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A B S T R A C T

The accelerating global population growth and expanding economic activities have resulted in a notable increase 
in waste generation, necessitating accurate and efficient waste classification systems for sustainable waste 
management. This research presents a novel two-stage waste classification model leveraging a Lightweight 
Parallel Depth-wise Separable Convolutional Neural Network (PLDs-CNN), combined with a Ridge Regression 
Extreme Learning Machine (Ridge-ELM) classifier, using waste images as input. The proposed system efficiently 
classifies waste into four primary categories (hazardous, household, recyclable, and residual) in the first stage 
and further refines the classification into twelve subcategories in the second stage. Featuring a lightweight ar
chitecture of nine layers and about 1.09 million parameters, the PLDs-CNN model achieves high accuracy with 
substantially reduced computational overhead, outperforming many deeper networks. In the four-class classi
fication stage, the system achieves an average accuracy of 99 %, with precision, recall, F1-score, and receiver 
operating characteristics (ROC)-area under the curve (AUC) values of 97.25 ± 0.02 %, 96 ± 0.03 %, 96.5 ± 0.01 
%, and 99.28 %, respectively. In the twelve-class classification, the model continues to deliver superior results, 
with 96 % accuracy and equally strong precision, recall, and F1-score metrics. The system is supported by a real- 
time hardware architecture, featuring a user-centric Graphical User Interface (GUI), a webcam-enabled conveyor 
belt sorting mechanism, and a 2-axis pan-tilt system for automated waste sorting. Additionally, the model’s 
interpretability is significantly improved through the integration of Shapley Additive Explanations (SHAP), 
which provides important perspectives into the decision-making process, increasing transparency and trust
worthiness in real-world applications. The proposed framework not only surpasses conventional methods in both 
accuracy and computational efficiency but also emphasizes sustainability by facilitating cost-effective and 
scalable waste management solutions aimed at promoting recycling and resource reuse.

1. Introduction

The rapid growth of global populations and economies has led to a 
significant rise in resource consumption, resulting in a concerning in
crease in waste generation (Abuga and Raghava, 2021; Özkan et al., 

2015). Based on prior studies, it is expected that the worldwide pro
duction of solid waste will reach 2.2 billion tons annually by 2025, 
which will require a budget of $375.5 billion for waste management 
(Hoornweg and Bhada-Tata, 2012). Thirty-four percent of the world’s 
municipal solid garbage is produced by 16 % of the population in 
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developed countries (Jaunich et al., 2019). Compared to the global 
average waste of 0.74 kg per day, these countries generate almost 2.1 kg 
of waste per person on a daily basis (Jaunich et al., 2019). Waste pro
duction is anticipated to grow significantly, including in low- and 
middle-income regions such as Africa and certain areas of Asia. These 
countries produce approximately 35 % of the world’s solid waste (Kaza 
and Bhada-Tata, 2018). Unfortunately, there is no efficient and auto
mated system for waste disposal to address this ever-expanding problem 
(Li and Zhang, 2024). In cities, waste handling authorities gather waste 
materials from residential waste containers and manually sort them for 
recycling purposes or dispose of them in landfills. The United Nations 
Environment Program (UNEP) has identified this as a substantial issue 
that has negative effects on economic progress, human communities, 
and public well-being (Harris et al., 2021). The inadequate disposal of 
waste, specifically through landfills and the burning process, presents a 
substantial danger to urban ecosystems and the welfare of inhabitants 
(Wang et al., 2020). The harmful effects of unlimited waste production, 
such as the buildup of dangerous compounds and widespread plastic 
pollution, emphasize the need for scientific solutions in waste manage
ment. Recycling and composting are the primary methods of sustainable 
waste management. However, less than 19 % of waste is reused through 
recycling and composting globally, while approximately 40 % of waste 
ends up in landfills (Kaza et al., 2018). A thorough knowledge of waste 
classification is essential for the implementation of an efficient waste 
control system, as there exists numerous distinct types of waste. 
Therefore, many countries have initiated research on intelligent garbage 
classification and recycling technologies (Carrera et al., 2022; Cheah 
et al., 2022; Jiang et al., 2023; Kang et al., 2020; Lu et al., 2020).

The amount of waste produced in Bangladesh increased from 
1100000 tons in 1970–14778497 tons in 2012, indicating a 134300 ton 
annual increase (Ashikuzzaman and Howlader, 2020; Kaza et al., 2018; 
Shams et al., 2017). According to recent data, the average amount of 
solid waste produced per person in different areas of Bangladesh varies 
between 0.2 and 0.56 kg (Ahsan et al., 2014). Dhaka, the capital city, 
generated an average of 6448.37 tons of solid waste each day from 2016 
to 2017 (Jerin et al., 2022). Although the City Corporation collects 
approximately 50 % of Dhaka’s waste, a substantial portion—estimated 
between 40 % and 60 %—remains uncollected and is subject to 
improper disposal practices. This uncollected waste consists of approx
imately 80 % organic material (Ahsan et al., 2014). By 2025, the urban 
population is expected to reach 78.44 million, and the rate of trash 
production is estimated to increase to 220 kg per capita per year (Habib 
et al., 2021). The government has initiated the implementation of the 
National 3R (Reduce, Reuse, and Recycle) Strategy to solve the waste 
management problem (Haque and Razy, 2021). Another organization, 
“Waste Concern”, is a social business enterprise that has emerged to 
address the issue of municipal garbage accumulation by collaborating 
with families. The United Nations International Children’s Emergency 
Fund (UNICEF) has also implemented recycling programs and waste 
management initiatives together with city corporations and municipal
ities. Nevertheless, there are currently insufficient efforts to improve 
these standards. Factors such as land scarcity and insufficient technical 
skills have further worsened the problem of dealing with large amounts 
of garbage. To effectively address the escalating waste management 
challenges in Bangladesh, the integration of advanced technologies such 
as automated sorting systems, sensor-based methods, and artificial in
telligence (AI) presents a promising solution to improve waste separa
tion and recycling accuracy. Bangladesh’s significant 
constraints—characterized by limited financial and technical resources 
alongside inadequate waste sorting infrastructure—make it a critical 
context for assessing the feasibility and impact of cost-effective, 
AI-driven waste classification systems. Selecting Bangladesh as a case 
study not only reflects the urgent need for innovative waste manage
ment strategies within the country but also allows the findings to be 
generalized to other low- and middle-income nations facing similar 
environmental and infrastructural challenges.

As previously indicated, in most cases, manual waste sorting pro
cesses are still employed by authorities. However, in smart cities, the 
development of automated circular economy (CE) systems for waste 
management is essential to maintain sustainability. Automatic waste 
classification systems provide efficient and accurate waste categoriza
tion, significantly reducing manual labor and processing time. By inte
grating AI, this system can effectively recover valuable resources for 
recycling and reuse and minimize environmental impact while offering 
long-term cost savings and scalability. The advancement of AI has 
introduced novel concepts to this domain. Several researchers have 
successfully employed Convolutional Neural Networks (CNN) for pre
cise waste categorization (Lin et al., 2022; Y.-L. Zhang et al., 2023; Lin 
et al., 2022b), resulting in a range of notable accomplishments. For 
waste detection and classification, some studies have employed You 
Only Look Once (YOLO)-based models (Y. Chen et al., 2023; Mao et al., 
2022; Qiao et al., 2023; J. Yang et al., 2023; Q. Zhang et al., 2022; Qiao 
et al., 2023) Some also employed Transfer Learning (TL) based models 
(Mao et al., 2021; Q. Zhang et al., 2021), which have shown high ac
curacy performance, ranging from 87 % to 96 %. Nevertheless, these TL 
models possess higher parameters (1.2–1.3 million) (Z. Chen et al., 
2022; Feng et al., 2022), and the process of determining them necessi
tates a substantial number of floating-point operations (Gaba et al., 
2022). Additionally, majority of the current research used datasets with 
limited classes (3–6 classes) and a limited number of images (fewer than 
5000 images). As a result, implementing real-world applications based 
on these models is a challenging task. Hence, researchers have begun 
investigating computationally efficient models for waste classification, 
specifically designed for deployment on resource-limited platforms such 
as embedded devices. Nevertheless, more research on lightweight waste 
classification models is needed. The existing lightweight models have 
shown lower classification accuracy (83–95 %) on large datasets, which 
can lead to the misclassification of waste elements. Additionally, many 
of the existing studies did not explore the potential for real-life imple
mentation of the proposed models (Z. Chen et al., 2022; Feng et al., 
2022; Gaba et al., 2022; Mao et al., 2021; Z. Yang and Li, 2020; Q. Zhang 
et al., 2021). To overcome these challenges, it is imperative to imple
ment a lightweight model with minimal parameters, layers, and size.

The present study proposed a two-stage parallel lightweight depth 
wise separable CNN (PLDs-CNN) model. The motivation behind this 
study is that the existing manual waste classification system is not 
capable of rapidly categorizing waste materials and directing them to
ward the recycling process automatically. Hence, there is a need for an 
AI-based system that can perform this task accurately and rapidly. The 
PLDs-CNN feature extractor, which integrates depth-wise separable 
convolution layers, is both lightweight and demonstrates high perfor
mance with low computational requirements. All these characteristics 
make the proposed model faster and more accurate, which can improve 
the productivity of waste identification. The implementation of SHAP 
(Shapley Additive Explanations) and a laboratory-scale hardware sys
tem validates the application of the proposed model in real-world set
tings. The major contributions of this paper are outlined as follows. 

1. Efficient Parallel Lightweight CNN Architecture (PLDs-CNN): A 
novel two-stage parallel CNN architecture has been designed using 
depthwise separable convolutions and multiscale kernels to capture 
diverse spatial features while significantly reducing parameter count 
and computational complexity. This allows for fast, low-resource 
inference, making it well-suited for real-time applications, particu
larly on resource-constrained edge devices.

2. Enhanced Classifier Integration via Modified Ridge-ELM: The 
traditional softmax classifier is replaced with a Ridge-ELM, which 
provides significantly faster training (no backpropagation), better 
generalization, and superior multiclass classification performance. 
Ridge regularization improves stability and robustness in learning, 
especially when dealing with complex or high-dimensional features.
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3. Interpretability with SHAP in Real-Time: For the first time in 
waste classification, the model integrates Shapley Additive Expla
nations (SHAP) to offer real-time, pixel-level interpretability. This 
contributes to transparency throughout the decision-making phase 
and increases trust in practical deployment settings.

4. Hardware Implementation with GUI for Real-World Validation: 
The proposed model has been deployed on hardware with a real-time 
graphical user interface, validating its operational usability. Despite 
being a lightweight model, it demonstrates high accuracy and fast 
response, confirming its practical viability.

Section 2 of this research presents an in-depth overview of the prior 
relevant studies conducted on this topic. Section 3 presents the proposed 
methodology, which includes a comprehensive framework, a descrip
tion of the dataset, feature extraction methods, and performance met
rics. Section 4 provides a detailed presentation of the comprehensive 
classification results, along with a detailed explanation of the inter
pretability of the proposed framework using SHAP and hardware- 
software structure for real-life implementation. Concluding remarks 
are detailed in Section 5.

2. Overview of previous work

To date, researchers have proposed several lightweight and deep 
learning (DL) models for automated classification of wastes (Q. Zhang 
et al., 2021; S. Zhang et al., 2021). Mao et al., developed an enhanced 
DenseNet121 model by applying a genetic algorithm to optimize its fully 
connected layer. Their work utilized the TrashNet dataset, which in
cludes 2527 images categorized into six classes (Mao et al., 2021). To 
improve classification accuracy, data augmentation techniques were 
applied to expand the training set. The resulting model achieved an 
impressive accuracy of 99.60 %, with a training duration of 5542 s. 
Another method for waste classification was proposed by Zhang et al. 
(Q. Zhang et al., 2021), who employed a DenseNet169 model with 
transfer learning. This study used the NWNU-TRASH dataset, consisting 
of 2528 images divided into five classes, with a 70/30 training-testing 
split. Their model attained an accuracy exceeding 82 %, out
performing multiple previous approaches. Nevertheless, this method 
faced limitations due to the relatively small dataset, imbalanced class 
distribution, and the model’s high complexity from a large parameter 
count, which posed challenges for practical deployment. Khan et al. 
(2022) proposed another waste classification approach, called recycling 
waste classification using emperor penguin optimizer with DL 
(RWC-EPODL), which utilizes the emperor penguin optimizer model to 
generate bioenergy from recyclable garbage. This model employed 
AX-RetinaNet for object identification and used a stacked auto-encoder 
(SAE) for classification. The study achieved a success rate of 98.96 % on 
Kaggle’s garbage categorization dataset, which comprises 750 images 
categorized into six distinct classes. Lin et al. (Lin et al., 2022) employed 
different Residual Neural Network (ResNet) architectures derived from 
TL models to classify waste on the TrashNet dataset. Although they 
achieved 88.8 % accuracy, the extensive parameter count negatively 
impacts the model’s performance. On average, it took approximately 
700 s to train for one epoch.

