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Abstract 22 

In the age of global urbanization, waste recycling remains a critical challenge, impacting the 23 

environment and societies from small communities to entire nations. This research aims to address 24 

these gaps by proposing a comprehensive and fully automated waste management framework that 25 

integrates advanced AI-based detection with robotic hardware to enable intelligent, real-time waste 26 

sorting. The fundamental framework of this work is the RTDRNet-lite model, a modified 27 

lightweight version of the high-performing object detection variant RT-DETR, which achieved an 28 

impressive mAP@50 of 97%. Developed with real-time applicability in mind, the model uses 29 

lightweight C2F modules within its head architecture, reducing the computational complexity 30 

without any dramatic change in accuracy. A unique approach to training the model was employed, 31 

leveraging both real-world waste image data and highly detailed synthetic images generated using 32 

the Stable Diffusion model, the Realistic Vision v5.1. This hybrid approach enriches visual 33 
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diversity and improves the model’s generalizability, especially in handling complex object 34 

boundaries. The model is trained on four high-frequency waste categories, paper, plastic, glass, and 35 

metal, using over 12,929 annotated instances. Additional qualitative evaluations, including IoU-36 

based visual analysis, external validation, and heatmap visualization, confirm the model's 37 

robustness, spatial accuracy, and resilience in complex scenes. To demonstrate real-world 38 

applicability, a custom 4-degree-of-freedom (DoF) robotic arm was developed and integrated with 39 

the model, successfully validating its performance in live sorting tasks. The results confirm both 40 

the numerical performance and the practical deployment potential of the proposed system for large 41 

industrial-scale waste management facilities and environments. 42 

 43 

Keywords: Waste detection, stable diffusion model C2F block, robotic arm 4 DoF, inverse 44 

kinematics, graphical user interface, GUI 45 

 46 

1. Introduction 47 

As cities expand and consumption increases, the global waste crisis is becoming one of the most 48 

pressing yet overlooked challenges of our time.  From overflowing landfills to polluted rivers and 49 

oceans, the sheer volume and diversity of waste produced daily pose a critical threat to our 50 

ecosystems, public health, and future sustainability (Jain & Shah, 2019). Waste management, once 51 

seen as a basic municipal service, has now escalated into a global priority, deeply intertwined with 52 

environmental preservation, public health, and economic efficiency. With urban centers producing 53 

millions of tons of solid waste each day, the urgency to implement intelligent, scalable solutions 54 

has never been greater. 55 
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The effects of poor waste handling can be seen everywhere on our planet. Plastics choke marine 56 

ecosystems and release toxins into waterways, which further degrade into microplastics that are 57 

ingested by animals and enter food chains with potentially toxic impacts on wildlife and humans 58 

(Emenike et al., 2023). Open dumping and incineration are commonly practiced in third-world 59 

countries, and these methods are known to release toxic fumes and greenhouse gases that fuel 60 

climate change and respiratory diseases (Sheriff et al. 2025). E-waste, in addition to hospital and 61 

industrial hazardous waste, is frequently released from these facilities, is not properly contained, 62 

and may result in long-term soil and groundwater pollution (Hasan et al., 2023). These impacts are 63 

not isolated, as they ripple through whole ecosystems and populations, often most intensely among 64 

the vulnerable and marginalized regions of the world. In addition to the environmental and health 65 

consequences, there is also an increasing economic cost. Municipalities around the world spend 66 

billions annually on waste collection and disposal, yet recycling rates remain disappointingly low 67 

(World Bank, n.d.). Sorting waste correctly, especially in an urban context with mixed waste, is a 68 

labor-intensive task and is subject to frequent errors (Sayem et al., 2024). 69 

 In traditional systems, human workers are tasked with the dirty, dangerous, and monotonous job 70 

of manually separating waste materials.  This endangers workers and slows the scale and pace of 71 

their activities (Jerie, 2016). Furthermore, human error in classification often results in cross-72 

contamination of recyclables, reducing the effectiveness of recycling facilities and increasing 73 

landfill dependency. These facts reveal the challenges facing traditional waste practices. Manual 74 

sorting, mechanical shredding, and basic optical/visual separation can be acceptable at the basic 75 

level; however, they are not robust enough to cope with the variety and unpredictability of modern 76 

waste (Fang et al., 2023). Conventional systems are not adaptable for identifying new waste 77 

materials and their ever-changing orientations or maintaining consistent performance across shifts 78 

and facilities (Alsabt et al., 2024). 79 
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As waste streams become more varied and contaminated, the cracks in these conventional systems 80 

become even more apparent. This is where the convergence of artificial intelligence and robotics 81 

began to reshape the narrative. In recent years, automation has gained traction in several industries, 82 

and its application in waste management is particularly promising because of the nature of the 83 

problem, repetitive tasks, hazardous environments, and the need for real-time decision-making 84 

(Jaouhari et al., 2024). AI, particularly computer vision and deep learning, offers a powerful toolset 85 

for recognizing patterns in waste items (Zhang et al., 2021), whether it distinguishes PET bottles 86 

from PVCs or identifies organic matter from synthetic packaging, tasks that often baffle even 87 

trained human workers (Torres et al., 2021). By training AI models on large datasets of labeled 88 

waste images, machines can learn to detect and classify waste materials with high accuracy. These 89 

detection systems can be mounted on conveyor belts in sorting facilities or integrated into smart 90 

bins in households and urban infrastructure. 91 

However, a critical gap remains in much of the existing research in this domain. Many previous 92 

studies focused solely on developing and evaluating AI models for waste detection, classification, 93 

or segmentation, reporting results on the basis of accuracy, precision, or IoU metrics. While these 94 

contributions are valuable from a machine learning standpoint, they often fail in addressing the 95 

practical deployment of such systems. The discussion frequently ends at the model training phase, 96 

leaving the post detection phase, robotic manipulation, sorting strategies, and operational logistics 97 

largely unaddressed. This disconnect between algorithm development and system-level 98 

implementation limits the translational value of otherwise promising research. To physically act on 99 

this classification, robotic arms and automated manipulators are required to pick, sort, and place 100 

waste items into appropriate categories. These robots need to be designed to mimic human dexterity 101 

but operate with greater speed, consistency, and immunity to fatigue. The fusion of AI detection 102 

with robotic actuation represents a turning point for waste management systems (Lubongo et al., 103 

2024). No longer confined to static roles, modern systems can now learn from data, adapt to new 104 
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waste patterns, and perform precise physical actions autonomously. A number of companies have 105 

already proven such concepts, such as AMP Robotics and ZenRobotics, which have deployed AI-106 

driven sorting rigs capable of separating hundreds of tons of waste every hour more accurately and 107 

quickly than a human operator ever could. Such systems not only lower the dependence on human 108 

labor but also increase the recovery of valuable materials, such as aluminum,  copper, and 109 

recyclable plastics, which directly contributes to the circular economy (Lakhouit et al., 2025). 110 

Both of our previous studies on waste recycling automation by Sayem et al. (2024) and 111 

Nahiduzzaman et al. (2025), had several critical limitations that motivated the present work. In the 112 

study of Sayem et al. 2024), the use of image classification was impractical for real-time, multi-113 

object sorting scenarios. Additionally, the dataset used suffered from severe class imbalance, with 114 

many categories containing very few samples, limiting generalization. In Nahiduzzaman et al. 115 

