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Conventional weed control methods, reliant on machinery and/or herbicide application, often incurred sub-
stantial expenses and yielded imprecise results. An innovative specialised weed control robotic method for ac-
curate and minimal herbicide use is proposed to tackle these issues. Implementing robotic herbicide spraying,
weed removal, and incorporation mechanisms along with the image recognition algorithm were introduced,
leveraging intelligent automation to reduce costs and environmental hazards. Through image processing, weeds
were pointed out and targeted for control in the rice field. A YOLOvV5 machine learning framework underwent
training using relevant datasets to facilitate precise weed management. The Al-driven robotic system, incorpo-
rating advanced image recognition capabilities, exhibited remarkable precision and swiftness, outperforming
much better than manual labour in weed removal. This advancement in weed control technology helps farmers to
optimise crop productivity, bolster food output, and address the ecological consequences linked with various
chemicals; efforts were made to develop a prototype robotic system, which was subsequently built and evaluated
in authentic agricultural settings. Experiments were carried out at the Agricultural Farm of SOA University,
Binjhagiri, Bhubaneswar, Odisha, India, in a rice field, demonstrating the remarkable accuracy of the robotic
system, with a minimal 2% variance from the actual weed quantities. This research highlights the promise of Al-
powered weed management solutions in rice cultivation, offering economical and accurate weed detection and
elimination functionalities. The robot demonstrates a superior weed control rate of 95%. In addition, the sys-
tem’s performance in incorporating the weeds is at a rate of 90%. It also serves as a blueprint for integrating Al
into contemporary agriculture, steering the sector toward a more eco-conscious and economically sustainable
future. The Al-driven solution for weed management revolutionises farming practices, equipping farmers with
the tools for bountiful yields, increased economic viability, and a commitment to environmental stewardship.
This underscores the imperative to prioritise scaling this innovative approach within both industrial and com-
mercial agricultural sectors.

1. Introduction

Weeds compete with crop plants for all necessary resources, such as
moisture, nutrients, space, and sunlight. They are the alternate host for
the disease and pests, reducing crop yields and raising production costs
(Gleason et al., 2010). In order to get a good crop yield, weeds must be
removed from the cultivated field early in the crop’s life cycle (Kubiak
et al., 2022). Weed management encompasses various strategies to
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eliminate and control unwanted plants in the agricultural field. The
primary approach involves a coordinated effort to tailor specific weed
species or groups (Zimdahl and Basinger, 2024). Farmers can minimise
the competition between weeds and their desired crops by employing a
comprehensive and coordinated strategy, improving overall yields and
efficiency. Weeds are removed using various approaches such as pre-
ventive, cultural, physical, mechanical, chemical, biological, and
biochemical methods (Shaner and Beckie, 2014). Traditionally, weeds
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are controlled from fields by different tillage practices. Weeds are
thoroughly tilled, including their roots, and then removed. Weeds are
manually pulled by hand or by using a sharp tool (Wicks et al., 2017). An
agricultural weeder is a simple tool that can be operated by hand or
attached to a machine like a tiller or power weeder. Hoes, flame
weeding, and mulching are all effective weed removal methods. Hoes of
various shapes and sizes can be dragged by hand, propelled (as a wheel
hoe), or attached to a tractor (Bajwa et al., 2015). But weeding work can
be performed more precisely by robots than by humans. Farmers can use
robotic weeders to schedule weeding activities based on crop growth
stage and weather conditions. Robots can work day and night, allowing
for more frequent and rapid interventions. This adaptability can lead to
better weed management and potentially increased agricultural yields.
Robots can work constantly in various weather conditions and without
weariness, improving the overall reliability of the weeding operation
(Thakur et al., 2023). This uniformity can be especially useful during
critical crop growth stages when prompt weeding is required. Machine
learning and computer vision technologies enable robots to identify and
target weeds better, decreasing crop damage and boosting overall crop
growth. This precision also helps to limit the use of herbicides such as
chemicals, resulting in more sustainable farming practices. The imple-
mentation of robotic technology has the potential to promote additional
agricultural advancements. For instance, robot-collected data (on plant
health, weed flora, and overall field conditions) may inform other
agricultural decisions, putting more aspects of farm management under
one unified, data-driven strategy (Campbell, 2022) . Robotic weeding
can benefit the environment by decreasing the demand for chemical
pesticides and optimising their usage only when truly necessary. Less
chemical pollution and soil disturbance are essential benefits that sup-
port sustainable agriculture operations. The use of robots to replace
manual labour, such as hand weeding crews, can drastically cut labour
expenses on weed control (Edan et al., 2009). Though the initial in-
vestment in robotic technology may be extensive, the long-term benefits
can be significant due to reduced reliance on manual labour and asso-
ciated expenditures like pay and training (Danaher, 2021). Integrating
robotic technologies into agriculture, such as automated weeders, may
reduce costs and improve efficiency. Additionally, it enhances the reli-
ability and sustainability of farming methods (Upadhyay et al., 2024).
This transition is consistent with economic and environmental aims,
resulting in a more sustainable agriculture system. An innovative tech-
nique for transforming precision farming practices by incorporating
modern robots and artificial intelligence (AI) to reduce pesticide con-
sumption in rice cultivation. Conventional agricultural methods
frequently include inappropriate pesticide spraying, resulting in envi-
ronmental degradation and crop damage (Sharma et al., 2021). The
proposed approach involves developing and implementing a robotic
platform utilising Al algorithms for weed control in rice cultivation,
which aims to enhance efficiency and reduce environmental impact.
This approach integrates chemical and mechanical methods to effec-
tively manage weeds in direct seeded conditions, with the following
objectives.