Using modern technologies, some researchers have created intelli
gent waste categorization tools that have developed automated and 
effective garbage classification systems in real life. These solutions are 
intended to improve garbage management procedures using advanced 
algorithms to achieve higher classification accuracy and promote a 
sustainable environment. Chen et al. (Z. Chen et al., 2022) proposed a 
garbage classification network (GCNet) based on improved Shuf
fleNetv2. By employing the parallel mixed attention mechanism 
(PMAM), incorporating novel activation functions Rectified linear unit 
(FReLU), and leveraging TL, they enhanced the model’s performance 
and achieved an exceptional accuracy of 97.9 % on their custom dataset. 
The dataset comprises 4256 photos, which were divided into 14 distinct 

subcategories. The proposed model can categorize waste into four 
separate groups: recyclable waste, wet waste, hazardous waste, and dry 
waste. The categorization process required 0.88 s, utilizing 1.3 million 
parameters. Similarly, Fan et al. (2023) designed an intelligent garbage 
bin that separates regular household waste into four categories. The 
system consists of an automated image classification system that utilizes 
a Raspberry Pi unit, a digital camera, and three rotating plates. The 
image classification technique used the EfficientNetB2 model in com
bination with the PMAM to obtain high accuracy. Additionally, re
searchers have proposed a background noise removal (BNR) approach to 
address the impact of environmental factors on garbage recognition. 
Their results showed a classification accuracy of 93.38 % on the Huawei 
Cloud Garbage Classification dataset. Feng et al. (2022) employed the 
Generalized Error Correction Model (GECM)-EfficientNet model for 
effective waste classification to create an intelligent waste bin and 
achieved high accuracy (94.54 % and 94.23 %) on self-built and 
TrashNet datasets with 1.23 million parameters. Based on EfficientNet, 
GECM-EfficientNet uses TL, efficient channel attention (ECA) and co
ordinate attention (CA) modules and streamlining techniques to achieve 
better accuracy and real-time performance. The waste bin had a camera 
and servos for sorting waste into fan-shaped bins. It was operated by a 
Raspberry Pi 4B.

Jin et al. (2023) designed a device utilizing DL techniques to facili
tate sustainable garbage recycling. Their model utilized MobileNetV2 as 
the main framework, incorporating one convolutional block attention 
module (CBAM), one principal component analysis (PCA) module, and 
one fully connected classification layer. The proposed approach signif
icantly decreases the time required for garbage identification by 170 ms 
compared to the conventional MobileNetV2 network and effectively 
categorizes garbage into four distinct categories. Using the Huawei 
Cloud Garbage dataset, which includes 14683 pictures, the recom
mended approach achieved 90.7 % accuracy. Similarly, Zhang et al. (S. 
Zhang et al., 2021) developed an automated waste sorting device for 
categorizing domestic waste. The authors presented a two-step trash 
recognition-retrieval technique adopting the Visual Geometry Group 
(VGG16) model. A dataset including 1040 waste images was created, 
and various data augmentation technique was employed. To mitigate 
the issue of overfitting, they utilized the ten-fold cross-validation tech
nique. The model categorized 13 different forms of waste into four 
distinct categories. According to the experimental results, the model’s 
average accuracy was 94.71 %.

Abdulkareem et al. (2024) introduced a two-stage intelligent waste 
decision framework using DL models and Multi-Criteria Decision Mak
ing (MCDM). This work introduced a Multi-Fused Decision Matrix 
(MFDM) to evaluate and select optimal deep Waste Sorting Models 
(WSMs) based on different fusion rules by experimenting on a dataset of 
1451 waste pictures across four classes. The results indicated that the 
hybrid Inception-Xception model works better than the other models, 
while the ResNet50-GoogleNet-Inception model achieved an 
outstanding accuracy of 98 %. Another study (Mohammed et al., 2023) 
presented a novel automated waste sorting and recycling classification 
system leveraging an Artificial Neural Network (ANN) and Feature 
Fusion (including color, Local Binary Patterns (LBP), Histogram of 
Oriented Gradients (HOG), and Uniform LBP). With an impressive ac
curacy of 91.7 %, the model effectively classified test waste images into 
three classes. Similarly, Kumar et al., introduced a system for auto
matically sorting and classifying COVID-19-related medical waste from 
other waste materials using an Artificial Neural Network (ANN) and 
Feature Fusion. Al-Mashhadani et al. (Al-Mashhadani, 2023) assessed 
the performance of ResNet50, GoogleNet, InceptionV3, and Xception DL 
models in waste classification and achieved excellent accuracy and 
precision. They utilized a dataset consisting of 1451 photos that were 
divided into four waste categories. ResNet50 achieved a classification 
accuracy and precision of 95 %, while InceptionV3 achieved a perfect 
classification result of 100 % in all categories. Another study (Rahman 
et al., 2023) discussed the difficulties related to the management of solid 
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waste in metropolitan areas because of substantial population growth.
According to the state-of-the-art models, most researchers have 

employed DL and TL models with high numbers of model parameters 
and layers. For instance, Feng et al. (2022) utilized GECM-EfficientNet 
with 1.23 million parameters, whereas the authors in (Z. Chen et al., 
2022) employed GCNet with 1.3 million parameters. Al-Mashhadani 
et al. (Al-Mashhadani, 2023) employed ResNet50, GoogleNet, Incep
tionV3, and Xception with 50, 22, 48 and 71 layers, respectively. Thus, 
training these models on GPUs necessitates substantial time investment. 
The proposed method in (Mao et al., 2021) required 5542 s for training 
purposes. Similarly, in (Lin et al., 2022), the authors utilized various 
ResNet architectures that required 7000 s for training.

Undoubtedly, implementing these algorithms in real life is chal
lenging. To develop a practical, cost-effective, intelligent waste sorting 
system, it is necessary to design a computationally efficient model 
having a reduced number of parameters and layers, enabling shorter 

training times compared to existing models. Again, the literature shows 
that certain studies were able to achieve higher classification accuracy 
(Mao et al., 2021). However, they used a dataset with a small number of 
classes and images to demonstrate their proposed model. Abdulkareem 
et al. (2024) utilized a dataset that consists of only 1451 images of four 
distinct classes. Similarly, in (Mohammed et al., 2023), the authors 
evaluated their proposed models’ performances on a smaller dataset, 
which contains 2400 images from three classes. Although some datasets 
in the literature have 13, 14 or 18 subclasses, these datasets are not 
publicly accessible (Chen et al., 2022; Feng et al., 2022; S. Zhang et al., 
2021). Furthermore, no studies have demonstrated the use of real-time 
explainable AI, such as SHAP or LIME, emphasizing the impact of in
dividual features. To incorporate recent studies and better highlight 
existing research gaps, an updated comparative analysis of 
state-of-the-art waste classification models is presented in Table 1. This 
table outlines the model architectures, datasets used, achieved results, 
and limitations of various prominent works.

3. Experimental design and methods

3.1. Data overview

The performance of learning models is critically influenced by the 
quality of the dataset employed. TrashNet, a widely used dataset for 
garbage classification research, has a limited six-category taxonomy. Jin 
et al. (2023) used the Huawei Cloud Garbage Classification dataset in 
their research on garbage identification and classification; however, this 
dataset is no longer available. The dataset utilized in this study was 
obtained from Kaggle’s Garbage Classification dataset (Mostafa 
Mohamed, 2021). The database comprises 15150 images representing 
twelve distinct categories of domestic waste. All the images of the 
dataset were thoroughly classified into four groups according to char
acteristics such as origin, composition, and perceived hazard levels. 
Afterwards, the images were additionally categorized into twelve sub
classes. Table 2 and Fig. 1 present a detailed overview of the dataset 
along with representative sample images.

Table 1 
Literature review with research gaps.

Ref. Model Dataset Result Limitation

Mao et al. 
(2021)

Optimized 
DenseNet121 
with Genetic 
Algorithm

TrashNet 
(2527 
images, 6 
classes)

99.60 % 
accuracy

Small dataset, 
large number 
of parameters, 
limited 
scalability

Q. Zhang et al. 
(2021)

DenseNet169 NWNU- 
TRASH 
(2528 
images, 5 
classes)

>82 % 
accuracy

Small dataset, 
high model 
complexity

Khan et al. 
(2022)

AX-RetinaNet 
+ Stacked 
Autoencoder 
(RWC-EPODL)

Kaggle 
Garbage 
Dataset 
(750 
images, 6 
classes)

98.96 % 
accuracy

Limited 
dataset size, no 
explainability

Lin et al. (2022) ResNet-based 
TL.

TrashNet 
(2527 
images, 6 
classes)

88.8 % 
accuracy

Large 
parameter 
count, ~700s/ 
epoch training

Z. Chen et al. 
(2022)

GCNet 
(Improved 
ShuffleNetv2 +
PMAM +
FReLU)

Custom 
(4256 
images, 14 
subclasses, 
4 main 
classes)

97.9 % 
accuracy

Not publicly 
available 
dataset, lacks 
explainability

Fan et al. 
(2023)

EfficientNetB2 
+ PMAM

Huawei 
Cloud 
Garbage 
Dataset 
(14802 
images)

93.38 % 
accuracy

Large model 
(7.8M params)

S. Zhang et al. 
(2021)

VGG16 + Two- 
step Retrieval 
+ Cross- 
validation

Custom 
(1040 
images, 13 
subclasses)

94.71 % 
accuracy

Small dataset, 
prone to 
overfitting 
despite 
augmentation

Abdulkareem 
et al. (2024)

Inception- 
Xception +
MCDM +
MFDM

Custom 
(1451 
images, 4 
classes)

98 % 
accuracy

Limited 
dataset, no 
real-time 
capability, no 
explainability

Mohammed 
et al. (2023)

ANN + Feature 
Fusion (LBP, 
HOG, color)

Custom (3 
classes)

91.7 % 
accuracy

Limited to 3 
classes, lacks 
scalability

Kumar et al. 
(2021)

ANN + Feature 
Fusion for 
COVID Waste

Custom Not 
specified

Designed for 
niche waste 
category 
(medical) only

Al-Mashhadani 
(2023)

ResNet50, 
InceptionV3, 
etc.

Custom 
(1451 
images, 4 
classes)

Up to 
100 % 
accuracy

Extremely 
deep 
networks, not 
lightweight, 
no XAI

Table 2 
Overall datasets on both four classes and twelve subclasses.

Testing 
phase

Trash Type Training Testing Validation

First Stage: 
4 classes

Hazardous Waste (0)a 766 94 85
Household Food Waste (1) 797 99 89
Recyclable Waste (2) 10439 1289 1160
Residual Waste (3) 564 70 63
Total 12566 1552 1397

Second 
Stage: 12 
subclasses

Battery (0) 
a

Hazardous 
Waste

766 94 85

Expired 
Food (1)

Household 
Food Waste

797 99 89

Brown 
Glass (2)

Recyclable 
Waste

491 61 55

Cardboard 
(3)

722 89 80

Clothes (4) 4313 533 479
Green Glass 
(5)

509 63 57

Metal (6) 623 77 69
Paper (7) 851 105 94
Plastic (8) 701 86 78
Shoes (9) 1601 198 178
White Glass 
(10)

628 77 70

Trash (11) Residual 
Waste

564 70 63

Total 12566 1552 1397

a Here, 0–3 and 0–11 indicate class numbers for four-class and twelve-class in 
the first and second stage classifications, respectively.
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3.2. Proposed framework

Fig. 2 illustrates the key phases of the deep learning (DL) framework 
introduced in this study, which is divided into two distinct stages to 
enhance classification accuracy. Preprocessing is applied to the dataset 
initially, which is then divided into training, testing, and validation sets 
comprising 80 %, 10 %, and 10 % images, respectively. In the first stage, 
two advanced neural network architectures—PLDs-CNN and parallel 
CNN (PL-CNN)—are employed to extract essential image features. For 
comparative analysis between the proposed models and leading transfer 
learning (TL) models, various TL-based feature extractors are also 

utilized. After standardizing the data, two classifiers, pseudo-Extreme 
Learning Machine (ELM) and Ridge-ELM, are developed to assess the 
class identification performance. The SHAP (SHapley Additive exPla
nations) approach is used to explain the output generation process of the 
models. During the final step of the first stage, waste materials are sys
tematically classified into four key categories: hazardous waste, house
hold food waste, recyclable waste, and residual waste.

