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Abstract

1. Tank bromeliads are found in rainforests across the Neotropics and harbour diverse

invertebrate communities between their leaf axes. Various factors influence the

invertebrate species richness and differences in composition in bromeliad phytotel-

mata, most notably, habitat size. However, there has been little work on inverte-

brate communities in bromeliads in western Amazonia or at different heights in the

canopy.

2. We collected 63 epiphytic bromeliads (Aechmea hoppii (Harms) L.B.Sm,

A. nidularioides L.B.Sm) on the eastern edge of the Tropical Andes Biodiversity Hot-

spot in Ecuador and explored which biological and physical variables explained the

differences in invertebrate composition among bromeliads. We extracted a total of

7524 individual aquatic and terrestrial macroinvertebrates and identified 300 mor-

phospecies belonging to 27 orders, within the phyla Arthropoda, Annelida and Pla-

tyhelminthes. We recorded information on bromeliad location within the forest

(height in canopy, primary or secondary forest), plant size (phytotelmata volume,

base circumference, length of longest leaf), phytotelm pH and temperature and

counted the number of leaves as a measure of habitat complexity.

3. Overall, our results indicate that height in the canopy and phytotelm size explained

statistically significant portions of the variation in different parts of the bromeliad

community. Bromeliad size was positively correlated with alpha diversity of both

terrestrial and aquatic invertebrates, whereas height in the canopy affected beta

diversity. The sampling time of year in which bromeliads were collected affected

the aquatic community, suggesting biological seasonality in the absence of climatic

seasonality.

4. By extending the height from the ground at which most bromeliad studies have

been carried out, our work has highlighted the potential importance of vertical vari-

ation of bromeliad invertebrate communities throughout the canopy. Additionally,

we fill in a geographic gap in this body of work.
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INTRODUCTION

Bromeliads constitute one of the most diverse families of flowering

plants in the neotropics, with over 3500 species, nearly half of which

are epiphytic and many possess a tank-like morphology (Zizka

et al., 2020). The elongated strap-like leaves of tank bromeliads are

arranged in a rosette around a central gap, known as a tank or phyto-

telm (pl. phytotelmata). This provides a space in which rainwater and

debris from the canopy accumulate, forming a protected oasis rich in

nutrients, courtesy of diverse communities of detritivores, primary

producers and nutrient cyclers within them (Figure 1) (Bermudes &

Benzing, 1991; Brandt et al., 2017; Brouard et al., 2011; Carrias

et al., 2001; Carrias et al., 2014; Louca et al., 2017). Bromeliads have

been called “biodiversity amplifiers”, due to the concentration and

diversity of invertebrate fauna they harbour in their phytotelmata

compared to the surrounding habitat (Da Rocha et al., 2000; Hénaut

et al., 2014). They house both aquatic and terrestrial invertebrates,

serve as nurseries for amphibians (Almendáriz et al., 2000; Mccracken

et al., 2007; Sabagh et al., 2017) and provide nutrition and hydration

for birds and even Andean bears (DeMay et al., 2014; Goldstein &

Goldstein, 2019; Palacios-Mosquera, 2018; Piacentini &

Varassin, 2007).

Most members of the aquatic community within bromeliads tend

to be less mobile than those in the terrestrial matrix for at least the

larval part of their life cycle, remaining in a particular bromeliad.

The terrestrial community is usually composed of more mobile

F I GU R E 1 Diagram of a bromeliad community. Front leaves have been cut to illustrate that invertebrates inhabit leaf axes as well as the
central phytotelm.
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foragers or predators that visit bromeliads briefly to feed or breed, or

temporary tenants that use the plant for nourishment and shelter but

can move on from the bromeliad when they need to (Zillikens

et al., 2005). Given the different niches and needs of these broadly

distinguishable communities within bromeliads, studies typically ana-

lyse them separately and most centre on the aquatic community,

revealing that the aquatic community is sensitive to variation among

bromeliad microhabitats (Cotgreave et al., 1993; Jocque &

Field, 2014; Lopez et al., 2009; Marino et al., 2013). Habitat size and

water volume have been shown to be the bromeliad features that best

correlate with species richness and abundance of communities within

them (Jocque & Field, 2014; Méndez-Castro et al., 2018;

Srivastava, 2006; Srivastava et al., 2008a). Detrital content

(Armbruster et al., 2002; Dézerald et al., 2017; González et al., 2014),

bromeliad species (Jabiol et al., 2009; Marino et al., 2013) and even

bromeliad genotype (Zytynska et al., 2012a) have been shown to

explain significant portions of the variation among bromeliad aquatic

invertebrate communities, depending on the combination of factors

examined, the portion of the community included and the location of

the study. Fewer studies focus on factors influencing the terrestrial

bromeliad community composition in isolation, as they are more tran-

sient (Jocque & Field, 2014). Nonetheless, leaf and bromeliad archi-

tecture have been shown to affect spider diversity (De Omena &

Romero, 2008; Gonçalves-souza et al., 2010; Gusmão et al., 2020).