This research is projected to significantly impact future efforts in
developing and implementing a robotic platform with AI algorithms
customised for weeding systems for rice and other crops in rice-based
cropping systems. The primary contributions of this study are noted as
follows:

e The robotics system uses high-resolution cameras to detect the weed
flora.

e The AI component analyses data using machine learning algorithms
to make precise recommendations for specific herbicide applications
and weed removal. The device automatically adjusts spray rates
based on the weed density, decreasing herbicide usage.

o Extensive field investigations were undertaken in various rice fields
to evaluate the suggested technique’s effectiveness.

Computers and Electronics in Agriculture 231 (2025) 110032

e This study evaluates the system’s accuracy, efficiency, and envi-
ronmental impact in contrast to traditional farming approaches. The
study also demonstrated that intelligent robotics systems can
significantly reduce herbicide use while increasing crop yields.

1. Design methodology

The robot is designed to run in the rice field to control the diverse
weed flora by precisely applying herbicide in the intra-row and cutting
and incorporating inter-row weeds. The robot can reduce herbicide
application, farm workers, and water consumption. These robots,
designed to operate in wet and muddy situations, have the potential to
improve rice production efficiency and sustainability significantly. Ro-
bots equipped with modern cameras and nozzles can apply herbicides
precisely where needed, focusing on the weeds rather than the entire
field. In rice fields, weed management is crucial. Robots intended for rice
fields must be flexible to different field conditions and crop stages. (Shi
et al., 2023). This versatility implies that the same robotic systems can
remain effective without considerable alterations in aberrant weather
conditions.

1.1. Design and fabrication of the proposed robot model

A robot chassis is a schematic diagram that depicts the technical
representation of a robot’s chassis or frame, as shown in Fig. 1. In the
figure, the orthographic projection is employed to show (a) the main
assembly view, (b) the top view, (c) the left side view, and (d) the
focused mechanism view.

The robot consists of integrating many hardware components
required for the proper operation of a mobile robot tasked with identi-
fying and spraying herbicide at specific targets, as well as removing and
decomposing weeds. The components include a high torque brushless
DC worm gear reduction motor, weed and grass cutter, horizontal rotary
blade, water pump, fog sprayer head nozzle, pneumatic connectors, a 5-
volt DC relay, wheel assemblies, containers, web cameras, pipes, and the
robot’s body. Additionally, components like craws have been used to
loosen and level soil. The NVIDIA Jetson Nano board acts as the system’s
control center, managing computation, networking, and hosting navi-
gation and image processing applications. (NVIDIA, 2022). The HP
w100 Camera has real-time imaging capabilities, allowing for photo
gathering and analysis to target specific weed-infested areas for herbi-
cide application.