(2025) study, although a larger dataset was employed, it was primarily composed of web-scraped 116 

images, resulting in mislabeling, noisy backgrounds, and the presence of irrelevant objects. None 117 

of the study integrated sophisticated hardware implementation in a real-time physical setting and 118 

the robotic interaction was limited to mostly simulation. Building upon these insights and 119 

limitations identified in our previous two studies on waste recycling, this work presents a 120 

significantly more refined and efficient framework.  Multiple scientific contributions are outlined 121 

in this paper: 122 

1. Development of a Lightweight Waste Detection Framework: A streamlined detection 123 

model (RTDRNet-lite) was designed by simplifying an existing architecture to achieve 124 

efficient performance with significantly reduced computational requirements, making it 125 

suitable for real-time applications. 126 

2. Enhanced Dataset through Synthetic Image Generation: A hybrid dataset was created by 127 

combining natural waste images with synthetically generated ones, addressing issues of class 128 

imbalance and limited data availability for certain categories. 129 
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3. Integration with Physical Robotic Hardware: The detection model was deployed on a 130 

custom-built 4-degree-of-freedom robotic arm, enabling real-time waste item identification 131 

and positioning for sorting operations. 132 

4. Evaluation on External Image Sets: The proposed framework was tested on independent 133 

waste image datasets not used during training, demonstrating reliable performance across 134 

varying backgrounds and object types. 135 

5. Interpretability and User Accessibility: A visual explanation mechanism was included to 136 

highlight the system’s focus areas during detection, along with a graphical user interface (GUI) 137 

to support real-time monitoring and manual control. 138 

6. Improved Annotation and Data Processing Pipeline: A semi-automated labeling approach 139 

was implemented for the synthetic data, improving annotation efficiency while maintaining 140 

quality through confidence-based filtering. 141 

7. Hardware-Oriented Optimization: The overall system was designed with real-world 142 

constraints in mind, balancing model accuracy with reduced power consumption, memory 143 

usage, and hardware compatibility. 144 

8. Comparison with Prior Studies This work addresses the limitations of earlier systems by 145 

enabling simultaneous multi-object detection and physical testing, moving beyond single-146 

object classification and simulation-only environments. 147 

The rest of the paper is structured as follows. In Section 2, we review existing works regarding 148 

deep learning-based waste detection, classification, and segmentation in a whole-spectrum manner,  149 

including model classification and deployment. In Section 3, we describe the dataset, materials, 150 

model architecture, and experimental procedures used in the present work. The proposed model is 151 

evaluated in Section 4, which discusses the performed metrics, validation methods, and real-time 152 

testing inside hardware integrated within a software environment. A comparison with the state-of-153 
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the-art methods is given in Section 5, and concluding remarks as well as future works are presented 154 

in Section 6. 155 

 156 

2. Literature Review 157 

The rise of research on AI-based waste management systems in recent years has led to the 158 

development of a variety of innovative methodologies for waste classification, detection, and 159 

technology. While sharing common performance goals such as accuracy, model speed, or 160 

scalability, these goals have exploited various architectural approaches or datasets. A consistent 161 

thread across several works is the use of convolutional neural networks (CNNs) and deep learning 162 

models, with variations tailored to specific deployment contexts and waste types. 163 

For example, papers by Majchrowska et al. (2021), Prasad et al. (2025), and Sayem et al. (2024) 164 

introduce dual-stage or dual-stream models for waste detection and classification: the first uses 165 

EfficientDet-D2 for localization and EfficientNet-B2 for classification and operates on seven 166 

categories of waste. It provides approximately 70% precision and 75% classification accuracy and 167 

real-time performance at 30 fps. Similarly, Sayem et al. (2024) introduced a dual-stream model 168 

coupled with the GELAN-E detection network on a comprehensive dataset of 10,406 images across 169 

28 categories, achieving 83.11% classification accuracy and 63% mAP50 in detection. Both 170 

demonstrate how splitting detection and classification processes into specialized modules enhances 171 

performance, especially when backed by diverse datasets. The methods presented by 172 

Nahiduzzaman et al. (2025), Hossen et al. (2024), and Ahmed et al. (2023) focus on classification 173 

efficiency and model compactness. The first introduces a three-stage waste classification pipeline 174 

that efficiently categorizes waste into 2, 9, and 36 categories and delivers 96%, 91%, and 85.25% 175 

classification accuracy, respectively. 176 
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It employs a lightweight DP-CNN architecture (~1.09 M parameters) and an ensemble extreme 177 

learning machine (En-ELM), emphasizing real-time applicability with extremely low inference 178 

times. Hossen et al. (2024), followed the RWCNet model trained on TrashNet, achieving 95.01% 179 

overall accuracy with individual F1 scores exceeding 93% in five out of six categories. On the other 180 

hand, Ahmed et al. (2023) leverages transfer learning using DenseNet169, MobileNetV2, and 181 

ResNet50V2, where ResNet50V2 achieved a classification accuracy of 98.95%. The consistent use 182 

of pre-trained models in this work highlights the efficacy of transfer learning in boosting 183 

performance over custom CNNs. The segmentation of waste, particularly in cluttered and complex 184 

scenes, is another significant avenue explored in studies such as Sirimewan et al. (2024), Prasad et 185 

al. (2025), Qiu et al. (2022)), and Kiyokawa et al. (2021). In Sirimewan et al. (2023), segmentation 186 

of construction and demolition (CRD) waste via DeepLabv3+ and U-Net with backbones such as 187 

ResNet-101 yielded  IoU values of 0.74 and mAP values of up to 0.85. Despite the use of a small 188 

dataset of 430 images, the work achieved reasonable performance, although limitations in class 189 

balance and manual labeling were noted. In contrast, Prasad et al. (2025) introduced ShARP-190 

WasteSeg, which incorporates RGB and depth data to enhance boundary detection and instance 191 

segmentation. The integration of shape-aware and boundary-sensitive features improved the mask 192 

AP by 7.91% and the boundary AP by 11.44%. Qiu et al. (2022) took this further with ETHSeg for 193 

X-ray-based waste inspection, allowing penetration of occlusions in waste bags. The method 194 

achieved a mAP50 of 63.22%, driven by an “easy-to-hard” segmentation strategy and a ResNet-195 

101-FPN backbone, revealing how novel data modalities can overcome visibility challenges in 196 

traditional imaging. 197 

Comparative analysis of smart bin integration and real-time deployment features is evident in Wang 198 

et al. (2021), Gunaseelan et al. (2023), Rahman  et al. (2020), and Sallang et al. (2021). Wang et 199 

al. (2021) presented a cloud-integrated system using seven CNNs, where MobileNetV3 reached 200 

94.26% accuracy with a model size of 49.5 MB and inference time of 261.7 ms. Similarly, 201 
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Gunaseelan et al. (2023) utilized a modified ResNeXt architecture coupled with ResNet-50 for 202 

dual-network classification across biodegradable and hazardous categories, achieving an 203 

impressive 98.9% overall accuracy. The study also features a smart bin with real-time control and 204 

solar-powered hardware. Rahman et al. (2020) reported a simpler two-class classification system 205 

for digestible vs. indigestible waste at 95.31% accuracy, integrated with a sensor-driven Android 206 

interface. Sallang et al. (2021) rounds out this group with an SSD-MobileNetV2-based solution, 207 

achieving an mAP of 92.16% on Raspberry Pi, enabling automated sorting and real-time 208 

monitoring via LoRa and GPS. 209 

By optimizing the IRD hyperparameters via an Arithmetic Optimization Algorithm, the system 210 

achieves 98.61% accuracy. Moreover, Kiyokawa et al. (2021) employs DeepLabv3+ on a 5,366-211 

image dataset of construction waste, achieving 0.56 mIoU with robustness to real-world variations 212 

such as lighting and moving vehicles. These works emphasize the importance of tailored model 213 

designs and data strategies to accommodate object scale and environmental complexity. A unique 214 

take-on problem comes from Iqbal et al. (2022), which uses video analytics on edge devices for 215 

plastic bag contamination detection. YOLOv4 and CSPDarkNet_tiny achieved an mAP of 63% at 216 

24.8 fps on a Jetson TX2, proving that real-time deployment of high-speed models in constrained 217 

environments is feasible. Continuous training and deployment loops enhanced long-term system 218 

performance and minimized false detections. The system's alignment with industrial settings 219 

represents a trend toward sustainable, data-driven operations. 220 

Finally, Mookkaiah et al. (2022) added another dimension by incorporating hybrid pooling and 221 

batch normalization into a ResNet V2-based architecture for MSW classification, yielding a 222 

19.08% improvement in accuracy over traditional methods. This demonstrates how nuanced 223 

architectural choices can provide substantial performance improvements even in basic binary 224 

classification tasks. Together, these studies illustrate a rapidly evolving landscape where real-time 225 

capability, accuracy, and deployment efficiency are equally valued. Papers such as Majchrowska 226 
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et al. (2021), Nahiduzzaman et al. (2025), Ahmed et al. (2023), and Gunaseelan et al. (2023) 227 

consistently push for high accuracy through network innovation, whereas Prasad et al. (2025), Qiu 228 

et al. ((2022), and Kiyokawa et al. (2021) emphasize segmentation robustness in realistic scenarios. 229 

