based on different fusion rules by experimenting on a dataset of
1451 waste pictures across four classes. The results indicated that the
hybrid Inception-Xception model works better than the other models,
while the ResNet50-GoogleNet-Inception model achieved an
outstanding accuracy of 98 %. Another study (Mohammed et al., 2023)
presented a novel automated waste sorting and recycling classification
system leveraging an Artificial Neural Network (ANN) and Feature
Fusion (including color, Local Binary Patterns (LBP), Histogram of
Oriented Gradients (HOG), and Uniform LBP). With an impressive ac-
curacy of 91.7 %, the model effectively classified test waste images into
three classes. Similarly, Kumar et al., introduced a system for auto-
matically sorting and classifying COVID-19-related medical waste from
other waste materials using an Artificial Neural Network (ANN) and
Feature Fusion. Al-Mashhadani et al. (Al-Mashhadani, 2023) assessed
the performance of ResNet50, GoogleNet, InceptionV3, and Xception DL
models in waste classification and achieved excellent accuracy and
precision. They utilized a dataset consisting of 1451 photos that were
divided into four waste categories. ResNet50 achieved a classification
accuracy and precision of 95 %, while InceptionV3 achieved a perfect
classification result of 100 % in all categories. Another study (Rahman
et al., 2023) discussed the difficulties related to the management of solid
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Table 1
Literature review with research gaps.
Ref. Model Dataset Result Limitation
Mao et al. Optimized TrashNet 99.60 % Small dataset,
(2021) DenseNet121 (2527 accuracy large number
with Genetic images, 6 of parameters,
Algorithm classes) limited
scalability
Q. Zhang et al. DenseNet169 NWNU- >82 % Small dataset,
(2021) TRASH accuracy  high model
(2528 complexity
images, 5
classes)
Khan et al. AX-RetinaNet Kaggle 98.96 % Limited
(2022) + Stacked Garbage accuracy dataset size, no
Autoencoder Dataset explainability
(RWC-EPODL) (750
images, 6
classes)
Lin et al. (2022)  ResNet-based TrashNet 88.8 % Large
TL. (2527 accuracy parameter
images, 6 count, ~700s/
classes) epoch training
Z. Chen et al. GCNet Custom 97.9 % Not publicly
(2022) (Improved (4256 accuracy available
ShuffleNetv2 + images, 14 dataset, lacks
PMAM + subclasses, explainability
FReLU) 4 main
classes)
Fan et al. EfficientNetB2 Huawei 93.38 % Large model
(2023) + PMAM Cloud accuracy (7.8M params)
Garbage
Dataset
(14802
images)
S. Zhang et al. VGG16 + Two- Custom 94.71 % Small dataset,
(2021) step Retrieval (1040 accuracy prone to
+ Cross- images, 13 overfitting
validation subclasses) despite
augmentation
Abdulkareem Inception- Custom 98 % Limited
et al. (2024) Xception + (1451 accuracy dataset, no
MCDM + images, 4 real-time
MFDM classes) capability, no
explainability
Mohammed ANN + Feature Custom (3 91.7 % Limited to 3
et al. (2023) Fusion (LBP, classes) accuracy classes, lacks
HOG, color) scalability
Kumar et al. ANN + Feature Custom Not Designed for
(2021) Fusion for specified niche waste
COVID Waste category
(medical) only
Al-Mashhadani ResNet50, Custom Up to Extremely
(2023) InceptionV3, (1451 100 % deep
etc. images, 4 accuracy networks, not
classes) lightweight,
no XAI

waste in metropolitan areas because of substantial population growth.

According to the state-of-the-art models, most researchers have
employed DL and TL models with high numbers of model parameters
and layers. For instance, Feng et al. (2022) utilized GECM-EfficientNet
with 1.23 million parameters, whereas the authors in (Z. Chen et al.,
2022) employed GCNet with 1.3 million parameters. Al-Mashhadani
et al. (Al-Mashhadani, 2023) employed ResNet50, GoogleNet, Incep-
tionV3, and Xception with 50, 22, 48 and 71 layers, respectively. Thus,
training these models on GPUs necessitates substantial time investment.
The proposed method in (Mao et al., 2021) required 5542 s for training
purposes. Similarly, in (Lin et al., 2022), the authors utilized various
ResNet architectures that required 7000 s for training.

Undoubtedly, implementing these algorithms in real life is chal-
lenging. To develop a practical, cost-effective, intelligent waste sorting
system, it is necessary to design a computationally efficient model
having a reduced number of parameters and layers, enabling shorter

Table 2
Overall datasets on both four classes and twelve subclasses.
Testing Trash Type Training  Testing  Validation
phase
First Stage: Hazardous Waste (0)" 766 94 85
4 classes Household Food Waste (1) 797 99 89
Recyclable Waste (2) 10439 1289 1160
Residual Waste (3) 564 70 63
Total 12566 1552 1397
Second Battery (0) Hazardous 766 94 85
Stage: 12 N Waste
subclasses Expired Household 797 99 89
Food (1) Food Waste
Brown Recyclable 491 61 55
Glass (2) Waste
Cardboard 722 89 80
3)
Clothes (4) 4313 533 479
Green Glass 509 63 57
(5)
Metal (6) 623 77 69
Paper (7) 851 105 94
Plastic (8) 701 86 78
Shoes (9) 1601 198 178
White Glass 628 77 70
(109
Trash (11) Residual 564 70 63
Waste
Total 12566 1552 1397

2 Here, 0-3 and 0-11 indicate class numbers for four-class and twelve-class in
the first and second stage classifications, respectively.

training times compared to existing models. Again, the literature shows
that certain studies were able to achieve higher classification accuracy
(Mao et al., 2021). However, they used a dataset with a small number of
classes and images to demonstrate their proposed model. Abdulkareem
et al. (2024) utilized a dataset that consists of only 1451 images of four
distinct classes. Similarly, in (Mohammed et al., 2023), the authors
evaluated their proposed models’ performances on a smaller dataset,
which contains 2400 images from three classes. Although some datasets
in the literature have 13, 14 or 18 subclasses, these datasets are not
publicly accessible (Chen et al., 2022; Feng et al., 2022; S. Zhang et al.,
2021). Furthermore, no studies have demonstrated the use of real-time
explainable Al, such as SHAP or LIME, emphasizing the impact of in-
dividual features. To incorporate recent studies and better highlight
existing research gaps, an wupdated comparative analysis of
state-of-the-art waste classification models is presented in Table 1. This
table outlines the model architectures, datasets used, achieved results,
and limitations of various prominent works.

3. Experimental design and methods
3.1. Data overview

The performance of learning models is critically influenced by the
quality of the dataset employed. TrashNet, a widely used dataset for
garbage classification research, has a limited six-category taxonomy. Jin
et al. (2023) used the Huawei Cloud Garbage Classification dataset in
their research on garbage identification and classification; however, this
dataset is no longer available. The dataset utilized in this study was
obtained from Kaggle’s Garbage Classification dataset (Mostafa
Mohamed, 2021). The database comprises 15150 images representing
twelve distinct categories of domestic waste. All the images of the
dataset were thoroughly classified into four groups according to char-
acteristics such as origin, composition, and perceived hazard levels.
Afterwards, the images were additionally categorized into twelve sub-
classes. Table 2 and Fig. 1 present a detailed overview of the dataset
along with representative sample images.
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(@

Fig. 1. Garbage Classification dataset includes 4 classes: (1) Hazardous Waste, (2) Household Food Waste, (3) Recyclable Waste, (4) Residual Waste; and 12 sub-
classes: (a) Battery, (b) Expired Food, (c) Brown Glass, (d) Cardboard, (e) Clothes, (f) Green Glass, (g) Metal, (h) Paper, (i) Plastic, (j) Shoes, (k) White Glass, (1)
Trash (MOSTAFA MOHAMED, 2021). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Overview of the proposed two-stage framework for multiclass waste image classification.

3.2. Proposed framework

Fig. 2 illustrates the key phases of the deep learning (DL) framework
introduced in this study, which is divided into two distinct stages to
enhance classification accuracy. Preprocessing is applied to the dataset
initially, which is then divided into training, testing, and validation sets
comprising 80 %, 10 %, and 10 % images, respectively. In the first stage,
two advanced neural network architectures—PLDs-CNN and parallel
CNN (PL-CNN)—are employed to extract essential image features. For
comparative analysis between the proposed models and leading transfer
learning (TL) models, various TL-based feature extractors are also

utilized. After standardizing the data, two classifiers, pseudo-Extreme
Learning Machine (ELM) and Ridge-ELM, are developed to assess the
class identification performance. The SHAP (SHapley Additive exPla-
nations) approach is used to explain the output generation process of the
models. During the final step of the first stage, waste materials are sys-
tematically classified into four key categories: hazardous waste, house-
hold food waste, recyclable waste, and residual waste.

At the second stage, the classification is performed again, this time
considering broader class categories. After splitting the dataset into
training, testing, and validation subsets, the same PL-CNN and PLDs-
CNN models are employed separately for feature extraction. ELM and
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Ridge-ELM classifiers are then applied to classify the waste materials
into twelve more specific subcategories. Once again, SHAP is utilized to
enhance the interpretability of the second-stage classification results.
Furthermore, a comprehensive hardware structure is designed,
including a user-friendly Graphical User Interface (GUI) for rapid waste
classification, a webcam-based conveyor belt sorting mechanism, and a
2-axis pan-tilt system for autonomous waste sorting.

The implementation of a two-stage classification model is motivated
by the inherent complexities encountered in real-world industrial waste
sorting scenarios. The diversity in physical attributes, material constit-
uents, and recyclability among waste materials poses challenges for
effective classification and processing. This variability makes it difficult
for a single-stage, end-to-end classification model to achieve both high

accuracy and robustness across a wide range of categories. By intro-
ducing a two-stage approach, it can be more effectively managed this
complexity and progressively refine the classification task.

In the first stage, the model broadly classifies waste materials into
four key categories: Hazardous Waste, Household Food Waste, Recy-
clable Waste, and Residual Waste. This initial categorization reduces the
complexity of the second stage, making it easier for the model to focus
on finer distinctions. The second stage then classifies these broadly
categorized waste items into twelve specific subcategories, facilitating
more precise and detailed waste categorization. This hierarchical
structure reduces misclassification rates while improving overall accu-
racy by narrowing the focus at each stage.

While a two-stage classification system may intuitively seem to
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Table 3
Lightweight parallel depthwise separable convolutional neural network (PLDs-
CNN) model summary.

Network Structure by Processing Blocks

Feature Trainable
Dimensions Units

Processing Block Layer Components

Input Stage Input Layer 124 x 124 x3 0

Functional Model 124 x 124 x 4588
1024
Primary Feature Depthwise Separable 122 x 122 x 140,416
Extraction Convolution 128
Normalization + 122 x 122 x 512
Activation 128

61 x 61 x 128 0
59 x 59 x 64 9408

Feature Pooling
Depthwise Separable
Convolution
Normalization +
Activation

Feature Pooling
Depthwise Separable
Convolution
Normalization +
Activation

Feature Pooling
Convolutional Layer

Secondary Feature
Extraction
59 x 59 x 64 256

29 x 29 x 64 0
Tertiary Feature 27 x 27 x 32 2656
Extraction

27 x 27 x 32 128

13 x 13 x 32 0

Final Feature 11 x 11 x 16 816

Extraction Normalization + 11 x 11 x 16 64
Activation
Feature Pooling 5x5x16 0
Regularization 5x5x16 0
(Dropout)
Dimension Flatten Operation 400 0
Reduction
Classification Head Dense Neural Network 1024 410,624
Normalization 1024 4096
Regularization 1024 0
(Dropout)
Output Dense Layer 512 524,800

Parameter Distribution

Network Section Parameter Count Percentage

Feature Extraction 158,844 145 %
Layers

Classification Layers 939,520 85.5 %

Total Parameters 1,098,364 100 %

Trainable Parameters 1,095,836 99.8 %

Non-Trainable 2528 0.2 %

Parameters

increase computational time compared to a single-stage approach, this is
not necessarily the case in this paper implementation. Both stages use
the same model—PLDs-CNN-Ridge-ELM—without introducing addi-
tional resource demands. Therefore, the computational overhead is only
marginally increased, primarily due to the division of the task into two
levels of classification. This minimal increase in computational time
does not significantly impact the efficiency of the system in industrial
settings where high throughput and rapid classification are essential.
Moreover, the use of lightweight feature extractor such as PLDs-CNN
and classifier Ridge-ELM helps ensure that the system remains scalable
and efficient even in large-scale operations.

3.3. Image preprocessing

The image preprocessing phase involves two essential procedures:
normalization (Nahiduzzaman et al., 2023) and image down sampling.
The operations aim to resize all input images uniformly to 124 x 124
pixels. These techniques are essential for enhancing model efficiency
and extracting features.

3.4. Deep learning (DL) model
Current literature predominantly focuses on utilizing large-scale

models for waste image classification, while comparatively limited
attention has been directed toward the design of lightweight
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architectures and their applicability in practical, real-time waste sorting
environments. In response to these challenges, a new PLDs-CNN feature
extractor was developed and compared with state-of-the-art TL models.
This customized design incorporates a reduction in model parameters,
layers, and total size, requiring less computational resources. The
following sections contain an in-depth explanation of the PLDs-CNN,
along with brief insights into the TL models. Furthermore, the ratio-
nale for PLDs-CNN feature extractor has been presented in the results
and discussion.

3.4.1. Feature extraction by PLDs-CNN

The primary challenge when building a CNN model is to determine
the optimal layer set up. Limited parameters and layers may restrict the
model’s ability to capture unique features, imposing restrictions on its
performance. On the other hand, an excessive number of parameters and
layers might cause overfitting, which leads to longer processing times
and higher computational requirements. Therefore, it is essential to
achieve the optimal balance to ensure effective feature extraction with
successful implementation. The main objective of this study was to
create a CNN model that can extract key features with the least number
of parameters and layers.