At the second stage, the classification is performed again, this time 
considering broader class categories. After splitting the dataset into 
training, testing, and validation subsets, the same PL-CNN and PLDs- 
CNN models are employed separately for feature extraction. ELM and 

Fig. 1. Garbage Classification dataset includes 4 classes: (1) Hazardous Waste, (2) Household Food Waste, (3) Recyclable Waste, (4) Residual Waste; and 12 sub- 
classes: (a) Battery, (b) Expired Food, (c) Brown Glass, (d) Cardboard, (e) Clothes, (f) Green Glass, (g) Metal, (h) Paper, (i) Plastic, (j) Shoes, (k) White Glass, (l) 
Trash (MOSTAFA MOHAMED, 2021). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Overview of the proposed two-stage framework for multiclass waste image classification.
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Ridge-ELM classifiers are then applied to classify the waste materials 
into twelve more specific subcategories. Once again, SHAP is utilized to 
enhance the interpretability of the second-stage classification results. 
Furthermore, a comprehensive hardware structure is designed, 
including a user-friendly Graphical User Interface (GUI) for rapid waste 
classification, a webcam-based conveyor belt sorting mechanism, and a 
2-axis pan-tilt system for autonomous waste sorting.

The implementation of a two-stage classification model is motivated 
by the inherent complexities encountered in real-world industrial waste 
sorting scenarios. The diversity in physical attributes, material constit
uents, and recyclability among waste materials poses challenges for 
effective classification and processing. This variability makes it difficult 
for a single-stage, end-to-end classification model to achieve both high 

accuracy and robustness across a wide range of categories. By intro
ducing a two-stage approach, it can be more effectively managed this 
complexity and progressively refine the classification task.

In the first stage, the model broadly classifies waste materials into 
four key categories: Hazardous Waste, Household Food Waste, Recy
clable Waste, and Residual Waste. This initial categorization reduces the 
complexity of the second stage, making it easier for the model to focus 
on finer distinctions. The second stage then classifies these broadly 
categorized waste items into twelve specific subcategories, facilitating 
more precise and detailed waste categorization. This hierarchical 
structure reduces misclassification rates while improving overall accu
racy by narrowing the focus at each stage.

While a two-stage classification system may intuitively seem to 

Fig. 3. Proposed PLDs-CNN-Ridge-ELM architecture.

Fig. 4. Structural overview of the convolution block.
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increase computational time compared to a single-stage approach, this is 
not necessarily the case in this paper implementation. Both stages use 
the same model—PLDs-CNN-Ridge-ELM—without introducing addi
tional resource demands. Therefore, the computational overhead is only 
marginally increased, primarily due to the division of the task into two 
levels of classification. This minimal increase in computational time 
does not significantly impact the efficiency of the system in industrial 
settings where high throughput and rapid classification are essential. 
Moreover, the use of lightweight feature extractor such as PLDs-CNN 
and classifier Ridge-ELM helps ensure that the system remains scalable 
and efficient even in large-scale operations.

3.3. Image preprocessing

The image preprocessing phase involves two essential procedures: 
normalization (Nahiduzzaman et al., 2023) and image down sampling. 
The operations aim to resize all input images uniformly to 124 × 124 
pixels. These techniques are essential for enhancing model efficiency 
and extracting features.

3.4. Deep learning (DL) model

Current literature predominantly focuses on utilizing large-scale 
models for waste image classification, while comparatively limited 
attention has been directed toward the design of lightweight 

architectures and their applicability in practical, real-time waste sorting 
environments. In response to these challenges, a new PLDs-CNN feature 
extractor was developed and compared with state-of-the-art TL models. 
This customized design incorporates a reduction in model parameters, 
layers, and total size, requiring less computational resources. The 
following sections contain an in-depth explanation of the PLDs-CNN, 
along with brief insights into the TL models. Furthermore, the ratio
nale for PLDs-CNN feature extractor has been presented in the results 
and discussion.

3.4.1. Feature extraction by PLDs-CNN
The primary challenge when building a CNN model is to determine 

the optimal layer set up. Limited parameters and layers may restrict the 
model’s ability to capture unique features, imposing restrictions on its 
performance. On the other hand, an excessive number of parameters and 
layers might cause overfitting, which leads to longer processing times 
and higher computational requirements. Therefore, it is essential to 
achieve the optimal balance to ensure effective feature extraction with 
successful implementation. The main objective of this study was to 
create a CNN model that can extract key features with the least number 
of parameters and layers.

Considering all relevant aspects, a lightweight PLDs-CNN model was 
designed to efficiently extract distinctive features while minimizing 
resource consumption. The overall structure of the proposed PLDs-CNN 
is shown in Fig. 3. To enhance the usability and optimize the configu
ration, a refined trial-and-error strategy was adopted. After conducting 
several experiments with different layer arrangements, the final archi
tecture comprises nine convolution layers and two fully connected 
layers, providing a balanced trade-off between high classification ac
curacy and reduced computational complexity—measured in terms of 
the number of parameters, layer depth, model size, and inference time. 
To enable more effective feature extraction, the architecture in
corporates four parallel convolution layers rather than a single 
sequential one, as illustrated in Fig. 4. Although employing four 
consecutive convolution layers would typically increase the model’s 
structural complexity, this issue was mitigated by executing them in 
parallel. The selection and configuration of these layers were deter
mined through iterative empirical evaluation. Collectively, these layers 
employ 256 convolution kernels, with filter sizes of 9 × 9, 7 × 7, 5 × 5, 
and 3 × 3, respectively. The use of larger kernel sizes, such as 9 × 9, is 
supported by prior studies (Krizhevsky et al., 2017; Nahiduzzaman et al., 
2023a–c), which indicate their effectiveness in enhancing classification 
performance. Different kernel sizes generate diverse feature represen
tations; thus, integrating a wide range of filter dimensions was crucial 
for achieving superior performance. To preserve spatial information, 
especially from the boundary regions of the input images, a consistent 
padding size was applied to the first five convolution layers. The 
resulting feature maps from the parallel paths were then carefully 
aggregated and forwarded to the next convolution layer to ensure ac
curate and lossless information flow (Nahiduzzaman et al., 2023; 
Nahiduzzaman et al., 2024; Nahiduzzaman et al., 2021b).

To enhance the performance of the CNN, depthwise separable con
volutions (DSC) were utilized. This technique restructures the convo
lution process by first applying a spatial (depthwise) filter to each input 
channel individually, followed by a pointwise convolution to combine 
the outputs across channels. A compressed kernel is utilized on a specific 
portion of the DSC to process an infusion feature map, resulting in a new 
feature map output with the same number of channels. During pointwise 
convolution, a 1 × 1 convolutional kernel is applied independently to 
each channel to create a new feature map with fewer channels. This 
emphasizes the utmost significance of DSC. This fine-tuning of the pa
rameters leads directly to a notable decrease in computational 
complexity. During the final phase, three convolutional layers (CLs) 
were incorporated, and N and max pooling with a kernel size of 2 × 2 
were employed. The CL filters had 128, 64, 32, and 16 values, respec
tively. Each filter was set up with three 3 × 3 kernels and designed to use 

Table 3 
Lightweight parallel depthwise separable convolutional neural network (PLDs- 
CNN) model summary.

Network Structure by Processing Blocks

Processing Block Layer Components Feature 
Dimensions

Trainable 
Units

Input Stage Input Layer 124 × 124 × 3 0
Functional Model 124 × 124 ×

1024
4588

Primary Feature 
Extraction

Depthwise Separable 
Convolution

122 × 122 ×
128

140,416

Normalization +
Activation

122 × 122 ×
128

512

Feature Pooling 61 × 61 × 128 0
Secondary Feature 

Extraction
Depthwise Separable 
Convolution

59 × 59 × 64 9408

Normalization +
Activation

59 × 59 × 64 256

Feature Pooling 29 × 29 × 64 0
Tertiary Feature 

Extraction
Depthwise Separable 
Convolution

27 × 27 × 32 2656

Normalization +
Activation

27 × 27 × 32 128

Feature Pooling 13 × 13 × 32 0
Final Feature 

Extraction
Convolutional Layer 11 × 11 × 16 816
Normalization +
Activation

11 × 11 × 16 64

Feature Pooling 5 × 5 × 16 0
Regularization 
(Dropout)

5 × 5 × 16 0

Dimension 
Reduction

Flatten Operation 400 0

Classification Head Dense Neural Network 1024 410,624
Normalization 1024 4096
Regularization 
(Dropout)

1024 0

Output Dense Layer 512 524,800
Parameter Distribution
Network Section Parameter Count Percentage
Feature Extraction 

Layers
158,844 14.5 %

Classification Layers 939,520 85.5 %
Total Parameters 1,098,364 100 %
Trainable Parameters 1,095,836 99.8 %
Non-Trainable 

Parameters
2528 0.2 %
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valid padding. Batch Normalization (BN) is included to enhance the 
model’s effectiveness. This technique efficiently restores the mean and 
standard deviation of the inputs for each layer, resulting in improved 
speed and stability during model execution. All convolutional layers 
(CLs) employed the Rectified Linear Unit (ReLU) activation function. 
The separation in CL and Parallelization characteristics of the PLDs-CNN 
model reduce the computational cost and the number of parameters 
compared to traditional CL in a normal CNN. A reduction in the number 
of parameters can result in faster training times and lower memory 
requirements.

To mitigate the risk of overfitting and enhance training efficiency, 
dropout regularization was applied in conjunction with two fully con
nected (FC) layers. During each training cycle, 50 % of the neurons were 
randomly disabled, encouraging generalization and facilitating faster 
convergence. In the final FC layer, 512 highly informative features were 
extracted, which contributed to boosting overall classification accuracy. 
Instead of the conventional SoftMax function, the model employed a 
Ridge-ELM classifier, aiming to further improve discriminative capa
bility. The training process was guided by a loss function derived from 
the sparse categorical cross-entropy formulation, ensuring robustness in 
multi-class scenarios. An ADAM optimizer with a batch size of 32 was 
selected to update the model parameters. The learning rate, experi
mentally determined through iterative tuning, was fixed at 0.001, and 
the training was conducted over 200 epochs. A comprehensive summary 
of the model’s architecture and parameters is presented in Table 3.

3.4.2. Feature extraction by transfer learning models
Transfer learning (TL) models such as DenseNet201 (Zhao et al., 

2021), EfficientNetB6 (Tan and Le, 2019), InceptionResNetV2 (Bhatia 
et al., 2019), MobileNetV3Small (Maheta and Manisha, 2023), 
ResNet152V2 (He et al., 2015), VGG16 ((Sudha and Ganeshbabu, 2020), 
and Xception (Chollet, 2017) have the ability to improve the classifi
cation of trash images across many categories. Due to their extensive 
pretraining on large datasets, these models exhibit high effectiveness in 
extracting significant features from images. These models can efficiently 
capture intricate patterns and precise information associated with trash 
images by being fine-tuned on a limited amount of data. The pretrained 
models were trained using over 14 million classifications from the 
ImageNet dataset, spanning approximately 1000 categories. The selec
tion of these specific TL models is grounded in prior literature, where 
these architectures have been repeatedly demonstrated as 
state-of-the-art or highly competitive for waste or garbage classification 
tasks (see Table 1). These models represent a diverse set of architectures, 
ranging from lightweight to deep networks, providing a comprehensive 

benchmark. Their consistent strong performance, balanced complexity, 
and widespread adoption make them suitable and relevant baselines. 
Furthermore, their extensive pretraining on large-scale datasets such as 
ImageNet equips them with robust feature extraction capabilities, which 
is crucial for effective transfer learning in the domain of trash image 
classification. In this study, the pretrained TL models were retrained by 
fine-tuning their pretrained weights on the Garbage Classification 
dataset. To achieve improved classification performance, integration of 
the proposed Ridge-ELM classifier into the TL model training pipeline 
was implemented. Subsequently, the models underwent evaluation 
using the same dataset to determine their predictive capabilities. On the 
other hand, the novel PLDs-CNN-Ridge-ELM model was entirely devel
oped and trained from the ground up, without relying on any pretrained 
weights, and was subjected to validation and performance testing using 
the garbage classification dataset. A detailed comparison between the 
proposed approach and the TL-based models was carried out, empha
sizing classification accuracy and efficiency in computational resource 
usage. This evaluation considered multiple factors, including predictive 
performance, number of model parameters, architectural depth, and the 
durations required for both training and testing phases. Once these 
models were initialized, their final layers were adjusted by adding two 
fully connected (FC) layers with 1024 and 512 neurons, respectively. 
Fig. 5 provides a detailed illustration of the transfer learning architec
ture combined with the Ridge-ELM classifier.