Other studies have examined different aspects of the interactions

between terrestrial and aquatic components, revealing functional rela-

tionships between bromeliad hosts and their associated communities

(Céréghino et al., 2011, 2019). However, there are geographic differ-

ences in the factors that influence community composition and tro-

phic interactions within bromeliads (LeCraw & Srivastava, 2019).

Despite the rich literature on bromeliad invertebrate commu-

nities across the neotropics, many geographical areas and brome-

liad species remain unexplored. Western Amazonia is particularly

unmapped in terms of bromeliad invertebrate communities. This is

significant because the north-western corner of the Amazon rain-

forest falls within the eastern edge of the Tropical Andes biodiver-

sity hotspot, by some measures the most biodiverse place on Earth

(Myers et al., 2000). This area includes the northern section of the

Andes mountain range, as well as its flanking regions as it descends

into the Amazon basin. Between the period of 1990 and 2007,

Ecuador lost the highest relative amount of forest cover in South

America (Peres et al., 2010), and so documenting this region may

be crucial to informing its conservation. To the authors’ knowl-

edge, the only comprehensive published study of whole

bromeliad-associated invertebrate communities in Ecuador was

that of Armbruster et al. (2002), nearly two and a half decades ago

and not quite within the Tropical Andes hotspot. Although brome-

liads generally contain a set of functional groups of invertebrates,

the proportion and composition of these, as well as their responses

to change, vary across environmental and geographical gradients

(Céréghino et al., 2022; Dézerald et al., 2013; LeCraw &

Srivastava, 2019; Srivastava et al., 2020a), and so filling in geo-

graphic gaps in our knowledge of these systems is relevant.

Additionally, most bromeliad studies focus on plants on or near

the ground. However, the forest canopy is an important reservoir of

floral and invertebrate diversity in tropical forests (Cascante-Marín &

Nivia-Ruíz, 2013; Davidson et al., 2003; Davis & Sutton, 1998;

Quaresma et al., 2017; Stork & Grimbacher, 2006). In the Neotropics,

forest canopies are laden with layers of epiphytes, including a high

diversity of vascular epiphytes such as orchids, aroids and bromeliads

(Flores-Palacios & García-Franco, 2006; Freiberg & Freiberg, 2000;

Ge & Dodson, 1987; Hayward et al., 2018; Winkler et al., 2009;

Quaresma et al., 2017), of which bromeliads in particular are impor-

tant reservoirs of terrestrial and aquatic arthropods. Studies that have

considered the effect of distance from the ground on communities in

bromeliads have found a negative relationship (Brouard et al., 2012;

Kratina et al., 2017) or no relationship (Antonetti et al., 2021) between

microfauna and the height of the bromeliad on the phorophyte. How-

ever, the range of heights occupied by bromeliads has a positive effect

on spider diversity, with bromeliad species occupying a greater range

of heights housing a greater abundance of spiders (Gonçalves-Souza

et al., 2011a; Gonçalves-Souza et al., 2011b). The bromeliads in the

aforementioned studies were all found within 2.5 m from the ground

while average canopy height in the Amazon is around 30 m (Helmer &

Lefsky, 2006; Sullivan, 2018, unpublished data), although emergent

tree heights of up to 88 m have been reported (Gorgens et al., 2019).

Zytynska et al. (2012), however, collected bromeliads from up to 17 m

above the ground and did not find any relationship of height with spe-

cies richness or community composition, which suggests the brome-

liad phytotelmata could be buffering against microenvironmental

changes throughout the canopy, where community composition is

known to change (Ashton et al., 2016; Brühl et al., 1998; Stork

et al., 2016).

