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A B S T R A C T

Conventional weed control methods, reliant on machinery and/or herbicide application, often incurred sub
stantial expenses and yielded imprecise results. An innovative specialised weed control robotic method for ac
curate and minimal herbicide use is proposed to tackle these issues. Implementing robotic herbicide spraying, 
weed removal, and incorporation mechanisms along with the image recognition algorithm were introduced, 
leveraging intelligent automation to reduce costs and environmental hazards. Through image processing, weeds 
were pointed out and targeted for control in the rice field. A YOLOv5 machine learning framework underwent 
training using relevant datasets to facilitate precise weed management. The AI-driven robotic system, incorpo
rating advanced image recognition capabilities, exhibited remarkable precision and swiftness, outperforming 
much better than manual labour in weed removal. This advancement in weed control technology helps farmers to 
optimise crop productivity, bolster food output, and address the ecological consequences linked with various 
chemicals; efforts were made to develop a prototype robotic system, which was subsequently built and evaluated 
in authentic agricultural settings. Experiments were carried out at the Agricultural Farm of SOA University, 
Binjhagiri, Bhubaneswar, Odisha, India, in a rice field, demonstrating the remarkable accuracy of the robotic 
system, with a minimal 2% variance from the actual weed quantities. This research highlights the promise of AI- 
powered weed management solutions in rice cultivation, offering economical and accurate weed detection and 
elimination functionalities. The robot demonstrates a superior weed control rate of 95%. In addition, the sys
tem’s performance in incorporating the weeds is at a rate of 90%. It also serves as a blueprint for integrating AI 
into contemporary agriculture, steering the sector toward a more eco-conscious and economically sustainable 
future. The AI-driven solution for weed management revolutionises farming practices, equipping farmers with 
the tools for bountiful yields, increased economic viability, and a commitment to environmental stewardship. 
This underscores the imperative to prioritise scaling this innovative approach within both industrial and com
mercial agricultural sectors.

1. Introduction

Weeds compete with crop plants for all necessary resources, such as 
moisture, nutrients, space, and sunlight. They are the alternate host for 
the disease and pests, reducing crop yields and raising production costs 
(Gleason et al., 2010). In order to get a good crop yield, weeds must be 
removed from the cultivated field early in the crop’s life cycle (Kubiak 
et al., 2022). Weed management encompasses various strategies to 

eliminate and control unwanted plants in the agricultural field. The 
primary approach involves a coordinated effort to tailor specific weed 
species or groups (Zimdahl and Basinger, 2024). Farmers can minimise 
the competition between weeds and their desired crops by employing a 
comprehensive and coordinated strategy, improving overall yields and 
efficiency. Weeds are removed using various approaches such as pre
ventive, cultural, physical, mechanical, chemical, biological, and 
biochemical methods (Shaner and Beckie, 2014). Traditionally, weeds 
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are controlled from fields by different tillage practices. Weeds are 
thoroughly tilled, including their roots, and then removed. Weeds are 
manually pulled by hand or by using a sharp tool (Wicks et al., 2017). An 
agricultural weeder is a simple tool that can be operated by hand or 
attached to a machine like a tiller or power weeder. Hoes, flame 
weeding, and mulching are all effective weed removal methods. Hoes of 
various shapes and sizes can be dragged by hand, propelled (as a wheel 
hoe), or attached to a tractor (Bajwa et al., 2015). But weeding work can 
be performed more precisely by robots than by humans. Farmers can use 
robotic weeders to schedule weeding activities based on crop growth 
stage and weather conditions. Robots can work day and night, allowing 
for more frequent and rapid interventions. This adaptability can lead to 
better weed management and potentially increased agricultural yields. 
Robots can work constantly in various weather conditions and without 
weariness, improving the overall reliability of the weeding operation 
(Thakur et al., 2023). This uniformity can be especially useful during 
critical crop growth stages when prompt weeding is required. Machine 
learning and computer vision technologies enable robots to identify and 
target weeds better, decreasing crop damage and boosting overall crop 
growth. This precision also helps to limit the use of herbicides such as 
chemicals, resulting in more sustainable farming practices. The imple
mentation of robotic technology has the potential to promote additional 
agricultural advancements. For instance, robot-collected data (on plant 
health, weed flora, and overall field conditions) may inform other 
agricultural decisions, putting more aspects of farm management under 
one unified, data-driven strategy (Campbell, 2022) . Robotic weeding 
can benefit the environment by decreasing the demand for chemical 
pesticides and optimising their usage only when truly necessary. Less 
chemical pollution and soil disturbance are essential benefits that sup
port sustainable agriculture operations. The use of robots to replace 
manual labour, such as hand weeding crews, can drastically cut labour 
expenses on weed control (Edan et al., 2009). Though the initial in
vestment in robotic technology may be extensive, the long-term benefits 
can be significant due to reduced reliance on manual labour and asso
ciated expenditures like pay and training (Danaher, 2021). Integrating 
robotic technologies into agriculture, such as automated weeders, may 
reduce costs and improve efficiency. Additionally, it enhances the reli
ability and sustainability of farming methods (Upadhyay et al., 2024). 
This transition is consistent with economic and environmental aims, 
resulting in a more sustainable agriculture system. An innovative tech
nique for transforming precision farming practices by incorporating 
modern robots and artificial intelligence (AI) to reduce pesticide con
sumption in rice cultivation. Conventional agricultural methods 
frequently include inappropriate pesticide spraying, resulting in envi
ronmental degradation and crop damage (Sharma et al., 2021). The 
proposed approach involves developing and implementing a robotic 
platform utilising AI algorithms for weed control in rice cultivation, 
which aims to enhance efficiency and reduce environmental impact. 
This approach integrates chemical and mechanical methods to effec
tively manage weeds in direct seeded conditions, with the following 
objectives.