Considering all relevant aspects, a lightweight PLDs-CNN model was
designed to efficiently extract distinctive features while minimizing
resource consumption. The overall structure of the proposed PLDs-CNN
is shown in Fig. 3. To enhance the usability and optimize the configu-
ration, a refined trial-and-error strategy was adopted. After conducting
several experiments with different layer arrangements, the final archi-
tecture comprises nine convolution layers and two fully connected
layers, providing a balanced trade-off between high classification ac-
curacy and reduced computational complexity—measured in terms of
the number of parameters, layer depth, model size, and inference time.
To enable more effective feature extraction, the architecture in-
corporates four parallel convolution layers rather than a single
sequential one, as illustrated in Fig. 4. Although employing four
consecutive convolution layers would typically increase the model’s
structural complexity, this issue was mitigated by executing them in
parallel. The selection and configuration of these layers were deter-
mined through iterative empirical evaluation. Collectively, these layers
employ 256 convolution kernels, with filter sizesof 9 x 9,7 x 7,5 x 5,
and 3 x 3, respectively. The use of larger kernel sizes, such as 9 x 9, is
supported by prior studies (Krizhevsky et al., 2017; Nahiduzzaman et al.,
2023a-c), which indicate their effectiveness in enhancing classification
performance. Different kernel sizes generate diverse feature represen-
tations; thus, integrating a wide range of filter dimensions was crucial
for achieving superior performance. To preserve spatial information,
especially from the boundary regions of the input images, a consistent
padding size was applied to the first five convolution layers. The
resulting feature maps from the parallel paths were then carefully
aggregated and forwarded to the next convolution layer to ensure ac-
curate and lossless information flow (Nahiduzzaman et al., 2023;
Nahiduzzaman et al., 2024; Nahiduzzaman et al., 2021b).

To enhance the performance of the CNN, depthwise separable con-
volutions (DSC) were utilized. This technique restructures the convo-
lution process by first applying a spatial (depthwise) filter to each input
channel individually, followed by a pointwise convolution to combine
the outputs across channels. A compressed kernel is utilized on a specific
portion of the DSC to process an infusion feature map, resulting in a new
feature map output with the same number of channels. During pointwise
convolution, a 1 x 1 convolutional kernel is applied independently to
each channel to create a new feature map with fewer channels. This
emphasizes the utmost significance of DSC. This fine-tuning of the pa-
rameters leads directly to a notable decrease in computational
complexity. During the final phase, three convolutional layers (CLs)
were incorporated, and N and max pooling with a kernel size of 2 x 2
were employed. The CL filters had 128, 64, 32, and 16 values, respec-
tively. Each filter was set up with three 3 x 3 kernels and designed to use
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Fig. 5. The transfer learning (TL) architectures with Ridge-ELM classifier for classifying waste images.

valid padding. Batch Normalization (BN) is included to enhance the
model’s effectiveness. This technique efficiently restores the mean and
standard deviation of the inputs for each layer, resulting in improved
speed and stability during model execution. All convolutional layers
(CLs) employed the Rectified Linear Unit (ReLU) activation function.
The separation in CL and Parallelization characteristics of the PLDs-CNN
model reduce the computational cost and the number of parameters
compared to traditional CL in a normal CNN. A reduction in the number
of parameters can result in faster training times and lower memory
requirements.

To mitigate the risk of overfitting and enhance training efficiency,
dropout regularization was applied in conjunction with two fully con-
nected (FC) layers. During each training cycle, 50 % of the neurons were
randomly disabled, encouraging generalization and facilitating faster
convergence. In the final FC layer, 512 highly informative features were
extracted, which contributed to boosting overall classification accuracy.
Instead of the conventional SoftMax function, the model employed a
Ridge-ELM classifier, aiming to further improve discriminative capa-
bility. The training process was guided by a loss function derived from
the sparse categorical cross-entropy formulation, ensuring robustness in
multi-class scenarios. An ADAM optimizer with a batch size of 32 was
selected to update the model parameters. The learning rate, experi-
mentally determined through iterative tuning, was fixed at 0.001, and
the training was conducted over 200 epochs. A comprehensive summary
of the model’s architecture and parameters is presented in Table 3.

3.4.2. Feature extraction by transfer learning models

Transfer learning (TL) models such as DenseNet201 (Zhao et al.,
2021), EfficientNetB6 (Tan and Le, 2019), InceptionResNetV2 (Bhatia
et al., 2019), MobileNetV3Small (Maheta and Manisha, 2023),
ResNet152V2 (He et al., 2015), VGG16 ((Sudha and Ganeshbabu, 2020),
and Xception (Chollet, 2017) have the ability to improve the classifi-
cation of trash images across many categories. Due to their extensive
pretraining on large datasets, these models exhibit high effectiveness in
extracting significant features from images. These models can efficiently
capture intricate patterns and precise information associated with trash
images by being fine-tuned on a limited amount of data. The pretrained
models were trained using over 14 million classifications from the
ImageNet dataset, spanning approximately 1000 categories. The selec-
tion of these specific TL models is grounded in prior literature, where
these architectures have been repeatedly demonstrated as
state-of-the-art or highly competitive for waste or garbage classification
tasks (see Table 1). These models represent a diverse set of architectures,
ranging from lightweight to deep networks, providing a comprehensive

benchmark. Their consistent strong performance, balanced complexity,
and widespread adoption make them suitable and relevant baselines.
Furthermore, their extensive pretraining on large-scale datasets such as
ImageNet equips them with robust feature extraction capabilities, which
is crucial for effective transfer learning in the domain of trash image
classification. In this study, the pretrained TL models were retrained by
fine-tuning their pretrained weights on the Garbage Classification
dataset. To achieve improved classification performance, integration of
the proposed Ridge-ELM classifier into the TL model training pipeline
was implemented. Subsequently, the models underwent evaluation
using the same dataset to determine their predictive capabilities. On the
other hand, the novel PLDs-CNN-Ridge-ELM model was entirely devel-
oped and trained from the ground up, without relying on any pretrained
weights, and was subjected to validation and performance testing using
the garbage classification dataset. A detailed comparison between the
proposed approach and the TL-based models was carried out, empha-
sizing classification accuracy and efficiency in computational resource
usage. This evaluation considered multiple factors, including predictive
performance, number of model parameters, architectural depth, and the
durations required for both training and testing phases. Once these
models were initialized, their final layers were adjusted by adding two
fully connected (FC) layers with 1024 and 512 neurons, respectively.
Fig. 5 provides a detailed illustration of the transfer learning architec-
ture combined with the Ridge-ELM classifier.

Several state-of-the-art CNN architectures have demonstrated effec-
tiveness across diverse computer vision tasks. DenseNet (Zhao et al.,
2021) introduces dense connectivity, where each layer receives input
from all preceding layers, promoting feature reuse and efficient gradient
flow; its variants, such as DenseNet-121, -169, and —201, vary in depth.
EfficientNetB6 (Tan and Le, 2019), part of the EfficientNet family, em-
ploys compound scaling to uniformly balance network depth, width, and
resolution, achieving strong performance with approximately 87 million
parameters. InceptionResNetV2 (Bhatia et al., 2019) integrates incep-
tion modules and residual connections to enable efficient and robust
feature extraction. In contrast, MobileNetV3Small (Maheta and Mani-
sha, 2023) is optimized for resource-constrained environments, offering
a favorable trade-off between model size, speed, and accuracy. The VGG
network (Sudha and Ganeshbabu, 2020) follows a straightforward ar-
chitecture comprising stacked convolutional layers with ReLU activa-
tion and max pooling, culminating in fully connected layers and a
SoftMax classifier. ResNet152V2 (He et al., 2015) leverages residual
learning through shortcut connections to facilitate deep network
training and consists of roughly 60 million parameters. Lastly, Xception
(Chollet, 2017) enhances the Inception architecture by adopting
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depthwise separable convolutions, significantly reducing computational
cost while maintaining high accuracy.

3.5. Ridge Extreme Learning Machine (Ridge-ELM) classifier

The Ridge Extreme Learning Machine (ELM) is utilized to categorize
waste materials into various classes, collecting features from the dense
layer of the PLDs-CNN model. The ELM, developed by Huang et al.
(Huang et al., 2017), represents a significant change in feature classifi-
cation methodology. The employed approach is a feed forward network
based on supervised learning, which is a pioneering innovation. By
applying the strength of neural networks (NN), the ELM eliminates the
necessity of backpropagation, resulting in a remarkable thousand-fold
improvement in training speed. This innovative approach has
completely transformed the field of feature classification
(Nahiduzzaman et al., 2023d).

Recent advancements have provided models with remarkable abili-
ties in classification and generalization. More precisely, the pseudo-ELM
has demonstrated exceptional competence in handling large-scale mul-
ticlass classification tasks and has outperformed the most recent ma-
chine learning (ML) models (Kibria et al., 2022; Maheta and Manisha,
2023; Nahiduzzaman et al., 2021, 2023; Nahiduzzaman et al., 2023;
Nahiduzzaman et al., 2021). The Extreme Learning Machine (ELM) is
notable for its efficient and flexible parameter initialization scheme,
which involves a single hidden layer between the input and output. In
traditional ELMs, the output weights are calculated using a pseu-
doinverse operation. In our proposed approach, this is enhanced by
replacing the pseudoinverse with ridge regression, enabling improved
regularization and learning capability. This adaptation significantly
strengthens the model’s ability to extract and generalize meaningful
features, thereby contributing to higher classification accuracy. The
Ridge-ELM architecture in our framework includes 512 neurons in the
input layer, followed by a hidden layer with 700 neurons, forming a
robust structure for feature transformation. The output layer comprises
four neurons, corresponding to the four primary waste categories. An
illustration of the integrated PLDs-CNN and Ridge-ELM framework is
provided in Fig. 3, and the detailed steps of the Ridge-ELM algorithm are
outlined in Algorithm 1.

Algorithm 1: Ridge-ELM Multiclass Classification Procedure

1. The input data matrix is represented as I, while the corresponding target output
matrix is denoted as Oy, The hidden layer output is expressed as H(yx) , with the
input weight matrix defined as W(, ) and the bias vector as Bm; ).

2. The next step is to find the output H,y, of the hidden layer.

Hix) = Gly) - Wiyx) + Bmax)

Here, G is an activation function.

3. Calculate the output weight matrix fx  through the use of pseudo inverse method.
Buxy = fo.x) X Tixp)

4. In this proposed hybrid Ridge regression, the pseudoinverse has been replaced by
these equations:

Apx) = HixHeex) by = Hiy Tixo

Cuxx) =Axx) + alixx

Bixy = C(}lx)'b(x.r)

Where, « denotes regularization parameters.

5. Generate prediction Bx

The model displayed a strong sense of assurance in its ability to
produce precise and accurate final predictions. Ridge-ELM, a method
that seamlessly integrates ridge regression into the ELM framework,
achieves a perfect balance between effective feature learning and reg-
ularization. Consequently, the predictive capability of the model was
enhanced by its greater ability to generalize and interpret intricate
patterns in the data.
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3.6. Explainable Artificial Intelligence (XAD

Explainable Artificial Intelligence (XAI) is important for enhancing
the transparency and interpretability of the PLDs-CNN model. Shapley
Additive Explanation (SHAP) was employed to address the “black box”
nature of DL models, which usually makes them less understandable.
Through the integration of the PLDs-CNN model and SHAP, automatic
garbage classification systems are now capable of making smarter and
more efficient decisions when classifying waste items into four main
classes and twelve different subclasses (Lundberg and Lee, 2017). This
technique presents new opportunities for smarter waste management
and more efficient categorization of waste materials across multiple
categories.

In this study, SHAP was specifically chosen over other XAI methods
like Grad-CAM due to the hybrid nature of the proposed architecture,
which combines CNN feature extraction with a Ridge Extreme Learning
Machine (Ridge-ELM) classifier. Grad-CAM relies on gradient informa-
tion and is best suited for pure CNN models; however, because Ridge-
ELM is a non-gradient-based classifier, Grad-CAM cannot provide
meaningful explanations for the full model. In contrast, SHAP is model-
agnostic and calculates Shapley values based on feature contributions,
allowing it to explain both the CNN’s learned representations and the
subsequent Ridge-ELM decision process. This makes SHAP more suitable
for providing a unified interpretability framework for our hybrid model.
Furthermore, recent studies have validated SHAP’s effectiveness in
explaining complex models in similar classification contexts, supporting
our choice. Additionally, SHAP is a relatively recent and advanced XAI
method whose application in waste classification and related fields is
still emerging.

There was a clear pattern in the Shapley values that were employed
in the study to measure the significance of individual pixels. The pres-
ence of red pixels enhances the accuracy of class identification, while the
presence of blue pixels diminishes the probability of proper categori-
zation (Bhandari et al., 2022). The Shapley values were computed using
Equation (1).

o= S M=V vur v W
VCN\r °

i (V) =PI @

L(b)=o + EC: @b, 3

The variable f, quantifies the influence of a specific feature r on the
model’s output, as interpreted through its corresponding Shapley value.
The subset V consists of all features in the set N, excluding the feature r.

v[I(C—|V]-1)!
The term %

represents the weighting coefficient associated with
the number of possible permutations involving subset V. Equation (2)
expresses the model’s prediction for a given subset of features as f, (V).
In the SHAP framework, each original feature x, is substituted with a
binary indicator b, which indicates the inclusion (1) or exclusion (0) of
feature x,, as demonstrated in Equation (3). Within the proposed model
f(x), the bias component is denoted as @, and the specific contribution
of feature r is represented by @,b,. The function [ (b) serves as a
simplified surrogate model that approximates the behavior of the orig-
inal predictive function. The term @, provides insight into the degree to
which feature r contributes to the overall prediction, thereby enhancing
interpretability and facilitating model transparency.