Here, we aim to address the north-western Amazonian gap in the

bromeliad invertebrate literature and extend the height in the canopy

at which such studies are carried out by examining potential factors

that may explain the variation in macroinvertebrate communities

within two congeneric and vegetatively indistinguishable epiphytic

bromeliad species, Aechmea hoppii (Harms) (L.B. Smith, 1953a) and

A. nidularioides (L.B. Smith, 1953b), in San José de Payamino, Ecuador.

This relatively understudied region of north-western Amazonia falls

on the eastern edge of the Tropical Andes Biodiversity Hotspot. We

thus anticipated we would find a larger overall number of morphospe-

cies among the bromeliads than (Armbruster et al., 2002) and a dis-

tinct set of variables explaining differences in community structure

among bromeliads. We expected that environmental and plant charac-

teristics in our more geophysically diverse environment would explain

community patterns to a lesser degree than in the lower, flat regions

of Amazonia, as biomes overlap or transition in this area. We analyse

the aquatic and terrestrial communities separately in order to evaluate

the differences in factors influencing these distinct components of the

bromeliad invertebrate fauna, expecting different factors to affect dif-

ferences in community composition in each group, due to their dis-

tinct relationships with bromeliads. We ask whether the height at

which bromeliads are found influences the invertebrate community,

given that bromeliads may act as oases with more stable conditions

INVERTEBRATE COMMUNITIES OF EPIPHYTIC BROMELIADS IN THE AMAZON 3



within them and therefore expecting there may be less community

turnover than in non-aquatic bromeliad arboreal communities. We

analyse whether there are differences between bromeliad communi-

ties in continuous primary and secondary forest, hypothesising that

bromeliads may offer shelter for diverse assemblages in both habitats,

although expecting differences in the starting communities of altered

habitats to be reflected in the bromeliads. However, we expect there

to be differences in how these variables affect the distinct (aquatic

and terrestrial) parts of the community, as these components tend to

be fundamentally different in their composition, transiency and in

many cases live stages. We thus discuss the complex set of patterns

that emerge in the aquatic and terrestrial invertebrate communities in

the bromeliads in one of the most biologically rich areas on Earth.

MATERIALS AND METHODS

Study site

Bromeliads were collected in San José de Payamino, Orellana,

Ecuador, hereafter referred to as Payamino. Researchers were

based at the Timburi Cocha Research Station in Payamino

(�00.4827500�, �077.2847500�). Payamino is a 17,000 ha

expanse of Amazon rainforest owned and managed by an indige-

nous Kichwa community on the eastern edge of the Tropical Andes

Biodiversity Hotspot. It is in the buffer zone of the core Sumaco

Napo Galeras National Park and within the Sumaco UNESCO Bio-

sphere Reserve (Figure 2). The buffer zone is protected by certain

laws and regulations, but they are not as stringent as in the core

national park. This makes it an ideal area to study primary and sec-

ondary forests in unison.

Elevation of the area ranges between 200 and 714 m above

sea level (m.a.s.l.). Mean tree height is 18.2 m (Sullivan 2018,

unpublished data). The area is a patchwork of mature primary and

old secondary forest, interspersed with small areas of basic family

properties (fincas) consisting of small open wooden houses or plat-

forms and cultivated land (chacras). Henceforth, we use the term

primary forest to refer to mature areas of rainforest with minimal

or no human disturbance in the collective memory of the local

community. Secondary forest refers to regenerated or anthropo-

genically disturbed areas of rainforest (Brown & Lugo, 1990). This

includes areas formerly used as farmland that are now fully for-

ested, areas that look mature but may be scarred by frequently

used trails and patches of forest that are selectively weeded or

logged.

The forest is a humid tropical forest. Average rainfall is

3661 mm y�1. There are no defined seasons in the area, with a

mean annual temperature of 24.0�C, varying between 23.4 and

24.4�C between the coldest and warmest quarters of the year.

Evapotranspiration does not surpass precipitation at any point

throughout the year, so there is no dry season (Sullivan

et al., 2020). There are, however, seasonal patterns in fruiting trees

(Stafford et al., 2016).

Field sampling

The two focal species of bromeliad were picked in situ following

exploratory surveys of the area prior to sampling. Aechmea hoppii and

A. nidularioides were chosen owing to their abundance and apparent

ubiquity throughout primary and secondary forest on both sides of

the main river. The physical vegetative characteristics of these species

make them virtually indistinguishable from each other but distinguish-

able from the many other epiphytic bromeliads in the area, allowing

identification even when no inflorescence is present.

Sampling took place in January–February and July–August 2018.