This research is projected to significantly impact future efforts in 
developing and implementing a robotic platform with AI algorithms 
customised for weeding systems for rice and other crops in rice-based 
cropping systems. The primary contributions of this study are noted as 
follows: 

• The robotics system uses high-resolution cameras to detect the weed 
flora.

• The AI component analyses data using machine learning algorithms 
to make precise recommendations for specific herbicide applications 
and weed removal. The device automatically adjusts spray rates 
based on the weed density, decreasing herbicide usage.

• Extensive field investigations were undertaken in various rice fields 
to evaluate the suggested technique’s effectiveness.

• This study evaluates the system’s accuracy, efficiency, and envi
ronmental impact in contrast to traditional farming approaches. The 
study also demonstrated that intelligent robotics systems can 
significantly reduce herbicide use while increasing crop yields.

1. Design methodology

The robot is designed to run in the rice field to control the diverse 
weed flora by precisely applying herbicide in the intra-row and cutting 
and incorporating inter-row weeds. The robot can reduce herbicide 
application, farm workers, and water consumption. These robots, 
designed to operate in wet and muddy situations, have the potential to 
improve rice production efficiency and sustainability significantly. Ro
bots equipped with modern cameras and nozzles can apply herbicides 
precisely where needed, focusing on the weeds rather than the entire 
field. In rice fields, weed management is crucial. Robots intended for rice 
fields must be flexible to different field conditions and crop stages. (Shi 
et al., 2023). This versatility implies that the same robotic systems can 
remain effective without considerable alterations in aberrant weather 
conditions.

1.1. Design and fabrication of the proposed robot model

A robot chassis is a schematic diagram that depicts the technical 
representation of a robot’s chassis or frame, as shown in Fig. 1. In the 
figure, the orthographic projection is employed to show (a) the main 
assembly view, (b) the top view, (c) the left side view, and (d) the 
focused mechanism view.

The robot consists of integrating many hardware components 
required for the proper operation of a mobile robot tasked with identi
fying and spraying herbicide at specific targets, as well as removing and 
decomposing weeds. The components include a high torque brushless 
DC worm gear reduction motor, weed and grass cutter, horizontal rotary 
blade, water pump, fog sprayer head nozzle, pneumatic connectors, a 5- 
volt DC relay, wheel assemblies, containers, web cameras, pipes, and the 
robot’s body. Additionally, components like craws have been used to 
loosen and level soil. The NVIDIA Jetson Nano board acts as the system’s 
control center, managing computation, networking, and hosting navi
gation and image processing applications. (NVIDIA, 2022). The HP 
w100 Camera has real-time imaging capabilities, allowing for photo 
gathering and analysis to target specific weed-infested areas for herbi
cide application.