3.7. Hyperparameter and architectural selection

The hyperparameters and architectural choices of the proposed
PLDs-CNN-Ridge-ELM model were determined through iterative exper-
imentation and performance-based evaluation. Rather than relying on
automated optimization techniques, a trial-and-error approach was
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Table 4
Summary of selected hyperparameters and architectural choices used in the proposed framework.
Parameter Name Combination Applied Selected Justification
Feature Extractor PL-CNN, TL (VGG16, ResNet50, MobileNet), PLDs-CNN Outperformed other architectures in accuracy and generalization with
PLDs-CNN reduced overfitting.
Classifier Softmax, ELM, Ridge-ELM Ridge-ELM Outperformed softmax and traditional ELM in both speed and classification
accuracy.
Image Size (128 x 128), (124 x 124), (224 x 224) 124 x 124 Chosen for standardization and to reduce computational cost while
preserving image details.
Data Split 80/10/10, 70/15/15 80 % train, 10 % test, 10 %  Ensures sufficient data for training while reserving samples for robust
val testing and validation.
Convolutional 5-12 9 Empirically determined through iterative testing to balance performance
Layers and model complexity.

Kernel Sizes 3x3,5%x57x%x7,9%x9

3%x3,5%x57x%x7,9%9

Multi-scale kernel design improves feature extraction across various spatial
resolutions.

Activation ReLU, Leaky ReLU ReLU Chosen for non-linearity and computational efficiency in all convolutional
Function layers.
Pooling Type Max Pooling, Avg Pooling Max Pooling (2 x 2) Reduces spatial dimensions while retaining dominant features; empirically
more effective.
Batch Yes/No Yes Stabilizes training and accelerates convergence.
Normalization
Dropout Rate 0.3, 0.5, 0.6 0.5 Helps prevent overfitting and encourages generalization.
Optimizer Adam, SGD, RMSprop Adam Adaptive learning rate control; proven effective during empirical testing.
Learning Rate 0.001, 0.0005, 0.0001 0.001 Empirically derived through trial and error for optimal convergence.
Loss Function Categorical Cross Entropy, Sparse Categorical Sparse Categorical Cross Suitable for multi-class classification with integer labels.
Cross Entropy Entropy
Batch Size 16, 32, 64 32 Balanced performance and memory efficiency.
Epochs 100, 200, 300 200 Achieved best convergence without overfitting.
Hidden Layer 512, 700, 1024 700 Best trade-off between complexity and performance for Ridge-ELM.
Nodes
Explainability Tool SHAP SHAP Provides robust and model-agnostic interpretation of classification

decisions.

adopted to achieve a balance between model accuracy and computa-
tional efficiency, particularly in real-time waste classification contexts.
The input image size was fixed at 124 x 124 pixels after down-sampling,
which preserved essential spatial features while reducing memory
overhead. The training/validation/testing split of 80/10/10 was chosen
to maximize data available for training without compromising evalua-
tion reliability. For convolutional layers, a parallel architecture incor-
porating kernel sizes of 9 x 9,7 x 7,5 x 5, and 3 x 3 was used to capture
features at multiple receptive fields, a strategy shown to improve clas-
sification performance in prior literature.

To enhance computational efficiency, depthwise separable convo-
lutions (DSC) were integrated into the later stages of the network ar-
chitecture. This approach significantly reduced the total number of
trainable parameters without compromising model accuracy. Each
convolutional layer employed the ReLU activation function, followed by
batch normalization to improve training stability and convergence
speed. To prevent overfitting, a dropout rate of 0.5 was applied,
randomly disabling half of the neurons during training iterations. The
model was trained over 200 epochs using the Adam optimizer with a
learning rate of 0.001, which was empirically found to ensure consistent
convergence. A batch size of 32 was selected to strike an optimal balance
between computational resource usage and gradient estimation stabil-
ity. For handling the multi-class classification task, the sparse categor-
ical cross-entropy loss function was utilized due to its compatibility with
integer-labeled targets. Instead of the conventional SoftMax classifier,
the Ridge-ELM was employed at the classification stage, offering faster
inference and improved generalization. The Ridge-ELM model,
composed of 512 input nodes, 700 hidden neurons, and 4 output nodes,
demonstrated superior classification performance due to its efficient
parameter initialization and regularization capabilities. Overall, the
selected hyperparameters and architectural components were empiri-
cally justified to ensure a lightweight yet effective classification model
suitable for real-time waste sorting applications. Table 4 summarizes the
chosen parameters, and their corresponding values used in the proposed
model.

10

3.8. Classification experiments and performance matrices

The deep learning models and explainable AI techniques were
implemented using the Keras framework, supported by the TensorFlow
backend, within the PyCharm IDE (Community Edition, v2021.2.3).
Model training and evaluation were conducted on a workstation pow-
ered by an 11th generation Intel® Core™ i9-11900 CPU running at 2.50
GHz, supported by 128 GB of RAM and an NVIDIA GeForce RTX 3090
GPU featuring 24 GB of dedicated memory. The system operated on a
64-bit Windows 10 Pro platform.

A confusion matrix (CM) was used to measure the performance of the
PLDs-CNN-Ridge-ELM model. The accuracy, precision, recall, F1-score,
and area under the curve (AUC) from the CM were determined using
the following formulas. In the published literature related to waste
classification, these parameters were also employed as performance
indicators.

True Positive + True Negative

Accuracy =
Y™ True Positive -+ True Negative + False Positive + False Negative
@
True Positive
Precision = 5
True Positive + False Positive ®
True Positive
Recall= 6
True Negative + False Positive ©)
F1 — Score — 2 x (Precision x Recall) o)
" Precision + Recall
AUC— 1 True Positive 4 True Negative
" 2 \ True Positive + False Negative = True Negative + False Positive
(8)

4. Results and discussion

The study organizes its outcomes into two stages. Initially, the
dataset is divided into four classes (first stage), and the findings of this
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Table 5
Four-class performances by using PL-CNN-ELM and PL-CNN-Ridge-ELM
architectures.

Class Name PL-CNN-ELM PL-CNN-Ridge-ELM

Precision Recall F1 Precision Recall F1

Hazardous 0.99 0.86 0.92 0.99 0.94 0.96
Waste (0)

Household 0.98 0.89 0.93 0.98 0.93 0.96
Food Waste
m

Recyclable 0.98 0.99 0.99 0.99 0.99 0.99
Waste (2)

Residual 0.92 0.88 0.90 0.94 0.92 0.93
Waste (3)

Average (p) 96.75 + 90.5 93.5 97.5 £ 94.5 96 +
+ SD (o) 0.03 + 0.05 + 0.02 + 0.03 0.02
(%) 0.03

Accuracy (%) 97.0 98.0

AUC (%) 99.29 99.14

Note: The best results are highlighted in bold. 0-3 indicates the class number.

stage are presented in Section 4.1. This study analyzed the effectiveness
of the PL-CNN (Section 4.1.1) and PLDs-CNN (Section 4.1.2) feature
extractors across four classes and compared their results with those of
other state-of-the-art TL-based feature extractors (Sections 4.1.3 and
4.1.4). Afterwards, the dataset is divided into twelve subclasses, and the
results of this stage are outlined in Section 4.2. Twelve-class classifica-
tion (second stage) was conducted using the PL-CNN (Section 4.2.1) and
PLDs-CNN (Section 4.2.2), as these feature extractors demonstrated
superior performance in four-class classification compared to other
models. The interpretability of SHAP is demonstrated in Section 4.3, and
the outcomes of hardware implementation are presented in Section 4.4
in detail.

4.1. First-stage classification: analysis of four-class performance

4.1.1. PL-CNN-ELM and PL-CNN-ridge-ELM

Initially, the PL-CNN feature extractor was employed to conduct
training using a dataset including 15150 images that encompassed 4
distinct waste categories. An independent assessment of the PL-CNN
(excluding DSC) was conducted on a dataset comprising 1552 test im-
ages. Both ELM and Ridge-ELM were utilized for evaluating the class-
specific performance of the PL-CNN. The findings of these evaluations

ROC for 4 Class-Classification using Pseudo-ELM
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are displayed in Table 5. The PL-CNN-ELM achieved an average test
precision of 96.75 + 0.03 %, a recall of 90.5 + 0.05 %, and an F1-score
of 93.5 £+ 0.03 %. The accuracy and area under the curve (AUC) were 97
% and 99.29 %, respectively. The Ridge-ELM classifier on this model
achieved an average precision of 97.5 + 0.02 % (an improvement of
0.75 %), a recall of 94.5 + 0.03 % (an improvement of 4 %), and a f1-
score of 96 + 0.02 % (an improvement of 2.5 %). The average accu-
racy and AUC were 98 % (with a 1 % improvement) and 99.14 %,
respectively. The concordance index (C-index) was found to be 0.93 for
both classifiers, suggesting similar general discriminative abilities.

Although Ridge-ELM consistently outperformed PL-CNN-ELM across
most evaluation metrics, the AUC of PL-CNN-ELM was marginally
higher (99.29 % vs. 99.14 %). This subtle difference can be attributed to
minor variations in the decision boundary formation between the two
models. AUC reflects the model’s ability to distinguish between classes
across all possible threshold values, and a slightly higher AUC for PL-
CNN-ELM suggests that it maintained slightly better discrimination
across varying decision thresholds, even though Ridge-ELM performed
better at fixed operating points typically selected for classification tasks
(e.g., thresholds based on maximum F1-score or balanced accuracy).
However, the difference in AUC values is extremely small (0.15 %) and
statistically negligible, indicating that both classifiers exhibit excellent
and comparable discriminatory performance. These findings demon-
strate that while Ridge-ELM offers an advantage in practical classifica-
tion metrics, both models are highly competitive in terms of overall
classification reliability.

The ROC and precision-recall (PR) curves for each class are shown in
Figs. 6 and 7, respectively, further illustrating the robustness of the
classification performance.

4.1.2. PLDs-CNN-ELM and PLDs-CNN-ridge-ELM (proposed method)
Table 6 highlights the key performance differences between the ELM
and Ridge-ELM classifiers when integrated with the proposed PLDs-CNN
feature extraction method. To ensure robustness and reliability, evalu-
ations were conducted using a benchmark dataset comprising images
from twelve distinct waste material categories. Fig. 8 illustrates the
confusion matrices (CMs) for both classifiers in the initial classification
phase, involving four categories, offering valuable insights into how
each model differentiates among the classes. The Ridge-ELM model
notably reduced the rate of incorrect classifications, especially in the
cases of Hazardous Waste (class 0), Household Food Waste (class 1), and
Residual Waste (class 3). Precision, recall, and F1-scores were computed

ROC for 4 Class-Classification using RidgeRegression-ELM
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Fig. 6. Class-specific ROC Plots for (A) PL-CNN-ELM and (E) PL-CNN-Ridge-ELM models in four-class classifications.
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PR for 4 Class-Classification using RidgeRegression-ELM
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Fig. 7. Class-specific PR curves of (A) PL-CNN-ELM and (E) PL-CNN-Ridge-ELM for four-class classification.
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Table 6

Four-class performances by using PLDs-CNN-ELM and PLDs-CNN-Ridge-ELM
architectures.

Class Name PLDs-CNN-ELM PLDs-CNN-Ridge-ELM
Precision Recall F1 Precision Recall F1

Hazardous 0.99 0.86 0.92 0.98 0.97 0.97
Waste (0)

Household 0.97 0.85 0.91 0.99 0.91 0.95
Food
Waste (1)

Recyclable 0.97 1.00 0.98 0.99 0.99 0.99
Waste (2)

Residual 0.98 0.86 0.92 0.93 0.97 0.95
Waste (3)

Average (p) 97.75 + 89.25 93.25 97.25 + 96 + 96.5
+ SD (o) 0.009 + 0.07 + 0.03 0.02 0.03 +
(%) 0.01

Accuracy 97.0 99.0
(%)

AUC (%) 99.45 99.28

Note: The best results are highlighted in bold. 0-3 indicates the class number.

for each category. Ridge-ELM attained an average precision of 97.25 +
0.02 %, a recall value of 96 4 0.03 %, and an F1-score of 96.5 4 0.01 %,
reflecting gains of 6.75 % and 3.25 % in recall and F1-score respectively
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over the baseline ELM. The overall accuracy also rose from 97 % to 99 %.
These findings demonstrate that Ridge-ELM is particularly effective at
distinguishing between the various waste types. While the Ridge-ELM’s
area under the ROC curve (AUC) was recorded at 99.28 %, the ELM’s
performance in this metric remained close at 99.45 %. As for the
concordance index (C-index), Ridge-ELM achieved a value of 0.95,
marginally higher than the 0.94 score of the ELM. Collectively, these
results provide compelling evidence of the Ridge-ELM classifier’s effi-
ciency. The enhanced performance and precision affirm the Ridge-
ELM’s potential as a reliable and high-performing alternative to con-
ventional classification approaches.