Sixty-three suitable bromeliads (based on the morphospecies and

accessibility) were selected from the ground by the same person

throughout the study. Host tree species were not recorded. Brome-

liads were reached using double-rope canopy access methods or lad-

ders, depending on their position above the ground, which ranged

from 1.96 to 20.20 m (97% of which were positioned over 2.5 m from

the ground).

When an accessible bromeliad of the correct species was identi-

fied, forest type (i.e. primary [n = 28] or secondary [n = 35]) and GPS

coordinates were recorded. The vertical position of the bromeliad in

the canopy was measured from the base of the bromeliad to the

ground directly beneath it, using a standard 50 m tape measure. Cen-

tral phytotelm temperature and pH were recorded using a handheld

pH meter (PH20, Apera Instruments) prior to removing the bromeliad

from its host tree. The bromeliad was then sawn off the tree at the

base and lowered to the ground in a large heavy-duty bin bag, to

avoid losing the contents or inhabitants of the epiphyte.

Collected bromeliads were returned to the Timburi Cocha

Research Station for processing. The entire contents of the collection

bag, including the plant and any debris or water that may have been

loosened from it, were emptied into a large glass aquarium. We there-

fore collected phytotelm and leaf fauna, without the root mass. This

allowed plant characteristics to be measured without losing inverte-

brates. Total phytotelm capacity, base circumference and the length

of the longest leaf were measured, in addition to counting the total

number of leaves on the bromeliad. The total capacity of the phytotel-

mata was measured by filling the central cavity and leaf axes with

known volumes of water until they overflowed. Base circumference

was measured around the section of the plant base or stem where the

bottom leaves ended and the stem’s diameter evened out.

Invertebrate identification

Following measurement, bromeliads were dissected leaf-by-leaf and

scoured for macroinvertebrates visible to the naked eye (>2 mm in

length) (Table S1). All leaf litter, soil and water from the bromeliads

were examined in equal detail. All collected invertebrate specimens

were collected whole and preserved in 96% ethanol for later identifi-

cation. There was occasion for some ants to escape, which cannot be

accounted for, but this was generally only a few individuals when it

occurred and represented a small proportion of the overall number of
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F I GU R E 2 Map of South America and Ecuador. Shaded area in the top map represents the Tropical Andes Biodiversity Hotspot. Shaded area
in the bottom map represents the Sumaco Napo Galeras National Park, with the darker greys having higher levels of protection.
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individuals. Invertebrates were transferred to the entomology labora-

tory of the National Biodiversity Institute (Instituto Nacional de Biodi-

versidad del Ecuador, INABIO) in Quito, Ecuador, for processing,

where reference samples have been kept and are available upon rea-

sonable request.

Individual invertebrates were defined as either aquatic or

terrestrial. Whether an invertebrate was considered aquatic or

terrestrial was based on its life stage at the time of collection;

for example, aquatic beetle larvae are considered part of the

aquatic community, even if the adult instars would not be

had they continued to grow. All collected invertebrates were

classified at least down to the level of order and classified

into morphospecies. Both general (McGavin, 2000; Kočík

et al., 2002; Triplehorn & Johnson, 2005) and taxon-specific keys

(Andersen, 2010; Brito & Borges, 2015; Domínguez &

Fernández, 2009; Fernández et al., 2019; Grismado et al., 2015;

Hebard, 1924; Kury, 2002; Merritt et al., 2008; Prat et al., 2010;

Vidlicka, 2014) were used to classify the samples and then split

into morphospecies.

Data analysis

All statistical analyses were carried out in R (R Core Team, 2020).

The relative percentage of aquatic and terrestrial invertebrates in

the total sample was calculated in terms of the number of individ-

ual invertebrates and morphospecies richness. Likewise, the abun-

dance of different orders across the samples was calculated as a

percentage of the number of individuals within each class and each

order over the total number of invertebrates, as well as the per-

centage of the number of morphospecies per class or order over

the total number of invertebrates.