The robot’s chassis serves as the structural backbone, containing 
motors, wheel mounts, weed cutter, horizontal rotary blade, and bat
teries, allowing the Jetson Nano board to regulate its mobility. The 
central hub controls the weed cutter, which has movable joints for dy
namic movement and may be adjusted in real-time, depending on field 
situations. The horizontal rotary blade is attached to the rear of the weed 
cutter to incorporate the removed weeds in the soil. Three tiny test ex
amples of direct seeded rice fields were prepared on the Siksha ‘O’ 
Anusandhan University, Bhubaneswar, Odisha, India, agriculture 

Fig. 1. The orthographic projection of the proposed robot.
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farmland site, each measuring 100 m2 area.

1.2. Implementation and Operational methodology

This section describes the system’s architectural diagram, the pro
gramming procedure for weed identification and assessment, weed 
removal and incorporation mechanisms, the development of an 
instructional model for weed recognition, and the creation of a proto
type model for system assembly. The weeding system, like removing and 
incorporating weeds in the field, uses robotic horizontal rotary blades, 
weed cutters, and nozzles. Fig. 2 shows the block diagram of the pro
posed robot system, which uses the Jetson Nano board as its system unit. 
The YOLOv5 model is trained on the Jetson Nano board and commu
nicates with numerous units, including the motor, camera, weed cutter, 
horizontal rotary blade, and nozzle (Wang et al., 2022a) . A rechargeable 
battery with driving circuits controls the power. In direct-seeded rice, a 
spacing of 20 cm from row to row and 5 cm from plant to plant was 
maintained during sowing (Mahajan and Chauhan, 2016). Adhering to 
the recommended spacing, mechanical arrangements were constructed 
with a robotic chassis for variable gap correction based on real-time field 
situations. The system mechanics were built with nuts and bolts so that 
they may be adjusted up, down, and left to right based on real-world 
field conditions for weed control between the two rows of rice plants. 
Weeds were removed with grass cutter blades, and horizontal rotary 
blades incorporated the weeds inside the upper soil surface. As shown in 
Fig. 3 (a), the weedy plot with rice plants and a 20 cm gap is being 
cleared of weeds with the employment of the proposed robot. Three 
grass cutter blades and cultivators were employed to maximise the ro
bot’s efficiency, which can move in three rows at a time, as seen in Fig. 3
(b). The method intends to incorporate the weeds in the soil, which is 
left between the rows for decomposition, potentially increasing soil 
fertility, as seen in Fig. 3 (c).

The YOLOv5 model is trained and evaluated on images of various 
weeds. A set of models was explicitly created to identify and classify 
different weed types based on their visual characteristics (Dang et al., 
2023). The details of the weed varieties are discussed in the following 

section.

1.3. Weed flora composition training model for the system

Weeds were classified based on their morphology as grasses, broad- 
leaved, and sedges. Subsequently, weeds in the experimental field were 
identified using a validated database. This strategy relied on machine 
learning techniques (Vasileiou et al., 2024). A model was developed 
specifically to recognise and classify various weed types based on their 
visual characteristics. An extensive collection of images representing 
multiple weed species was employed to train this model, with each 
image labeled with the proper weed type. During the training process, 
the model had access to this dataset and the parameters controlling its 
learning and prediction algorithms. As the data was analysed, the model 

Fig. 2. Block diagram of the proposed robot system for the detection and evacuation of weeds.

Fig. 3. (a) Weedy plot, (b) Robot moving in between the rows, (c) After the 
weed removed by the robot.
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learned to recognise various visual properties unique to different weed 
species, allowing it to categorise new images that it didn’t recognise 
earlier. The training process involves introducing machine learning al
gorithms to a dataset containing images of weeds found on farms across 
various rice fields. (Sharma et al., 2021). These images were matched by 
labels identifying the weed species shown. At the sixty-day mark of the 
Kharif season, the experimental area was infested with a wide range of 
eleven predominant weed species, divided into three unique categories: 
five varieties of grass, five types of broadleaved, and two types of sedges, 
spanning seven families. The bulk of these species were monocots, with 
only four exceptions—Ludwigia parviflora, Melochia corchorifolia, 
Eclipta alba, and Alternanthera philoxeroides—identified as dicots. It’s 
important to note that, even though being classified as broadleaved, 
some weeds, such as Commelina benghalensis, have monocotyledonous 
features. The distribution of weed dominance differed across treatments, 
as seen in Table 1. In the weedy check plots, all eleven weed species were 
present. During the crop growth phase, six significant weed species 
appeared regularly throughout the experimental field. Notable among 
these were Digitaria sanguinalis and Echinochloa colona from the 
grasses, Cyperus iria from the sedges, and Ludwigia parviflora, Melochia 
corchorifolia, and Alternanthera philoxeroides from the broadleaved 
weeds.