Fig. 9 provides a thorough evaluation of the performances of the
PLDs-CNN-ELM and PLDs-CNN-Ridge-ELM models in accurately iden-
tifying four different waste categories. The ROC analysis for each model
confirmed that both classifiers delivered excellent results, with ROC
values exceeding 99 % across all classes. The average ROC score of
99.28 % achieved by the proposed Ridge-ELM integrated with the PLDs-
CNN framework highlights the model’s remarkable precision and
robustness in waste image classification. The findings reveal that the
PLDs-CNN-Ridge-ELM model maintains strong dependability and clas-
sification capability. Notably, the proposed model reached 99.99 %
accuracy in identifying Residual Waste (3). The study confirmed the
method’s effectiveness in reliably recognizing this waste category.
Furthermore, the ROC curve indicated a noticeable enhancement in the
detection of Recyclable Waste (2). The detection rate improved from
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=
Sisl 2 1 1290 5
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e
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Fig. 8. Confusion matrices of PLDs-CNN model with (A) ELM and (B) Ridge-ELM for four-class classification.
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ROC for 4 Class-Classification using RidgeRegression-ELM
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Fig. 9. Class-specific ROC Plots for (A) PLDs-CNN-PELM and (E) PLDs-CNN-RELM in four-class classification.
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Fig. 10. Classwise PR curves of (A) PLDs-CNN-PELM and (E) PLDs-CNN-RELM for four-class classification.
Table 7
Four-class classification performance of the TL models and the proposed model.
Model Name Average Precision +SD (%) Average Recall +SD (%) Average F1-score +SD (%) Average Accuracy (%) AUC (%)
DenseNet201-Ridge-ELM 98 + 0.018 85.25 £ 0.119 90.5 + 0.066 97 96.85
EfficientNetB6-Ridge-ELM 35+ 0.42 26.5 + 0.49 25.5+0.43 84 74.93
InceptionResNetV2-Ridge-ELM 94.75 + 0.02 86.25 + 0.08 90.25 + 0.05 96 97.88
MobileNetV3Small-Ridge-ELM 80 + 0.11 61.25 + 0.26 68.25 + 0.19 89 91.06
ResNet152V2-Ridge-ELM 94.75 + 0.03 81.5+0.13 87 £ 0.07 95 97.19
VGG16-Ridge-ELM 95 + 0.01 90 + 0.08 92.25 + 0.04 97 97.47
Xception-Ridge-ELM 96 + 0.02 82.75 £ 0.11 88.5 £ 0.06 96 96.72
PL-CNN-ELM 96.75 + 0.03 90.5 £+ 0.05 93.5 £+ 0.03 97 99.29
PLDs-CNN-ELM 97.75 + 0.009 89.25 + 0.07 93.25 + 0.03 97 99.45
PL-CNN-Ridge-ELM 97.50 + 0.02 94.5 £ 0.03 96 + 0.02 98 99.14
PLDs-CNN-Ridge-ELM 97.25 £+ 0.02 96 + 0.03 96.5 + 0.01 99.00 99.28

Note: The best results are highlighted in bold.
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Fig. 11. Class-specific ROC Plots for (A) DensNet201, (B) EfficientNetB6, (C) InceptionResNetV2, (D) MobileNetV3Small, (E) ResNet152V2, (F) VGG16, and (G)

Xception with Ridge-ELM in four-class classification.

99.01 % to 99.22 %. The proposed PLDs-CNN-Ridge-ELM method out-
performed all compared techniques in terms of class-specific identifi-
cation. There were not enough images for each group in the Garbage
Classification dataset, so the dataset was not balanced. One of the
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primary goals of model development was to efficiently address this data
imbalance. An adequate weighting system was implemented to guar-
antee that each class had an equal influence on the final result. The AUC
values ranged from 0.9922 to 0.9999 for PLDs-CNN-Ridge-ELM in all
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Fig. 12. Performance of the proposed and TL models for four class classifications.

classes, demonstrating that superior AUC outcomes were achieved even
when dealing with imbalanced datasets. The model’s recall rate for
Recyclable Waste (2) was 99 %, demonstrating that the suggested
framework can consistently differentiate every type of waste material.
The proposed framework has the capacity to greatly diminish the hur-
dles faced by municipal authorities and improve waste management
systems through our creative contributions. Fig. 10 displays classwise
PR curves for both classifiers.

The proposed PLDs-CNN-Ridge-ELM outperforms PLDs-CNN-ELM
across almost all evaluation metrics, confirming its superiority for
practical deployment. PLDs-CNN-Ridge-ELM achieved comparable
average precision (97.25 % vs. 97.75 %), recall (96 % vs. 89.25 %), F1-
score (96.5 % vs. 93.25 %), and accuracy (99 % vs. 97 %) compared to
PLDs-CNN-ELM. While the AUC values are very close (99.28 % for
Ridge-ELM and 99.45 % for ELM), practical classification performance
(precision, recall, F1-score, and accuracy) is more critical in real-world
waste sorting systems, where correct class assignments at specific
thresholds are prioritized. Additionally, PLDs-CNN-Ridge-ELM demon-
strated better robustness in handling imbalanced datasets, as evidenced
by its improved recall for minority classes. Therefore, PLDs-CNN -Ridge-
ELM is the better approach, striking an effective balance between high
discrimination capability and consistent practical classification
performance.

4.1.3. Comparative performance analysis between the proposed model and
other TL models

Table 7 presents a comparison of the performance metrics between
the proposed PLDs-CNN and several state-of-the-art transfer learning
(TL) models, all evaluated using the Ridge-ELM classifier for four-class
classification. Among the seven TL models assessed, VGG16 yielded
the strongest results overall, with an average precision of 95 + 0.01 %,
recall of 90 + 0.08 %, F1-score of 92.25 + 0.04 %, accuracy of 97 %, and
an AUC of 97.47 %. In contrast, the weakest performance was observed
for the EfficientNetB6 model. Notably, DenseNet201 attained the high-
est average precision (98 + 0.018 %) among the TL models. The pro-
posed PLDs-CNN-Ridge-ELM model achieved 99 % accuracy in four-
class classification, marking an approximate 2 % improvement over
VGG16. Additionally, it recorded a superior AUC of 99.28 %, surpassing
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the 97.47 % AUC of VGG16. Fig. 11 displays the ROC curves for all four
classes across the transfer learning models, whereas Fig. 12 provides a
bar chart summarizing the overall performance of these models. These
results clearly demonstrate that the PLDs-CNN-Ridge-ELM consistently
outperforms the other evaluated models.

4.1.4. Computational time and resource comparison

Table 8 presents a comparative analysis of PLDs-CNN, PL-CNN, and
several transfer learning (TL) feature extractors in terms of model pa-
rameters, layer count, model size, and both training and testing time.
Considering accuracy, computational efficiency, and model complexity,
the PLDs-CNN surpasses all other evaluated models, making it the most
resource-effective method. Fig. 13 visualizes the overall computational
effort and resource requirements. The findings confirm that the PLDs-
CNN-Ridge-ELM method is dependable and effectively handles the
classification of different waste categories.

Among all compared models, ResNet152V2 has the highest param-
eter count, totaling 92.41 million, with 193 layers and a model size of
567.614 MB. In contrast, InceptionResNetV2 has the greatest model size,
and includes the highest number of layers at 783. Conversely, PLDs-CNN
demonstrates superior efficiency, having only 1.09 million parameters, a
compact size of 12.7 MB, and 9 convolutional layers (CL). The proposed
model requires approximately 84.78 times fewer parameters than
ResNet152V2 and 2.15 times fewer than PL-CNN, which has 2.344
million parameters. Furthermore, Ridge-ELM exhibits optimized
training and inference durations, taking 0.1006 s for training and
0.0079 s for testing. Although some TL models might offer marginally
faster computational times due to their architecture, they typically de-
mand higher resources. The PLDs-CNN-Ridge-ELM model successfully
balances classification performance with minimal resource usage,
making it highly suitable for real-world waste management applications
due to its compact architecture and reliable performance.

4.2. Second-stage classification: analysis of twelve-class performance

4.2.1. PL-CNN-ELM and PL-CNN Ridge-ELM
The same multiclass categorization technique was employed for
twelve-class classification. The PL-CNN model performed training,
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Table 8

Computational resources (model parameters and size) and time comparison for multiclass classifications.

Xception-Ridge-

ELM

VGG16-Ridge-

ELM

ResNet152V2-
Ridge-ELM

MobileNetV3Small-

Ridge-ELM

InceptionResNetV2-

Ridge-ELM

EfficientNetB6-
Ridge-ELM

DenseNet201-
Ridge-ELM

PLDs-CNN-

PL-CNN-

Criteria

Ridge-ELM

Ridge-ELM

27.42

19.95

92.41

18.83
17.30

246
246204

36.54 79.23 61.15

1.09
1.09

2.344
2.341

Total Parameters (Million)

6.55
36
135470

5.24
25
22116

34.08
193
567614

6.81

783
783287

38.27
710
669596

18.22
598
710280

Trainable Parameters (Million)

Number of Layers
Size (Megabyte)

12.7

27

0.02722

0.01942

0.02217 0.03450

0.0239 0.01591 0.03024

0.1006

0.0657

Training Time (Ridge-ELM) (4-

class) (seconds)
Testing Time (Ridge-ELM) (4-

4.7

9.5

15.62

9.569

7.9

6

class) (millisecond)

Note: The best results are highlighted in bold.
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testing, and validation on 12566, 1552, and 1397 images, respectively.
The classification performances of the models are presented in Table 9.
The PL-CNN-ELM model achieved precision, recall, and F1-scores of
94.25 + 0.04 %, 93.75 + 0.04 %, and 94 + 0.84 %, respectively. The
model’s effectiveness was improved by utilizing Ridge-ELM. The test
accuracy for both the PL-CNN-ELM and the PL-CNN-Ridge-ELM is 96 %,
indicating that they perform equally well. The PL-CNN-Ridge-ELM
model improved the AUC by approximately 0.05 %, increasing it from
98.79 % to 98.84 %. The precision, recall, and fl-score achieved the
highest values of 94.41 + 0.04 % (with a 0.16 % improvement), 93.75
+ 0.04 %, and 94.08 + 0.04 % (with a 0.08 % improvement), respec-
tively. In Figs. 14 and 15, the classwise ROC curves and PR curves are
displayed for both classifiers on the PL-CNN model.

4.2.2. PLDs-CNN-ELM and PLDs-CNN-ridge-ELM

Fig. 16 illustrates essential information about the performance of
both classifiers. Clearly, both classifiers performed very well. The pre-
cision, recall, and fl-scores demonstrated a high level of balance and
surpassed 90 % for the maximum category. The results provide solid
evidence for the efficacy of the Ridge-ELM approach in successfully
classifying multiclass waste images. The proposed method exhibits a
substantial performance advantage over conventional models, thus
demonstrating its superiority. Upon further examination, a novel and
less heavy model is discovered that incorporates a Ridge-ELM classifier,
outperforming existing models in terms of both performance and accu-
racy. These findings establish a strong foundation for the application of
the Ridge-ELM approach in waste image categorization. ELM showed an
outstanding average precision of 94.66 + 0.034 % across all 12 cate-
gories. ELM also achieved a recall of 93.66 + 0.036 % and a F1-score of
94.5 + 0.033 %. On the other hand, Ridge-ELM achieved improvements
of 0.34 %, 0.67 %, and 0.16 % in comparison to ELM. The accuracy score
improved by 1.0 %, increasing from 95 % to 96 %. Fig. 17 and Table 10
thoroughly examine the ability of the PLDs-CNN-ELM and PLDs-CNN-
Ridge-ELM models to distinguish between 12 various waste types. The
ROC curves for each category exhibit exceptional performance from
both models, with ROC values surpassing 98 % for the majority of
classes. Every class identification record is considered satisfactory for
the proposed PLDs-CNN-Ridge-ELM framework. This emphasizes the
importance of the proposed system for practical implementation in real-
world scenarios. Fig. 18 displays the classwise PR curves.

4.3. Interpretability of PLDs-CNN-ridge-ELM using SHAP

Through a systematic examination of every conceivable combination
of wastage attributes, Shapley values were formulated, giving rise to
representations characterized by pixels. A distinct pattern manifested
during the investigation, wherein red pixels demonstrated robust effi-
cacy in identifying class distinctions. In the first stage of the testing
phase, SHAP results were provided with explanation images for different
classifications. These classifications included four classes: hazardous,
household, recyclable, and residual waste. The explanation images
showed that red pixels correspond to higher relevance scores for the
target class. In contrast, blue pixels represent regions less associated
with the predicted category. It is important to note that the SHAP
visualization overlays are rendered on semi-transparent grayscale
backgrounds blended into the input images, as shown in Fig. 19 (A). The
top row in the SHAP visualization highlights red pixels indicating the
identification of hazardous waste. In contrast, minimal presence of blue
and a reduced number of red activations suggest the exclusion of
alternate classes. The model assigns the hazardous class label with high
certainty where dense red regions are observed. The red regions confirm
the model’s strongest prediction for that specific class. The second row
of SHAP visualizations revealed a different structure: red activations
correspond to household food waste. In that particular case, a predom-
inance of blue pixels appeared over recyclable waste regions, suggesting
reduced model confidence in that category compared to others.
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and other TL models.

Table 9
Performances of PL-CNN-ELM and PL-CNN-Ridge-ELM models for twelve-class
waste classifications.

Class Name PL-CNN-ELM PL-CNN-Ridge-ELM
Precision Recall F1 Precision Recall F1
Battery (0) 0.94 0.93 0.94 0.97 0.90 0.93
Expired Food  0.99 0.97 0.98 0.96 0.98 0.97
@
Brown Glass 0.97 0.97 0.97 0.97 0.98 0.98
(2
Cardboard 0.97 0.95 0.96 0.97 0.96 0.96
(©)]
Clothes (4) 0.98 1.00 0.99 0.98 1.00 0.99
Green Glass 0.97 0.97 0.97 0.98 0.97 0.98
%)
Metal (6) 0.88 0.88 0.88 0.89 0.89 0.89
Paper (7) 0.94 0.96 0.95 0.94 0.95 0.95
Plastic (8) 0.91 0.87 0.89 0.90 0.88 0.89
Shoes (9) 0.96 0.96 0.96 0.96 0.96 0.96
White Glass 0.96 0.95 0.95 0.96 0.93 0.94
(10)
Trash (11) 0.84 0.84 0.84 0.85 0.85 0.85
Average (p) 94.25 + 93.75 94 94.41 + 93.75 94.08
+ SD (0) 0.04 + 0.04 + 0.04 + 0.04 + 0.04
(%) 0.84
Accuracy 96.00 96.00
(%)
AUC (%) 98.79 98.84

Note: The best results are highlighted in bold. 0-11 indicates the class number.