The robot’s chassis serves as the structural backbone, containing
motors, wheel mounts, weed cutter, horizontal rotary blade, and bat-
teries, allowing the Jetson Nano board to regulate its mobility. The
central hub controls the weed cutter, which has movable joints for dy-
namic movement and may be adjusted in real-time, depending on field
situations. The horizontal rotary blade is attached to the rear of the weed
cutter to incorporate the removed weeds in the soil. Three tiny test ex-
amples of direct seeded rice fields were prepared on the Siksha ‘O’
Anusandhan University, Bhubaneswar, Odisha, India, agriculture

w10
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D. FOCUSED MECHANISM VIEW

C. SIDE VIEW

Fig. 1. The orthographic projection of the proposed robot.
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farmland site, each measuring 100 m? area.

1.2. Implementation and Operational methodology

This section describes the system’s architectural diagram, the pro-
gramming procedure for weed identification and assessment, weed
removal and incorporation mechanisms, the development of an
instructional model for weed recognition, and the creation of a proto-
type model for system assembly. The weeding system, like removing and
incorporating weeds in the field, uses robotic horizontal rotary blades,
weed cutters, and nozzles. Fig. 2 shows the block diagram of the pro-
posed robot system, which uses the Jetson Nano board as its system unit.
The YOLOvV5 model is trained on the Jetson Nano board and commu-
nicates with numerous units, including the motor, camera, weed cutter,
horizontal rotary blade, and nozzle (Wang et al., 2022a) . A rechargeable
battery with driving circuits controls the power. In direct-seeded rice, a
spacing of 20 cm from row to row and 5 cm from plant to plant was
maintained during sowing (Mahajan and Chauhan, 2016). Adhering to
the recommended spacing, mechanical arrangements were constructed
with a robotic chassis for variable gap correction based on real-time field
situations. The system mechanics were built with nuts and bolts so that
they may be adjusted up, down, and left to right based on real-world
field conditions for weed control between the two rows of rice plants.
Weeds were removed with grass cutter blades, and horizontal rotary
blades incorporated the weeds inside the upper soil surface. As shown in
Fig. 3 (a), the weedy plot with rice plants and a 20 cm gap is being
cleared of weeds with the employment of the proposed robot. Three
grass cutter blades and cultivators were employed to maximise the ro-
bot’s efficiency, which can move in three rows at a time, as seen in Fig. 3
(b). The method intends to incorporate the weeds in the soil, which is
left between the rows for decomposition, potentially increasing soil
fertility, as seen in Fig. 3 (c).

The YOLOV5 model is trained and evaluated on images of various
weeds. A set of models was explicitly created to identify and classify
different weed types based on their visual characteristics (Dang et al.,
2023). The details of the weed varieties are discussed in the following
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Weedy plot

The robot moving
in between the rows

After the weed was
removed by the robot

Fig. 3. (a) Weedy plot, (b) Robot moving in between the rows, (c) After the
weed removed by the robot.

section.