In direct-seeded rice, the significant weed flora were Digitaria san
guinalis, Echinochloa colona, Leptochloa chinensis, Panicum repens, 
Cyperus iria, Fimbristylis miliacea, Ludwigia parviflora, Melochia 
corchorifolia, Eclipta alba, Commelina benghalensis and Alternanthera 
philoxeroides (Rao et al., 2007; SANGRAMSINGH and DASH, 2021). 
Similarly, it also reported the dominance of Echinochloa sp. and C. iria 
in rice. (Awan and Chauhan, 2016; Garg et al., 2019). This dataset was 
used to train machine learning algorithms, resulting in a robust weed 
training model. A data set of images of weeds of various kinds, such as 
grasses, sedges, and broad leaves, was leveled and used to train the 
model shown in Fig. 4.

1.4. Deployment of an AI model to locate and spray pesticides on residual 
weeds near rice plants—post-robotic weed removal between rows

A thorough investigation was conducted on various weeds and their 
growth at different stages. The recommended dose, time, and types of 
herbicide application to control specific weeds were considered. A 
comparison study was conducted on the use of several herbicides for 
controlling distinct weeds (Tu et al., 2003). Images of various weed 
species that grow in various soil conditions, such as upland, lowland, 
and medium land situations, were obtained from different parts of 
Odisha.

This configuration allows the robot to identify weeds autonomously 
using the weed training model; the weeds will be eliminated by the weed 
cutter and incorporated inside the soil by the horizontal rotary blade. 
The nozzles will spray herbicides as needed. Camera-based systems 
combining artificial intelligence, computer vision, and machine learning 
show promise for weed detection in rice fields, but they face significant 
challenges. These issues include the resemblance of rice and weeds, 
weather variations, the dynamic nature of crop-weed competition, 
limited availability of training data, and high computational needs. 
Considering the challenges presented in this test situation, the prototype 
model focuses entirely on machine-learning approaches. Over 1000 
sample images were collected for each weed group to improve precision. 
The YOLOv5 Model was constructed and trained using a machine 
learning approach (Ajayi et al., 2023; (Wang et al., 2022c) ). Identifying 
weeds in rice fields using AI often involves several stages. YOLOv5 
initially resizes an input image to a predetermined size to ensure con
sistency across all inputs (Lan et al., 2024). It uses a CNN backbone to 
extract features from the scaled image. Fig. 5 shows how the backbone is 
connected to other layers to form a feature pyramid. YOLOv5 has pre
defined anchor boxes, essentially shapes (width and height) that the 
model uses as references when predicting the bounding boxes of 
observed objects. Each location on the feature map predicts a bounding 
box relative to the anchor boxes.

A self-constructed dataset was developed using data collected from 
the agricultural firm land of SOA University, Odisha, India. The weed 
dataset comprises images of various weed species typically found in 
paddy fields, captured from different experimental plots in real- 
experimental setup conditions. For the second phase of dataset crea
tion, image capture was performed on the experimental field using the 
robot equipped with an integrated camera. Data was collected multiple 
times in different lighting conditions to ensure an extensive dataset. 
Images captured by the robot in the experimental field were combined 
with images from other fields to produce a single dataset. The sample 
images used in the model align with the robot’s shooting angles, 
ensuring consistency with the agricultural machine’s real-world 
deployment. This was validated during the experimental setup. The 
fixed problems included format differences, noise, and unequal class 
distribution. This dataset was subsequently categorised based on distinct 
weed characteristics.