The proposed model was tested in the second stage, which included
12 subclasses, making it more complex to classify. Fig. 19 (B) shows how
the model extracted the actual class during testing. The proposed model
could accurately predict the outcome even when faced with increased
data complexity. Visual SHAP explanations were used to confirm our
model’s results, providing a more comprehensive understanding of
different classifications of waste. These explanations helped to improve
the system’s understanding of the various forms of waste.
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4.4. Software and hardware development

4.4.1. Graphical user interface (GUID

For better testing and real-time implementation flexibility in the
waste management industry, a graphical user interface (GUI) was
designed based on PYQTS5 used for the QT application framework. The
GUI was programmed for three individual tasks for four-class and
twelve-class classifications of the three proposed models and their real-
time classifications (Fig. 20). The interface is generally designed to
support conveyor belt-assisted waste sorting for four classes. For user
flexibility, the tasks that need to be performed are made easily accessible
by simply clicking buttons without any need for loading files for every
new runtime.

The app can test any of the three proposed models from the drop-
down menu. After clicking the “Classification_4_Class” or “Classi-
fication_12_Class” button, the app will open a file dialog for selecting an
image for classification. Upon selecting the image, it will undergo
several preprocessing tasks, such as resizing it to 124 x 124 to match the
model’s requirements. This is followed by rescaling the image within
0-1 for faster convergence and reduced computational load. Finally,
before prediction, the dimension of the numpy image array is increased
to align it to the requirements of the model. The time taken for predic-
tion is saved along with some other important classification results, such
as the top 4 class names with corresponding confidence scores in Fig. 21.

To understand the model’s decision-making process for classifying
images, the most influential parts are highlighted using SHAP. This
approach provides a better understanding of based on which features the
images are being predicted and can also assist in debugging the model
(Fig. 22). The process starts by initializing the Deep Explainer using one
of the models to identify the garbage object. The explanation process
was based on this model, which acquired the ability to correlate certain
pixel patterns with distinct classifications. In addition to the model, a
background dataset was selected, which was a smaller portion of the
training data. This dataset was essential since it embodied the standard
input space of the model, functioning as a benchmark for compre-
hending the degree of novelty or conformity of a new input in relation to
what the model encountered throughout its training. The subsequent
step involved the calculation of SHAP values for a particular picture,
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Fig. 15. Classwise PR curves on (A) PL-CNN-ELM and (E) PL-CNN-Ridge-ELM for classification of twelve-class.

which was the fundamental aspect of this procedure. The SHAP method
measures the influence of each pixel on the model’s conclusion by sys-
tematically altering the visible pixels (Linardatos et al., 2020). This
process effectively determined the contribution of each pixel to the final
prediction.

4.4.2. Development of conveyer belt sorting mechanism

Following accurate waste class prediction by the developed model
and app, a real-world smart system can be implemented for automati-
cally sorting waste. The total system (Fig. 23) will require a garbage
chute (a) from dropping unsorted garbage items on the conveyer (b)
belt. Upon passing over the device, the waste will be detected by a
motion-triggered camera (e), which will use the image to predict the
class to which the waste belongs in the edge device (c). Once the correct
waste is identified, tray (f) will direct it to its suitable bin by moving the
pantilt mechanism. The system allows loading of a webcam and takes
multiple image frames of waste carried by a conveyer belt in a recycling
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plant and conducts classification to direct them to suitable bins for
recycling or disposal. Based on the output class from the captured image,
the computer sends a command to Arduino using seral communication
that makes the tray turn accordingly to any of the four sides where the
respective bins are placed. The waste then slides to the desired bin due to
gravity. The proposed conveyor belt sorting mechanism is just an early
concept for a larger and robust waste management system.

A circuit diagram of a conceptual system suitable for real-time usage
is presented in Fig. 24. The model was tested on an AMD Ryzen 5 5500U
processor with a base clock speed of 2.1 GHz. The processor consisted of
six CPU cores with 12 threads, making it an average-performance device
for running the model. In addition to the hardware architecture, several
individual components, such as servo motors, microcontroller board,
and power supply boxes, were used for the hardware part, as discussed
further after the circuit diagram section. At the product development
stage, the processing device will be replaced by an edge device with an
embedded graphics processing unit (GPU), such as Jetson Orin or Nano,
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Fig. 16. Confusion matrices of PLDs-CNN model with (A) ELM and (B) Ridge-ELM for twelve classes.
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Fig. 17. Classwise ROCs of (A) PLDs-CNN-ELM and (E) PLDs-CNN-Ridge-ELM for twelve-class classification.

as they offer superior parallel processing power, enabling faster infer-
ence times, which are essential for real-time classification using this
model.

Apart from the CPU for image classification, multiple hardware de-
vices were utilized to develop the concept of the waste sorting system,
which included two servos, an Arduino mega microcontroller board for
performing directional commands, and a power supply. The two Mg996
servos had operating voltages ranging from 4.8 to 6 V with a total
rotational capability of 180°. The Arduino micro had a flash memory of
256 KB, which was sufficient to store commands in it from the app GUI if
there was any delay for the hardware part during the sorting period. The
two power supplies used had a 24 V/10 A configuration, and the latter
was converted to 5 V for operation of the servos. The system was
designed to visualize the concept of a waste sorting system. However, in
actual implementations, more sophisticated equipment is needed, but
this work clearly demonstrated the ability of the developed software
model to make correct decisions for the proposed hardware
manipulations.

The preliminary design of the pan and tilt mechanism and its func-
tion were programmed using two servo motors and Arduino as the slave
device respectively. The 2-axis pan-tilt mounted servo assembly in
Fig. 25 was made using two 5vservos with Fused deposition modeling
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(FDM), stereolithography (SLA), and selective laser sintering (SLS) (3D)-
printed servo brackets. The designs were made with Autodesk Tinkercad
software with high precision, allowing the tray to move in any direction.
Its design and the coding for tray alignment were conducted for sorting
four types of trash. The initial positions are set to 0° for the pan servo
and 90° for the tilt servo. After predicting the waste class for recyclable
or residual waste, the tilt servo bracket/mount rotates left (Fig. 25(D))
or right (Fig. 25(B)), respectively, from its initial position, while the pan
servo bracket/mount remains fixed for both of them. Similarly, for
household food waste, the tilt servo bracket/mount turns right (Fig. 25
(A)), and for hazard waste turns left (Fig. 25(C)), but the pan servo
bracket/mount rotates 90° counterclockwise, causing the tilt servo itself
to rotate along with the tray. In this manner, depending on the predicted
class, the tray is shifted to four different sides to divert incoming waste.

4.4.3. Demonstration of real-time waste classification

Multiple tests were conducted to evaluate the model’s real-time
performance using a webcam and real waste. For this purpose, a
Xiaomi Vidlok W91 webcam was used, which was attached with a
mount pointing downward where the waste was placed. A white back-
ground was made with paper that represented the conveyor platform on
which waste was placed, and images were captured by the camera
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Table 10
Performances of PLDs-CNN-PELM and PLDs-CNN-RELM models for twelve-class
waste classification.

Class Name PLDs-CNN-ELM PLDs-CNN-Ridge-ELM
Precision Recall F1 Precision Recall F1

Battery (0) 0.96 0.93 0.95 0.99 0.93 0.96

Expired 0.98 0.97 0.98 0.96 0.97 0.97
Food (1)

Brown Glass 1.00 0.93 0.97 1.00 0.95 0.97
@

Cardboard 0.95 0.95 0.95 0.95 0.94 0.94
®3)

Clothes (4) 0.97 0.99 0.99 0.98 1.00 0.99

Green Glass 0.98 0.97 0.98 0.98 0.97 0.98
)

Metal (6) 0.91 0.92 0.92 0.91 0.91 0.91

Paper (7) 0.95 0.96 0.96 0.94 0.95 0.95

Plastic (8) 0.93 0.87 0.90 0.93 0.88 0.90

Shoes (9) 0.94 0.95 0.94 0.95 0.95 0.95

White Glass 0.89 0.92 0.91 0.91 0.95 0.93
(10)

Trash (11) 0.90 0.88 0.89 0.90 0.92 0.91

Average (1)  94.66 + 93.66 94.5 95 + 94.33 94.66
+ SD (o) 0.034 + + 0.033 + + 0.02
(%) 0.036 0.033 0.031

Accuracy 95.00 96.00
(%)

AUC (%) 99.60 99.54

Note: The best results are highlighted in bold. 0-11 indicates the class number.

above. Fig. 26 shows two tests conducted under natural light using
household food and recyclable waste. In SHAP, accurate visualization
was presented for both the household food waste and recyclable waste
classes where the model was able to pinpoint the areas of interest
accurately.

The analysis of the model showed each of the classification confi-
dence scores and inference times with the prediction of the top four
classes, allowing for a better understanding of the classification behavior
of the model and its performance time even though it is relatively
dependent on the device, as shown in the GUL, and computational effi-
ciency. The computational performance of the model, in floating point
operation per second (FLOPS), was found to be 39.4 G, which is
acceptable for running on industrial-based computing devices. The re-
sults were obtained from CPU-based devices, which could be later
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replaced with a suitable GPU for faster inference on real-time
classification.

Both tests were conducted at different times under natural lighting
conditions, resulting in differently shaped shadows on the platform.
Thus far, the model has been able to quickly and accurately classify the
waste presented below the camera without the need for preprocessing
the image other than its size. All the tests conducted using this model
showed accurate results in terms of the class index, confidence score,
and SHAP visualizations when using a high-quality webcam compared
to an average one, as the model was able to extract better image data.
Thus, after conducting these practical validation experiments, it was
found that the model is suitable for functioning under real-life condi-
tions even under natural light. Ideally, in industry, artificial light might
be used for better visualization, which will eventually enhance the ac-
curacy and efficiency of waste classification, ensuring optimal perfor-
mance and reliability in various operational environments.

For a practical test on the functioning of the concept, a PowerPoint
video of random waste images was accumulated and loaded in our app
to create the same condition of wastes passing over a conveyor belt.
Upon predicting each frame of waste from the video, the app shows the
corresponding class (Fig. 27(A) and (C)) of the current trash along with
its confidence score and immediately sends a command to Arduino via
serial communication to position the tray for the correct bin (Fig. 27(B)
and (D)).

In comparison to other SOTA waste classification methods for real-
time analytical performance with hardware mechanisms shown in
(Fan et al., 2023; Jin et al., 2023; S. Zhang et al., 2021), their highest
waste classification accuracy was not more than 94.71 %, while our
proposed model reached 99 % for four-class classification and 96 % for
12-class classification, making it superior. Apart from the model per-
formance, the hardware used in these three papers had some limitations
(Fan et al., 2023; S. Zhang et al., 2021). used ULN2003 and Nema series
stepper motors, which are based on an open-loop system, while this
study used closed-loop servo motors. Using a closed-loop system in
motors provides the additional benefit of always knowing the reference
position, while open-loop system motors are prone to losing this position
under overloaded conditions. Additionally, there was no relevant in-
formation on the practical inference time or computational complexity
of the models or the use of any GUI app for real-time monitoring and
control (Fan et al., 2023; Jin et al., 2023; S. Zhang et al., 2021), whereas
our proposed model integrates a user-friendly GUI application for
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Fig. 18. Classwise PR curves on (A) PLDs-CNN-ELM and (E) PLDs-CNN-Ridge-ELM for twelve-class classification.

20



M. Naznine et al.

Hazardous

Hazardous
Waste

Household
Food
Waste

Recyclable
Waste

Residual ‘
Waste e 4 ‘

=0.0020 ~-0.0015 -0.0010 ~0.0005

Engineering Applications of Artificial Intelligence 162 (2025) 112522

Household Recyclable Residual
Food Waste Waste Waste
S

' ' e
0.0000 0.0005 0.0010 0.0015 0.0020

SHAP value
(A)
Expired Brown Green
Battery Food Glass Cardboard  Clothes Glass Metal Paper
Battery ' i 4 E
4 ! :
Expired . ‘ %,
1 ]
f i
Food ’ 0 |
[ il |
Cardboard ' : 1
0 it ;
- o
Clothes (RS i i
i
Green - i
Glass i i
(B — |
- w1
Metal [§ |: i I
. i |
Shoes *
-0.602 -0..001 0.600 O.OIO).
SHAP value

®)

Fig. 19. SHAP-based visual explanations for the PLDs-CNN-Ridge-ELM model—(A) for four-class classification and (B) for twelve-class classification.

monitoring inference time of approximately 0.3 s for each frame during
video inference due to reduced model complexity, confidence scores,
and management of the waste classification process, further enhancing
its usability and practicality in industrial applications. The concept of
comparing testing times became irrelevant because the device perfor-
mance configurations did not match each other. Moreover, although the
current implementation is at the prototype stage, it demonstrates the
potential for a cost-effective industrial solution. By using low-cost

components such as Raspberry Pi, Arduino Mega, and servo motors,
the system offers a promising alternative to high-cost industrial waste
sorting systems. With further refinement and scaling, the approach
could enable affordable deployment in small to medium-sized facilities
or municipalities where budget and resource constraints are a key
consideration.
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referred to the Web version of this article.)