1.3. Weed flora composition training model for the system

Weeds were classified based on their morphology as grasses, broad-
leaved, and sedges. Subsequently, weeds in the experimental field were
identified using a validated database. This strategy relied on machine
learning techniques (Vasileiou et al., 2024). A model was developed
specifically to recognise and classify various weed types based on their
visual characteristics. An extensive collection of images representing
multiple weed species was employed to train this model, with each
image labeled with the proper weed type. During the training process,
the model had access to this dataset and the parameters controlling its
learning and prediction algorithms. As the data was analysed, the model
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Fig. 2. Block diagram of the proposed robot system for the detection and evacuation of weeds.
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learned to recognise various visual properties unique to different weed
species, allowing it to categorise new images that it didn’t recognise
earlier. The training process involves introducing machine learning al-
gorithms to a dataset containing images of weeds found on farms across
various rice fields. (Sharma et al., 2021). These images were matched by
labels identifying the weed species shown. At the sixty-day mark of the
Kharif season, the experimental area was infested with a wide range of
eleven predominant weed species, divided into three unique categories:
five varieties of grass, five types of broadleaved, and two types of sedges,
spanning seven families. The bulk of these species were monocots, with
only four exceptions—Ludwigia parviflora, Melochia corchorifolia,
Eclipta alba, and Alternanthera philoxeroides—identified as dicots. It’s
important to note that, even though being classified as broadleaved,
some weeds, such as Commelina benghalensis, have monocotyledonous
features. The distribution of weed dominance differed across treatments,
as seen in Table 1. In the weedy check plots, all eleven weed species were
present. During the crop growth phase, six significant weed species
appeared regularly throughout the experimental field. Notable among
these were Digitaria sanguinalis and Echinochloa colona from the
grasses, Cyperus iria from the sedges, and Ludwigia parviflora, Melochia
corchorifolia, and Alternanthera philoxeroides from the broadleaved
weeds.

In direct-seeded rice, the significant weed flora were Digitaria san-
guinalis, Echinochloa colona, Leptochloa chinensis, Panicum repens,
Cyperus iria, Fimbristylis miliacea, Ludwigia parviflora, Melochia
corchorifolia, Eclipta alba, Commelina benghalensis and Alternanthera
philoxeroides (Rao et al., 2007; SANGRAMSINGH and DASH, 2021).
Similarly, it also reported the dominance of Echinochloa sp. and C. iria
in rice. (Awan and Chauhan, 2016; Garg et al., 2019). This dataset was
used to train machine learning algorithms, resulting in a robust weed
training model. A data set of images of weeds of various kinds, such as
grasses, sedges, and broad leaves, was leveled and used to train the
model shown in Fig. 4.

1.4. Deployment of an AI model to locate and spray pesticides on residual
weeds near rice plants—post-robotic weed removal between rows

A thorough investigation was conducted on various weeds and their
growth at different stages. The recommended dose, time, and types of
herbicide application to control specific weeds were considered. A
comparison study was conducted on the use of several herbicides for
controlling distinct weeds (Tu et al., 2003). Images of various weed
species that grow in various soil conditions, such as upland, lowland,
and medium land situations, were obtained from different parts of
Odisha.

Table 1

Floristic composition of weeds in the experimental site.
Botanical name Family Common name
Grasses
Digitaria sanguinalis (L.) Scop. Poaceae Large crabgrass
Echinochloa colona(L.) Link. Poaceae Jungle rice
Leptochloa chinensis(L.) Nees Poaceae Chinese

sprangletop

Panicum repens L. Poaceae Dog-tooth grass
Sedges
Cyperus iria L. Cyperaceae Rice field flat sedge
Fimbristylis miliacea (L.) Vahl. Cyperaceae Hoorahgrass
Broadleaved weeds
Ludwigia parviflora Roxb. Onagraceae Water primerose
Melochia corchorifolia L. Sterculiaceae Chacolate weed
Eclipta alba (L.) Hassk. Asteraceae False daisy
Commelina benghalensis L. Commelinaceae  Tropical spiderwort
Alternanthera philoxeroides (Mart.) Amaranthaceae  Alligator weed

Griseb.
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This configuration allows the robot to identify weeds autonomously
using the weed training model; the weeds will be eliminated by the weed
cutter and incorporated inside the soil by the horizontal rotary blade.
The nozzles will spray herbicides as needed. Camera-based systems
combining artificial intelligence, computer vision, and machine learning
show promise for weed detection in rice fields, but they face significant
challenges. These issues include the resemblance of rice and weeds,
weather variations, the dynamic nature of crop-weed competition,
limited availability of training data, and high computational needs.
Considering the challenges presented in this test situation, the prototype
model focuses entirely on machine-learning approaches. Over 1000
sample images were collected for each weed group to improve precision.
The YOLOv5 Model was constructed and trained using a machine
learning approach (Ajayi et al., 2023; (Wang et al., 2022c) ). Identifying
weeds in rice fields using Al often involves several stages. YOLOv5
initially resizes an input image to a predetermined size to ensure con-
sistency across all inputs (Lan et al., 2024). It uses a CNN backbone to
extract features from the scaled image. Fig. 5 shows how the backbone is
connected to other layers to form a feature pyramid. YOLOv5 has pre-
defined anchor boxes, essentially shapes (width and height) that the
model uses as references when predicting the bounding boxes of
observed objects. Each location on the feature map predicts a bounding
box relative to the anchor boxes.