Works such as Wang et al. (2021), Rahman et al. (2020), and Sallang et al. (2021) stress end-to-230 

end smart system integration, indicating a holistic approach to waste management through AI. 231 

Collectively, the field is moving toward scalable, explainable, and context-aware AI systems 232 

capable of functioning across diverse real-world waste management environments. 233 

Finally, invaluable insights into dataset diversity and representation, particularly for small or 234 

complex objects, are addressed in Alsubaei et al. (2022) and Kiyokawa et al. (2021). Alsubaei et 235 

al. (2022) outline DLSODC-GWM, a method focused on small object detection, which consists of 236 

using an improved RefineDet (IRD) with a Functional Link Neural Network (FLNN). While recent 237 

studies have made notable advancements in waste classification and segmentation through dual-238 

stage models, lightweight networks, and smart bin integration, still challenges remain towards 239 

developing a system ready for real-life deployment. Most approaches either rely on image 240 

classification with limited real-world applicability or require high computational resources 241 

unsuitable for embedded deployment. Additionally, segmentation models often struggle with 242 

cluttered, overlapping waste in unstructured environments, and synthetic data generation is rarely 243 

explored to improve dataset diversity. These gaps highlight the need for a unified, efficient, and 244 

deployable system that combines robust detection, real-time performance, and adaptability to 245 

complex waste scenarios. 246 

3. Dataset and Methodology 247 

The overall research framework is systematically structured into several distinct phases, 248 

encompassing fundamental data acquisition, the design and development of the model architecture, 249 

comprehensive numerical and visual analyses, and ultimately, the deployment of the trained model 250 
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integrated with robotic hardware for real-time application and evaluation. Figure 1 provides a 251 

detailed representation of this study's complete technical workflow and analytical components, 252 

illustrated through structured block diagrams for enhanced interpretability. 253 

 254 

 255 

Fig. 1. Block diagram of the proposed waste detection framework integrating real-time robotic evaluation. 256 

3.1.1 Dataset Preprocessing 257 

The foundational dataset utilized in this research was from Kaggle, titled “RealWaste Image 258 

Classification” by Joakim Arvidsson (2024). This dataset originally comprised nine distinct classes 259 

of waste, encompassing both organic and inorganic materials. Given the objective of this study, to 260 

detect and classify waste materials based on their visual characteristics and material composition, 261 

certain class consolidations were performed. “Vegetation” and “Food organics” classes were 262 

excluded from the dataset due to their handling inefficiency in robotic arm sorting systems and 263 
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their often moist, deformable, or irregular physical consistency (Kharola et al., 2022), which poses 264 

challenges for conventional robotic grippers. 265 

 266 

The ‘Cardboard’ and ‘Paper’ classes were combined into a single type due to their interchangeable 267 

physical features and visual resemblance. The ‘Miscellaneous Trash’ and ‘Textile Trash’ classes 268 

were removed from the dataset because of their complexity for model detection in a cluttered 269 

environment, weak economic importance, and very low number of appearances in the data. The 270 

final dataset was restructured into 4 primary dominant classes, one representing organic waste as 271 

paper waste, and three representing inorganic waste: metal, plastic, and glass. The preprocessing 272 

phase commenced with data augmentation to increase the dataset's diversity and improve model 273 

generalizability. Each image underwent three types of augmentations: rotation at 90°, 180°, mirror, 274 

and zoom-in transformations. This process aims to simulate various real-world orientations and 275 

scales of waste objects. Following augmentation, an average hash algorithm was applied to identify 276 

and eliminate redundant or near-duplicate images, ensuring appropriate data for the model by 277 

removing unnecessary and repetitive data that cause model overfitting (Ying, 2021). The LabelImg 278 

image annotation tool was subsequently employed for manual labeling. Bounding boxes were 279 

created around each object, and labels were assigned to their respective categories to facilitate 280 

object detection training. Figure 2 desmostrates the overall dataset preprocessing pipleline. 281 



13 
 

 282 

Fig. 2. Dataset preprocessing pipeline 283 
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Realistic Vision v5.1 (SG161222, n.d.) model, a high-fidelity text-to-image diffusion model based 289 

on Stable Diffusion, which was trained on millions of image-caption pairs from the LAION-5B 290 

dataset using the latent diffusion framework. This model is the result of extensive fine-tuning and 291 

checkpoint merging of photorealistic diffusion models, specifically designed to enhance texture, 292 

object clarity, and scene realism. It builds upon the Stable Diffusion 1.5 backbone, using classifier-293 

free guidance and large-scale datasets to generate high-quality, prompt-aligned images. Using the 294 

Diffusers library, a generation pipeline capable of producing realistic variations of target objects, 295 
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descriptive phrases. The guidance scale was set to 8.5 to ensure strong alignment between the 297 
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prompt and the generated image, while maintaining visual diversity. Additionally, 60 inference 298 

steps were applied to achieve a balance between generation quality and computational efficiency.  299 

This particular model was chosen over other diffusion-based models like Stable Diffusion v1.5 or 300 

2.1 due to its strength in creating photo-realistic outputs with natural textures, consistent lighting, 301 

and realistic object shapes. These qualities made it especially suitable for producing synthetic 302 

images that closely resemble the real waste images used in training. By carefully writing prompts 303 

that described common waste materials like plastic bottles, metal cans, and glass fragments, we 304 

were able to generate images that matched the visual style, background simplicity, and lighting 305 

conditions of our real-world dataset. This helped reduce any noticeable difference between real and 306 

synthetic images, ensuring that the model wouldn't overfit to either domain. All synthetic images 307 

were also resized to 512×512 pixels and underwent the same augmentation steps (rotation, 308 

zooming) as the original images to further align their appearance. This approach allowed us to 309 

increase the number of examples for underrepresented classes like glass and metal, while 310 

maintaining visual consistency across the dataset. As a result, the detection model could learn to 311 

recognize a wider range of appearances, including different angles, partial views, or occlusions of 312 

the same object type, conditions that often occur in real-world waste environments. Object 313 

detection models do not depend on whether an image is real or synthetic, they learn from repeated 314 

patterns, object shapes, and spatial features, all of which the diffusion model captures effectively. 315 

Once the synthetic images were generated, we used a semi-automatic labeling process. A pre-316 

trained detection model was run on the new images to predict bounding boxes, and only those with 317 

high confidence, above 90% were retained. We then reviewed these predictions manually to ensure 318 

accuracy. This process saved significant time while still maintaining high annotation quality. An 319 

overview of this image generation and labeling workflow is provided in Figure 3. 320 

Initially, a detection model was trained using the RT-DETR architecture on the primary dataset 321 

mentioned in Table 1. Following the development of the initial detection model, the synthetic 322 
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images were compiled into a single directory. To complete the annotation of the new dataset, a 323 

Python-based script running the trained detection model was used to automatically detect and 324 

localize objects present in these unannotated images. For each image, the model was used to predict 325 

the object classes as well as their respective bounding boxes. These predictions were stored in a 326 

record, and the annotation files for each image were automatically generated using the predicted 327 

class indices and the bounding box coordinates. In order to ensure the high quality of the generated 328 

annotations with maintained dataset integrity, a confidence threshold of 90% was implemented, 329 

where any prediction below the threshold was ignored. The threshold was used to filter out low-330 

confidence detections to ensure that only the truly reliable object annotations were preserved.  331 

 332 

 333 

Fig. 3. Semi-automatic annotation for synthetic image labeling. 334 

Afterwards, manual verification was performed for all the predicted datasets to disregard any 335 

mislabeled predictions. As a result, this semi-automated annotation process returned a total of 5293 336 

additional object instances, substantially increasing the size of the dataset. The expansion was 337 

proven beneficial for improving the model’s robustness, generalization ability, and overall 338 

performance in different realistic multimodal and multi-class waste classification environments. 339 

Table 1 shows a comparison between the previous and current class image numbers, and Figure 4 340 

shows some samples of the natural images against the synthetic images present in the final dataset. 341 

In comparison to our previous papers on AI-based waste recycling, Sayem et al. (2024) utilized 342 

both image classification and object detection approaches using the WaRP-C and WaRP-D datasets 343 
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(Parohod, 2023), respectively. While both datasets initially appeared reliable due to the presence 344 

of multiple waste classes, further inspection of WaRP-C revealed significant class imbalance, with 345 

most categories containing very few images. Similar issues were observed in WaRP-D, where some 346 

classes had over 200 instances while others had fewer than 30, resulting in highly skewed data that 347 

was unsuitable for robust training. On the other hand, the dataset used in Nahiduzzaman et al. 348 