Several state-of-the-art CNN architectures have demonstrated effec
tiveness across diverse computer vision tasks. DenseNet (Zhao et al., 
2021) introduces dense connectivity, where each layer receives input 
from all preceding layers, promoting feature reuse and efficient gradient 
flow; its variants, such as DenseNet-121, -169, and − 201, vary in depth. 
EfficientNetB6 (Tan and Le, 2019), part of the EfficientNet family, em
ploys compound scaling to uniformly balance network depth, width, and 
resolution, achieving strong performance with approximately 87 million 
parameters. InceptionResNetV2 (Bhatia et al., 2019) integrates incep
tion modules and residual connections to enable efficient and robust 
feature extraction. In contrast, MobileNetV3Small (Maheta and Mani
sha, 2023) is optimized for resource-constrained environments, offering 
a favorable trade-off between model size, speed, and accuracy. The VGG 
network (Sudha and Ganeshbabu, 2020) follows a straightforward ar
chitecture comprising stacked convolutional layers with ReLU activa
tion and max pooling, culminating in fully connected layers and a 
SoftMax classifier. ResNet152V2 (He et al., 2015) leverages residual 
learning through shortcut connections to facilitate deep network 
training and consists of roughly 60 million parameters. Lastly, Xception 
(Chollet, 2017) enhances the Inception architecture by adopting 

Fig. 5. The transfer learning (TL) architectures with Ridge-ELM classifier for classifying waste images.
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depthwise separable convolutions, significantly reducing computational 
cost while maintaining high accuracy.

3.5. Ridge Extreme Learning Machine (Ridge-ELM) classifier

The Ridge Extreme Learning Machine (ELM) is utilized to categorize 
waste materials into various classes, collecting features from the dense 
layer of the PLDs-CNN model. The ELM, developed by Huang et al. 
(Huang et al., 2017), represents a significant change in feature classifi
cation methodology. The employed approach is a feed forward network 
based on supervised learning, which is a pioneering innovation. By 
applying the strength of neural networks (NN), the ELM eliminates the 
necessity of backpropagation, resulting in a remarkable thousand-fold 
improvement in training speed. This innovative approach has 
completely transformed the field of feature classification 
(Nahiduzzaman et al., 2023d).

Recent advancements have provided models with remarkable abili
ties in classification and generalization. More precisely, the pseudo-ELM 
has demonstrated exceptional competence in handling large-scale mul
ticlass classification tasks and has outperformed the most recent ma
chine learning (ML) models (Kibria et al., 2022; Maheta and Manisha, 
2023; Nahiduzzaman et al., 2021, 2023; Nahiduzzaman et al., 2023; 
Nahiduzzaman et al., 2021). The Extreme Learning Machine (ELM) is 
notable for its efficient and flexible parameter initialization scheme, 
which involves a single hidden layer between the input and output. In 
traditional ELMs, the output weights are calculated using a pseu
doinverse operation. In our proposed approach, this is enhanced by 
replacing the pseudoinverse with ridge regression, enabling improved 
regularization and learning capability. This adaptation significantly 
strengthens the model’s ability to extract and generalize meaningful 
features, thereby contributing to higher classification accuracy. The 
Ridge-ELM architecture in our framework includes 512 neurons in the 
input layer, followed by a hidden layer with 700 neurons, forming a 
robust structure for feature transformation. The output layer comprises 
four neurons, corresponding to the four primary waste categories. An 
illustration of the integrated PLDs-CNN and Ridge-ELM framework is 
provided in Fig. 3, and the detailed steps of the Ridge-ELM algorithm are 
outlined in Algorithm 1.

Algorithm 1: Ridge-ELM Multiclass Classification Procedure

​
1. The input data matrix is represented as I(x,y), while the corresponding target output 
matrix is denoted as O(x,t). The hidden layer output is expressed as H(x,X) , with the 
input weight matrix defined as W(y,X) and the bias vector as Bm(1,X).
2. The next step is to find the output H(x,N) of the hidden layer.
H(x,X) = G

(
I(x,y) ⋅W(y,X) + Bm(1,X)

)

Here, G is an activation function.
3. Calculate the output weight matrix β(X,t) through the use of pseudo inverse method.
β(X,t) = Hɟ

(X,x) × T(x,t)

4. In this proposed hybrid Ridge regression, the pseudoinverse has been replaced by 
these equations:
A(X,X) = HT

(X,x)⋅H(x,X) b(X,t) = HT
(X,x)⋅T(x,t)

C(X,X) = A(X,X) + α.I(X,X)
B(X,t) = C− 1

(X,X)⋅b(x,t)
Where, α denotes regularization parameters. 
5. Generate prediction B(X,t)

The model displayed a strong sense of assurance in its ability to 
produce precise and accurate final predictions. Ridge-ELM, a method 
that seamlessly integrates ridge regression into the ELM framework, 
achieves a perfect balance between effective feature learning and reg
ularization. Consequently, the predictive capability of the model was 
enhanced by its greater ability to generalize and interpret intricate 
patterns in the data.

3.6. Explainable Artificial Intelligence (XAI)

Explainable Artificial Intelligence (XAI) is important for enhancing 
the transparency and interpretability of the PLDs-CNN model. Shapley 
Additive Explanation (SHAP) was employed to address the “black box” 
nature of DL models, which usually makes them less understandable. 
Through the integration of the PLDs-CNN model and SHAP, automatic 
garbage classification systems are now capable of making smarter and 
more efficient decisions when classifying waste items into four main 
classes and twelve different subclasses (Lundberg and Lee, 2017). This 
technique presents new opportunities for smarter waste management 
and more efficient categorization of waste materials across multiple 
categories.

In this study, SHAP was specifically chosen over other XAI methods 
like Grad-CAM due to the hybrid nature of the proposed architecture, 
which combines CNN feature extraction with a Ridge Extreme Learning 
Machine (Ridge-ELM) classifier. Grad-CAM relies on gradient informa
tion and is best suited for pure CNN models; however, because Ridge- 
ELM is a non-gradient-based classifier, Grad-CAM cannot provide 
meaningful explanations for the full model. In contrast, SHAP is model- 
agnostic and calculates Shapley values based on feature contributions, 
allowing it to explain both the CNN’s learned representations and the 
subsequent Ridge-ELM decision process. This makes SHAP more suitable 
for providing a unified interpretability framework for our hybrid model. 
Furthermore, recent studies have validated SHAP’s effectiveness in 
explaining complex models in similar classification contexts, supporting 
our choice. Additionally, SHAP is a relatively recent and advanced XAI 
method whose application in waste classification and related fields is 
still emerging.

There was a clear pattern in the Shapley values that were employed 
in the study to measure the significance of individual pixels. The pres
ence of red pixels enhances the accuracy of class identification, while the 
presence of blue pixels diminishes the probability of proper categori
zation (Bhandari et al., 2022). The Shapley values were computed using 
Equation (1). 

∅r =
∑

V⊆N\r

V|!(C − |V| − 1)!
C!

[fx(V ∪ r) − fx(V)] (1) 

fx (V)=P[f(x)|xV] (2) 

l (bʹ)=∅0 +
∑C

r=1
∅rbʹ

r (3) 

The variable fx quantifies the influence of a specific feature r on the 
model’s output, as interpreted through its corresponding Shapley value. 
The subset V consists of all features in the set N, excluding the feature r. 
The term V|!(C− |V|− 1)!

C! represents the weighting coefficient associated with 
the number of possible permutations involving subset V. Equation (2)
expresses the model’s prediction for a given subset of features as fx (V). 
In the SHAP framework, each original feature xr is substituted with a 
binary indicator bʹ

r, which indicates the inclusion (1) or exclusion (0) of 
feature xr, as demonstrated in Equation (3). Within the proposed model 
f(x), the bias component is denoted as ∅0, and the specific contribution 
of feature r is represented by ∅rbʹ

r. The function l (bʹ) serves as a 
simplified surrogate model that approximates the behavior of the orig
inal predictive function. The term ∅r provides insight into the degree to 
which feature r contributes to the overall prediction, thereby enhancing 
interpretability and facilitating model transparency.

3.7. Hyperparameter and architectural selection

The hyperparameters and architectural choices of the proposed 
PLDs-CNN-Ridge-ELM model were determined through iterative exper
imentation and performance-based evaluation. Rather than relying on 
automated optimization techniques, a trial-and-error approach was 
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adopted to achieve a balance between model accuracy and computa
tional efficiency, particularly in real-time waste classification contexts. 
The input image size was fixed at 124 × 124 pixels after down-sampling, 
which preserved essential spatial features while reducing memory 
overhead. The training/validation/testing split of 80/10/10 was chosen 
to maximize data available for training without compromising evalua
tion reliability. For convolutional layers, a parallel architecture incor
porating kernel sizes of 9 × 9, 7 × 7, 5 × 5, and 3 × 3 was used to capture 
features at multiple receptive fields, a strategy shown to improve clas
sification performance in prior literature.

To enhance computational efficiency, depthwise separable convo
lutions (DSC) were integrated into the later stages of the network ar
chitecture. This approach significantly reduced the total number of 
trainable parameters without compromising model accuracy. Each 
convolutional layer employed the ReLU activation function, followed by 
batch normalization to improve training stability and convergence 
speed. To prevent overfitting, a dropout rate of 0.5 was applied, 
randomly disabling half of the neurons during training iterations. The 
model was trained over 200 epochs using the Adam optimizer with a 
learning rate of 0.001, which was empirically found to ensure consistent 
convergence. A batch size of 32 was selected to strike an optimal balance 
between computational resource usage and gradient estimation stabil
ity. For handling the multi-class classification task, the sparse categor
ical cross-entropy loss function was utilized due to its compatibility with 
integer-labeled targets. Instead of the conventional SoftMax classifier, 
the Ridge-ELM was employed at the classification stage, offering faster 
inference and improved generalization. The Ridge-ELM model, 
composed of 512 input nodes, 700 hidden neurons, and 4 output nodes, 
demonstrated superior classification performance due to its efficient 
parameter initialization and regularization capabilities. Overall, the 
selected hyperparameters and architectural components were empiri
cally justified to ensure a lightweight yet effective classification model 
suitable for real-time waste sorting applications. Table 4 summarizes the 
chosen parameters, and their corresponding values used in the proposed 
model.

3.8. Classification experiments and performance matrices

The deep learning models and explainable AI techniques were 
implemented using the Keras framework, supported by the TensorFlow 
backend, within the PyCharm IDE (Community Edition, v2021.2.3). 
Model training and evaluation were conducted on a workstation pow
ered by an 11th generation Intel® Core™ i9-11900 CPU running at 2.50 
GHz, supported by 128 GB of RAM and an NVIDIA GeForce RTX 3090 
GPU featuring 24 GB of dedicated memory. The system operated on a 
64-bit Windows 10 Pro platform.

A confusion matrix (CM) was used to measure the performance of the 
PLDs-CNN-Ridge-ELM model. The accuracy, precision, recall, F1-score, 
and area under the curve (AUC) from the CM were determined using 
the following formulas. In the published literature related to waste 
classification, these parameters were also employed as performance 
indicators. 

Accuracy=
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(4) 

Precision=
True Positive

True Positive + False Positive
(5) 

Recall=
True Positive

True Negative + False Positive
(6) 

F1 − Score =
2 × (Precision × Recall)

Precision + Recall
(7) 

AUC=
1
2

(
True Positive

True Positive + False Negative
+

True Negative
True Negative + False Positive

)

(8) 

4. Results and discussion

The study organizes its outcomes into two stages. Initially, the 
dataset is divided into four classes (first stage), and the findings of this 

Table 4 
Summary of selected hyperparameters and architectural choices used in the proposed framework.

Parameter Name Combination Applied Selected Justification

Feature Extractor PL-CNN, TL (VGG16, ResNet50, MobileNet), 
PLDs-CNN

PLDs-CNN Outperformed other architectures in accuracy and generalization with 
reduced overfitting.

Classifier Softmax, ELM, Ridge-ELM Ridge-ELM Outperformed softmax and traditional ELM in both speed and classification 
accuracy.

Image Size (128 × 128), (124 × 124), (224 × 224) 124 × 124 Chosen for standardization and to reduce computational cost while 
preserving image details.

Data Split 80/10/10, 70/15/15 80 % train, 10 % test, 10 % 
val

Ensures sufficient data for training while reserving samples for robust 
testing and validation.

Convolutional 
Layers

5–12 9 Empirically determined through iterative testing to balance performance 
and model complexity.

Kernel Sizes 3 × 3, 5 × 5, 7 × 7, 9 × 9 3 × 3, 5 × 5, 7 × 7, 9 × 9 Multi-scale kernel design improves feature extraction across various spatial 
resolutions.