Variables influencing alpha diversity

Generalised linear models (GLMs) were used to investigate rela-

tionships between the number of morphospecies or the number of

individuals in the bromeliads and bromeliad volume (log-trans-

formed), height on host, forest type and the longest leaf. These

explanatory variables were chosen by model simplification using

stepwise deletion of the original models, which included all the

measured variables (Crawley, 2015). The models were fitted with a

quasi-Poisson family distribution due to the overdispersed nature

of the count data. This analysis was performed for the aquatic and

terrestrial community subsets separately, as well as the most com-

mon orders (by number of morphospecies) in the dataset; these

were Araneae, Blattodea, Coleoptera, Diptera, Hymenoptera, Iso-

poda, Lepidoptera and Oligochaeta. We corrected for multiple

testing using the Holm method (Aickin & Gensler, 1996). We trea-

ted Oligochaeta as an order, as we did not possess the taxonomic

expertise to classify these samples further and only analysed the

number of individuals for this group.

Variables influencing beta diversity

To investigate how plant and environmental factors explained the var-

iation among invertebrate communities, permutational multivariate

analyses (PERMANOVA) were run using Bray–Curtis distance matri-

ces with the adonis2 function of the vegan package in R (Oksanen

et al., 2020). Separate analyses were conducted on the aquatic inver-

tebrates and terrestrial invertebrates. Nine environmental variables

were included in the PERMANOVAs: forest type (primary/secondary),

height of the bromeliad on tree, log-transformed bromeliad volume

(phytotelmata capacity), longest leaf of the bromeliad, number of

leaves, base circumference, phytotelm pH and temperature and the

sampling time (January–February or July–August). Although phyto-

telm capacity, longest leaf and base circumference are all measures of

bromeliad size, all were included as they were not highly correlated

(r < 0.4). This was done for both presence/absence data and using

abundance data. However, as 45.6% (137) of invertebrate morphos-

pecies present were only found once in the whole dataset, we

repeated the permutational analyses treating the data as binary (pres-

ence/absence). Removing singletons from the dataset produced the

same results; therefore, we retained them. Of the aquatic morphospe-

cies, 45.4% were singletons and similarly, 46.6% of terrestrial mor-

phospecies were singletons.

RESULTS

Environmental variables and diversity of
macroinvertebrates

Sampled bromeliad size was highly variable: phytotelmata capacity

ranged from 80 mL to 1400 mL (mean 389.36 ± 245.86 SD); longest

leaf, 19–238 cm (mean 141.48 ± 40.22 cm SD); base circumference,

9–25 cm (mean 14.34 ± 3.05 cm SD); number of leaves, 8–29 (mean

17.98 ± 4.20 cm SD). Central phytotelm pH was mostly acidic but

with a great deal of variation, from strongly acidic pH 3.4 to few phy-

totelmata exhibiting neutral or mildly alkaline pH 8.2 (mean 5.83

± 0.93 SD). Phytotelm temperature varied between 22.2 and 30.0�C

(mean 25.71 ± 1.71�C SD). Height at which bromeliads were collected

ranged between 1.96 and 20.20 m above the ground (mean 7.77

± 4.14 m SD), with 97.3% of bromeliads found above 2.5 m from the

ground.

A total of 7524 individual terrestrial and aquatic macroinverte-

brates (length >1 mm) belonging to 300 different morphospecies were

collected from the 63 bromeliads, the vast majority of which

were arthropods. The terrestrial community consisted of 78.9% of all

individuals and 76.0% of morphospecies, while 18.7% and 15.7% of

individuals and morphospecies, respectively, were aquatic. The life-

style of 8.3% of morphospecies was both terrestrial and aquatic, and

that of 2.4% of individuals was indeterminable. Morphospecies with

terrestrial and aquatic habitats were included in both categories for

analysis, while indeterminable ones were not included in either

category.
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Insects comprised 89.2% of individuals; crustaceans, 5.0%; arach-

nids, 2.6%; other arthropod classes made up fewer than 1% each. The

predominant non-arthropod classes in terms of numbers of individuals

were Clitellata (phylum Annelida) and Rhabditophora (phylum Platy-

helminthes), but these only accounted for 2.2% and 0.1% of individ-

uals, respectively. Hymenoptera were the most abundant order, with

66.0% of all individuals; in fact, all Hymenoptera individuals collected,

apart from two, were ants (family Formicidae). Beetles (order Coleop-

tera) were the next most abundant group, comprising 16.3% of indi-

viduals, with the remaining 25 orders accounting for fewer than

17.7% of individuals.