(2025) included a higher number of images; however, closer examination revealed multiple issues, 349 

such as misclassified waste categories, random irrelevant objects due to web scraping, and 350 

generally small and noisy samples. In contrast, the dataset used in this research combines naturally 351 

captured images with high-quality, AI-generated synthetic data to provide a more balanced and 352 

representative training set. 353 

 354 

Table 1. 355 

 Dataset comparison consisting of both natural and synthetic images. 356 

Combined Dataset (Natural + Synthetic Data) Natural Dataset 

Class Instances Class Name Instances 
Paper 3797 Paper 2453 
Plastic 3406 Plastic 2307 
Glass 2663 Glass 1040 
Metal 3063 Metal 1836 

 357 
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 358 

Fig. 4. Samples and visual comparison of natural and synthetic images in the dataset. 359 

3.2 Model Architecture 360 

3.2.1 Proposed Model 361 

This modified version of the RT-DETR-large architecture, RTDRNet-lite, features a carefully re-362 

engineered design to improve computational efficiency without significantly sacrificing detection 363 

performance. The main goal of this revision is to address the challenges encountered in resource-364 

constrained environments, where computational power, memory bandwidth, and power 365 

consumption are heavily limited. Additionally, these AI and robotic hardware systems require 366 

substantial power, as they are designed to operate continuously; therefore, integrating a lightweight 367 

AI model is crucial to ensure energy efficiency and align with the primary goal of building a 368 

sustainable, low-resource waste sorting solution. To achieve this, the model implements several 369 

strategic architectural changes that greatly reduce the number of parameters and floating-point 370 

operations per second (FLOPs), enabling it to operate effectively in real-time or near-real-time 371 

deployment scenarios. Figure 5 shows the block diagram of the proposed RTDRNet-lite 372 

architecture. A key aspect of change occurs in the backbone of the architecture, which has been 373 

intentionally downscaled to provide a more compact and efficient representation of input features. 374 
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The initial layers of the network, including the HGStem and HGBlock modules, have been 375 

optimized. Originally configured with dimensions of (32, 48) and (48, 128), these have been 376 

reduced to (24, 32) and (32, 96), respectively. 377 

 378 

Fig. 5. Block diagram of RTDRNet-lite model architecture. 379 

This downscaling guarantees an initial reduction in the computational requirements of feature 380 

extraction, especially in the early stages, which is important for low-latency computing. 381 

Additionally, the models have been minimized in both depth and channel width as they advance 382 

through deeper stages. This reduction leads to a substantially reduced computational footprint, 383 

while the model still has the capacity for hierarchical characteristic processing, which results in 384 

robust object detection. In other words, efforts have been made to increase the representational 385 

capability of a network while simultaneously optimizing its computational expenditure. 386 
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Furthermore, the number of HGBlocks replicated in each stage is reduced, with a limit of three. 387 

This avoids the risk of over-parameterization and a gigantic depth that is not supported by the 388 

achievable precision. Furthermore, the channel width in deeper layers, particularly those that 389 

execute DWConv and HGblocks, has been kept minimal. This not only produces smaller 390 

intermediate feature maps but also ensures that there is less memory access and time to be invested. 391 

Figure 6 shows the block diagram for DWConv, where each input channel of shape H × W × C is 392 

filtered independently using a K × K kernel, resulting in an output of shape H′ × W′ × C. Unlike 393 

standard convolution, there is no cross-channel mixing. This operation, illustrated above, reduces 394 

computational complexity and is well suited for real-time applications. Equation (1) provides a 395 

mathematical formulation of depthwise convolution, demonstrating how filtering is applied 396 

independently to each channel, thereby reducing the computational cost.  397 

 398 

Fig. 6. Block diagram for depth-wise convolution (DWConv) module. 399 
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Yi,j,c is the output at location (i,j) in channel C, X is the input feature map, W is the depthwise filter 401 

with shape K×K×C, where K is the kernel size and C is the number of channels. Unlike standard 402 

convolution, filtering is applied per channel, with no cross-channel mixing. DWConv reduces 403 

complexity from O (K2. Cin. Cout) to O (K2. Cin), which is ideal for real-time models. In the model’s 404 

detection head, key components have been retained and adapted rather than eliminated. The AIFI 405 

(Attention-Integrated Feature Interaction) module remains a central part of the architecture in 406 

capturing global contextual information and improving the robustness of detection outcomes. 407 

However, this module and its associated components have been simplified to reduce their 408 

parameter burden. The initial projection layer that feeds into the AIFI module now reduces the 409 

channel dimensionality to 192. Furthermore, the AIFI module itself operates with six attention 410 

heads instead of the original eight, decreasing its parameter load while retaining much of its 411 

functional efficacy. Equation (2) shows the scaled dot-product attention mechanism used in the 412 

AIFI module to compute attention scores based on the relationship between query and key 413 

representations. 414 

                                             ( , , ) max
T

k

QK
Attention Q K V soft V

d

 
=  

 
 

                                                     (2) 415 

The input feature map X is linearly projected into three distinct representations: queries Q = XWQ, 416 

keys, K = XWK, and values, V = XWV.  dk are dimensionality keys, and WQ, WK, and WV are 417 

learnable weights. In designing RTDRNet-lite, we replaced the original RepC3 modules with C2F 418 

(Cross-Stage Partial Fusion) modules to reduce computational load and model size without 419 

sacrificing detection performance. While RepC3 blocks are effective at capturing features, they 420 

involve deep stacking of convolutions and introduce considerable parameter overhead, which can 421 

be excessive for real-time applications on limited hardware. In contrast, the C2F module takes a 422 

more efficient approach by splitting input channels, transforming only part of the data, and then 423 

merging it back. This allows the model to retain important feature information while using fewer 424 
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computations and less memory. From a learning standpoint, the C2F module also improves gradient 425 

flow and feature reuse, which helps the network learn more effectively even with fewer layers. This 426 

structure encourages the model to focus on the most relevant spatial features without introducing 427 

unnecessary complexity.  The impact of this change is evident in the results: switching to C2F 428 

helped reduce the model’s parameter size by around 58%, yet the performance remained strong, 429 

achieving 97% mAP@50, only slightly below the original RT-DETR. As shown in Section 4.1, the 430 

model continued to perform reliably across all waste categories, indicating that the C2F modules 431 

provided a good balance between efficiency and feature extraction quality. Figure 7 presents the 432 

block diagram for the HGBlock and C2F modules. 433 

 434 

Fig. 7. Block Diagram for HGBlock (A) & C2F (B) module 435 

 436 

In summary, this updated version of the RT-DETR-l model represents a comprehensive 437 

optimization of the original architecture. By aggressively compressing the backbone, simplifying 438 

the detection head, and integrating lightweight alternatives to standard components, the model 439 

achieves a highly efficient design. While this streamlined architecture may introduce trade-offs, 440 

particularly in detecting small or highly complex objects, the resulting gains in speed, 441 
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deployability, and energy efficiency make it an excellent candidate for real-time applications in 442 

edge AI and autonomous robotics. The model stands as a clear example of how intelligent 443 

architectural simplification can meet the demanding performance constraints of modern low-444 

power, real-time systems without entirely sacrificing the sophistication of deep learning-based 445 

object detection. 446 

 447 

3.3 Model Performance Evaluation 448 

To evaluate the detection accuracy of the RTDRNet-lite model, mAP@50 is used as a vital 449 

performance indicator. This metric reflects the model’s ability to balance both precision, that is, 450 

how many detected items are truly relevant, and recall, how many relevant items are correctly 451 

detected. The “50” in mAP@50 refers to the IoU (Intersection over Union) threshold of 50%, 452 

implying that a predicted bounding box is correct if it overlaps the ground truth box by at least half. 453 

At this threshold, the average precision for each class (paper, plastic, glass, and metal) is calculated, 454 

and the mean is taken across all classes, as shown in equation (3): 455 

( )_ _ _ _
@50

4

Class Paper Class Glass Class Metal Class PlasticAP AP AP AP
mAP

+ + +
=


                                    (3) 456 

In addition to mAP@50, the model's performance is also evaluated using mAP@50:0.95, which is 457 

a more rigorous metric commonly used in COCO-style evaluations. It averages the precision across 458 