Activation 
Function

ReLU, Leaky ReLU ReLU Chosen for non-linearity and computational efficiency in all convolutional 
layers.

Pooling Type Max Pooling, Avg Pooling Max Pooling (2 × 2) Reduces spatial dimensions while retaining dominant features; empirically 
more effective.

Batch 
Normalization

Yes/No Yes Stabilizes training and accelerates convergence.

Dropout Rate 0.3, 0.5, 0.6 0.5 Helps prevent overfitting and encourages generalization.
Optimizer Adam, SGD, RMSprop Adam Adaptive learning rate control; proven effective during empirical testing.
Learning Rate 0.001, 0.0005, 0.0001 0.001 Empirically derived through trial and error for optimal convergence.
Loss Function Categorical Cross Entropy, Sparse Categorical 

Cross Entropy
Sparse Categorical Cross 
Entropy

Suitable for multi-class classification with integer labels.

Batch Size 16, 32, 64 32 Balanced performance and memory efficiency.
Epochs 100, 200, 300 200 Achieved best convergence without overfitting.
Hidden Layer 

Nodes
512, 700, 1024 700 Best trade-off between complexity and performance for Ridge-ELM.

Explainability Tool SHAP SHAP Provides robust and model-agnostic interpretation of classification 
decisions.
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stage are presented in Section 4.1. This study analyzed the effectiveness 
of the PL-CNN (Section 4.1.1) and PLDs-CNN (Section 4.1.2) feature 
extractors across four classes and compared their results with those of 
other state-of-the-art TL-based feature extractors (Sections 4.1.3 and 
4.1.4). Afterwards, the dataset is divided into twelve subclasses, and the 
results of this stage are outlined in Section 4.2. Twelve-class classifica
tion (second stage) was conducted using the PL-CNN (Section 4.2.1) and 
PLDs-CNN (Section 4.2.2), as these feature extractors demonstrated 
superior performance in four-class classification compared to other 
models. The interpretability of SHAP is demonstrated in Section 4.3, and 
the outcomes of hardware implementation are presented in Section 4.4
in detail.

4.1. First-stage classification: analysis of four-class performance

4.1.1. PL-CNN-ELM and PL-CNN-ridge-ELM
Initially, the PL-CNN feature extractor was employed to conduct 

training using a dataset including 15150 images that encompassed 4 
distinct waste categories. An independent assessment of the PL-CNN 
(excluding DSC) was conducted on a dataset comprising 1552 test im
ages. Both ELM and Ridge-ELM were utilized for evaluating the class- 
specific performance of the PL-CNN. The findings of these evaluations 

are displayed in Table 5. The PL-CNN-ELM achieved an average test 
precision of 96.75 ± 0.03 %, a recall of 90.5 ± 0.05 %, and an F1-score 
of 93.5 ± 0.03 %. The accuracy and area under the curve (AUC) were 97 
% and 99.29 %, respectively. The Ridge-ELM classifier on this model 
achieved an average precision of 97.5 ± 0.02 % (an improvement of 
0.75 %), a recall of 94.5 ± 0.03 % (an improvement of 4 %), and a f1- 
score of 96 ± 0.02 % (an improvement of 2.5 %). The average accu
racy and AUC were 98 % (with a 1 % improvement) and 99.14 %, 
respectively. The concordance index (C-index) was found to be 0.93 for 
both classifiers, suggesting similar general discriminative abilities.

Although Ridge-ELM consistently outperformed PL-CNN-ELM across 
most evaluation metrics, the AUC of PL-CNN-ELM was marginally 
higher (99.29 % vs. 99.14 %). This subtle difference can be attributed to 
minor variations in the decision boundary formation between the two 
models. AUC reflects the model’s ability to distinguish between classes 
across all possible threshold values, and a slightly higher AUC for PL- 
CNN-ELM suggests that it maintained slightly better discrimination 
across varying decision thresholds, even though Ridge-ELM performed 
better at fixed operating points typically selected for classification tasks 
(e.g., thresholds based on maximum F1-score or balanced accuracy). 
However, the difference in AUC values is extremely small (0.15 %) and 
statistically negligible, indicating that both classifiers exhibit excellent 
and comparable discriminatory performance. These findings demon
strate that while Ridge-ELM offers an advantage in practical classifica
tion metrics, both models are highly competitive in terms of overall 
classification reliability.

The ROC and precision-recall (PR) curves for each class are shown in 
Figs. 6 and 7, respectively, further illustrating the robustness of the 
classification performance.

4.1.2. PLDs-CNN-ELM and PLDs-CNN-ridge-ELM (proposed method)
Table 6 highlights the key performance differences between the ELM 

and Ridge-ELM classifiers when integrated with the proposed PLDs-CNN 
feature extraction method. To ensure robustness and reliability, evalu
ations were conducted using a benchmark dataset comprising images 
from twelve distinct waste material categories. Fig. 8 illustrates the 
confusion matrices (CMs) for both classifiers in the initial classification 
phase, involving four categories, offering valuable insights into how 
each model differentiates among the classes. The Ridge-ELM model 
notably reduced the rate of incorrect classifications, especially in the 
cases of Hazardous Waste (class 0), Household Food Waste (class 1), and 
Residual Waste (class 3). Precision, recall, and F1-scores were computed 

Table 5 
Four-class performances by using PL-CNN-ELM and PL-CNN-Ridge-ELM 
architectures.

Class Name PL-CNN-ELM PL-CNN-Ridge-ELM

Precision Recall F1 Precision Recall F1

Hazardous 
Waste (0)

0.99 0.86 0.92 0.99 0.94 0.96

Household 
Food Waste 
(1)

0.98 0.89 0.93 0.98 0.93 0.96

Recyclable 
Waste (2)

0.98 0.99 0.99 0.99 0.99 0.99

Residual 
Waste (3)

0.92 0.88 0.90 0.94 0.92 0.93

Average (μ) 
± SD (σ) 
(%)

96.75 ±
0.03

90.5 
± 0.05

93.5 
±

0.03

97.5 ±
0.02

94.5 
± 0.03

96 ±
0.02

Accuracy (%) 97.0 98.0
AUC (%) 99.29 99.14

Note: The best results are highlighted in bold. 0–3 indicates the class number.

Fig. 6. Class-specific ROC Plots for (A) PL-CNN-ELM and (E) PL-CNN-Ridge-ELM models in four-class classifications.
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for each category. Ridge-ELM attained an average precision of 97.25 ±
0.02 %, a recall value of 96 ± 0.03 %, and an F1-score of 96.5 ± 0.01 %, 
reflecting gains of 6.75 % and 3.25 % in recall and F1-score respectively 

over the baseline ELM. The overall accuracy also rose from 97 % to 99 %. 
These findings demonstrate that Ridge-ELM is particularly effective at 
distinguishing between the various waste types. While the Ridge-ELM’s 
area under the ROC curve (AUC) was recorded at 99.28 %, the ELM’s 
performance in this metric remained close at 99.45 %. As for the 
concordance index (C-index), Ridge-ELM achieved a value of 0.95, 
marginally higher than the 0.94 score of the ELM. Collectively, these 
results provide compelling evidence of the Ridge-ELM classifier’s effi
ciency. The enhanced performance and precision affirm the Ridge- 
ELM’s potential as a reliable and high-performing alternative to con
ventional classification approaches.

Fig. 9 provides a thorough evaluation of the performances of the 
PLDs-CNN-ELM and PLDs-CNN-Ridge-ELM models in accurately iden
tifying four different waste categories. The ROC analysis for each model 
confirmed that both classifiers delivered excellent results, with ROC 
values exceeding 99 % across all classes. The average ROC score of 
99.28 % achieved by the proposed Ridge-ELM integrated with the PLDs- 
CNN framework highlights the model’s remarkable precision and 
robustness in waste image classification. The findings reveal that the 
PLDs-CNN-Ridge-ELM model maintains strong dependability and clas
sification capability. Notably, the proposed model reached 99.99 % 
accuracy in identifying Residual Waste (3). The study confirmed the 
method’s effectiveness in reliably recognizing this waste category. 
Furthermore, the ROC curve indicated a noticeable enhancement in the 
detection of Recyclable Waste (2). The detection rate improved from 

Fig. 7. Class-specific PR curves of (A) PL-CNN-ELM and (E) PL-CNN-Ridge-ELM for four-class classification.

Table 6 
Four-class performances by using PLDs-CNN-ELM and PLDs-CNN-Ridge-ELM 
architectures.

Class Name PLDs-CNN-ELM PLDs-CNN-Ridge-ELM

Precision Recall F1 Precision Recall F1

Hazardous 
Waste (0)

0.99 0.86 0.92 0.98 0.97 0.97

Household 
Food 
Waste (1)

0.97 0.85 0.91 0.99 0.91 0.95

Recyclable 
Waste (2)

0.97 1.00 0.98 0.99 0.99 0.99

Residual 
Waste (3)

0.98 0.86 0.92 0.93 0.97 0.95

Average (μ) 
± SD (σ) 
(%)

97.75 ±
0.009

89.25 
± 0.07

93.25 
± 0.03

97.25 ±
0.02

96 ±
0.03

96.5 
±

0.01
Accuracy 

(%)
97.0 99.0

AUC (%) 99.45 99.28

Note: The best results are highlighted in bold. 0–3 indicates the class number.

Fig. 8. Confusion matrices of PLDs-CNN model with (A) ELM and (B) Ridge-ELM for four-class classification.
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Fig. 9. Class-specific ROC Plots for (A) PLDs-CNN-PELM and (E) PLDs-CNN-RELM in four-class classification.

Fig. 10. Classwise PR curves of (A) PLDs-CNN-PELM and (E) PLDs-CNN-RELM for four-class classification.

Table 7 
Four-class classification performance of the TL models and the proposed model.

Model Name Average Precision ±SD (%) Average Recall ±SD (%) Average F1-score ±SD (%) Average Accuracy (%) AUC (%)

DenseNet201-Ridge-ELM 98 ± 0.018 85.25 ± 0.119 90.5 ± 0.066 97 96.85
EfficientNetB6-Ridge-ELM 35 ± 0.42 26.5 ± 0.49 25.5 ± 0.43 84 74.93
InceptionResNetV2-Ridge-ELM 94.75 ± 0.02 86.25 ± 0.08 90.25 ± 0.05 96 97.88
MobileNetV3Small-Ridge-ELM 80 ± 0.11 61.25 ± 0.26 68.25 ± 0.19 89 91.06
ResNet152V2-Ridge-ELM 94.75 ± 0.03 81.5 ± 0.13 87 ± 0.07 95 97.19
VGG16-Ridge-ELM 95 ± 0.01 90 ± 0.08 92.25 ± 0.04 97 97.47
Xception-Ridge-ELM 96 ± 0.02 82.75 ± 0.11 88.5 ± 0.06 96 96.72
PL-CNN-ELM 96.75 ± 0.03 90.5 ± 0.05 93.5 ± 0.03 97 99.29
PLDs-CNN-ELM 97.75 ± 0.009 89.25 ± 0.07 93.25 ± 0.03 97 99.45
PL-CNN-Ridge-ELM 97.50 ± 0.02 94.5 ± 0.03 96 ± 0.02 98 99.14
PLDs-CNN-Ridge-ELM 97.25 ± 0.02 96 ± 0.03 96.5 ± 0.01 99.00 99.28

Note: The best results are highlighted in bold.
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99.01 % to 99.22 %. The proposed PLDs-CNN-Ridge-ELM method out
performed all compared techniques in terms of class-specific identifi
cation. There were not enough images for each group in the Garbage 
Classification dataset, so the dataset was not balanced. One of the 

primary goals of model development was to efficiently address this data 
imbalance. An adequate weighting system was implemented to guar
antee that each class had an equal influence on the final result. The AUC 
values ranged from 0.9922 to 0.9999 for PLDs-CNN-Ridge-ELM in all 

Fig. 11. Class-specific ROC Plots for (A) DensNet201, (B) EfficientNetB6, (C) InceptionResNetV2, (D) MobileNetV3Small, (E) ResNet152V2, (F) VGG16, and (G) 
Xception with Ridge-ELM in four-class classification.
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classes, demonstrating that superior AUC outcomes were achieved even 
when dealing with imbalanced datasets. The model’s recall rate for 
Recyclable Waste (2) was 99 %, demonstrating that the suggested 
framework can consistently differentiate every type of waste material. 
The proposed framework has the capacity to greatly diminish the hur
dles faced by municipal authorities and improve waste management 
systems through our creative contributions. Fig. 10 displays classwise 
PR curves for both classifiers.