During the experiments, the real-time images acquired by the robot 
were compared with the self-constructed dataset to enable weed iden
tification and eradication. Various techniques were employed to mod
erate these issues. Image augmentation, including transformations like 
rotation, scaling, and brightness adjustments, was utilised to simulate 
real-world variability and improve model robustness. Transfer learning 
was applied to fine-tune the YOLOv5 model using real-world test data 
collected by the robot, ensuring better alignment between training and 
deployment conditions. Additionally, feature extraction methods such 
as random search cross-validation (RSCV) and principal component 
analysis (PCA) were incorporated to enhance feature selection during 
training, enabling the model to adapt effectively to real-world scenarios. 
The detailed flow diagram of the fine-tuning of the YOLOv5 model is 
shown in Fig. 6.

Since multiple bounding boxes can be predicted around the same 
object, Non-maximum Suppression (NMS) helps in selecting the most 
accurate bounding box by eliminating overlapping boxes based on a 
confidence score threshold and Intersection Over Union (IoU) criteria as 
shown in Eq. 1.  

Table 1 
Floristic composition of weeds in the experimental site.

Botanical name Family Common name

Grasses
Digitaria sanguinalis (L.) Scop. Poaceae Large crabgrass
Echinochloa colona(L.) Link. Poaceae Jungle rice
Leptochloa chinensis(L.) Nees Poaceae Chinese 

sprangletop
Panicum repens L. Poaceae Dog-tooth grass

Sedges
Cyperus iria L. Cyperaceae Rice field flat sedge
Fimbristylis miliacea (L.) Vahl. Cyperaceae Hoorahgrass

Broadleaved weeds
Ludwigia parviflora Roxb. Onagraceae Water primerose
Melochia corchorifolia L. Sterculiaceae Chacolate weed
Eclipta alba (L.) Hassk. Asteraceae False daisy
Commelina benghalensis L. Commelinaceae Tropical spiderwort
Alternanthera philoxeroides (Mart.) 

Griseb.
Amaranthaceae Alligator weed
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IoU =

(1).
Where A and B are convex shapes, the analysis includes determining 

the number of true positives. A predicted bounding box is called true 
positive if it overlaps a ground truth bounding box with an Intersection 
over Union (IOU) threshold of 0.5, showing that the detection was 
successful. However, if a predicted bounding box overlaps with a ground 
truth bounding box below the threshold, it is considered a false positive 
and an unsuccessful detection (Karthi et al., 2021). The precision and 
recall metrics can then be calculated based on the true positives and false 

positives using the following formulas: 

Precision = True positive/True positive + False positive
= Count(True positive)/Count(True positive + False positive) (2) 

Recall = True positive/True positive + False negative
= Count(True positive)/Count(True positive + False negative) (3) 

If the predicted bounding box differs from any of the image’s target 
classes, consider it a false positive. If the expected class corresponds to 
one of the target classes, compare the estimated bounding box to the 
target boxes in the images. Use the IOU threshold to determine the 
maximum overlap between the predicted and target bounding boxes. If 
the most significant overlap exceeds the IOU threshold, indicate that the 
target box has been successfully detected and the predicted bounding 
box is a true positive (Jiang et al., 2021). If the most significant overlap 
is less than the IOU threshold, mark the bounding box as a false positive. 
The F1 score determines the ideal level of confidence threshold that 
balances precision and recall. A higher F1 score indicates more precision 
and recall (Urmashev et al., 2021). 

Fig. 4. Data sets of pictures of weeds of different categories, like grasses, sedges, and broad leaves.

T. Mohanty et al.                                                                                                                                                                                                                               



Computers and Electronics in Agriculture 231 (2025) 110032

6

F1 Score = 2 × (precision × Recall)/(precision+Recall) (4) 