In terms of morphospecies richness (rather than abundance),

Insecta was still the most prominent class, comprising 202 of the

300 morphospecies of invertebrates (67.3%). Arachnids were the next

most speciose class with 65 morphospecies (21.6% of total), including

42 morphospecies of spiders (Araneae) and nine morphospecies of

harvestmen (Opiliones). We counted five morphospecies of Pseudos-

corpionida, three of Scorpionida and one of Schizomida, but for lack

of taxonomic expertise cannot guarantee that the 30, 39 and 10 indi-

viduals found of each of these orders do not comprise more or fewer

morphospecies. Following arachnids in terms of number of morphos-

pecies per class were myriapods (Diplopoda, 3.1%; Chilopoda, 1.0%)

and malacostracans (1.7%), although these classes did not contain the

most speciose orders. The orders with the greatest number of mor-

phospecies were Hymenoptera (26% of all morphospecies, all but one

of which were ants); Coleoptera (19.2%); Araneae (14.4%); Diptera

(9.6%); and Blattodea (6.2%).

Variables influencing alpha diversity

Phytotelm capacity (volume) was the only variable analysed which sig-

nificantly positively correlated with species richness in the aquatic

and terrestrial communities (Table 1; Figure 3). The longest leaf of

bromeliads was negatively correlated with the number of morphospe-

cies and the number of individuals in the aquatic community. Other

than that, the number of individual aquatic invertebrates within bro-

meliads correlated with the longest leaf (Table 1).

The abundance and morphospecies richness within orders was

not affected by any of the tested variables.

Variables influencing beta diversity

Forest type and sampling time were the only variables that accounted

for statistically significant portions of the differences between aquatic

communities, whether presence/absence data were used or abun-

dances were included (Table 2). Overall, 23.4% (presence–absence) or

20.0% (with abundances) of the total variation between aquatic com-

munities was explained by the nine environmental and physical vari-

ables measured.

Height on host tree and phytotelm capacity explained small but

significant portions of the variation among terrestrial bromeliad com-

munities, but sampling time did not (Table 2). The measured variables

put together explained 16.9% of the total variation between terres-

trial communities using presence/absence data. When abundance

data were included, only phytotelm capacity was statistically signifi-

cant (Table 2), and 15.8% of the variation was explained by the mea-

sured variables.

DISCUSSION

Height of bromeliad attachment to the host tree significantly

affected community composition in bromeliads in our study. Bro-

meliad size only influenced alpha diversity. Contrary to our

expectations, both the aquatic and terrestrial components of the

community were affected in very similar ways by the measured

variables. Although results were not identical, they were similar

whether presence–absence data were used or abundances were

included, despite a large portion of the dataset being repre-

sented by singletons, not an unusual phenomenon in tropical for-

est datasets (Armbruster et al., 2002; Novotný & Basset, 2000;

Stork et al., 2016). Whether bromeliads were collected in pri-

mary or secondary forest did not have a significant effect on

alpha or beta diversity, suggesting that bromeliads may act as a

T AB L E 1 Effect of environmental and plant variables on morphospecies richness and abundance.

Community Variable

Morphospecies richness Abundance

Estimate ± SE p Estimate ± SE p

Aquatic community Volume (log) 0.329 ± 0.110 0.004* 0.462 ± 0.245 0.064

Height �0.001 ± 0.014 0.924 �0.006 ± 0.033 0.853

Forest type 0.019 ± 0.131 0.882 �0.062 ± 0.298 0.836

Longest leaf �0.003 ± 0.001 0.050* �0.008 ± 0.003 0.021*

Terrestrial community Volume (log) 0.346 ± 0.088 <0.001* 0.316 ± 0.389 0.420

Height 0.009 ± 0.013 0.463 �0.049 ± 0.058 0.408

Forest type �0.232 ± 0.108 0.036 0.156 ± 0.468 0.739

Note: Results of the Generalised linear models (GLMs) performed on different factions of the community. Models were simplified sequentially, but volume,

height and forest type were retained in all models as they were of interest to us. Significance (p < 0.050) indicated by *.
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buffer against anthropogenic disturbance, although it may also

reflect the healthy state of Payamino’s secondary forested areas.

Effect of height

The height at which bromeliads were found—which ranged from

about 2 m to 20 m—had no effect on the species richness or number

of individual invertebrates within the bromeliads in our dataset. This

mirrors some studies that found no effect of height on phytotelmata

communities (Gossner & Petermann, 2022; Jocque & Field, 2014;

Zytynska et al., 2012b), although it contrasts with other studies of

phytotelmata and canopy invertebrates in general that find a decrease

in diversity as one ascends towards the top of the canopy (Chapin &

Smith, 2019; DeVries et al., 1997; Yanoviak, 1999). However, brome-

liad attachment height did have a significant effect on community

F I GU R E 3 Trends in species richness according to different bromeliad traits. The number of morphospecies increased significantly with
bromeliad capacity or volume in the aquatic (a) and terrestrial communities (c) and decreased in the aquatic community with increasing length of
the longest leaf (b).

