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WaveDiffUR: A Wavelet-Domain Diffusion Model for

Ultra-Resolution in Remote Sensing

Yue Shi, Liangxiu Han*, Lianghao Han, Darren Dancey, Xueqin Zhang

Abstract—Deep learning (DL) has significantly advanced
super-resolution (SR), a technique that enhances low-quality
images by reconstructing fine details. However, most DL-based
SR methods struggle at high magnification levels (e.g., x4 or
higher) due to dramatically increased ill-posedness. To overcome
this, we define high-magnification SR as an ultra-resolution
(UR) problem and introduce WaveDiffUR, a novel wavelet-
domain diffusion model designed for extreme-scale image re-
construction. WaveDiffUR decomposes the UR process into se-
quential steps, first restoring low-frequency wavelet details for
global consistency and then refining high-frequency components
for sharper textures. By integrating pre-trained SR models
as modular components, it reduces ill-posedness and ensures
adaptability across different applications. Unlike existing SR
approaches, which struggle with fixed boundary conditions at
extreme magnifications, WaveDiffUR incorporates the cross-
scale pyramid (CSP) constraint, an adaptive framework that
dynamically refines low- and high-frequency wavelet details to
maintain consistency and high fidelity. Extensive experiments
demonstrate that WaveDiffUR with CSP notably enhances spatial
accuracy and consistently generates high-frequency details with
remarkable fidelity during the SR process. Evaluations are
conducted across two benchmark evaluation datasets and four
additional independent datasets. The empirical results reveal
that, as magnification scales from x8 to x128, WaveDiffUR
achieves an average degradation rate in PSNR, NIQE, and SRE
of only 19.1%—the best performance among all benchmarked
models—while consistently delivering sharper images character-
ized by superior spatial fidelity. By enabling scalable, high-fidelity
ultra-resolution, WaveDiffUR opens new possibilities for remote
sensing applications, including environmental monitoring, urban
planning, disaster response, and precision agriculture.

Index Terms—Remote sensing Image Super Resolution; Ultra
Resolution (UR); Diffusion Model; Wavelet Transformation;
Stochastic Differential Equation (SDE); Multi-Scale Generative
Al

I. INTRODUCTION

EMOTE sensing image super-resolution (SR) remains
a persistent challenge and continues to be a vibrant
research topic in both computer vision [1] and geosciences
[2]. SR aims to reconstruct high-resolution (HR) remote
sensing images with realistic spectral-spatial details from
low-resolution (LR) data [3], typically acquired from aerial
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Fig. 1. Comparison of probability density function (PDF) transitions in (a) a
traditional diffusion-based SR model [7] and (b) the proposed WaveDiffUR
model. Results at x16 UR, shown as a representative example, illustrate that
the proposed method alleviates the ill-posedness of remote sensing UR tasks
compared to traditional approaches.

platforms (1 - 10 m resolution) [4] or space-based platforms
(> 10m resolution) [5]. However, most existing SR research
focuses on fixed and low-magnification scales (e.g., X2 or x4)
[6]-[8], which fails to meet the growing demand for high-
magnification SR in many Earth observation tasks. In this
study, we define high-magnification SR as an ultra-resolution
(UR) problem. The high magnification UR introduces big chal-
lenges, as small reconstruction errors can lead to significant
detail loss or artifacts over large areas. For example, land-cover
mapping typically requires a spatial resolution of 1-2 meters,
necessitating X8 UR for 10-meter Sentinel-2 data or x16 UR
for 30-meter Landsat-8 data, where the sub-pixel reconstruc-
tion error around boundaries can shift class edges, causing
narrow features such as roads, hedgerows, or riparian strips
to disappear and leading to systematic misclassification of
landcover classes [9]. Similarly, precision agriculture demands
resolutions higher than 1 meter, translating to x16 to x32 UR
for Satellite data, where spectral-spatial biases introduced by
UR reconstruction can distort canopy patterns and propagate
errors into vegetation indices, resulting in inaccurate crop
stress detection [10].

Unlike natural image super-resolution, remote sensing SR
presents unique challenges due to complex spatial heterogene-
ity and the presence of mixed pixels. These factors further
exacerbate the ill-posed nature of high-magnification SR,
where a given low-resolution (LR) input can correspond to
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an infinite number of possible high-resolution (HR) solutions
[11].

Most deep learning-based SR methods attempt to mitigate
this issue by training neural networks to model probability
density function (PDF) transitions in the pixel-wise represen-
tation space, effectively mapping the PDF of LR images to
their HR counterparts. However, these methods remain limited
in handling extreme magnification scales, where the solution
space grows exponentially. Figure 1 presents a comparative
analysis of popular PDF-based deep learning SR models,
including our previous approach [12], highlighting their per-
formance differences at increasing magnification levels.

Among existing approaches, generative adversarial net-
works (GANs) use adversarial learning between a generator
and discriminator to synthesize SR images with realistic high-
resolution (HR) details that are missing in low-resolution (LR)
inputs. This process aims to align the probability density
function (PDF) of SR images with that of the HR counterparts
[13], [14]. Variational autoencoders (VAEs) take a different
approach, encoding the LR PDF into a latent space, then
generating SR images via sampling, ensuring the reconstructed
SR PDF aligns with the HR image distribution [15].