The YOLOv5 model has several modifications and optimisations to 
improve its suitability for agricultural applications. Custom anchor box 
tuning was implemented to enhance the detection of small objects, such 
as narrow weed patterns, under real-world field conditions. The model’s 
performance was further refined by incorporating test data collected by 
the robot and combining it with real-world data, ensuring improved 
accuracy in practical deployments. YOLOv5′s lightweight architecture, 
optimised for embedded devices, facilitated smooth deployment on 
platforms like NVIDIA Jetson Nano. Data augmentation is a critical 
technique in this deep learning, particularly in training models like 
YOLOv5 for object detection. The model was integrated into the system 
and applied to the test case rice field. Mosaic augmentation is particu
larly interesting and compelling for object detection tasks for this rice 
model (Dai et al., 2022; Dang et al., 2023; Xu et al., 2024). In a single 
training instance, a mosaic combines four different training images into 
one composite image. These images are randomly selected from the 
dataset. The four images are placed such that each one occupies one 
quadrant of the new composite image. Each object’s bounding box co
ordinates in the original images are adjusted relative to their new po
sition in the composite image. Fig. 7 illustrates how the YOLOv5 model 
detected weeds and generated predictions according to their classifica
tion, compared with the weed training model.

Fig. 8 shows a system flow chart. Following deployment, the AI 
model’s performance was continuously monitored. Refinements were 
made as needed to improve the model’s accuracy, and it was adjusted to 
changing conditions in the rice fields. After 300 Epochs of training, the 
model achieved a reasonable level of accuracy. The Nvidia Jetson Xavier 
GPU performed well at object detection at 30 fps, allowing commands to 
be sent to motors, cutters, and nozzles. The camera in the robot recog
nises weed species and compares them to a database. The specific her
bicide will be applied to the weed plant following weed identification. 
At the same time, in mixed-flora conditions, broad-spectrum herbicides 
will be used to control weeds successfully.

The herbicides listed in Table 2 are employed to control both specific 
and broad-spectrum weeds in this test case scenario (Bhullar et al., 
2013). Three different containers were pored with appropriate herbicide 
dosages and attached to six 12-volt DC pumps. The entrance was in the 
container, and the exit was connected to two fog sprayer head nozzles 
facing opposite directions using pneumatic splitter connectors. Fig. 9
shows the logic diagram for pneumatic control.

However, in the conventional approach, herbicide is sprayed on an 
area basis without concern for the presence or absence of weeds. The 
amount of herbicide used in the traditional approach is fixed, resulting 
in excessive use and soil and plant health degradation (Mandal et al., 
2020; Parven et al., 2024; Perotti et al., 2020; Tripathi et al., 2020). 
When compared to traditional rice cultivation methods, this robot can 
save on herbicides and labour (Fennimore and Cutulle, 2019). This 
herbicide spraying is restricted to the crop row zone only. Weeds be
tween the rows are controlled using a motor-operated weed cutter, 
which cuts down the weeds in the exact location (Loddo et al., 2020). In 
Fig. 11, three images are provided which illustrate the weeds after the 
robot evacuation left surrounding the rice plant after a few hours of 
herbicide spraying and, after ten days, the decomposed weeds.

1.5. Deployment of remote observation and manual operation for weed 
eradication

In this proposed test case scenario, the jetson nano board can connect 
to the internet via a Wi-Fi system, and a local host has been set up to 
view a live preview of the robot’s cameras. The manual cross-check 
method has also been used to ensure that the automated robotic sys
tem has removed the weeds in the rice field. A laptop or smartphone may 
control the robot, and if any weeds remain, as visible in the live camera 
preview, the robot can be stopped and herbicide applied to the infested 
area. The system is designed to allow the farmer to operate and double- 
check his work from any remote location, as the camera preview can also 
be viewed online. The block diagram of the suggested model is presented 
in Fig. 10.

Fig. 5. The YOLOv5 architectural block diagram shows EfficientNet as the backbone network, BiFPN as the feature network, and the class/box prediction network.

Fig. 6. Flow diagram of the fine-tuning of the YOLOv5 model.
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2. Results and discussions

2.1. Assessment of the prototype

A thoroughly selected set of performance measures was used to test 
the effectiveness of the weed detection, removal, and incorporation 

system prototype. To extensively test the system’s capabilities, a series 
of real-world scenarios were designed to assess its ability to recognise 
and eliminate weeds in a variety of environmental circumstances. To 
ensure experimental integrity and reduce external influences, a 
controlled test environment was rigorously designed to simulate future 
deployment settings accurately. Throughout the testing phase, a vast 
amount of data was meticulously collected, including critical 

Fig. 7. YOLOv5 object detection by the proposed robot mount view of weeds and rice.