T AB L E 2 Results from PERMANOVAs of different factions of the community.

Presence–absence Abundance

F df R2 p F df R2 p

Aquatic community Height 2.276 1, 50 0.035 0.027* 1.961 1, 50 0.031 0.035*

Sample time 3.265 1, 50 0.050 0.002* 3.856 1, 50 0.061 <0.001*

Terrestrial community Height 1.618 1, 53 0.025 0.015* 1.329 1, 53 0.021 0.043*

Sample time 1.369 1, 53 0.021 0.077 1.036 1, 53 0.016 0.383

Note: We have only displayed the statistics for height on the tree and sampling time as they are the only factors that explained significant portions of

variation in either of the subsets of data. Sample time was either in the January–February field collection or in July–August. Significance indicated by *.
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composition, despite the amount of variation explained being small.

There are a number of reasons why vertical stratification may occur in

forests, such as the contrasting environmental variables

(e.g., temperature, humidity) between ground, understorey and can-

opy layers; the uneven availability of resources (such as leaf litter and

fresh leaf tissue); and the behavioural traits and dispersal capabilities

of different taxa (Basset et al., 2003). Our results suggest that rather

than causing stratification in terms of the number of species or abun-

dances, communities may simply be equally rich but structured differ-

ently across the vertical canopy gradient.

Of the individual orders analysed, height had no effect on mor-

phospecies richness. Other studies have not found spider abundance

or richness to vary vertically (Kitching et al., 1993; Yoshida

et al., 2021), but we expected other groups may, as both cockroach

and fly abundance were found to increase and decrease (respectively)

with height in a tropical forest in Borneo (Dial et al., 2006). The differ-

ences caused by height indicated by the multivariate analyses, there-

fore, are likely due to differences at lower taxonomic levels and

species turnover, rather than differences in alpha diversity, and may

take the shape of species replacement. Although beyond the scope of

our data, it would be interesting to see if species replacement is

occurring within functional groups with ascending height, or whether

functional diversity itself is changing.

Overall, we find that the height at which the bromeliad is

attached to its host tree affects the composition of the invertebrate

community, although it explains more variation in the aquatic compo-

nent. Further investigation is required to understand the nature and

drivers of this variation. Particularly, microclimatic variation through-

out the understorey and canopy could be measured alongside inverte-

brate collections, as well as leaf litter quantity and quality, which may

differ in accumulation across the vertical gradient and could drive dif-

ferences in energy inputs into the bromeliad microcosm. It would be

interesting to ascertain the extent to which the bromeliad microcosm

does or does not buffer against changes in conditions found through-

out the canopy.

Effect of bromeliad size and complexity

Bromeliad capacity explained a significant portion of the variation

between terrestrial communities. Richness was positively correlated

with volume, as has been shown by previous studies on bromeliad

invertebrates (Jabiol et al., 2009; Jocque & Field, 2014; Méndez-

Castro et al., 2018). Habitat size is known to affect different inverte-

brate taxa to different extents, with predators generally requiring a

larger area (Romero et al., 2016; Srivastava et al., 2008b; Srivastava

et al., 2020b). However, the only fully predatory group at the order

level that was common enough to analsze separately from the rest of

the community was spiders, which seemed unaffected by any of the

measured variables. Bromeliad size did not affect patterns within any

of the most common orders in the dataset, and so it does not appear

that the effect of size on the communities is driven by patterns within

individual orders. However, we do not have the data to investigate

whether these patterns could be driven by turnover within, for

instance, functional groups, which could explain patterns hidden by

grouping diverse assemblages of invertebrates taxonomically.

In addition to size, plant architecture and complexity have previ-

ously also been shown to affect bromeliad invertebrate communities

(Armbruster et al., 2002; Carrias et al., 2014; Gonçalves-Souza

et al., 2011a; Gonçalves-Souza et al., 2011b). However, here we

found no effect of the number of leaves on the community in terms

of richness or composition. Instead, the longest leaf of bromeliads was

marginally significantly correlated with the richness and abundance of

the aquatic community. The longest leaf did not correlate significantly

with any of the other size variables measured, and so the reason for

its effect on the aquatic community here is unclear. Leaf length has

been shown elsewhere to affect patterns of spider functional compo-

sition, but spiders are not part of the aquatic community (Gusmão

et al., 2020). Longer leaves imply greater overall surface area of the

plant, but how this might affect the aquatic community in the phyto-

telm is not obvious.