The proposed PLDs-CNN-Ridge-ELM outperforms PLDs-CNN-ELM 
across almost all evaluation metrics, confirming its superiority for 
practical deployment. PLDs-CNN-Ridge-ELM achieved comparable 
average precision (97.25 % vs. 97.75 %), recall (96 % vs. 89.25 %), F1- 
score (96.5 % vs. 93.25 %), and accuracy (99 % vs. 97 %) compared to 
PLDs-CNN-ELM. While the AUC values are very close (99.28 % for 
Ridge-ELM and 99.45 % for ELM), practical classification performance 
(precision, recall, F1-score, and accuracy) is more critical in real-world 
waste sorting systems, where correct class assignments at specific 
thresholds are prioritized. Additionally, PLDs-CNN-Ridge-ELM demon
strated better robustness in handling imbalanced datasets, as evidenced 
by its improved recall for minority classes. Therefore, PLDs-CNN -Ridge- 
ELM is the better approach, striking an effective balance between high 
discrimination capability and consistent practical classification 
performance.

4.1.3. Comparative performance analysis between the proposed model and 
other TL models

Table 7 presents a comparison of the performance metrics between 
the proposed PLDs-CNN and several state-of-the-art transfer learning 
(TL) models, all evaluated using the Ridge-ELM classifier for four-class 
classification. Among the seven TL models assessed, VGG16 yielded 
the strongest results overall, with an average precision of 95 ± 0.01 %, 
recall of 90 ± 0.08 %, F1-score of 92.25 ± 0.04 %, accuracy of 97 %, and 
an AUC of 97.47 %. In contrast, the weakest performance was observed 
for the EfficientNetB6 model. Notably, DenseNet201 attained the high
est average precision (98 ± 0.018 %) among the TL models. The pro
posed PLDs-CNN-Ridge-ELM model achieved 99 % accuracy in four- 
class classification, marking an approximate 2 % improvement over 
VGG16. Additionally, it recorded a superior AUC of 99.28 %, surpassing 

the 97.47 % AUC of VGG16. Fig. 11 displays the ROC curves for all four 
classes across the transfer learning models, whereas Fig. 12 provides a 
bar chart summarizing the overall performance of these models. These 
results clearly demonstrate that the PLDs-CNN-Ridge-ELM consistently 
outperforms the other evaluated models.

4.1.4. Computational time and resource comparison
Table 8 presents a comparative analysis of PLDs-CNN, PL-CNN, and 

several transfer learning (TL) feature extractors in terms of model pa
rameters, layer count, model size, and both training and testing time. 
Considering accuracy, computational efficiency, and model complexity, 
the PLDs-CNN surpasses all other evaluated models, making it the most 
resource-effective method. Fig. 13 visualizes the overall computational 
effort and resource requirements. The findings confirm that the PLDs- 
CNN-Ridge-ELM method is dependable and effectively handles the 
classification of different waste categories.

Among all compared models, ResNet152V2 has the highest param
eter count, totaling 92.41 million, with 193 layers and a model size of 
567.614 MB. In contrast, InceptionResNetV2 has the greatest model size, 
and includes the highest number of layers at 783. Conversely, PLDs-CNN 
demonstrates superior efficiency, having only 1.09 million parameters, a 
compact size of 12.7 MB, and 9 convolutional layers (CL). The proposed 
model requires approximately 84.78 times fewer parameters than 
ResNet152V2 and 2.15 times fewer than PL-CNN, which has 2.344 
million parameters. Furthermore, Ridge-ELM exhibits optimized 
training and inference durations, taking 0.1006 s for training and 
0.0079 s for testing. Although some TL models might offer marginally 
faster computational times due to their architecture, they typically de
mand higher resources. The PLDs-CNN-Ridge-ELM model successfully 
balances classification performance with minimal resource usage, 
making it highly suitable for real-world waste management applications 
due to its compact architecture and reliable performance.

4.2. Second-stage classification: analysis of twelve-class performance

4.2.1. PL-CNN-ELM and PL-CNN Ridge-ELM
The same multiclass categorization technique was employed for 

twelve-class classification. The PL-CNN model performed training, 

Fig. 12. Performance of the proposed and TL models for four class classifications.
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testing, and validation on 12566, 1552, and 1397 images, respectively. 
The classification performances of the models are presented in Table 9. 
The PL-CNN-ELM model achieved precision, recall, and F1-scores of 
94.25 ± 0.04 %, 93.75 ± 0.04 %, and 94 ± 0.84 %, respectively. The 
model’s effectiveness was improved by utilizing Ridge-ELM. The test 
accuracy for both the PL-CNN-ELM and the PL-CNN-Ridge-ELM is 96 %, 
indicating that they perform equally well. The PL-CNN-Ridge-ELM 
model improved the AUC by approximately 0.05 %, increasing it from 
98.79 % to 98.84 %. The precision, recall, and f1-score achieved the 
highest values of 94.41 ± 0.04 % (with a 0.16 % improvement), 93.75 
± 0.04 %, and 94.08 ± 0.04 % (with a 0.08 % improvement), respec
tively. In Figs. 14 and 15, the classwise ROC curves and PR curves are 
displayed for both classifiers on the PL-CNN model.

4.2.2. PLDs-CNN-ELM and PLDs-CNN-ridge-ELM
Fig. 16 illustrates essential information about the performance of 

both classifiers. Clearly, both classifiers performed very well. The pre
cision, recall, and f1-scores demonstrated a high level of balance and 
surpassed 90 % for the maximum category. The results provide solid 
evidence for the efficacy of the Ridge-ELM approach in successfully 
classifying multiclass waste images. The proposed method exhibits a 
substantial performance advantage over conventional models, thus 
demonstrating its superiority. Upon further examination, a novel and 
less heavy model is discovered that incorporates a Ridge-ELM classifier, 
outperforming existing models in terms of both performance and accu
racy. These findings establish a strong foundation for the application of 
the Ridge-ELM approach in waste image categorization. ELM showed an 
outstanding average precision of 94.66 ± 0.034 % across all 12 cate
gories. ELM also achieved a recall of 93.66 ± 0.036 % and a F1-score of 
94.5 ± 0.033 %. On the other hand, Ridge-ELM achieved improvements 
of 0.34 %, 0.67 %, and 0.16 % in comparison to ELM. The accuracy score 
improved by 1.0 %, increasing from 95 % to 96 %. Fig. 17 and Table 10
thoroughly examine the ability of the PLDs-CNN-ELM and PLDs-CNN- 
Ridge-ELM models to distinguish between 12 various waste types. The 
ROC curves for each category exhibit exceptional performance from 
both models, with ROC values surpassing 98 % for the majority of 
classes. Every class identification record is considered satisfactory for 
the proposed PLDs-CNN-Ridge-ELM framework. This emphasizes the 
importance of the proposed system for practical implementation in real- 
world scenarios. Fig. 18 displays the classwise PR curves.

4.3. Interpretability of PLDs-CNN-ridge-ELM using SHAP

Through a systematic examination of every conceivable combination 
of wastage attributes, Shapley values were formulated, giving rise to 
representations characterized by pixels. A distinct pattern manifested 
during the investigation, wherein red pixels demonstrated robust effi
cacy in identifying class distinctions. In the first stage of the testing 
phase, SHAP results were provided with explanation images for different 
classifications. These classifications included four classes: hazardous, 
household, recyclable, and residual waste. The explanation images 
showed that red pixels correspond to higher relevance scores for the 
target class. In contrast, blue pixels represent regions less associated 
with the predicted category. It is important to note that the SHAP 
visualization overlays are rendered on semi-transparent grayscale 
backgrounds blended into the input images, as shown in Fig. 19 (A). The 
top row in the SHAP visualization highlights red pixels indicating the 
identification of hazardous waste. In contrast, minimal presence of blue 
and a reduced number of red activations suggest the exclusion of 
alternate classes. The model assigns the hazardous class label with high 
certainty where dense red regions are observed. The red regions confirm 
the model’s strongest prediction for that specific class. The second row 
of SHAP visualizations revealed a different structure: red activations 
correspond to household food waste. In that particular case, a predom
inance of blue pixels appeared over recyclable waste regions, suggesting 
reduced model confidence in that category compared to others.Ta
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The proposed model was tested in the second stage, which included 
12 subclasses, making it more complex to classify. Fig. 19 (B) shows how 
the model extracted the actual class during testing. The proposed model 
could accurately predict the outcome even when faced with increased 
data complexity. Visual SHAP explanations were used to confirm our 
model’s results, providing a more comprehensive understanding of 
different classifications of waste. These explanations helped to improve 
the system’s understanding of the various forms of waste.

4.4. Software and hardware development

4.4.1. Graphical user interface (GUI)
For better testing and real-time implementation flexibility in the 

waste management industry, a graphical user interface (GUI) was 
designed based on PYQT5 used for the QT application framework. The 
GUI was programmed for three individual tasks for four-class and 
twelve-class classifications of the three proposed models and their real- 
time classifications (Fig. 20). The interface is generally designed to 
support conveyor belt-assisted waste sorting for four classes. For user 
flexibility, the tasks that need to be performed are made easily accessible 
by simply clicking buttons without any need for loading files for every 
new runtime.

The app can test any of the three proposed models from the drop
down menu. After clicking the “Classification_4_Class” or “Classi
fication_12_Class” button, the app will open a file dialog for selecting an 
image for classification. Upon selecting the image, it will undergo 
several preprocessing tasks, such as resizing it to 124 × 124 to match the 
model’s requirements. This is followed by rescaling the image within 
0–1 for faster convergence and reduced computational load. Finally, 
before prediction, the dimension of the numpy image array is increased 
to align it to the requirements of the model. The time taken for predic
tion is saved along with some other important classification results, such 
as the top 4 class names with corresponding confidence scores in Fig. 21.

To understand the model’s decision-making process for classifying 
images, the most influential parts are highlighted using SHAP. This 
approach provides a better understanding of based on which features the 
images are being predicted and can also assist in debugging the model 
(Fig. 22). The process starts by initializing the Deep Explainer using one 
of the models to identify the garbage object. The explanation process 
was based on this model, which acquired the ability to correlate certain 
pixel patterns with distinct classifications. In addition to the model, a 
background dataset was selected, which was a smaller portion of the 
training data. This dataset was essential since it embodied the standard 
input space of the model, functioning as a benchmark for compre
hending the degree of novelty or conformity of a new input in relation to 
what the model encountered throughout its training. The subsequent 
step involved the calculation of SHAP values for a particular picture, 

Fig. 13. Comparison of computational resources—including model size, number of parameters, and processing time—between the proposed PLDs-CNN-Ridge-ELM 
and other TL models.

Table 9 
Performances of PL-CNN-ELM and PL-CNN-Ridge-ELM models for twelve-class 
waste classifications.

Class Name PL-CNN-ELM PL-CNN-Ridge-ELM

Precision Recall F1 Precision Recall F1

Battery (0) 0.94 0.93 0.94 0.97 0.90 0.93
Expired Food 

(1)
0.99 0.97 0.98 0.96 0.98 0.97

Brown Glass 
(2)

0.97 0.97 0.97 0.97 0.98 0.98

Cardboard 
(3)

0.97 0.95 0.96 0.97 0.96 0.96

Clothes (4) 0.98 1.00 0.99 0.98 1.00 0.99
Green Glass 

(5)
0.97 0.97 0.97 0.98 0.97 0.98

Metal (6) 0.88 0.88 0.88 0.89 0.89 0.89
Paper (7) 0.94 0.96 0.95 0.94 0.95 0.95
Plastic (8) 0.91 0.87 0.89 0.90 0.88 0.89
Shoes (9) 0.96 0.96 0.96 0.96 0.96 0.96
White Glass 

(10)
0.96 0.95 0.95 0.96 0.93 0.94

Trash (11) 0.84 0.84 0.84 0.85 0.85 0.85
Average (μ) 
± SD (σ) 
(%)

94.25 ±
0.04

93.75 
± 0.04

94 
±

0.84

94.41 ±
0.04

93.75 
± 0.04

94.08 
± 0.04

Accuracy 
(%)

96.00 96.00

AUC (%) 98.79 98.84

Note: The best results are highlighted in bold. 0–11 indicates the class number.
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which was the fundamental aspect of this procedure. The SHAP method 
measures the influence of each pixel on the model’s conclusion by sys
tematically altering the visible pixels (Linardatos et al., 2020). This 
process effectively determined the contribution of each pixel to the final 
prediction.