4.5. Discussion, limitations and future work

The design of the lightweight PLDs-CNN-Ridge-ELM model is rela-
tively straightforward, incorporating a total of nine convolutional op-
erations along with three fully connected layers. However, the proposed
model executes the initial four convolutional layers in parallel to
enhance the extraction of discriminative features, thereby reducing the
overall convolutional depth from nine to four. These parallel operations
contribute to more efficient feature extraction, leading to improved
model performance. Additionally, the Ridge-ELM classifier’s regulari-
zation term aids in refining weight updates, which further contributes to
higher classification precision. As illustrated in Table 5, the suggested
model demonstrates superior results compared to the other seven TL
models. The central aim of this study was to introduce an architecture
that improves prediction accuracy while maintaining a compact struc-
ture by reducing layer count and trainable parameters. This goal was
accomplished (1.09 million parameters) by adopting depthwise sepa-
rable convolutions in place of standard convolution layers and opti-
mizing them for deployment in low-resource environments. It should
also be emphasized that the dataset used in this investigation includes an
inherent class distribution skew, particularly across both the four major
categories and their twelve subcategories. In spite of this, the model
maintained strong classification performance, confirming its capability
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to extract effective features from both dominant and underrepresented
classes. This resistance to skewed distributions highlights the model’s
stability and the generalization strength of the Ridge-ELM mechanism.
Furthermore, integrating SHAP into the analysis ensures that the model
identifies the most informative parts of the input image for feature
extraction while ignoring non-contributive areas. This enhances the
interpretability of the model, allowing it to perform precise and reliable
classification of waste items. Moreover, the deployment of the hardware
prototype affirms the feasibility of the model in real-time waste cate-
gorization tasks. Table 11 offers a comparative summary of leading
models and the developed PLDs-CNN-Ridge-ELM. According to the
report by (Al-Mashhadani, 2023), InceptionV3 reached an accuracy
peak of 100 %, while (Mao et al., 2021) reported 99.60 % using an
optimized DenseNet121. However, in the study by (Al-Mashhadani,
2023), the evaluation was conducted on a limited dataset comprising
just 1451 samples spanning four categories. Similarly, the authors in
(Mao et al., 2021) utilized the TrashNet collection, which includes six
classes and 2527 samples. In contrast, the current model achieved a
closely matched accuracy of 99.0 % for the four-class setup using a
considerably larger dataset of 15,150 images. Since DenseNet121 served
as the baseline in prior work, the parameter count was significantly
higher than in the present model. In addition, the proposed model
recorded a minimal inference duration of 0.0079 s for the four-class
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Fig. 22. Visualization of significant features using SHAP for (a) 4-class and (b) 12-class models for single image classification.

Fig. 23. Concept of the total waste sorting mechanism. (a) Garbage Chute, (b) Conveyer Belt, (c) Edge Device, (d) Cable Wire, (d) Motion Sensor with Camera, (f)
Pan-tilt joint for trash sorting.
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Servo position for hazard waste. (D) Servo position for residual waste.

setup.

Yang and Li (Z. Yang and Li, 2020) proposed a lightweight model
with 1.5 million parameters. However, this model achieved lower
classification accuracy (82.5 %) for larger datasets such as the Huawei
garbage classification dataset. In contrast, the proposed model achieved
excellent performance, with 96 % accuracy for twelve-class classifica-
tion on a large dataset with only 1.09 million parameters. Feng et al.
(2022) also proposed a lightweight model based on EfficientNet. How-
ever, the proposed PLDs-CNN-Ridge-ELM successfully outperformed this
model in terms of accuracy, model parameters and number of images in
the dataset. Additionally, Chen et al. (2022) achieved a higher accuracy
of 97.9 %, exceeding the performance of the proposed model. Never-
theless, it is essential to note that they conducted research on a smaller
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dataset (4256 images), and additionally, their model had a greater
number of parameters than did the proposed model. Moreover, unlike
the introduction of SHAP by the proposed model, no studies have
demonstrated real-time XAI Table 11 also demonstrates that the
reduced 4-class classification has 99 % accuracy compared to 96 % ac-
curacy on the granular 12 classes, highlighting specialized problems
associated with the sub-categories (Li et al., 2021). Reducing the number
of classes simplifies decision boundaries, enhancing the learning process
and promoting better generalization. Although closely related groups
may share similarities, merging them into broader categories introduces
a more intricate decision boundary. In a fixed dataset, a lower number of
classes can provide adequate features for effective generalization.
Conversely, an increase in classes without a proportional rise in data and
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Fig. 26. Real-time classification using a webcam and SHAP visualization (A), (B) Household Food Waste, (C), (D) Recyclable Waste.

feature variability may lead to reduced model accuracy. However, the
simplicity of decision boundaries in a smaller number of classes can help
mitigate these challenges despite the limited feature set.

The proposed model can be implemented to establish an automated
waste categorization system in an industrial setting, offering several
significant advantages. Firstly, automation drastically reduces labor
costs and minimizes human error by replacing manual sorting proced-
ures. Secondly, the system accelerates the sorting process by accurately
and efficiently identifying waste, thereby increasing throughput and
optimizing workflow. This enhanced sorting capability contributes to
improved recycling by accurately distinguishing recyclables from non-
recyclables, thereby optimizing resource recovery and accelerating the
recycling process. Such capabilities also help advance environmental
sustainability by encouraging eco-friendly practices such as recycling.
Lastly, by facilitating the repurposing of waste materials and creating
value from previously discarded resources, the system supports a cir-
cular economy and strengthens the overall waste management
ecosystem.

Despite the model’s strong performance, there is room for further
enhancement. The study utilized an existing dataset from Kaggle, con-
taining 15150 images across twelve waste classes. While this dataset is
larger than those used in comparable studies, it may still not fully
represent the diversity of waste encountered in real-world scenarios.
Additionally, certain categories—such as hazardous, household food,
and residual waste—lack detailed subcategories, which may not reflect
the practical complexities of waste management where, for instance,
hazardous materials require specialized disposal methods. This limita-
tion may impact the model’s applicability in real-world industrial

-0.002

25

0.000 0.001 0.003

SHAP value

(D)

-0.001 0.002

systems that demand finer categorization. Additionally, the dataset ex-
hibits class imbalance, with certain categories—such as Recyclable
Waste and Cloths—having significantly more samples than others.
Despite the absence of explicit class balancing techniques, the proposed
model achieved high classification accuracy (99 % in the first-stage four-
class task), demonstrating strong generalization capabilities. This per-
formance is attributed to several factors. First, the dataset consists of
high-quality, well-structured images in which each image clearly con-
tains a single type of waste object, minimizing intra-class variability and
facilitating more effective learning. Second, the model architecture is
highly capable of extracting discriminative features, allowing it to
perform robustly even in the presence of class imbalance. These
strengths enabled the model to maintain consistent performance across
both majority and minority classes during evaluation.However, it is
important to note that the images used for training and evaluation were
relatively clean and well-structured, as shown in Fig. 2. In practical
settings, waste is often dirty, occluded, or contaminated, which could
negatively affect model performance. Such real-world data was not
publicly available at the time of this study. Consequently, future work
will focus on collecting more realistic datasets that reflect actual waste
conditions in operational environments. The model will also be further
fine-tuned and validated on this real-world data to ensure robustness,
reliability, and deployment readiness.

Moreover, limitations such as the inability to handle incomplete,
partially obscured, or mixed-type waste samples are acknowledged. To
address these, future developments will explore noise-tolerant training
strategies, enhanced preprocessing pipelines, and robust feature
extraction methods to improve model performance under challenging
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Fig. 27. Continuous classification process test for real-time sorting and tray movement for (a), (b) Recyclable Waste, (c), (d) Household Food Waste.

conditions. In addition, efforts will be made to collect a more compre-
hensive and diverse dataset, incorporating additional waste categories
such as electronic, industrial, and medical waste, while also expanding
subcategory coverage for all major classes. Although the proposed
model is not currently suited for disaster waste management due to the
structured nature of its training data and its focus on municipal solid
waste, it could be extended to such applications in the future. This would
require dataset adaptation using disaster-specific imagery, robust model
re-training for mixed-material classification, and integration with mo-
bile platforms such as drones or robotic units. Exploring such extensions
could broaden the model’s applicability in emergency response and
post-disaster recovery efforts. Furthermore, techniques such as data
augmentation and oversampling may be employed to mitigate class
imbalance. Together, these advancements aim to improve the model’s
practical applicability, scalability, and overall performance in complex,
real-world waste management scenarios.

In the two-stage classification approach, error propagation from the
first to the second stage is minimized by ensuring that both stages
operate independently. The first stage classifies waste into broader
categories, while the second stage refines these categories into more
specific subcategories. This separation ensures that misclassification in
the first stage does not directly impact the second stage. Although both
stages use the same underlying model architecture, their distinct tasks
enhance the robustness and resilience of the classification process.
Robust feature extraction methods are employed in both stages to cap-
ture the most relevant and discriminative features. Additionally, the
integration of SHAP (Shapley Additive Explanations) enhances model
interpretability by identifying the most influential features in the clas-
sification process. This transparency enables a deeper understanding of
the system’s decision-making process and aids in its fine-tuning. More-
over, the SHAP integration helps minimize errors by highlighting the
key features responsible for accurate classification.

Although the hardware system was successfully validated for both
real-time and offline scenarios, it was implemented on a small scale
using limited functionality hardware, such as a webcam and generated
video. To enhance performance, future work will involve upgrading the
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hardware with components more suitable for industrial applications.
These could include motion sensors, high-precision motors, high-
resolution cameras, and conveyor belt systems typically used in waste
management industries. Additionally, the system could be implemented
on an edge device for better portability and maintenance in real-world
applications. A modified robotic arm mechanism could be integrated
for faster and more accurate waste sorting, along with IoT-based
tracking systems for optimized waste management. Improving compu-
tational efficiency will also be a key focus, particularly for enabling
deployment on edge devices. Techniques such as model pruning,
quantization, and knowledge distillation will be explored to reduce
model size, memory consumption, and inference time, ensuring that the
system remains responsive and resource-efficient without compromising
classification performance. Finally, the approach could be expanded to
include the identification of additional waste categories, such as elec-
tronic waste, industrial waste, and medical waste.

5. Conclusions

Precise waste classification facilitates better waste management,
hence promoting environmental sustainability and optimizing resource
utilization. By correctly identifying and managing hazardous waste
materials, automated classification systems can protect public health
and safety and increase efficiency across a variety of industries. This
study introduces an efficient strategy for waste classification by inte-
grating the PLDs-CNN feature extraction mechanism with the Ridge-
ELM classifier. The PLDs-CNN model comprises nine layers and
approximately 1.09 million parameters, enabling effective categoriza-
tion of both four and twelve waste classes with reduced computational
burden. The model demonstrated fast inference, achieving processing
times of 0.0079 s for four-class and 0.0041 s for twelve-class classifi-
cation tasks. Replacing the conventional pseudo ridge regression tech-
nique with Ridge-ELM significantly enhanced the model’s predictive
capability. The approach achieved high classification accuracy—99 %
for the initial four-class task and 96 % for the twelve-class task. For the
twelve-class scenario, strong performance was further confirmed by
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Table 11
Performance comparison with state-of-the-art models and the proposed model.

Ref. Dataset Name Number of Number of Class Best Model Testing Accuracy (%) Best Model’s Testing Real-
Images in Parameters Time time
the Dataset (million) (seconds) XAI

Mao et al. (2021) TrashNet 2527 6 DenseNet121 99.60 7.2 - None

(Optimized)
Nowakowski and Custom 210 3 Deep CNN and R- 96.7 - - None
Pamuta (2020) CNN
Khan et al. (2022)  Kaggle Garbage 750 6 RWC-EPODL 98.96 - - None
Categorization
Dataset
Lin et al. (2022) TrashNet 2527 6 RWNet 88.8 58.5 - None
Abdulkareem Custom 1451 4 ResNet50- 98 - - None
et al. (2024) GoogleNet-
Inception
Kumar et al. Custom 2400 4 support vector 96.5 - - None
(2021) machine (SVM)
Al-Mashhadani Custom 1451 4 InceptionV3 100 % - - None
(2023)
Yang and Li (i) TrashNet, (ii) 252 and 6 (TrashNet), WasNet 96.10 (For TrashNet 1.5 - None
(2020) Huawei Garbage 18079 4 (Huawei Dataset), 82.5 (For
Classification Dataset Garbage Huawei Garbage
Classification Classification Dataset)
Dataset)
Z. Chen et al. Custom 4256 4 (14 sub-classes) GCNet (Improved 97.9 (For 14 sub-class) 1.3 - None
(2022) ShuffleNetv2)
Fan et al. (2023) Huawei Cloud 14802 4 EfficientNetB2 93.38 7.8 6.756 None
Garbage with PMAM
Classification Dataset
Feng et al. (2022) Custom 7361 4 (18 sub-classes) GECM- 94.54 (For 18 sub-class) 1.23 - None
EfficienNet
Jin et al. (2023) Huawei Garbage 14683 4 Improved 90.7 3.4 - None
Classification MobileNetV2
Challenge Cup
Dataset
S. Zhang et al. Custom 1040 4 (13 sub-classes) RevM 94.71 (For 4 class) - - None
(2021)
Proposed Model Kaggle Garbage 15150 4 (12 sub-classes) PLDs-CNN-Ridge- 99.0 (For 4 class), 1.09 0.0079 SHAP
Classification Dataset ELM 96.0 (For 12 sub-class) (For 4
class),
0.0041
(For 12
sub-class)

precision, recall, and F1-scores of 95 + 0.033 %, 94.33 + 0.031 %, and
94.66 + 0.02 %, respectively, along with an outstanding AUC score of
99.54 %. With a compact model size of just 12.7 MB, this method is
highly suitable for deployment in practical waste management solu-
tions, particularly on low-resource edge devices. The integration of real-
time SHAP explainability adds value for end-users by offering clear and
trustworthy interpretation of the model’s decisions, improving the
credibility of classification outcomes. These encouraging findings open
up opportunities for advancing intelligent and sustainable waste sorting
systems. Furthermore, the proposed waste classification model was
successfully realized in both hardware and software prototype imple-
mentations, validating its feasibility in operational environments.
Overall, the PLDs-CNN Ridge-ELM model significantly enhances waste
classification accuracy while remaining practical for real-world
applications.