Effect of sampling time

Field collection took place over two different periods within the same

year. Although San José de Payamino does not have marked seasons

(Irvine, 1987; Sullivan et al., 2020), with sporadic wetter and drier

periods throughout the year (pers. obs), the time at which we sampled

(whether January–February or July–August) did have a significant

effect on the aquatic community within bromeliads. However, there

are seasonal patterns in fruiting trees (Stafford et al., 2016), and it is

expected that biological seasons (defined breeding seasons, for exam-

ple) likely occur regardless of the otherwise stable annual climate.

Many of the representatives of the aquatic community in the brome-

liads we collected were in their larval state. Although specimens were

not classified according to their larval state, there was a greater rela-

tive abundance of Coleoptera during the second sampling season,

which were a common component of the larval community in our

dataset (pers. obs.). It would be interesting to be able to ascertain

whether the differences driven by collection time were indeed driven

by differences in the larval community since the terrestrial community

was not affected in the same way.

Effect of forest type

Whether bromeliads were found in primary or secondary forest

did not affect bromeliad communities. This was contrary to our

expectations, as we thought the starting invertebrate community

may differ between forest types. Certainly, bromeliads act as a

buffer against numerous environmental conditions (Fernandez

Barrancos et al., 2017; Scheffers et al., 2014), and these results

might suggest that human disturbance could be one of them.

However, we recorded at least one introduced ant species twice

in the bromeliads we sampled in primary forest, Monomorium
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floricola (Wetterer, 2009), which could be associated with biolog-

ical invasion processes, emphasising that these assemblages are

not immune to human disturbance, even those we consider to

be in a “primary” or near-pristine state. Other studies have

found that local environmental conditions (Ngai et al., 2008) or

differences in the occurrence and size of bromeliads themselves

among forest types (Srivastava et al., 2005) drive differences

between primary and secondary forest communities in brome-

liads, although this could not be the case in our dataset. Local

environmental conditions such as canopy cover or shade have

also been found to affect bromeliad invertebrate communities

(Busse et al., 2018; Méndez-Castro & Rao, 2014), and it can be

expected that different stages of forest succession exhibit differ-

ent canopy densities and light conditions (Matsuo et al., 2021).

Although we did not measure canopy cover or tree densities in

this study, the secondary forest areas were well forested.

Another study in Payamino measured certain differences

between the primary and secondary forest of the area, namely,

the difference in NDVI values, which were found to be lower in

primary forest than in secondary forest (Oldekop et al., 2012).

Despite this, it is possible that the lack of differences in brome-

liad communities between forest types is, in fact, due to the

level of preservation of the secondary forest areas of Payamino,

which are managed by a local Kichwa community. We caution

against extrapolating this to mean that conserving secondary for-

ests may suffice to preserve biodiversity, as other groups may

be found to be affected by even subtle differences between pri-

mary and secondary forest (Parry et al., 2007).

CONCLUSION

In this study, we studied the invertebrate communities in two spe-

cies of Aechmea bromeliads in a part of the Ecuadorian Amazon

and Tropical Andes Biodiversity Hotspot, in the context of a range

of environmental and plant measurements. The average number of

morphospecies per bromeliad (300 morphospecies in 63 brome-

liads) was higher than in the last comprehensive study of bromeliad

invertebrate communities in Ecuador (354 morphospecies in

209 bromeliads) (Armbruster et al., 2002), reflecting the extremely

high biodiversity within the Tropical Andes Biodiversity Hotspot

(Myers et al., 2000). We found that community structure in brome-

liads at different heights on the host tree and that bromeliad vol-

ume was positively correlated with morphospecies richness.

Future studies may increase our understanding of these patterns

by focusing on functional diversity, which we were unable to ana-

lyse because we did not classify the invertebrates into functional

groups or measure their traits. However, our study fills in a geo-

graphic gap in the study of bromeliad fauna and adds to the limited

literature on the communities of bromeliads higher in the canopy,

demonstrating the need to explore this realm of the rainforest in

order to fully understand community dynamics in these biodiver-

sity amplifiers.
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