Fig. 8. System flowchart of the YOLOv5 model for the proposed robot.

Table 2 
Herbicides used in direct-seeded rice to control diverse weed flora in conven
tional farmer’s practice.

Herbicide 
Name

Formulation Dose 
(g) 
(a.i. 
per 
ha)

Dose (lt.) 
(actual 
amount to 
be 
sprayed)

Dilution 
In Water 
(litres)

Remark

Bispyribac 
Sodium

10 % SC 25 250 300 Broad- 
spectrum 
weed 
control

2,4-D Ethyl 
Ester

38 % EC 750 1973 400 Effective 
against 
broad- 
leaved 
weeds only

Fenoxaprop- 
p-ethyl

6.7 % EC 60 895 500 Effective 
against 
grasses only

Fig. 9. The logic diagram of the pneumatic control.
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parameters such as the rate of weed identification, the time necessary for 
evacuation, and the effectiveness of incorporation processes. The 
following analysis of this data enabled a detailed evaluation of the 
prototype’s performance, determining specific areas that need modifi
cation in accordance with specified objectives.

2.2. Comparisons study with respect to accuracy, precision, recall and F1 
score

According to (Li et al., 2022) , the weed detection and spraying 
system (Model-1) achieves a high accuracy of 0.93 in real-time detection 
and classification of weeds and crops, ensuring minimal misclassifica
tion. Model-1 demonstrates a precision score of 0.94, effectively 

minimising herbicide waste by targeting detected weeds, and a recall 
score of 0.91, highlighting its ability to identify a diverse range of weed 
species, even in complex or overlapping scenarios. The F1-score of 0.92 
reflects a balanced trade-off between precision and recall, affirming its 
reliability for precision agriculture. In comparison, (Liu et al., 2021) 
report that their weed detection and spraying system (Model-2) achieves 
an accuracy score of 0.97, a precision score of 0.89, a recall score of 0.87, 
and an F1 score of 0.88. The proposed model outperforms both, with an 
accuracy of 0.98, precision of 0.93, recall of 0.91, and an F1-score of 
0.92. A comparative analysis of Model-1, Model-2, and the proposed 
system is illustrated in Fig. 12. The robot has the watch and spry facil
ities in the proposed model, like Model-1 and Model-2. The additional 
weed evacuation facility in the proposed model shows better accuracy, 

Fig. 10. Effect of proposed robot application in the rice field.

Fig. 11. Prototype model of the proposed robot.
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precision, recall and F1 results. The proposed robotic system enhances 
rice crop health by ensuring precise and thorough weed control by 
reducing competition for vital nutrients, water, and sunlight, thereby 
boosting yields. Its consistent and efficient operation addresses critical 
agricultural challenges, contributing to food security while reducing 
reliance on manual labour and excessive chemical use.

The weed training model was thoroughly evaluated, considering 
accuracy, precision, recall, and F1-score while using images from rice 
fields. Notably, the algorithm achieved an accuracy level of 0.98, 
showing its ability to classify weeds and crops correctly. Data augmen
tation, transfer learning, and incorporating domain expertise each 
served to improve the model’s strength and generalisation capabilities. 
As a result, the weed training model is critical in increasing rice yield by 
efficiently controlling weeds, allowing for more effective weed man
agement. The Weed25 dataset was trained by the YOLOv3, YOLOv5, and 
Faster R-CNN models for weed identification, where the precision was 
91.8 %, 92.4 %, and 92.15 %, respectively (Wang et al., 2022b) . Using 
training models in weed management significantly enhances crop yields 
by optimising weed control methods, thus promoting the application of 
intelligent weed control technology in practice.

2.3. Weed detection and control accuracy

A comparison of manual labour, traditional farming methods, and 
the proposed robot model for weed control was carried out. Manual 
labourers were engaged in hand weeding to control weeds, while con
ventional methods involved farmers using knapsack sprayers to apply 
herbicides. The results showed that the proposed technology was more 
efficient than manual approaches, covering more territory and incor
porating a more significant number of weeds per hour.