CRediT authorship contribution statement

Mansura Naznine: Writing — original draft, Validation, Investiga-
tion, Data curation, Writing — review & editing, Visualization, Meth-
odology, Formal analysis, Conceptualization. Md. Nahiduzzaman:
Writing — review & editing, Visualization, Methodology, Formal anal-
ysis, Conceptualization, Writing — original draft, Validation, Investiga-
tion, Data curation. Md. Jawadul Karim: Writing — original draft,
Validation, Investigation, Data curation, Writing — review & editing,
Visualization, Methodology, Formal analysis, Conceptualization. Md.
Faysal Ahamed: Writing - review & editing, Visualization,

27

Methodology, Formal analysis, Conceptualization, Writing — original
draft, Validation, Investigation, Data curation. Abdus Salam: Writing —
original draft, Validation, Formal analysis, Writing — review & editing,
Visualization, Methodology, Conceptualization. Mohamed Arselene
Ayari: Visualization, Supervision, Investigation, Conceptualization,
Writing — review & editing, Validation, Methodology, Formal analysis.
Amith Khandakar: Writing — original draft, Validation, Investigation,
Conceptualization, Writing — review & editing, Visualization, Method-
ology, Formal analysis. Azad Ashraf: Writing — original draft, Valida-
tion, Investigation, Conceptualization, Writing — review & editing,
Visualization, Methodology, Formal analysis. Mominul Ahsan: Visual-
ization, Supervision, Investigation, Conceptualization, Writing — review
& editing, Validation, Methodology, Formal analysis. Julfikar Haider:
Writing — review & editing, Validation, Visualization, Supervision,
Investigation, Conceptualization, Methodology, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement
The authors employed several Al-based tools to improve the clarity

and linguistic quality of the manuscript during its preparation.
Following this, they thoroughly reviewed and refined the content as



M. Naznine et al.

needed. All aspects of the core research, including the study design,
analysis, and conclusions, remain the sole responsibility of the authors.

Data availability
Data will be made available on request.

References

Abdulkareem, K.H., Subhi, M.A., Mohammed, M.A., Aljibawi, M., Nedoma, J.,
Martinek, R., et al., 2024. A manifold intelligent decision system for fusion and
benchmarking of deep waste-sorting models. Eng. Appl. Artif. Intell. 132, 107926.
https://doi.org/10.1016/j.engappai.2024.107926.

Abuga, D., Raghava, N.S., 2021. Real-time smart garbage bin mechanism for solid waste
management in smart cities. Sustain. Cities Soc. 75, 103347. https://doi.org/
10.1016/j.5¢cs5.2021.103347.

Ahsan, A., Alamgir, M., El-Sergany, M.M., Shams, S., Rowshon, M.K., Daud, N.N.N.,
2014. Assessment of municipal solid waste management system in a developing
country. Chin. J. Eng. 1-11. https://doi.org/10.1155/2014/561935.

Al-Mashhadani, 1.B., 2023. Waste material classification using performance evaluation of
deep learning models. J. Intell. Syst. 32 (1). https://doi.org/10.1515/jisys-202.3-
0064.

Ashikuzzaman, Md, Howlader, Md H., 2020. Sustainable solid waste management in
Bangladesh. https://doi.org/10.4018/978-1-7998-0198-6.ch002.

Bhandari, M., Shahi, T.B., Siku, B., Neupane, A., 2022. Explanatory classification of CXR
images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAIL
Comput. Biol. Med. 150, 106156. https://doi.org/10.1016/j.
compbiomed.2022.106156.

Bhatia, Y., Bajpayee, A., Raghuvanshi, D., Mittal, H., 2019. Image captioning using
google’s inception-resnet-v2 and recurrent neural network. In: 2019 Twelfth
International Conference on Contemporary Computing (IC3). IEEE, pp. 1-6. https://
doi.org/10.1109/1C3.2019.8844921.

Carrera, B., Pinol, V.L., Mata, J.B., Kim, K., 2022. A machine learning based classification
models for plastic recycling using different wavelength range spectrums. J. Clean.
Prod. 374, 133883. https://doi.org/10.1016/j.jclepro.2022.133883.

Cheah, C.G., Chia, W.Y., Lai, S.F., Chew, K.W., Chia, S.R., Show, P.L., 2022. Innovation
designs of industry 4.0 based solid waste management: machinery and digital
circular economy. Environ. Res. 213, 113619. https://doi.org/10.1016/j.
envres.2022.113619.

Chen, Y., Luo, A., Cheng, M., Wu, Y., Zhu, J., Meng, Y., Tan, W., 2023. Classification and
recycling of recyclable garbage based on deep learning. J. Clean. Prod. 414, 137558.
https://doi.org/10.1016/j.jclepro.2023.137558.

Chen, Z., Yang, J., Chen, L., Jiao, H., 2022. Garbage classification system based on
improved ShuffleNet v2. Resour. Conserv. Recycl. 178, 106090. https://doi.org/
10.1016/j.resconrec.2021.106090.

Chollet, F., 2017. Xception: deep learning with depthwise separable convolutions. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
pp. 1800-1807. https://doi.org/10.1109/CVPR.2017.195.

Fan, H., Dong, Q., Guo, N., Xue, J., Zhang, R., Wang, H., Shi, M., 2023. Raspberry Pi-
based design of intelligent household classified garbage bin. Internet of Things 24,
100987. https://doi.org/10.1016/j.i0t.2023.100987.

Feng, Z., Yang, J., Chen, L., Chen, Z., Li, L., 2022. An intelligent waste-sorting and
recycling device based on improved EfficientNet. Int. J. Environ. Res. Publ. Health
19 (23), 15987. https://doi.org/10.3390/ijerph192315987.

Gaba, S., Budhiraja, I., Kumar, V., Garg, S., Kaddoum, G., Hassan, M.M., 2022.

A federated calibration scheme for convolutional neural networks: models,
applications and challenges. Comput. Commun. 192, 144-162. https://doi.org/
10.1016/j.comcom.2022.05.035.

Habib, Md A., Ahmed, M.M., Aziz, M., Beg, Mohd R.A., Hoque, Md E., 2021. Municipal
solid waste management and waste-to-energy potential from rajshahi city
corporation in Bangladesh. Appl. Sci. 11 (9), 3744. https://doi.org/10.3390/
app11093744.

Haque, A.K.M,, Razy, S., 2021. Practices of 3Rs (Reduce, Reuse and Recycle) Strategy in
Urban Solid Waste Management in Rajshahi City Corporation of Bangladesh, vol. 23,
pp. 75-87.

Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., et al., 2021.
Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11 (3),
234-240. https://doi.org/10.1038/541558-020-00976-6.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep Residual Learning for Image Recognition.

Hoornweg, D., Bhada-Tata, P., 2012. What a waste: a global review of solid waste
management. Urban Dev. Ser. Knowl. Pap. 15, 87-88.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected
convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, pp. 2261-2269. https://doi.org/10.1109/
CVPR.2017.243.

Jaunich, M.K., Levis, J.W., DeCarolis, J.F., Barlaz, M.A., Ranjithan, S.R., 2019. Solid
waste management policy implications on waste process choices and systemwide
cost and greenhouse gas performance. Environ. Sci. Technol. 53 (4), 1766-1775.
https://doi.org/10.1021/acs.est.8b04589.

Jerin, D.T., Sara, H.H., Radia, M.A., Hema, P.S., Hasan, S., Urme, S.A., et al., 2022. An
overview of progress towards implementation of solid waste management policies in
Dhaka, Bangladesh. Heliyon 8 (2), €08918. https://doi.org/10.1016/j.heliyon.2022.
e08918.

28

Engineering Applications of Artificial Intelligence 162 (2025) 112522

Jiang, P., Zhang, L., You, S., Fan, Y. Van, Tan, R.R., Klemes, J.J., You, F., 2023.
Blockchain technology applications in waste management: overview, challenges and
opportunities. J. Clean. Prod. 421, 138466. https://doi.org/10.1016/j.
jelepro.2023.138466.

Jin, S., Yang, Z., Krélczykg, G., Liu, X., Gardoni, P., Li, Z., 2023. Garbage detection and
classification using a new deep learning-based machine vision system as a tool for
sustainable waste recycling. Waste Manag. 162, 123-130. https://doi.org/10.1016/
j-wasman.2023.02.014.

Kang, K.D., Kang, H., Ilankoon, I.M.S.K., Chong, C.Y., 2020. Electronic waste collection
systems using Internet of Things (IoT): household electronic waste management in
Malaysia. J. Clean. Prod. 252, 119801. https://doi.org/10.1016/j.
jclepro.2019.119801.

Kaza, S., Bhada-Tata, P., 2018. Decision Maker’s Guides for Solid Waste Management
Technologies. World Bank, Washington, DC. https://doi.org/10.1596/31694.

Kaza, S., Yao, L.C., Bhada-Tata, P., Van Woerden, F., 2018. What a Waste 2.0: A Global
Snapshot of Solid Waste Management to 2050. World Bank, Washington, DC.
https://doi.org/10.1596,/978-1-4648-1329-0.

Khan, A.L, Almalaise Alghamdi, A.S., Abushark, Y.B., Alsolami, F., Almalawi, A., Marish
Ali, A., 2022. Recycling waste classification using emperor penguin optimizer with
deep learning model for bioenergy production. Chemosphere 307, 136044. https://
doi.org/10.1016/j.chemosphere.2022.136044.

Kibria, H.B., Nahiduzzaman, M., Goni, Md O.F., Ahsan, M., Haider, J., 2022. An
ensemble approach for the prediction of diabetes mellitus using a soft voting
classifier with an explainable Al Sensors 22 (19), 7268. https://doi.org/10.3390/
522197268.

Krizhevsky, A., Sutskever, 1., Hinton, G.E., 2017. ImageNet classification with deep
convolutional neural networks. Commun. ACM 60 (6), 84-90. https://doi.org/
10.1145/3065386.

Kumar, N.M., Mohammed, M.A., Abdulkareem, K.H., Damasevicius, R., Mostafa, S.A.,
Maashi, M.S., Chopra, S.S., 2021. Artificial intelligence-based solution for sorting
COVID related medical waste streams and supporting data-driven decisions for smart
circular economy practice. Process Saf. Environ. Prot. 152, 482-494. https://doi.
org/10.1016/j.psep.2021.06.026.

Li, Y., Zhang, X., 2024. Intelligent X-ray waste detection and classification via X-ray
characteristic enhancement and deep learning. J. Clean. Prod. 435, 140573. https://
doi.org/10.1016/j.jclepro.2024.140573.

Li, Z., Kamnitsas, K., Glocker, B., 2021. Analyzing overfitting under class imbalance in
neural networks for image segmentation. IEEE Trans. Med. Imag. 40 (3), 1065-1077.
https://doi.org/10.1109/TMI.2020.3046692.

Lin, K., Zhao, Y., Gao, X., Zhang, M., Zhao, C., Peng, L., et al., 2022a. Applying a deep
residual network coupling with transfer learning for recyclable waste sorting.
Environ. Sci. Pollut. Control Ser. 29 (60), 91081-91095. https://doi.org/10.1007/
511356-022-22167-w.

Lin, K., Zhao, Y., Kuo, J.-H., Deng, H., Cui, F., Zhang, Z., et al., 2022b. Toward smarter
management and recovery of municipal solid waste: a critical review on deep
learning approaches. J. Clean. Prod. 346, 130943. https://doi.org/10.1016/j.
jclepro.2022.130943.

Linardatos, P., Papastefanopoulos, V., Kotsiantis, S., 2020. Explainable AI: a review of
machine learning interpretability methods. Entropy 23 (1), 18. https://doi.org/
10.3390/e23010018.

Lu, X., Pu, X., Han, X., 2020. Sustainable smart waste classification and collection
system: a bi-objective modeling and optimization approach. J. Clean. Prod. 276,
124183. https://doi.org/10.1016/j.jclepro.2020.124183.

Lundberg, S., Lee, S.-I., 2017. A Unified Approach to Interpreting Model Predictions.

Maheta, S., Manisha, 2023. Deep Learning-Based Cancelable Biometric Recognition
Using MobileNetV3Small Model. https://doi.org/10.1007/978-981-99-1203-2_29.

Mao, W.-L., Chen, W.-C., Fathurrahman, H.L.K., Lin, Y.-H., 2022. Deep learning networks
for real-time regional domestic waste detection. J. Clean. Prod. 344, 131096.
https://doi.org/10.1016/j.jclepro.2022.131096.

Mao, W.-L., Chen, W.-C., Wang, C.-T., Lin, Y.-H., 2021. Recycling waste classification
using optimized convolutional neural network. Resour. Conserv. Recycl. 164,
105132. https://doi.org/10.1016/j.resconrec.2020.105132.

Mohammed, M.A., Abdulhasan, M.J., Kumar, N.M., Abdulkareem, K.H., Mostafa, S.A.,
Maashi, M.S., et al., 2023. Automated waste-sorting and recycling classification
using artificial neural network and features fusion: a digital-enabled circular
economy vision for smart cities. Multimed. Tool. Appl. 82 (25), 39617-39632.
https://doi.org/10.1007/5s11042-021-11537-0.

MOSTAFA MOHAMED, 2021. Garbage Classification (12 Classes). Retrieved from. htt
ps://www.kaggle.com/datasets/mostafaabla/garbage-classification?fbclid=Iw
AR30jKZepc8ML8AmwJek_Iwb2JGL7VtCeRDhsIn1GALeLfiSCUptBVQVwmY.

Nahiduzzaman, Md, Chowdhury, M.E.H., Salam, A., Nahid, E., Ahmed, F., Al-Emadi, N.,
et al., 2023a. Explainable deep learning model for automatic mulberry leaf disease
classification. Front. Plant Sci. 14. https://doi.org/10.3389/fpls.2023.1175515.