IoU thresholds ranging from 0.50 to 0.95, with a step size of 0.05. This variation provides a better 459 

understanding of how accurately the model can localize objects with different bounding box 460 

overlap tolerances and is more challenging than a fixed threshold metric. 461 

Precision is the proportion of all positive detections that are relevant to the sum of positive 462 

detections that are actually correct. The larger the value is, the more reliable the model is at 463 
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determining relevant findings. On the other hand, recall evaluates the model’s capacity to identify 464 

all actual instances of a given waste class in the dataset, defined by the proportion of correctly 465 

detected instances among all actual occurrences of that class, including those missed or incorrectly 466 

labeled. Equation 4 and 5 gives a detail on Precision and Recall calculation. 467 

Number of Correctly Identified Waste Class
Pr

Number of Correctly Identified Waste Class Number of Incorrectly Identified Waste Class
ecision =

+
  (4) 468 

Number of Correctly Identified Waste Class
Re

Number of Correctly Identified Waste Class Number of Incorrectly Mislabeled Waste Class
call =

+
  (5) 469 

 470 

To capture the balance between these two, the F1 score is computed. It is the harmonic mean of 471 

precision and recall and helps validate the model’s reliability, especially in scenarios where both 472 

false positives and false negatives are critical. The F1 score is computed using Equation (6). 473 

2*Pr *Re
1

Pr Re

ecision call
F Score

ecision call
=

+
                                                                                                    (6) 474 

These combined metrics, mAP, precision, recall, and F1-score offer a detailed assessment of the 475 

RTDRNet-lite model’s performance in waste detection, confirming its ability to perform accurately 476 

in both numerical evaluations and real-world sorting conditions. 477 

 478 

3.4. Software and Hardware Integration 479 

The objective of this research is not only to develop an AI-based detection model for waste item 480 

classification but also to establish a sustainable approach for the post-processing stage, specifically, 481 

the development of a robotic arm for automated waste sorting on the basis of the output of the AI 482 
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model. The aim is to reduce reliance on conventional waste sorting methods, such as manual 483 

human-based sorting, which are time-consuming, labor-intensive, and prone to error. In contrast, a 484 

robotic arm can operate continuously, day and night, without fatigue or performance degradation. 485 

Figure 8 illustrates the general working pipeline of the proposed system, which integrates both AI 486 

software and robotic hardware. Once the detection model is trained, it is deployed onto a prototype 487 

platform featuring a conveyor-like system with a lateral robotic arm. A Logitech C270 webcam is 488 

positioned above the platform to capture every object placed on it. The AI model detects the object 489 

within a designated quadrilateral bounding box and calculates its center pixel position, which is 490 

considered the object’s central location. These coordinates are then transmitted to a connected slave 491 

device, an Arduino Mega 2560, which uses the data to compute the angular positions for each of 492 

the four robotic arm joints through inverse trigonometric calculations. 493 

 494 

Fig. 8. Software & hardware integration pipeline with RTDRNet-lite model and 4 DoF robotic arm. 495 

 496 

Figure 9(a) and Figure 9(b) present graphical representations of the working principle of the 4-DoF 497 

robotic arm used in this research. In Figure 9(a), the quadrilateral surface ABCD denotes the field 498 

of view captured by the webcam positioned above the detection platform. The coordinates of these 499 

points represent the pixel positions from the camera's perspective, which operates at a resolution 500 

of 640×480 pixels (width × height). Points F and O correspond to the camera center and the robotic 501 
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arm base, respectively, in the camera's coordinate frame. Considering two random points, G and H 502 

represent the centers of two detected objects located on the platform within the area ABCD. The 503 

respective joint rotations of the robotic arm required to reach these points are determined using a 504 

series of Pythagorean and inverse trigonometric calculations. Considering G(Ti, Tj) as the pixel 505 

coordinates of the first detected object center, two perpendicular lines GI and GL are drawn from 506 

point G to lines EO and DC, respectively. To calculate the rotation angle θbase_1 required to turn 507 

the base servo of the robotic arm toward G, an inverse trigonometric function is applied, as shown 508 

in Equation (7). Here, GI equals (Ti – 320), and IO equals (Tj – 480), both in pixel units. Once 509 

θbase_1 is computed, the base servo rotates accordingly, initiating the arm's movement. The same 510 

process is followed when the approaching point H is situated on the right side of line EO. However, 511 

in this case, the angle θbase_2 is always negative, whereas θbase_1 is positive, reflecting the mirrored 512 

rotational directions of the base servo depending on the object’s location relative to the central axis. 513 

 514 

 515 

 516 

 517 

 518 

Fig. 9. Working principle for 4 DoF robotic arm base rotation. 519 
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 520 

1 320 180
tan ( )*( )
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



− −
=

−
                             (7) 521 

Once the base is aligned, the computation proceeds in the vertical 2D plane formed by the shoulder-522 

elbow-wrist linkage (S-E-W) in Figure 10. The arm joint lengths are defined as follows: L1 is the 523 

distance from the platform base ABCD of the arm to the shoulder (S) joint; L2 is the distance from 524 

the shoulder (S) joint to the elbow (E) joint; L3 spans from the elbow (E) joint to the wrist (W) 525 

joint; and L4 is the distance from the wrist (W) joint to the end effector (P), all in cm. Before 526 

proceeding further, camera calibration was performed using pixel-to-distance mapping, through 527 

which each pixel was found to correspond to 0.0625 cm. This value was then used to convert all 528 

arm joint lengths from their centimeter units to equivalent pixel units for alignment and 529 

computation ease. On the basis of the position of the detected object on the platform, the total 530 

extension distance D, which represents how far the robotic arm needs to reach, is calculated using 531 

the Pythagorean theorem. In this context, D corresponds to the hypothetical GO, as illustrated in 532 

Figure 9. 533 

Later, the distance from the shoulder (S) joint to the wrist (W) joint, denoted as R, is determined 534 

using the Pythagorean theorem again from two known components: the horizontal displacement d 535 

and the vertical offset Yoffset. Both equations are shown in equation (8). Notably, in this setup, the 536 

end-effector lies below the shoulder joint; hence, Yoffset=L1−Yee, where L1 is the vertical length of 537 

the first link and Yee is the minimum vertical height of the end-effector when it reaches for objects. 538 

From equation (9), α₁ is defined as the angle between line R and the horizontal line (equal to d), 539 

computed using the arctangent function, tan⁻¹ of Yₒffset over d. The second angle, α₂, represents the 540 

angle between links L2 and R and is calculated using the cosine rule, as expressed in equation (9). 541 

The effective shoulder joint angle, θ₁, is then obtained by subtracting α₁ from α₂, thereby aligning 542 
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the upper arm with the target point. The elbow angle, θ₂, is calculated via the law of cosines, as 543 

expressed in equation (10), on the basis of the known side lengths, and the required bend at Joint 544 

3, the elbow, is determined. Finally, the wrist angle, θ₃, is computed via equation (11) to 545 

compensate for the accumulated joint rotations, ensuring that the final link, L4, which holds the 546 

end-effector, remains horizontally aligned and exactly Yee height above the platform ABCD. This 547 

guarantees that the gripper or tool at the end maintains the desired orientation, typically parallel to 548 

the base reference plane. This stepwise inverse kinematics approach allows precise joint 549 

positioning in response to any arbitrary target point within the reachable workspace, enabling the 550 

robotic arm to perform accurate pick-and-place objects, in this case, and waste materials through 551 

visual guidance. 552 

 553 

Fig. 10. Working principle for 4 DoF robotic arm shoulder-elbow-wrist linkage 554 
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 559 

4. Analysis of experimental results 560 

The proposed RTDRNet-lite is thoroughly evaluated in this section with quantitative and 561 

qualitative experiments. The evaluation includes general evaluation metrics such as precision, 562 

recall, F1-score, mAP, and confusion matrix, as well as an in-depth study of localization 563 

performance based on Intersection over Union (IoU) comparisons. The model’s generalization 564 

capability is assessed through external validation on unseen datasets, while heatmap visualization 565 

and GUI-based real-time testing are used to demonstrate interpretability and practical deployment 566 

feasibility. Each of the sub-sections has relevance both from a numerical validation point-of-view 567 

and also in the real world. 568 

4.1. Performance Metrics Evaluation 569 

The evaluation metrics in Figure 11 highlight a significant performance increase in the proposed 570 