A self-constructed dataset was developed using data collected from
the agricultural firm land of SOA University, Odisha, India. The weed
dataset comprises images of various weed species typically found in
paddy fields, captured from different experimental plots in real-
experimental setup conditions. For the second phase of dataset crea-
tion, image capture was performed on the experimental field using the
robot equipped with an integrated camera. Data was collected multiple
times in different lighting conditions to ensure an extensive dataset.
Images captured by the robot in the experimental field were combined
with images from other fields to produce a single dataset. The sample
images used in the model align with the robot’s shooting angles,
ensuring consistency with the agricultural machine’s real-world
deployment. This was validated during the experimental setup. The
fixed problems included format differences, noise, and unequal class
distribution. This dataset was subsequently categorised based on distinct
weed characteristics.

During the experiments, the real-time images acquired by the robot
were compared with the self-constructed dataset to enable weed iden-
tification and eradication. Various techniques were employed to mod-
erate these issues. Image augmentation, including transformations like
rotation, scaling, and brightness adjustments, was utilised to simulate
real-world variability and improve model robustness. Transfer learning
was applied to fine-tune the YOLOv5 model using real-world test data
collected by the robot, ensuring better alignment between training and
deployment conditions. Additionally, feature extraction methods such
as random search cross-validation (RSCV) and principal component
analysis (PCA) were incorporated to enhance feature selection during
training, enabling the model to adapt effectively to real-world scenarios.
The detailed flow diagram of the fine-tuning of the YOLOv5 model is
shown in Fig. 6.

Since multiple bounding boxes can be predicted around the same
object, Non-maximum Suppression (NMS) helps in selecting the most
accurate bounding box by eliminating overlapping boxes based on a
confidence score threshold and Intersection Over Union (IoU) criteria as
shown in Eq. 1.
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Where A and B are convex shapes, the analysis includes determining
the number of true positives. A predicted bounding box is called true
positive if it overlaps a ground truth bounding box with an Intersection
over Union (IOU) threshold of 0.5, showing that the detection was
successful. However, if a predicted bounding box overlaps with a ground
truth bounding box below the threshold, it is considered a false positive
and an unsuccessful detection (Karthi et al., 2021). The precision and
recall metrics can then be calculated based on the true positives and false

positives using the following formulas:

Precision = True positive/True positive + False positive @
= Count(True positive) /Count(True positive + False positive)

Recall = True positive/True positive + False negative 3)

= Count(True positive)/Count(True positive + False negative)

If the predicted bounding box differs from any of the image’s target
classes, consider it a false positive. If the expected class corresponds to
one of the target classes, compare the estimated bounding box to the
target boxes in the images. Use the IOU threshold to determine the
maximum overlap between the predicted and target bounding boxes. If
the most significant overlap exceeds the IOU threshold, indicate that the
target box has been successfully detected and the predicted bounding
box is a true positive (Jiang et al., 2021). If the most significant overlap
is less than the IOU threshold, mark the bounding box as a false positive.
The F1 score determines the ideal level of confidence threshold that
balances precision and recall. A higher F1 score indicates more precision
and recall (Urmashev et al., 2021).
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F1 Score = 2 x (precision x Recall)/(precision + Recall) 4)