4.4.2. Development of conveyer belt sorting mechanism
Following accurate waste class prediction by the developed model 

and app, a real-world smart system can be implemented for automati
cally sorting waste. The total system (Fig. 23) will require a garbage 
chute (a) from dropping unsorted garbage items on the conveyer (b) 
belt. Upon passing over the device, the waste will be detected by a 
motion-triggered camera (e), which will use the image to predict the 
class to which the waste belongs in the edge device (c). Once the correct 
waste is identified, tray (f) will direct it to its suitable bin by moving the 
pantilt mechanism. The system allows loading of a webcam and takes 
multiple image frames of waste carried by a conveyer belt in a recycling 

plant and conducts classification to direct them to suitable bins for 
recycling or disposal. Based on the output class from the captured image, 
the computer sends a command to Arduino using seral communication 
that makes the tray turn accordingly to any of the four sides where the 
respective bins are placed. The waste then slides to the desired bin due to 
gravity. The proposed conveyor belt sorting mechanism is just an early 
concept for a larger and robust waste management system.

A circuit diagram of a conceptual system suitable for real-time usage 
is presented in Fig. 24. The model was tested on an AMD Ryzen 5 5500U 
processor with a base clock speed of 2.1 GHz. The processor consisted of 
six CPU cores with 12 threads, making it an average-performance device 
for running the model. In addition to the hardware architecture, several 
individual components, such as servo motors, microcontroller board, 
and power supply boxes, were used for the hardware part, as discussed 
further after the circuit diagram section. At the product development 
stage, the processing device will be replaced by an edge device with an 
embedded graphics processing unit (GPU), such as Jetson Orin or Nano, 

Fig. 14. Classwise ROCs on (A) PL-CNN-ELM and (E) PL-CNN-Ridge-ELM for twelve-class classification.

Fig. 15. Classwise PR curves on (A) PL-CNN-ELM and (E) PL-CNN-Ridge-ELM for classification of twelve-class.
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as they offer superior parallel processing power, enabling faster infer
ence times, which are essential for real-time classification using this 
model.

Apart from the CPU for image classification, multiple hardware de
vices were utilized to develop the concept of the waste sorting system, 
which included two servos, an Arduino mega microcontroller board for 
performing directional commands, and a power supply. The two Mg996 
servos had operating voltages ranging from 4.8 to 6 V with a total 
rotational capability of 180◦. The Arduino micro had a flash memory of 
256 KB, which was sufficient to store commands in it from the app GUI if 
there was any delay for the hardware part during the sorting period. The 
two power supplies used had a 24 V/10 A configuration, and the latter 
was converted to 5 V for operation of the servos. The system was 
designed to visualize the concept of a waste sorting system. However, in 
actual implementations, more sophisticated equipment is needed, but 
this work clearly demonstrated the ability of the developed software 
model to make correct decisions for the proposed hardware 
manipulations.

The preliminary design of the pan and tilt mechanism and its func
tion were programmed using two servo motors and Arduino as the slave 
device respectively. The 2-axis pan-tilt mounted servo assembly in 
Fig. 25 was made using two 5vservos with Fused deposition modeling 

(FDM), stereolithography (SLA), and selective laser sintering (SLS) (3D)- 
printed servo brackets. The designs were made with Autodesk Tinkercad 
software with high precision, allowing the tray to move in any direction. 
Its design and the coding for tray alignment were conducted for sorting 
four types of trash. The initial positions are set to 0◦ for the pan servo 
and 90◦ for the tilt servo. After predicting the waste class for recyclable 
or residual waste, the tilt servo bracket/mount rotates left (Fig. 25(D)) 
or right (Fig. 25(B)), respectively, from its initial position, while the pan 
servo bracket/mount remains fixed for both of them. Similarly, for 
household food waste, the tilt servo bracket/mount turns right (Fig. 25
(A)), and for hazard waste turns left (Fig. 25(C)), but the pan servo 
bracket/mount rotates 90◦ counterclockwise, causing the tilt servo itself 
to rotate along with the tray. In this manner, depending on the predicted 
class, the tray is shifted to four different sides to divert incoming waste.

4.4.3. Demonstration of real-time waste classification
Multiple tests were conducted to evaluate the model’s real-time 

performance using a webcam and real waste. For this purpose, a 
Xiaomi Vidlok W91 webcam was used, which was attached with a 
mount pointing downward where the waste was placed. A white back
ground was made with paper that represented the conveyor platform on 
which waste was placed, and images were captured by the camera 

Fig. 16. Confusion matrices of PLDs-CNN model with (A) ELM and (B) Ridge-ELM for twelve classes.

Fig. 17. Classwise ROCs of (A) PLDs-CNN-ELM and (E) PLDs-CNN-Ridge-ELM for twelve-class classification.
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above. Fig. 26 shows two tests conducted under natural light using 
household food and recyclable waste. In SHAP, accurate visualization 
was presented for both the household food waste and recyclable waste 
classes where the model was able to pinpoint the areas of interest 
accurately.

The analysis of the model showed each of the classification confi
dence scores and inference times with the prediction of the top four 
classes, allowing for a better understanding of the classification behavior 
of the model and its performance time even though it is relatively 
dependent on the device, as shown in the GUI, and computational effi
ciency. The computational performance of the model, in floating point 
operation per second (FLOPS), was found to be 39.4 G, which is 
acceptable for running on industrial-based computing devices. The re
sults were obtained from CPU-based devices, which could be later 

replaced with a suitable GPU for faster inference on real-time 
classification.

Both tests were conducted at different times under natural lighting 
conditions, resulting in differently shaped shadows on the platform. 
Thus far, the model has been able to quickly and accurately classify the 
waste presented below the camera without the need for preprocessing 
the image other than its size. All the tests conducted using this model 
showed accurate results in terms of the class index, confidence score, 
and SHAP visualizations when using a high-quality webcam compared 
to an average one, as the model was able to extract better image data. 
Thus, after conducting these practical validation experiments, it was 
found that the model is suitable for functioning under real-life condi
tions even under natural light. Ideally, in industry, artificial light might 
be used for better visualization, which will eventually enhance the ac
curacy and efficiency of waste classification, ensuring optimal perfor
mance and reliability in various operational environments.

For a practical test on the functioning of the concept, a PowerPoint 
video of random waste images was accumulated and loaded in our app 
to create the same condition of wastes passing over a conveyor belt. 
Upon predicting each frame of waste from the video, the app shows the 
corresponding class (Fig. 27(A) and (C)) of the current trash along with 
its confidence score and immediately sends a command to Arduino via 
serial communication to position the tray for the correct bin (Fig. 27(B) 
and (D)).

In comparison to other SOTA waste classification methods for real- 
time analytical performance with hardware mechanisms shown in 
(Fan et al., 2023; Jin et al., 2023; S. Zhang et al., 2021), their highest 
waste classification accuracy was not more than 94.71 %, while our 
proposed model reached 99 % for four-class classification and 96 % for 
12-class classification, making it superior. Apart from the model per
formance, the hardware used in these three papers had some limitations 
(Fan et al., 2023; S. Zhang et al., 2021). used ULN2003 and Nema series 
stepper motors, which are based on an open-loop system, while this 
study used closed-loop servo motors. Using a closed-loop system in 
motors provides the additional benefit of always knowing the reference 
position, while open-loop system motors are prone to losing this position 
under overloaded conditions. Additionally, there was no relevant in
formation on the practical inference time or computational complexity 
of the models or the use of any GUI app for real-time monitoring and 
control (Fan et al., 2023; Jin et al., 2023; S. Zhang et al., 2021), whereas 
our proposed model integrates a user-friendly GUI application for 

Table 10 
Performances of PLDs-CNN-PELM and PLDs-CNN-RELM models for twelve-class 
waste classification.

Class Name PLDs-CNN-ELM PLDs-CNN-Ridge-ELM

Precision Recall F1 Precision Recall F1

Battery (0) 0.96 0.93 0.95 0.99 0.93 0.96
Expired 

Food (1)
0.98 0.97 0.98 0.96 0.97 0.97

Brown Glass 
(2)

1.00 0.93 0.97 1.00 0.95 0.97

Cardboard 
(3)

0.95 0.95 0.95 0.95 0.94 0.94

Clothes (4) 0.97 0.99 0.99 0.98 1.00 0.99
Green Glass 

(5)
0.98 0.97 0.98 0.98 0.97 0.98

Metal (6) 0.91 0.92 0.92 0.91 0.91 0.91
Paper (7) 0.95 0.96 0.96 0.94 0.95 0.95
Plastic (8) 0.93 0.87 0.90 0.93 0.88 0.90
Shoes (9) 0.94 0.95 0.94 0.95 0.95 0.95
White Glass 

(10)
0.89 0.92 0.91 0.91 0.95 0.93

Trash (11) 0.90 0.88 0.89 0.90 0.92 0.91
Average (μ) 
± SD (σ) 
(%)

94.66 ±
0.034

93.66 
±

0.036

94.5 
±

0.033

95 ±
0.033

94.33 
±

0.031

94.66 
± 0.02

Accuracy 
(%)

95.00 96.00

AUC (%) 99.60 99.54

Note: The best results are highlighted in bold. 0–11 indicates the class number.

Fig. 18. Classwise PR curves on (A) PLDs-CNN-ELM and (E) PLDs-CNN-Ridge-ELM for twelve-class classification.
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monitoring inference time of approximately 0.3 s for each frame during 
video inference due to reduced model complexity, confidence scores, 
and management of the waste classification process, further enhancing 
its usability and practicality in industrial applications. The concept of 
comparing testing times became irrelevant because the device perfor
mance configurations did not match each other. Moreover, although the 
current implementation is at the prototype stage, it demonstrates the 
potential for a cost-effective industrial solution. By using low-cost 

components such as Raspberry Pi, Arduino Mega, and servo motors, 
the system offers a promising alternative to high-cost industrial waste 
sorting systems. With further refinement and scaling, the approach 
could enable affordable deployment in small to medium-sized facilities 
or municipalities where budget and resource constraints are a key 
consideration.

Fig. 19. SHAP-based visual explanations for the PLDs-CNN-Ridge-ELM model—(A) for four-class classification and (B) for twelve-class classification.
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4.5. Discussion, limitations and future work

The design of the lightweight PLDs-CNN-Ridge-ELM model is rela
tively straightforward, incorporating a total of nine convolutional op
erations along with three fully connected layers. However, the proposed 
model executes the initial four convolutional layers in parallel to 
enhance the extraction of discriminative features, thereby reducing the 
overall convolutional depth from nine to four. These parallel operations 
contribute to more efficient feature extraction, leading to improved 
model performance. Additionally, the Ridge-ELM classifier’s regulari
zation term aids in refining weight updates, which further contributes to 
higher classification precision. As illustrated in Table 5, the suggested 
model demonstrates superior results compared to the other seven TL 
models. The central aim of this study was to introduce an architecture 
that improves prediction accuracy while maintaining a compact struc
ture by reducing layer count and trainable parameters. This goal was 
accomplished (1.09 million parameters) by adopting depthwise sepa
rable convolutions in place of standard convolution layers and opti
mizing them for deployment in low-resource environments. It should 
also be emphasized that the dataset used in this investigation includes an 
inherent class distribution skew, particularly across both the four major 
categories and their twelve subcategories. In spite of this, the model 
maintained strong classification performance, confirming its capability 

to extract effective features from both dominant and underrepresented 
classes. This resistance to skewed distributions highlights the model’s 
stability and the generalization strength of the Ridge-ELM mechanism. 
Furthermore, integrating SHAP into the analysis ensures that the model 
identifies the most informative parts of the input image for feature 
extraction while ignoring non-contributive areas. This enhances the 
interpretability of the model, allowing it to perform precise and reliable 
classification of waste items. Moreover, the deployment of the hardware 
prototype affirms the feasibility of the model in real-time waste cate
gorization tasks. Table 11 offers a comparative summary of leading 
models and the developed PLDs-CNN-Ridge-ELM. According to the 
report by (Al-Mashhadani, 2023), InceptionV3 reached an accuracy 
peak of 100 %, while (Mao et al., 2021) reported 99.60 % using an 
optimized DenseNet121. However, in the study by (Al-Mashhadani, 
2023), the evaluation was conducted on a limited dataset comprising 
just 1451 samples spanning four categories. Similarly, the authors in 
(Mao et al., 2021) utilized the TrashNet collection, which includes six 
classes and 2527 samples. In contrast, the current model achieved a 
closely matched accuracy of 99.0 % for the four-class setup using a 
considerably larger dataset of 15,150 images. Since DenseNet121 served 
as the baseline in prior work, the parameter count was significantly 
higher than in the present model. In addition, the proposed model 
recorded a minimal inference duration of 0.0079 s for the four-class 

Fig. 20. Flowchart of GUI application.

Fig. 21. (A) Classification of hazard items with inference time and confidence of all four classes using a four-class model, (B) Classification of green glass with 
inference time and confidence of the top four classes with a twelve-class model. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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Fig. 22. Visualization of significant features using SHAP for (a) 4-class and (b) 12-class models for single image classification.