RTDRNet-lite model, reflecting its maturity for real-world deployment. The model achieves an 571 

overall precision of 98.1 % and a recall of 96.1%, with a mAP of 97% at an IoU of 0.5 and 95.8 at 572 

an IoU of 0.5–0.95. These results indicate excellent localization accuracy and class confidence 573 

across diverse waste categories. Among the individual classes, Paper consistently outperforms the 574 

other categories, achieving 99.1% precision, 98.1% recall, 98.4% mAP@50, and 96.1% mAP@50–575 

95. This suggests that the model can detect and localize paper waste with high consistency and 576 

minimal ambiguity. Glass and Metal also exhibit robust results, both exceeding 97% precision and 577 

scoring above 94% mAP@50–95, reaffirming their well-separated feature representation in the 578 

model’s learned space. Plastic, while performing well with 97.5% precision and 94.8% mAP@50, 579 

remains relatively weak in terms of recall (93.6%) and mAP@50–95 (92.5%), which is likely due 580 

to background interference or intra-class variability. Nevertheless, all classes exhibit mAP scores 581 

well above 0.90, demonstrating strong generalizability and reliability. This balanced distribution 582 
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of precision, recall, and mAP metrics confirms RTDRNet-lite’s effectiveness not only in numerical 583 

terms but also in multi-class stability, making it a promising candidate for scalable waste 584 

classification systems. 585 

 586 

Fig. 11. Performance metrics for RTDRNet-lite model 587 

 588 

The training performance of the proposed RTDRNet-lite model was assessed using the mAP@50 589 

and mAP@50–95 metrics for 30 epochs, indicating no significant gains with further training as 590 

shown in Figure 12 (A). This plateau suggested that the model had already converged well, and 591 

further training would have increased the risk of overfitting without notable benefit. Both curves 592 

exhibit a steep rise within the initial epochs, indicating rapid convergence and strong early learning 593 

dynamics. mAP@50 increased from 56% to over 90% within just six epochs, whereas mAP@50–594 

95 followed closely, rising from 45% to nearly 87% in the same period. These trends suggest that 595 

the model quickly learned core spatial and class-level features, although mild oscillations, 596 

particularly between epochs 3 and 7, indicate some sensitivity to training data variation or label 597 

noise. Both curves show the trend of progressing stabilization past epoch 10. However, the 598 

mAP@50 curve consistently outperforms the mAP@50–95 metric, as expected, because of the 599 
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latter’s stricter averaging across multiple IoU thresholds. The RTDRNet-lite model achieved 600 

optimal performance at epoch 27, with an mAP@50 of 97% and an mAP@50–95 of 94.8%. These 601 

results demonstrate strong generalizability and fine-grained detection competency. This implies 602 

that the chosen architecture is capable of precise object detection even under the more constrained 603 

IoU condition. This is in part due to the adaptable attentional power of the C2F modules and the 604 

efficient attention mechanism, which is integral to the RTDRNet-lite model design. This steady 605 

performance trend confirms that RTDRNet-lite has the necessary performance for high-accuracy 606 

waste object detection in real-time settings. 607 

The normalized confusion matrix in Figure 12(B) provides a comprehensive overview of the class-608 

wise prediction accuracy of RTDRNet-lite. The RTDRNet-lite model retains high class-fidelity for 609 

all four major waste classes: paper, plastic, glass, and metal. Each class has more than 94% 610 

correctly classified instances, with the paper achieving the highest precision at nearly 98%. Glass 611 

and metal also maintained nearly equal performance at 97% and 98% recognition, respectively. 612 

Although more prone to mixing with the background class at 4%, strong class prediction with over 613 

94% accuracy was retained. The lower performance of Plastic could mean that overlapping with 614 

the background class was a great challenge. A significant observation is the high false-positive 615 

rates of the background class for plastic and metal. This 48% and 36% misclassification, 616 

respectively, means that the model confuses some plastic and metallic objects with background 617 

clutter or misapplies the class due to occlusion. Conversely, the background class had high purity 618 

but low recall with paper and glass, likely due to faint edges or reflective surfaces. With respect to 619 

intra-class confusion, RTDRNet-lite maintains very high fidelity for solid and well-defined classes, 620 

whereas a few adjustments in spatial context, awareness, or hard negative mining can reduce 621 

background noise misclassification. 622 
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 623 

Fig. 12. Model performance curve with mAP@50 and mAP@50-95 (A) & confusion matrix (B) 624 

 625 

The F1-confidence curve from Figure 13 (A) offers valuable insight into the prediction confidence 626 

thresholds at which the RTDRNet-lite model delivers optimal classification performance. Each 627 

class, Paper, Plastic, Glass, and Metal, is represented separately, where their individual F1 scores 628 

monotonically increase from low confidence values up to a point of near-optimal performance 629 

before they start to drop again due to false negatives arising from overconfidence. The composite 630 

F1 score across all classes is shown in bold blue and peaks at 97% at a confidence threshold of 631 

0.766. This point is chosen to achieve the best trade-off between precision and recall to ensure 632 

reliable detection performance without risking too many missed detections and false positives. 633 

Among the classes, the paper has the most stable confidence and keeps the F1 score at 634 

approximately 1.0 over a wide confidence range, which means that the class is easy to isolate and 635 

has stable features. In comparison, Plastic has the flattest confidence curve, which means that more 636 

uncertain predictions result from the various textures, translucency, and background similarity. 637 

Glass and Metal behave similarly but achieve high F1 scores across most of the threshold space. In 638 

general, the smoothness and fast reach of the F1 curves of all classes indicate that RTDRNet-lite 639 

makes high-quality predictions with high confidence across different waste materials. This 640 
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confidence threshold is an essential parameter for real-time waste sorting implementations where 641 

fast classification is needed to achieve acceptable processing speeds. 642 

Figure 13 (B), Precision‒Recall curves provide a holistic view of the class-by-class performance 643 

of the RTDRNet-lite model at varying confidence thresholds, notably highlighting its ability to 644 

maintain high precision while preserving a high standard recall value. The detection strength is 645 

clearly demonstrated by the high-PR area scores across all classes, which are 98.4% for papers, 646 

94.8 for plastic, 97.5% for glass, and 97.3% for metals. The overall mAP@0.5 over all classes is 647 

97%, as illustrated by the bold blue curve. This paper presents the most stable PR relationship, 648 

maintaining near-perfect precision throughout almost the entire recall range. Glass and Metal also 649 

achieve strong, consistent performance with minimal decreases in precision even at high recall 650 

levels. Plastic, while still achieving a high area under the curve, displays a steeper decline in 651 

precision as the recall approaches 1.0. This phenomenon may be a result of instances where the 652 

model overpredicts plastic or misclassifies materials such as background noise and semi-653 

transparent objects. The sharpness and affinity of the curves suggest that the model is competent 654 

in distinguishing false positives from true positives with high confidence and minimal 655 

generalizability. This performance ensures that the feature representation is strong and resilient 656 

against overfitting, making the model efficient in real-world waste detection, where recall is 657 

essential and should protect against false negatives. 658 
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 659 

Fig. 13. F1-Confidence Curve (A) & Precision-Recall Curve (B) 660 

 661 

4.2.Visual Intersection over union (IoU) test 662 

The qualitative evaluation shown in the 4×5 grid in Figure 14 illustrates the Intersection over Union 663 