The YOLOv5 model has several modifications and optimisations to
improve its suitability for agricultural applications. Custom anchor box
tuning was implemented to enhance the detection of small objects, such
as narrow weed patterns, under real-world field conditions. The model’s
performance was further refined by incorporating test data collected by
the robot and combining it with real-world data, ensuring improved
accuracy in practical deployments. YOLOv5's lightweight architecture,
optimised for embedded devices, facilitated smooth deployment on
platforms like NVIDIA Jetson Nano. Data augmentation is a critical
technique in this deep learning, particularly in training models like
YOLOVS5 for object detection. The model was integrated into the system
and applied to the test case rice field. Mosaic augmentation is particu-
larly interesting and compelling for object detection tasks for this rice
model (Dai et al., 2022; Dang et al., 2023; Xu et al., 2024). In a single
training instance, a mosaic combines four different training images into
one composite image. These images are randomly selected from the
dataset. The four images are placed such that each one occupies one
quadrant of the new composite image. Each object’s bounding box co-
ordinates in the original images are adjusted relative to their new po-
sition in the composite image. Fig. 7 illustrates how the YOLOv5 model
detected weeds and generated predictions according to their classifica-
tion, compared with the weed training model.

Fig. 8 shows a system flow chart. Following deployment, the AI
model’s performance was continuously monitored. Refinements were
made as needed to improve the model’s accuracy, and it was adjusted to
changing conditions in the rice fields. After 300 Epochs of training, the
model achieved a reasonable level of accuracy. The Nvidia Jetson Xavier
GPU performed well at object detection at 30 fps, allowing commands to
be sent to motors, cutters, and nozzles. The camera in the robot recog-
nises weed species and compares them to a database. The specific her-
bicide will be applied to the weed plant following weed identification.
At the same time, in mixed-flora conditions, broad-spectrum herbicides
will be used to control weeds successfully.

The herbicides listed in Table 2 are employed to control both specific
and broad-spectrum weeds in this test case scenario (Bhullar et al.,
2013). Three different containers were pored with appropriate herbicide
dosages and attached to six 12-volt DC pumps. The entrance was in the
container, and the exit was connected to two fog sprayer head nozzles
facing opposite directions using pneumatic splitter connectors. Fig. 9
shows the logic diagram for pneumatic control.

However, in the conventional approach, herbicide is sprayed on an
area basis without concern for the presence or absence of weeds. The
amount of herbicide used in the traditional approach is fixed, resulting
in excessive use and soil and plant health degradation (Mandal et al.,
2020; Parven et al., 2024; Perotti et al., 2020; Tripathi et al., 2020).
When compared to traditional rice cultivation methods, this robot can
save on herbicides and labour (Fennimore and Cutulle, 2019). This
herbicide spraying is restricted to the crop row zone only. Weeds be-
tween the rows are controlled using a motor-operated weed cutter,
which cuts down the weeds in the exact location (Loddo et al., 2020). In
Fig. 11, three images are provided which illustrate the weeds after the
robot evacuation left surrounding the rice plant after a few hours of
herbicide spraying and, after ten days, the decomposed weeds.

1.5. Deployment of remote observation and manual operation for weed
eradication

In this proposed test case scenario, the jetson nano board can connect
to the internet via a Wi-Fi system, and a local host has been set up to
view a live preview of the robot’s cameras. The manual cross-check
method has also been used to ensure that the automated robotic sys-
tem has removed the weeds in the rice field. A laptop or smartphone may
control the robot, and if any weeds remain, as visible in the live camera
preview, the robot can be stopped and herbicide applied to the infested
area. The system is designed to allow the farmer to operate and double-
check his work from any remote location, as the camera preview can also
be viewed online. The block diagram of the suggested model is presented
in Fig. 10.
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2. Results and discussions
2.1. Assessment of the prototype

A thoroughly selected set of performance measures was used to test
the effectiveness of the weed detection, removal, and incorporation

Table 2
Herbicides used in direct-seeded rice to control diverse weed flora in conven-
tional farmer’s practice.