Nahiduzzaman, Md, Faisal Abdulrazak, L., Arselene Ayari, M., Khandakar, A., Islam, S.M.
R., 2024. A novel framework for lung cancer classification using lightweight
convolutional neural networks and ridge extreme learning machine model with
SHapley Additive exPlanations (SHAP). Expert Syst. Appl. 248, 123392. https://doi.
org/10.1016/j.eswa.2024.123392.

Nahiduzzaman, Md, Goni, Md O.F., Anower, Md S., Islam, Md R., Ahsan, M., Haider, J.,
et al., 2021a. A novel method for multivariant pneumonia classification based on
hybrid CNN-PCA based feature extraction using extreme learning machine with CXR
images. IEEE Access 9, 147512-147526. https://doi.org/10.1109/
ACCESS.2021.3123782.

Nahiduzzaman, Md, Goni, Md O.F., Hassan, R., Islam, Md R., Syfullah, M.K., Shahriar, S.
M., et al., 2023b. Parallel CNN-ELM: a multiclass classification of chest X-ray images


https://doi.org/10.1016/j.engappai.2024.107926
https://doi.org/10.1016/j.scs.2021.103347
https://doi.org/10.1016/j.scs.2021.103347
https://doi.org/10.1155/2014/561935
https://doi.org/10.1515/jisys-2023-0064
https://doi.org/10.1515/jisys-2023-0064
https://doi.org/10.4018/978-1-7998-0198-6.ch002
https://doi.org/10.1016/j.compbiomed.2022.106156
https://doi.org/10.1016/j.compbiomed.2022.106156
https://doi.org/10.1109/IC3.2019.8844921
https://doi.org/10.1109/IC3.2019.8844921
https://doi.org/10.1016/j.jclepro.2022.133883
https://doi.org/10.1016/j.envres.2022.113619
https://doi.org/10.1016/j.envres.2022.113619
https://doi.org/10.1016/j.jclepro.2023.137558
https://doi.org/10.1016/j.resconrec.2021.106090
https://doi.org/10.1016/j.resconrec.2021.106090
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1016/j.iot.2023.100987
https://doi.org/10.3390/ijerph192315987
https://doi.org/10.1016/j.comcom.2022.05.035
https://doi.org/10.1016/j.comcom.2022.05.035
https://doi.org/10.3390/app11093744
https://doi.org/10.3390/app11093744
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref17
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref17
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref17
https://doi.org/10.1038/s41558-020-00976-6
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref19
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref20
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref20
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1021/acs.est.8b04589
https://doi.org/10.1016/j.heliyon.2022.e08918
https://doi.org/10.1016/j.heliyon.2022.e08918
https://doi.org/10.1016/j.jclepro.2023.138466
https://doi.org/10.1016/j.jclepro.2023.138466
https://doi.org/10.1016/j.wasman.2023.02.014
https://doi.org/10.1016/j.wasman.2023.02.014
https://doi.org/10.1016/j.jclepro.2019.119801
https://doi.org/10.1016/j.jclepro.2019.119801
https://doi.org/10.1596/31694
https://doi.org/10.1596/978-1-4648-1329-0
https://doi.org/10.1016/j.chemosphere.2022.136044
https://doi.org/10.1016/j.chemosphere.2022.136044
https://doi.org/10.3390/s22197268
https://doi.org/10.3390/s22197268
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.psep.2021.06.026
https://doi.org/10.1016/j.psep.2021.06.026
https://doi.org/10.1016/j.jclepro.2024.140573
https://doi.org/10.1016/j.jclepro.2024.140573
https://doi.org/10.1109/TMI.2020.3046692
https://doi.org/10.1007/s11356-022-22167-w
https://doi.org/10.1007/s11356-022-22167-w
https://doi.org/10.1016/j.jclepro.2022.130943
https://doi.org/10.1016/j.jclepro.2022.130943
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
https://doi.org/10.1016/j.jclepro.2020.124183
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref39
https://doi.org/10.1007/978-981-99-1203-2_29
https://doi.org/10.1016/j.jclepro.2022.131096
https://doi.org/10.1016/j.resconrec.2020.105132
https://doi.org/10.1007/s11042-021-11537-0
https://www.kaggle.com/datasets/mostafaabla/garbage-classification?fbclid=IwAR3OjKZepc8ML8AmwJek_Iwb2JGL7VtCeRDhsIn1GALeLfi5CUptBVQVwmY
https://www.kaggle.com/datasets/mostafaabla/garbage-classification?fbclid=IwAR3OjKZepc8ML8AmwJek_Iwb2JGL7VtCeRDhsIn1GALeLfi5CUptBVQVwmY
https://www.kaggle.com/datasets/mostafaabla/garbage-classification?fbclid=IwAR3OjKZepc8ML8AmwJek_Iwb2JGL7VtCeRDhsIn1GALeLfi5CUptBVQVwmY
https://doi.org/10.3389/fpls.2023.1175515
https://doi.org/10.1016/j.eswa.2024.123392
https://doi.org/10.1016/j.eswa.2024.123392
https://doi.org/10.1109/ACCESS.2021.3123782
https://doi.org/10.1109/ACCESS.2021.3123782

M. Naznine et al.

to identify seventeen lung diseases including COVID-19. Expert Syst. Appl. 229,
120528. https://doi.org/10.1016/j.eswa.2023.120528.

Nahiduzzaman, Md, Islam, Md R., Hassan, R., 2023c. ChestX-Ray6: prediction of
multiple diseases including COVID-19 from chest X-ray images using convolutional
neural network. Expert Syst. Appl. 211, 118576. https://doi.org/10.1016/j.
eswa.2022.118576.

Nahiduzzaman, Md, Islam, Md R., Islam, S.M.R., Goni, Md O.F., Anower, Md S.,

Kwak, K.-S., 2021b. Hybrid CNN-SVD based prominent feature extraction and
selection for grading diabetic retinopathy using extreme learning machine
algorithm. IEEE Access 9, 152261-152274. https://doi.org/10.1109/
ACCESS.2021.3125791.

Nahiduzzaman, Md, Robiul Islam, Md, Omaer Faruq Goni, Md, Shamim Anower, Md,
Ahsan, M., Haider, J., Kowalski, M., 2023d. Diabetic retinopathy identification using
parallel convolutional neural network based feature extractor and ELM classifier.
Expert Syst. Appl. 217, 119557. https://doi.org/10.1016/j.eswa.2023.119557.

Nowakowski, P., Pamuta, T., 2020. Application of deep learning object classifier to
improve e-waste collection planning. Waste Manag. 109, 1-9. https://doi.org/
10.1016/j.wasman.2020.04.041.

Ozkan, K., Ergin, S., Isik, S., Isikly, 1., 2015. A new classification scheme of plastic wastes
based upon recycling labels. Waste Manag. 35, 29-35. https://doi.org/10.1016/j.
wasman.2014.09.030.

Qiao, Y., Zhang, Q., Qi, Y., Wan, T., Yang, L., Yu, X., 2023. A waste classification model
in low-illumination scenes based on ConvNeXt. Resour. Conserv. Recycl. 199,
107274. https://doi.org/10.1016/j.resconrec.2023.107274.

Rahman, A.U., Saeed, M., Mohammed, M.A., Abdulkareem, K.H., Nedoma, J.,
Martinek, R., 2023. Fppsv-NHSS: fuzzy parameterized possibility single valued
neutrosophic hypersoft set to site selection for solid waste management. Appl. Soft
Comput. 140, 110273. https://doi.org/10.1016/j.as0¢.2023.110273.

Shams, S., Sahu, J.N., Rahman, S.M.S., Ahsan, A., 2017. Sustainable waste management
policy in Bangladesh for reduction of greenhouse gases. Sustain. Cities Soc. 33,
18-26. https://doi.org/10.1016/j.scs.2017.05.008.

Sudha, V., Ganeshbabu, T.R., 2020. A convolutional neural network classifier VGG-19
architecture for lesion detection and grading in diabetic retinopathy based on deep

29

Engineering Applications of Artificial Intelligence 162 (2025) 112522

learning. Comput. Mater. Continua (CMC) 66 (1), 827-842. https://doi.org/
10.32604/cmc.2020.012008.

Tan, M., Le, Q.V., 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks.

Wang, S., Wang, J., Yang, S., Li, J., Zhou, K., 2020. From intention to behavior:
comprehending residents’ waste sorting intention and behavior formation process.
Waste Manag. 113, 41-50. https://doi.org/10.1016/j.wasman.2020.05.031.

Yang, J., Xu, Y.-P., Chen, P, Li, J.-Y., Liu, D., Chu, X.-L., 2023. Combining spectroscopy
and machine learning for rapid identification of plastic waste: recent developments
and future prospects. J. Clean. Prod. 431, 139771. https://doi.org/10.1016/j.
jclepro.2023.139771.

Yang, Z., Li, D., 2020. WasNet: a neural network-based garbage collection management
system. IEEE Access 8, 103984-103993. https://doi.org/10.1109/
ACCESS.2020.2999678.

Zhang, Q., Yang, Q., Zhang, X., Bao, Q., Su, J., Liu, X., 2021. Waste image classification
based on transfer learning and convolutional neural network. Waste Manag. 135,
150-157. https://doi.org/10.1016/j.wasman.2021.08.038.

Zhang, Q., Yang, Q., Zhang, X., Wei, W., Bao, Q., Su, J., Liu, X., 2022. A multi-label waste
detection model based on transfer learning. Resour. Conserv. Recycl. 181, 106235.
https://doi.org/10.1016/j.resconrec.2022.106235.

Zhang, Q., Zhang, X., Mu, X., Wang, Z., Tian, R., Wang, X., Liu, X., 2021. Recyclable
waste image recognition based on deep learning. Resour. Conserv. Recycl. 171,
105636. https://doi.org/10.1016/j.resconrec.2021.105636.

Zhang, S., Chen, Y., Yang, Z., Gong, H., 2021. Computer vision based two-stage waste
recognition-retrieval algorithm for waste classification. Resour. Conserv. Recycl.
169, 105543. https://doi.org/10.1016/j.resconrec.2021.105543.

Zhang, Y.-L., Kim, Y.-C., Cha, G.-W., 2023. Assessment of deep learning-based image
analysis for disaster waste identification. J. Clean. Prod. 428, 139351. https://doi.
org/10.1016/j.jclepro.2023.139351.

Zhao, C., Shuai, R., Ma, L., Liu, W., Hu, D., Wu, M., 2021. Dermoscopy image
classification based on StyleGAN and DenseNet201. IEEE Access 9, 8659-8679.
https://doi.org/10.1109/ACCESS.2021.3049600.


https://doi.org/10.1016/j.eswa.2023.120528
https://doi.org/10.1016/j.eswa.2022.118576
https://doi.org/10.1016/j.eswa.2022.118576
https://doi.org/10.1109/ACCESS.2021.3125791
https://doi.org/10.1109/ACCESS.2021.3125791
https://doi.org/10.1016/j.eswa.2023.119557
https://doi.org/10.1016/j.wasman.2020.04.041
https://doi.org/10.1016/j.wasman.2020.04.041
https://doi.org/10.1016/j.wasman.2014.09.030
https://doi.org/10.1016/j.wasman.2014.09.030
https://doi.org/10.1016/j.resconrec.2023.107274
https://doi.org/10.1016/j.asoc.2023.110273
https://doi.org/10.1016/j.scs.2017.05.008
https://doi.org/10.32604/cmc.2020.012008
https://doi.org/10.32604/cmc.2020.012008
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref58
http://refhub.elsevier.com/S0952-1976(25)02553-9/sref58
https://doi.org/10.1016/j.wasman.2020.05.031
https://doi.org/10.1016/j.jclepro.2023.139771
https://doi.org/10.1016/j.jclepro.2023.139771
https://doi.org/10.1109/ACCESS.2020.2999678
https://doi.org/10.1109/ACCESS.2020.2999678
https://doi.org/10.1016/j.wasman.2021.08.038
https://doi.org/10.1016/j.resconrec.2022.106235
https://doi.org/10.1016/j.resconrec.2021.105636
https://doi.org/10.1016/j.resconrec.2021.105543
https://doi.org/10.1016/j.jclepro.2023.139351
https://doi.org/10.1016/j.jclepro.2023.139351
https://doi.org/10.1109/ACCESS.2021.3049600

	PLDs-CNN-ridge-ELM: Interpretable lightweight waste classification framework
	1 Introduction
	2 Overview of previous work
	3 Experimental design and methods
	3.1 Data overview
	3.2 Proposed framework
	3.3 Image preprocessing
	3.4 Deep learning (DL) model
	3.4.1 Feature extraction by PLDs-CNN
	3.4.2 Feature extraction by transfer learning models

	3.5 Ridge Extreme Learning Machine (Ridge-ELM) classifier
	3.6 Explainable Artificial Intelligence (XAI)
	3.7 Hyperparameter and architectural selection
	3.8 Classification experiments and performance matrices

	4 Results and discussion
	4.1 First-stage classification: analysis of four-class performance
	4.1.1 PL-CNN-ELM and PL-CNN-ridge-ELM
	4.1.2 PLDs-CNN-ELM and PLDs-CNN-ridge-ELM (proposed method)
	4.1.3 Comparative performance analysis between the proposed model and other TL models
	4.1.4 Computational time and resource comparison

	4.2 Second-stage classification: analysis of twelve-class performance
	4.2.1 PL-CNN-ELM and PL-CNN Ridge-ELM
	4.2.2 PLDs-CNN-ELM and PLDs-CNN-ridge-ELM

	4.3 Interpretability of PLDs-CNN-ridge-ELM using SHAP
	4.4 Software and hardware development
	4.4.1 Graphical user interface (GUI)
	4.4.2 Development of conveyer belt sorting mechanism
	4.4.3 Demonstration of real-time waste classification

	4.5 Discussion, limitations and future work

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References