(IoU) performance of the proposed RTDRNet-lite model across a range of real-world and synthetic 664 

waste objects. In each image, the predicted bounding boxes (in red) are compared against the 665 

ground truth annotations (in black), offering visual insight into the spatial localization accuracy of 666 

the model. Across most samples, the predicted boxes align closely with their ground truth 667 

counterparts, demonstrating strong spatial reasoning and high IoU values. Objects with irregular 668 

textures, deformities, or varying lighting conditions, such as crumpled plastic, transparent bottles, 669 

and metallic wrappers, are accurately enclosed, suggesting the model’s resilience to noise and 670 

deformation. The consistent overlap across diverse object scales and aspect ratios further reinforces 671 

the robustness of the model's localization capability. In a few instances, the red boxes marginally 672 

exceed the black ones, indicating slight over-coverage. This behavior may stem from the model's 673 

tendency to conservatively estimate object boundaries, potentially as a strategy to avoid under-674 

detection. Interestingly, the objects in the fourth column of the second and last rows exhibited 675 

misaligned ground truth boxes. However, the model was able to correctly bind these objects despite 676 
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the annotation errors, demonstrating the model’s ability to infer object boundaries accurately, even 677 

in the presence of imperfect human labeling. Importantly, no major misalignments or omissions 678 

are observed, confirming the model’s generalization strength. Overall, the visual IoU assessment 679 

highlights RTDRNet-lite’s high-fidelity bounding box predictions and its effectiveness in complex, 680 

cluttered waste scenarios. 681 

 682 

 683 

Fig. 14. Intersection over Union test, detection by RTDRNet model (Red box) vs ground truth label (Black box) 684 

4.3. External Validation & heatmap analysis. 685 

Figures 15 (A) and (B) show the external validation results of the proposed detection model in two 686 

benchmark datasets, the Trash Detection dataset and on the TriCascade Waste Image dataset. Both 687 

datasets consist of various types of paper plastic metal and glass waste, which were not part of the 688 
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training data. The model exhibits strong generalization capability and can accurately detect and 689 

classify various waste categories with different object appearances, backgrounds and lighting 690 

conditions. This external validation provides evidence on the generalization performance and the 691 

applicability of the model in unseen situations. 692 

 693 

 694 
(A) Trash Detection Dataset
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 695 

Fig. 15. External validation of the RTDRNet-lite model on (A) Trash Detection Dataset & (B) TriCascade Waste 696 

Image Dataset 697 

 698 

In this study, we adopted EigenCAM to visualize the internal attention of the RTDRNet-lite model, 699 

as it is particularly well-suited for transformer-based architectures where traditional gradient-based 700 

methods often fall short. Unlike conventional CAM techniques that rely heavily on convolutional 701 

spatial gradients, EigenCAM leverages the dominant eigenvectors of activation maps, allowing it 702 

to produce robust and visually coherent heatmaps without requiring gradients. This method offered 703 

clear and consistent localization of attention, highlighting the most semantically relevant regions 704 

of each object, even under occlusion or clutter. The results confirm that EigenCAM provides 705 

meaningful visual explanations of the model's reasoning process, further supporting the 706 

transparency and trustworthiness of our detection system. 707 

 708 

(B) TriCascade Waste Image Dataset
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 709 

 710 

Fig. 16. EigenCAM heatmap analysis for the RTDRNet-lite model 711 

 712 

4.4. Real-time analysis with GUI 713 

To facilitate real-time testing of the detection model integrated with the robotic arm hardware, a 714 

graphical user interface (GUI) application was  developed using PyQt5, enabling live video feed 715 

display, detection result visualization, and automated transmission of pixel coordinates to the 716 

robotic controller. This interface streamlined the hardware testing process and enhanced user 717 

understanding by providing a visual representation of the robot and software operation. 718 

Unlike our previous approaches in Sayem et al. (2024) and Nahiduzzaman et al. (2025) which 719 

lacked proper hardware validation and accurate real-time testing, this implementation bridges 720 

software and robotics through a functioning GUI and live object detection pipeline, demonstrating 721 

practical deployability. As the primary focus was on research and evaluating the detection model's 722 

accuracy and the robotic arm’s precision in reaching target objects, the hardware was programmed 723 

only to position itself over detected objects. The robotic arm did not perform grasping or removal 724 
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actions, as these actions were beyond the scope of this phase of the project. The GUI operates in a 725 

straightforward sequence, as shown in Figure 17. Upon initialization, it prompts the user to press 726 

the “Start Video” button, which loads the trained model and activates the webcam mounted above 727 

the hardware platform (ABCD).  Once initialized, the model processes a single frame to identify 728 

the first object among multiple items. The program was initially executed on a laptop equipped 729 

with an AMD Ryzen 5 5500U CPU (overclocked to 4.0 GHz), where each frame required 730 

approximately 300 ms for processing, yielding an estimated 3.3 frames per second (FPS). In 731 

contrast, when tested on a more powerful server environment such as Kaggle, the model achieved 732 

significantly faster performance: around 33 ms per frame (~30 FPS) on an NVIDIA T4 GPU, and 733 

approximately 400 ms per frame (~2.5 FPS) on an Intel Xeon 2.2 GHz CPU.  In contrast to our 734 

previous works (Sayem et al., 2024 and Nahiduzzaman et al. 2025) , which were limited to single-735 

object classification per frame, the proposed system enables simultaneous detection of multiple 736 

waste items within a single frame, significantly improving operational speed and practical viability. 737 

The results, including the detected object’s class, confidence score, and size, are displayed on the 738 

bottom left side of the screen within a designated text area. On the basis of the detection output, 739 

the corresponding pixel coordinates are extracted and used to compute the required joint positions 740 

for the robotic arm to align itself above the identified object. During this period, the AI model 741 

remains idle, conserving computational resources, while the robotic arm completes its movement. 742 

This process is repeated iteratively for each object on the platform. This frame-by-frame inference 743 

strategy significantly reduces power consumption, as the model processes only one frame per 744 

object. For a platform containing n objects, the model processes exactly n+1 frames, n frames to 745 

detect each object individually, and one additional frame to confirm that no further objects remain 746 

on the platform. 747 

A video demonstration showing the system's working principle can be accessed via the following 748 

link: Link 749 

https://youtu.be/dJJYqIjae2c
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 750 

Fig. 17. GUI app for real-time detection and localization using robotic arm. 751 

 752 

5. Discussions 753 

A comprehensive review of existing AI-based waste detection and classification systems reveals 754 

several notable contributions, each addressing distinct aspects of the problem, ranging from 755 

classification accuracy to real-time processing and explainability, as shown in Table 2. However, 756 

holistic system balancing performance, explainability, external validation, and hardware 757 

deployment remain rare. The proposed RTDRNet-lite approach effectively fills this gap. 758 

While several existing works have achieved high classification accuracy, none of these works 759 

focused on deployment feasibility or explainability of the classification. For example, the models 760 

presented in Ahmed et al., (2023), Gunaseelan et al., (2023), and Alsubaei et al., (2022) achieved 761 

a classification accuracy as high as 98.95% using an optimized ResNet50V2, RefineDet, and a 762 

modified ResNeXt. While all of these studies record impressive accuracy, these studies are limited 763 
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to classification tasks, often tested only in isolated digital environments, without external validation 764 

or hardware testing. In contrast, the RTDRNet-lite model achieves a superior mAP@50 of 97%. In 765 

addition, the RTDRNet-lite model was also externally validated on different platforms. Moreover, 766 

it was deployed in a real-time robotic system, thereby proving its deployability for future 767 

applications. Other works, such as Majchrowska et al., (2021) and Sayem et al. (2024), adopt object 768 

detection strategies alongside classification. For example, Majchrowska et al., (2021) used 769 

EfficientDet-D2 for detection and classification, and the two models reached 70% AP and 75% 770 

accuracy, respectively. Sayem et al. (2024) obtained a 63% mAP50 with the GELAN-E detector. 771 

However, in all of these models, there has been some performance loss, as those systems were not 772 

operational in real time. Additionally, neither integrates explainability nor hardware validation, 773 

reducing their credibility for practical deployment. RTDRNet-lite outperforms both in detection 774 

performance and operational readiness through real-world deployment and interpretability features. 775 

Given the selected context of semantic segmentation and cluttered waste environments, most works 776 

in the comparison table, for example, Sirimewan et al., (2024), Prasad et al., (2025), Kiyokawa et 777 

al., (2021), are related to segmentation models, such as DeepLab-v3+, U-Net, and ShARP-778 

WasteSeg, which focus on boundary accuracy. While beneficial for more detailed and fine-grained 779 

analysis, these methods are not designed to prioritize speed and hardware efficiency. In contrast, 780 