Herbicide Formulation Dose Dose (It.) Dilution Remark
Name ® (actual In Water
(a.i. amount to (litres)
per be
ha) sprayed)
Bispyribac 10 % SC 25 250 300 Broad-
Sodium spectrum
weed
control
2,4-D Ethyl 38 % EC 750 1973 400 Effective
Ester against
broad-
leaved
weeds only
Fenoxaprop- 6.7 % EC 60 895 500 Effective
p-ethyl against

grasses only

<
_L. container for the herbicides
input to the DC Pump
~—T 12 volt DC Pump pump
[ — [—‘
vy T fog sprayer nozzle

.,
——

-
!
3
L

/

Fig. 9. The logic diagram of the pneumatic control.

system prototype. To extensively test the system’s capabilities, a series
of real-world scenarios were designed to assess its ability to recognise
and eliminate weeds in a variety of environmental circumstances. To
ensure experimental integrity and reduce external influences, a
controlled test environment was rigorously designed to simulate future
deployment settings accurately. Throughout the testing phase, a vast
amount of data was meticulously collected, including critical
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Fig. 10. Effect of proposed robot application in the rice field.
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Fig. 11. Prototype model of the proposed robot.

parameters such as the rate of weed identification, the time necessary for
evacuation, and the effectiveness of incorporation processes. The
following analysis of this data enabled a detailed evaluation of the
prototype’s performance, determining specific areas that need modifi-
cation in accordance with specified objectives.

2.2. Comparisons study with respect to accuracy, precision, recall and F1
score

According to (Li et al., 2022) , the weed detection and spraying
system (Model-1) achieves a high accuracy of 0.93 in real-time detection
and classification of weeds and crops, ensuring minimal misclassifica-
tion. Model-1 demonstrates a precision score of 0.94, effectively

minimising herbicide waste by targeting detected weeds, and a recall
score of 0.91, highlighting its ability to identify a diverse range of weed
species, even in complex or overlapping scenarios. The F1-score of 0.92
reflects a balanced trade-off between precision and recall, affirming its
reliability for precision agriculture. In comparison, (Liu et al., 2021)
report that their weed detection and spraying system (Model-2) achieves
an accuracy score of 0.97, a precision score of 0.89, a recall score of 0.87,
and an F1 score of 0.88. The proposed model outperforms both, with an
accuracy of 0.98, precision of 0.93, recall of 0.91, and an Fl-score of
0.92. A comparative analysis of Model-1, Model-2, and the proposed
system is illustrated in Fig. 12. The robot has the watch and spry facil-
ities in the proposed model, like Model-1 and Model-2. The additional
weed evacuation facility in the proposed model shows better accuracy,
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Fig. 12. Comparisons of model-1, model-2 and the proposed robot model with
respect to the accuracy, precision, Recall and F1 score.

precision, recall and F1 results. The proposed robotic system enhances
rice crop health by ensuring precise and thorough weed control by
reducing competition for vital nutrients, water, and sunlight, thereby
boosting yields. Its consistent and efficient operation addresses critical
agricultural challenges, contributing to food security while reducing
reliance on manual labour and excessive chemical use.

The weed training model was thoroughly evaluated, considering
accuracy, precision, recall, and F1-score while using images from rice
fields. Notably, the algorithm achieved an accuracy level of 0.98,
showing its ability to classify weeds and crops correctly. Data augmen-
tation, transfer learning, and incorporating domain expertise each
served to improve the model’s strength and generalisation capabilities.
As a result, the weed training model is critical in increasing rice yield by
efficiently controlling weeds, allowing for more effective weed man-
agement. The Weed25 dataset was trained by the YOLOv3, YOLOV5, and
Faster R-CNN models for weed identification, where the precision was
91.8 %, 92.4 %, and 92.15 %, respectively (Wang et al., 2022b) . Using
training models in weed management significantly enhances crop yields
by optimising weed control methods, thus promoting the application of
intelligent weed control technology in practice.

2.3. Weed detection and control accuracy

A comparison of manual labour, traditional farming methods, and
the proposed robot model for weed control was carried out. Manual
labourers were engaged in hand weeding to control weeds, while con-
ventional methods involved farmers using knapsack sprayers to apply
herbicides. The results showed that the proposed technology was more
efficient than manual approaches, covering more territory and incor-
porating a more significant number of weeds per hour.