The proposed prototype of a weed identification and evacuation 
robot was rigorously tested, and the results are shown in Fig. 13. The 
robot demonstrated its effectiveness in weed control by comparing 
physical labour and traditional farming methods. The proposed robot 
demonstrated exact precision, recognising and removing weeds with an 
error margin of only 2 %. The costs of robotic weed management were 
high. Still, robotic weeding was a robust and effective weed control 
method with great potential to save herbicides in arable and vegetable 
crops (Fennimore et al., 2016; Gerhards et al., 2024; Monteiro and 
Santos, 2022). In comparison, manual approaches were shown to be 1.2 
times slower in controlling weeds. Furthermore, the robot demonstrated 
a superior weed control rate, exceeding 95 %. In addition, the system’s 
performance was assessed based on weed control rates, which showed 

an excellent incorporation rate of more than 90 %. Further, the system’s 
interoperability with existing agricultural practices and equipment has 
the potential to reduce costs and labour while enhancing yield and 
profitability significantly. In particular, the robot’s ability to resist 
various weather conditions and rugged terrains and operate with little 
maintenance requirements highlight its usefulness and relevance for 
agricultural applications (Kumar et al., 2023). It is also relatively safer 
and eco-friendly than the indiscriminate use of chemicals to control 
diverse weed flora in direct-seeded rice cultivation.

2.4. Evaluation analysis

Fig. 14 shows the performance metrics of the evaluation analysis for 
cost and scalability in terms of weed control in real-time scenarios in the 
proposed model. This is an essential indicator for determining its 
effectiveness.

These criteria were critical to the robot’s comprehensive weed 
detection and removal assessment. This evaluation analysis shows that 
the model is faster and more accurate than conventional methods. As a 
result, the use of this advanced technology in agricultural fields replaces 

Fig. 12. Comparisons of model-1, model-2 and the proposed robot model with 
respect to the accuracy, precision, Recall and F1 score. Fig. 13. Comparative analysis of manual labour and traditional farming 

methods with the proposed robot.

Fig. 14. Evaluation analysis (cost-effective and scalability with respect to weed 
and herbicide management in real-time scenarios).
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the over-reliance on herbicides and traditional farming machinery, 
providing a more efficient and sustainable approach to weed manage
ment (Esposito et al., 2021).

3. Conclusion

The weed detection and removal prototype, augmented by an AI 
model, was methodically designed to accurately identify, remove, and 
incorporate weeds in rice fields. The AI system is constantly improved to 
enhance weed detection, removal accuracy, and speed. To increase the 
model’s robustness and dependability, it might be trained on a more 
diversified dataset containing various weed species under different 
conditions. The experimental results showed that the model has the 
potential to improve agricultural output, efficiency, and cost- 
effectiveness significantly. It improves the proposed robot’s design 
and functioning, allowing it to operate in various terrains and weather 
situations. This may involve increasing the durability and energy effi
ciency of the robots. The key advantage of the YOLOv5 model is its 
training efficiency, requiring fewer computational resources compared 
to more recent models such as YOLOv8 or YOLO-NAS. YOLOv5 is well- 
suited for edge-devices deployment, including NVIDIA Jetson modules, 
Raspberry Pi, and mobile platforms, often offering better integration 
than newer architectures. At the same time, these latest models 
demonstrated higher accuracy in isolated experiments. Future work will 
focus on integrating advanced architectures like YOLOv8 or YOLO-NAS 
to enhance performance in subsequent iterations. More advanced ma
chine learning approaches could allow the system to adapt dynamically 
to new settings and optimize its real-time decision making processes. 
Moving in advance, it is critical to investigate potential enhancements, 
incorporate new approaches, and ensure compatibility with existing 
facilities. This strategic approach will improve the system’s adaptability 
and scalability while ensuring its applicability across various soil types 
and environmental circumstances. Engaging with farmers, scientists, 
and agricultural technicians to ensure that the technology meets prac
tical field needs and encourages adoption through field demonstrations 
and trials, as well as continuously assessing the technology’s environ
mental impact to ensure that it contributes positively to sustainable 
farming practices, such as reducing chemical usage and minimising soil 
health degradation. By addressing these issues, the prototype robot may 
be transformed into a reliable system that fulfills present expectations 
and is also future-proofed to adapt to changing agricultural practices 
and issues. This deliberate, comprehensive strategy will contribute to 
the technology’s success and widespread acceptance in agriculture.
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