RTDRNet-lite simplifies RT-DETR with a C2F block and reduces the number of parameters to 781 

find the necessary practical balance between high accuracy and low-latency inference, which is 782 

critical for robotics. The role of explainable AI becomes more beneficial and essential when the 783 

sensitivity and critical nature of applications, such as waste management, increase. Only a few 784 

works, Nahiduzzaman et al. (2025), Sayem et al. (2024), include some form of interpretability in 785 

the chosen field. RTDRNet-lite is superior because of its adoption of XAI support, increasing the 786 

model’s transparency and enabling trust-based real-world decisions, which is an important 787 

competitive advantage for smart waste distribution systems. 788 
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Finally, RTDRNet-lite uses a hybrid training method that combines real-world waste image data 789 

with high-resolution synthetic data produced by stable diffusion (Realistic vision v5. 1). To the 790 

best of our knowledge, this is the first work in waste detection to utilize synthetic data generation 791 

for object detection, offering significant gains in visual diversity and generalizability, particularly 792 

in handling edge cases and complex object boundaries. Furthermore, based on object detection, 793 

RTDRNet-lite addresses a basic flaw of traditional classification methods presented in 794 

Nahiduzzaman et al. (2025), Hossen et al. (2024) , Ahmed et al. (2023), Sayem et al. (2024), Wang 795 

et al. (2021), Gunaseelan et al. (2023), Alsubaeiet al. (2022), Rahman et al. (2020), and Mookkaiah 796 

et al. (2022), which lack exact localization and real-time robotic incorporation. Such models are, 797 

therefore, not suitable for hardware implementation to process cluttered multi-object waste. On the 798 

other hand, RTDRNet-lite not only realizes accurate detection of multiple objects but can also be 799 

directly embedded into the robotic arms for precise waste localization in real time. Such combined 800 

contributions, synthetic dataset generation, object detection-based architecture, external validation, 801 

real-time performance, hardware deployment, and XAI support, are rarely considered together in 802 

related works. 803 

Table 2. 804 
 A comparative analysis on the performance of the proposed model with the available models in literature 805 

Ref. 
Approach 

Used 
Dataset Accuracy/mAP 

External 

Validation 

Explainable 

AI 
Real-time test 

Majchrowska 

et al., (2021) 

EfficientDet-D2 

+ EfficientNet-

B2 

Detect-

Waste 

70% AP 

(detection), 75% 

(classification) 
✔️ ❌ ❌ 

Sirimewan et 

al., (2024) 

DeepLabv3+ 

and U-Net 

(ResNet-101, 

etc.) 

CRD Skip 

Bin 

Dataset 

(430 

images) 

84% & 85% 

mAP 
❌ ❌ ❌ 

Nahiduzzam

an et al. 

(2025) 

DP-CNN + En-

ELM 

TriCascade 

WasteImag

e 

96% accuracy ❌ ✔️ ✔️ 

Hossen et al., 

(2024) 
RWCNet 

TrashNet 

(2,527 

images) 

95.01% 

accuracy 
❌ ✔️ ❌ 
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Prasad et al., 

(2025) 

ShARP-

WasteSeg (CSP 

backbone) 

Real-world 

CDW 

dataset 

 

55.5% mAP ❌ ❌ ❌ 

Ahmed et al. 

(2023) 

Custom CNN, 

ResNet50V2 

Custom 

Garbage 

Dataset 

88.52% & 

98.95% 

accuracy 
❌ ❌ ❌ 

Qiu et al 

(2022) 

ETHSeg 

(ResNet-101-

FPN) 

X-ray 

Waste 

Dataset 

(5,038 

images) 

63.22% mAP50 ❌ ❌ ❌ 

Sayem et al., 

(2024) 

Dual-stream 

classifier & 

GELAN-E 

Custom 

10,406 

image 

dataset & 

WaRP 

dataset 

83.11% 

(classification), 

63% mAP50 

(detection) 

❌ ✔️ ❌ 

Wang et al. 

(2021) 
MobileNetV3 

17,073 (9 

classes) 
94.6% accuracy ❌ ❌ ✔️ 

Gunaseelan 

et al. (2023) 

Modified 

ResNeXt + 

ResNet-50 

Custom 

hardware 

dataset 

98.9% accuracy ❌ ❌ ✔️ 

Alsubaei et 

al. (2022) 

DLSODC-

GWM(IRD 

(RefineDet) + 

FLNN) 

Garbage 

Classificati

on Dataset 

(Kaggle) 

98.61% 

accuracy 
❌ ❌ ❌ 

Kiyokawa et 

al., (2021) 
DeepLabv3+ 

Constructi

on waste 

dataset 

(5,366 

images) 

56% mIoU ❌ ❌ ❌ 

Rahman et 

al. (2020) 

CNN + IoT 

smart bin 

Binary 

Waste 

Dataset 

95.31% 

accuracy 
❌ ❌ ✔️ 

Mookkaiah 

et al. (2022) 

ResNet V2-

based CNN 

(transfer 

learning) 

MSW 

Dataset 

87.99% 

accuracy 
❌ ❌ ✔️ 

Iqbal et al. 

(2022) 

YOLOv4 

(CSPDarkNet_t

iny) 

Remondis 

Contamina

tion 

Dataset 

(RCD) 

63% mAP ❌ ❌ ✔️ 

Sallang et al. 

(2021) 

SSD 

MobileNetV2 

Quantized 

Urban 

waste 

dataset 

92.16% mAP ❌ ❌ ✔️ 

Proposed 

RTDRNet-lite 

(Modified 

RT_DETR with 

C2F module 

and reduced 

dimension 

Custom 

Dataset 

(Real+Synt

hetic) 4 

Class 

97% mAP ✔️ ✔️ ✔️ 

 806 

 807 
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6. Conclusions 808 

This work presents a fully integrated AI solution that can be readily deployed to address the 809 

problems of intelligent waste detection and robotic sorting at the system level, which represents 810 

long-standing challenges for any existing waste management system. The framework in question, 811 

underpinned by the lightweight real-time detection model RTDRNet-lite, provides an object 812 

detection sub-framework that is both lightweight and highly accurate and is designed to be 813 

deployed in real-time in resource-constrained environments. The revision of the architecture, 814 

specifically utilizing C2F blocks instead of RepC3 modules and diminishing the depth and channel 815 

sizes of the RT-DETR backbone, led to a substantial 58% decrease in parameter quantity, which 816 

does not impede performance as the mAP@50 parameter reaches 97%. This 817 

performance/efficiency combination demonstrated by the architecture is paramount for further 818 

industry and urban deployment in the future. Furthermore, this work presents a novel method of 819 

data generation and ground truth using a combination of real-world images and high-quality 820 

synthetic waste images produced by the Stable Diffusion-based Realistic Vision v5.1 model. The 821 

hybrid dataset not only addresses the class imbalance issue, but also facilitates generalization across 822 

occlusions, deformations, and illumination variations, the aspects not accounted for in the current 823 

leading RTDRNet-lite dataset. The semi-automatic annotation with a pre-trained detector 824 

significantly accelerates the process of enhancing the dataset while preserving high-quality 825 

annotations. In addition to the AI component, a 4-DOF robotic arm was developed and integrated 826 

with the trained model to perform automated object localization and alignment via inverse 827 

kinematics. Pixel-to-distance calibration and trigonometric computation enabled accurate joint 828 

angle estimations, translating visual detections into physical movements. The custom GUI 829 

application ensured thorough testing of the system under real-time conditions and accelerated 830 

frame-by-frame inference and robot coordination. To summarize, this paper bridged the gap 831 
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between AI algorithm development and its physical deployment by introducing an interpretable 832 

and hardware-compatible solution to waste sorting.  833 

Some drawbacks still exist in the existing framework despite the positive outcomes it brings. 834 

Although this is improved by synthetic data generation, the training data is only represented by 835 

four key waste types, which could prove to have minimal performance in the real-world application 836 

of highly mixed or less frequently sampled waste. Also, the robotic arm application is limited to 837 

orienting objects without physically gripping them or interacting with it at the moment and 838 

performance is limited to a simple servo motor due to its prototype nature. Future work will explore 839 

expanding the model’s capabilities to include additional waste types such as e-waste, organics, and 840 

hazardous materials, thereby increasing dataset diversity and enhancing applicability in more 841 

complex domains. Addressing object overlap and occlusion through advanced techniques such as 842 

instance segmentation or refined attention mechanisms represents another key direction for 843 

improving detection robustness in cluttered scenes. On the hardware side, the integration of high-844 

precision servo motors will be pursued to enable smoother, more reliable arm control during field 845 

deployments, allowing the system to be evaluated under realistic operational conditions. 846 
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