The proposed prototype of a weed identification and evacuation
robot was rigorously tested, and the results are shown in Fig. 13. The
robot demonstrated its effectiveness in weed control by comparing
physical labour and traditional farming methods. The proposed robot
demonstrated exact precision, recognising and removing weeds with an
error margin of only 2 %. The costs of robotic weed management were
high. Still, robotic weeding was a robust and effective weed control
method with great potential to save herbicides in arable and vegetable
crops (Fennimore et al., 2016; Gerhards et al., 2024; Monteiro and
Santos, 2022). In comparison, manual approaches were shown to be 1.2
times slower in controlling weeds. Furthermore, the robot demonstrated
a superior weed control rate, exceeding 95 %. In addition, the system’s
performance was assessed based on weed control rates, which showed
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Fig. 13. Comparative analysis of manual labour and traditional farming
methods with the proposed robot.

an excellent incorporation rate of more than 90 %. Further, the system’s
interoperability with existing agricultural practices and equipment has
the potential to reduce costs and labour while enhancing yield and
profitability significantly. In particular, the robot’s ability to resist
various weather conditions and rugged terrains and operate with little
maintenance requirements highlight its usefulness and relevance for
agricultural applications (Kumar et al., 2023). It is also relatively safer
and eco-friendly than the indiscriminate use of chemicals to control
diverse weed flora in direct-seeded rice cultivation.

2.4. Evaluation analysis

Fig. 14 shows the performance metrics of the evaluation analysis for
cost and scalability in terms of weed control in real-time scenarios in the
proposed model. This is an essential indicator for determining its
effectiveness.

These criteria were critical to the robot’s comprehensive weed
detection and removal assessment. This evaluation analysis shows that
the model is faster and more accurate than conventional methods. As a
result, the use of this advanced technology in agricultural fields replaces

3000

B Cost per hour

Area covered (acres)
2500
2000

1500 4

1000 -

Cost (Cost per hour)

500

Manual Work Traditional methods

Model proposed

Fig. 14. Evaluation analysis (cost-effective and scalability with respect to weed
and herbicide management in real-time scenarios).
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the over-reliance on herbicides and traditional farming machinery,
providing a more efficient and sustainable approach to weed manage-
ment (Esposito et al., 2021).

3. Conclusion

The weed detection and removal prototype, augmented by an Al
model, was methodically designed to accurately identify, remove, and
incorporate weeds in rice fields. The Al system is constantly improved to
enhance weed detection, removal accuracy, and speed. To increase the
model’s robustness and dependability, it might be trained on a more
diversified dataset containing various weed species under different
conditions. The experimental results showed that the model has the
potential to improve agricultural output, efficiency, and cost-
effectiveness significantly. It improves the proposed robot’s design
and functioning, allowing it to operate in various terrains and weather
situations. This may involve increasing the durability and energy effi-
ciency of the robots. The key advantage of the YOLOvV5 model is its
training efficiency, requiring fewer computational resources compared
to more recent models such as YOLOv8 or YOLO-NAS. YOLOVS5 is well-
suited for edge-devices deployment, including NVIDIA Jetson modules,
Raspberry Pi, and mobile platforms, often offering better integration
than newer architectures. At the same time, these latest models
demonstrated higher accuracy in isolated experiments. Future work will
focus on integrating advanced architectures like YOLOv8 or YOLO-NAS
to enhance performance in subsequent iterations. More advanced ma-
chine learning approaches could allow the system to adapt dynamically
to new settings and optimize its real-time decision making processes.
Moving in advance, it is critical to investigate potential enhancements,
incorporate new approaches, and ensure compatibility with existing
facilities. This strategic approach will improve the system’s adaptability
and scalability while ensuring its applicability across various soil types
and environmental circumstances. Engaging with farmers, scientists,
and agricultural technicians to ensure that the technology meets prac-
tical field needs and encourages adoption through field demonstrations
and trials, as well as continuously assessing the technology’s environ-
mental impact to ensure that it contributes positively to sustainable
farming practices, such as reducing chemical usage and minimising soil
health degradation. By addressing these issues, the prototype robot may
be transformed into a reliable system that fulfills present expectations
and is also future-proofed to adapt to changing agricultural practices
and issues. This deliberate, comprehensive strategy will contribute to
the technology’s success and widespread acceptance in agriculture.
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