Fig. 23. Concept of the total waste sorting mechanism. (a) Garbage Chute, (b) Conveyer Belt, (c) Edge Device, (d) Cable Wire, (d) Motion Sensor with Camera, (f) 
Pan-tilt joint for trash sorting.
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setup.
Yang and Li (Z. Yang and Li, 2020) proposed a lightweight model 

with 1.5 million parameters. However, this model achieved lower 
classification accuracy (82.5 %) for larger datasets such as the Huawei 
garbage classification dataset. In contrast, the proposed model achieved 
excellent performance, with 96 % accuracy for twelve-class classifica
tion on a large dataset with only 1.09 million parameters. Feng et al. 
(2022) also proposed a lightweight model based on EfficientNet. How
ever, the proposed PLDs-CNN-Ridge-ELM successfully outperformed this 
model in terms of accuracy, model parameters and number of images in 
the dataset. Additionally, Chen et al. (2022) achieved a higher accuracy 
of 97.9 %, exceeding the performance of the proposed model. Never
theless, it is essential to note that they conducted research on a smaller 

dataset (4256 images), and additionally, their model had a greater 
number of parameters than did the proposed model. Moreover, unlike 
the introduction of SHAP by the proposed model, no studies have 
demonstrated real-time XAI. Table 11 also demonstrates that the 
reduced 4-class classification has 99 % accuracy compared to 96 % ac
curacy on the granular 12 classes, highlighting specialized problems 
associated with the sub-categories (Li et al., 2021). Reducing the number 
of classes simplifies decision boundaries, enhancing the learning process 
and promoting better generalization. Although closely related groups 
may share similarities, merging them into broader categories introduces 
a more intricate decision boundary. In a fixed dataset, a lower number of 
classes can provide adequate features for effective generalization. 
Conversely, an increase in classes without a proportional rise in data and 

Fig. 24. Circuit diagram of the hardware configuration with GUI app.

Fig. 25. Different servo positions based on class using a pan-tilt mechanism. (A) Servo position for household food waste. (B) Servo position for recyclable waste. (C) 
Servo position for hazard waste. (D) Servo position for residual waste.
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feature variability may lead to reduced model accuracy. However, the 
simplicity of decision boundaries in a smaller number of classes can help 
mitigate these challenges despite the limited feature set.

The proposed model can be implemented to establish an automated 
waste categorization system in an industrial setting, offering several 
significant advantages. Firstly, automation drastically reduces labor 
costs and minimizes human error by replacing manual sorting proced
ures. Secondly, the system accelerates the sorting process by accurately 
and efficiently identifying waste, thereby increasing throughput and 
optimizing workflow. This enhanced sorting capability contributes to 
improved recycling by accurately distinguishing recyclables from non- 
recyclables, thereby optimizing resource recovery and accelerating the 
recycling process. Such capabilities also help advance environmental 
sustainability by encouraging eco-friendly practices such as recycling. 
Lastly, by facilitating the repurposing of waste materials and creating 
value from previously discarded resources, the system supports a cir
cular economy and strengthens the overall waste management 
ecosystem.

Despite the model’s strong performance, there is room for further 
enhancement. The study utilized an existing dataset from Kaggle, con
taining 15150 images across twelve waste classes. While this dataset is 
larger than those used in comparable studies, it may still not fully 
represent the diversity of waste encountered in real-world scenarios. 
Additionally, certain categories—such as hazardous, household food, 
and residual waste—lack detailed subcategories, which may not reflect 
the practical complexities of waste management where, for instance, 
hazardous materials require specialized disposal methods. This limita
tion may impact the model’s applicability in real-world industrial 

systems that demand finer categorization. Additionally, the dataset ex
hibits class imbalance, with certain categories—such as Recyclable 
Waste and Cloths—having significantly more samples than others. 
Despite the absence of explicit class balancing techniques, the proposed 
model achieved high classification accuracy (99 % in the first-stage four- 
class task), demonstrating strong generalization capabilities. This per
formance is attributed to several factors. First, the dataset consists of 
high-quality, well-structured images in which each image clearly con
tains a single type of waste object, minimizing intra-class variability and 
facilitating more effective learning. Second, the model architecture is 
highly capable of extracting discriminative features, allowing it to 
perform robustly even in the presence of class imbalance. These 
strengths enabled the model to maintain consistent performance across 
both majority and minority classes during evaluation.However, it is 
important to note that the images used for training and evaluation were 
relatively clean and well-structured, as shown in Fig. 2. In practical 
settings, waste is often dirty, occluded, or contaminated, which could 
negatively affect model performance. Such real-world data was not 
publicly available at the time of this study. Consequently, future work 
will focus on collecting more realistic datasets that reflect actual waste 
conditions in operational environments. The model will also be further 
fine-tuned and validated on this real-world data to ensure robustness, 
reliability, and deployment readiness.

Moreover, limitations such as the inability to handle incomplete, 
partially obscured, or mixed-type waste samples are acknowledged. To 
address these, future developments will explore noise-tolerant training 
strategies, enhanced preprocessing pipelines, and robust feature 
extraction methods to improve model performance under challenging 

Fig. 26. Real-time classification using a webcam and SHAP visualization (A), (B) Household Food Waste, (C), (D) Recyclable Waste.
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conditions. In addition, efforts will be made to collect a more compre
hensive and diverse dataset, incorporating additional waste categories 
such as electronic, industrial, and medical waste, while also expanding 
subcategory coverage for all major classes. Although the proposed 
model is not currently suited for disaster waste management due to the 
structured nature of its training data and its focus on municipal solid 
waste, it could be extended to such applications in the future. This would 
require dataset adaptation using disaster-specific imagery, robust model 
re-training for mixed-material classification, and integration with mo
bile platforms such as drones or robotic units. Exploring such extensions 
could broaden the model’s applicability in emergency response and 
post-disaster recovery efforts. Furthermore, techniques such as data 
augmentation and oversampling may be employed to mitigate class 
imbalance. Together, these advancements aim to improve the model’s 
practical applicability, scalability, and overall performance in complex, 
real-world waste management scenarios.

In the two-stage classification approach, error propagation from the 
first to the second stage is minimized by ensuring that both stages 
operate independently. The first stage classifies waste into broader 
categories, while the second stage refines these categories into more 
specific subcategories. This separation ensures that misclassification in 
the first stage does not directly impact the second stage. Although both 
stages use the same underlying model architecture, their distinct tasks 
enhance the robustness and resilience of the classification process. 
Robust feature extraction methods are employed in both stages to cap
ture the most relevant and discriminative features. Additionally, the 
integration of SHAP (Shapley Additive Explanations) enhances model 
interpretability by identifying the most influential features in the clas
sification process. This transparency enables a deeper understanding of 
the system’s decision-making process and aids in its fine-tuning. More
over, the SHAP integration helps minimize errors by highlighting the 
key features responsible for accurate classification.

Although the hardware system was successfully validated for both 
real-time and offline scenarios, it was implemented on a small scale 
using limited functionality hardware, such as a webcam and generated 
video. To enhance performance, future work will involve upgrading the 

hardware with components more suitable for industrial applications. 
These could include motion sensors, high-precision motors, high- 
resolution cameras, and conveyor belt systems typically used in waste 
management industries. Additionally, the system could be implemented 
on an edge device for better portability and maintenance in real-world 
applications. A modified robotic arm mechanism could be integrated 
for faster and more accurate waste sorting, along with IoT-based 
tracking systems for optimized waste management. Improving compu
tational efficiency will also be a key focus, particularly for enabling 
deployment on edge devices. Techniques such as model pruning, 
quantization, and knowledge distillation will be explored to reduce 
model size, memory consumption, and inference time, ensuring that the 
system remains responsive and resource-efficient without compromising 
classification performance. Finally, the approach could be expanded to 
include the identification of additional waste categories, such as elec
tronic waste, industrial waste, and medical waste.

5. Conclusions

Precise waste classification facilitates better waste management, 
hence promoting environmental sustainability and optimizing resource 
utilization. By correctly identifying and managing hazardous waste 
materials, automated classification systems can protect public health 
and safety and increase efficiency across a variety of industries. This 
study introduces an efficient strategy for waste classification by inte
grating the PLDs-CNN feature extraction mechanism with the Ridge- 
ELM classifier. The PLDs-CNN model comprises nine layers and 
approximately 1.09 million parameters, enabling effective categoriza
tion of both four and twelve waste classes with reduced computational 
burden. The model demonstrated fast inference, achieving processing 
times of 0.0079 s for four-class and 0.0041 s for twelve-class classifi
cation tasks. Replacing the conventional pseudo ridge regression tech
nique with Ridge-ELM significantly enhanced the model’s predictive 
capability. The approach achieved high classification accuracy—99 % 
for the initial four-class task and 96 % for the twelve-class task. For the 
twelve-class scenario, strong performance was further confirmed by 

Fig. 27. Continuous classification process test for real-time sorting and tray movement for (a), (b) Recyclable Waste, (c), (d) Household Food Waste.
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precision, recall, and F1-scores of 95 ± 0.033 %, 94.33 ± 0.031 %, and 
94.66 ± 0.02 %, respectively, along with an outstanding AUC score of 
99.54 %. With a compact model size of just 12.7 MB, this method is 
highly suitable for deployment in practical waste management solu
tions, particularly on low-resource edge devices. The integration of real- 
time SHAP explainability adds value for end-users by offering clear and 
trustworthy interpretation of the model’s decisions, improving the 
credibility of classification outcomes. These encouraging findings open 
up opportunities for advancing intelligent and sustainable waste sorting 
systems. Furthermore, the proposed waste classification model was 
successfully realized in both hardware and software prototype imple
mentations, validating its feasibility in operational environments. 
Overall, the PLDs-CNN Ridge-ELM model significantly enhances waste 
classification accuracy while remaining practical for real-world 
applications.
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Table 11 
Performance comparison with state-of-the-art models and the proposed model.

Ref. Dataset Name Number of 
Images in 
the Dataset

Number of Class Best Model Testing Accuracy (%) Best Model’s 
Parameters 
(million)

Testing 
Time 
(seconds)

Real- 
time 
XAI

Mao et al. (2021) TrashNet 2527 6 DenseNet121 
(Optimized)

99.60 7.2 – None

Nowakowski and 
Pamuła (2020)

Custom 210 3 Deep CNN and R- 
CNN

96.7 – – None

Khan et al. (2022) Kaggle Garbage 
Categorization 
Dataset

750 6 RWC-EPODL 98.96 – – None

Lin et al. (2022) TrashNet 2527 6 RWNet 88.8 58.5 – None
Abdulkareem 

et al. (2024)
Custom 1451 4 ResNet50- 

GoogleNet- 
Inception

98 – – None

Kumar et al. 
(2021)

Custom 2400 4 support vector 
machine (SVM)

96.5 – – None

Al-Mashhadani 
(2023)

Custom 1451 4 InceptionV3 100 % – – None

Yang and Li 
(2020)

(i) TrashNet, (ii) 
Huawei Garbage 
Classification Dataset

252 and 
18079

6 (TrashNet), 
4 (Huawei 
Garbage 
Classification 
Dataset)

WasNet 96.10 (For TrashNet 
Dataset), 82.5 (For 
Huawei Garbage 
Classification Dataset)

1.5 – None

Z. Chen et al. 
(2022)

Custom 4256 4 (14 sub-classes) GCNet (Improved 
ShuffleNetv2)

97.9 (For 14 sub-class) 1.3 – None

Fan et al. (2023) Huawei Cloud 
Garbage 
Classification Dataset

14802 4 EfficientNetB2 
with PMAM

93.38 7.8 6.756 None

Feng et al. (2022) Custom 7361 4 (18 sub-classes) GECM- 
EfficienNet

94.54 (For 18 sub-class) 1.23 – None

Jin et al. (2023) Huawei Garbage 
Classification 
Challenge Cup 
Dataset

14683 4 Improved 
MobileNetV2

90.7 3.4 – None

S. Zhang et al. 
(2021)

Custom 1040 4 (13 sub-classes) RevM 94.71 (For 4 class) – – None

Proposed Model Kaggle Garbage 
Classification Dataset

15150 4 (12 sub-classes) PLDs-CNN-Ridge- 
ELM

99.0 (For 4 class), 
96.0 (For 12 sub-class)

1.09 0.0079 
(For 4 
class), 
0.0041 
(For 12 
sub-class)

SHAP
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needed. All aspects of the core research, including the study design, 
analysis, and conclusions, remain the sole responsibility of the authors.

Data availability

Data will be made available on request.
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