Despite their success, these methods struggle at high mag-
nification levels due to the inherently ill-posed nature of SR.
Most SR models are trained on LR-HR image pairs with
low magnification rates (e.g., X2 or x4), which provide ef-
fective cross-scale representations for learning-based models.
Our previous study [12] explored a GAN-based approach for
high-magnification SR and found that once the magnification
exceeds x8, SR quality deteriorates due to mode collapse and
perceptual artifacts. This degradation arises from the adversar-
ial nature of GANS, which are notoriously difficult to converge
at extreme scales due to the increased complexity of PDF
transitions [13]. Additionally, at high magnification levels,
the discontinuity in cross-scale representations reduces the
model’s ability to estimate HR outputs from LR inputs, making
the LR-to-HR PDF transition significantly more complex and
unpredictable.

Recently, diffusion models (DMs) [16] have gained attention
in image restoration and have demonstrated promising results
in remote sensing SR [7], [8], [17]. The strength of DMs lies in
their denoising diffusion process, which gradually refines the
LR PDF into the HR PDF through small, incremental noise re-
moval steps. Unlike GANs, DMs provide a well-defined prob-
abilistic framework, avoiding training instability and mode
collapse. However, DM-based UR is far more ill-posed than
ordinary SR [18], because the extreme magnification factors
greatly expand the range of plausible high-frequency details;
consequently, diffusion-based methods—whose sampling pro-
cess is inherently stochastic—often struggle to maintain co-
herent spectral-spatial information across large homogeneous
regions [19].

To address this challenge, we introduce the cross-scale
pyramid (CSP) boundary condition, which captures spectral-
spatial unmixing rules across different magnification levels.
Building on this concept, we formulate the UR process as
a conditional diffusion stochastic differential equation (SDE).
This framework enables low-frequency fidelity enhancement

by reconstructing global details while ensuring high-frequency
consistency refinement by restoring local textures. To solve
this SDE, we propose WaveDiffUR, a wavelet-based diffusion
UR solver that operates in the wavelet domain, allowing it to
mitigate the ill-posed nature of UR. The WaveDiffUR frame-
work, shown in Figure 2, seamlessly integrates pre-trained
SR pipelines as plug-and-play modules to generate cross-
scale conditions, reducing the computational cost of training
new models from scratch. However, using fixed boundary
conditions throughout the UR process can limit constraint
capacity, degrading the consistency and fidelity of the results.
To overcome this limitation, we introduce a dynamically
updated cross-scale condition named CSP. This serves as a
variable boundary condition for the SDE solver, continuously
compressing information from adjacent UR sub-processes. By
doing so, CSP guides WaveDiffUR to produce accurate UR
results with realistic spectral-spatial consistency. Experimen-
tal results demonstrate that the baseline WaveDiffUR model
without CSP exhibits high performance in terms of usability,
adaptability, and cost-effectiveness. Moreover, the enhanced
CSP-WaveDiffUR model effectively captures the unmixing
rules of realistic spectral-spatial details, thereby improving UR
efficiency and robustness in handling high-magnification SR
tasks.

The primary contributions of this work are as follows:

(i) We pioneer a solution to the Ultra-Resolution (UR)

problem, termed WaveDiffUR, which decomposes the
complex UR process into finite sub-processes. It lever-
ages pre-trained SR models to their fullest potential, en-
hancing the usability, adaptability, and cost-effectiveness
of the UR process. To the best of our knowledge, this is
the first work that explicitly addresses the complex and
ill-posed UR problem.
We propose an improved version of the SDE solver, CSP-
WaveDiffUR, to address the degradation issue caused by
fixed boundary conditions in diffusion-based UR SDEs.
This model dynamically updates boundary conditions
during each UR sub-process, ensuring more stable and
high-fidelity UR results.

By addressing fundamental challenges in ultra-resolution,
WaveDiffUR opens new opportunities for practical remote
sensing applications, including environmental monitoring, ur-
ban planning, disaster response, and precision agriculture.
This study presents a scalable, cost-effective, and high-fidelity
approach to advancing remote sensing capabilities at unprece-
dented magnification levels.

The remainder of this paper is organized as follows: Section
II reviews the related work on diffusion models and remote
sensing image super-resolution. The methodology is detailed
in Section III, including the main framework of the proposed
WaveDiffUR method. Section IV presents the experimental
results. Finally, Section V concludes this work and highlights
future directions.

(ii)

II. RELATED WORK
A. Remote Sensing Image Super-Resolution

To transform low-resolution remote sensing images into
high-resolution counterparts, considerable efforts have been
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made to improve image fidelity and restore details. Traditional
methods primarily rely on fusion techniques, such as wavelet
transform and spectral mixing analysis, where the spatial in-
formation from high-resolution images is leveraged to enhance
the spatial details of low-resolution images effectively. For
instance, Zhang et al. [20] introduced a remote sensing image
fusion technique based on the 3D Wavelet Transform (3DWT),
where 3DWT effectively harnesses spectral information to
generate high-quality fused spectral-spatial details.

In recent years, significant advancements have been made
in deep learning-based approaches to the SR problem. For
example, Zheng et al. [21] applied a spectral-spatial attention
mechanism to neural networks for panchromatic sharpening
of remote sensing images, enabling the networks to adaptively
learn both spatial and spectral details. Li et al. [22] designed a
spectral super-resolution framework by learning a cross-scale
relationship and achieved a satisfactory result. More recently,
they transferred the spectral unmixing into the super-resolution
and hence proposed an effective coupled unmixing framework
[23].

Deep learning-based approaches for improving the spa-
tial resolution of remote sensing images have primarily fol-
lowed two strategies: fusion with high-spatial-resolution im-
ages [24]-[26] and single-image-based SR [27], [28]. Fusion-
based SR techniques leverage external prior information to
reconstruct images with finer textures. In contrast, single-
image-based SR techniques operate without auxiliary data,
offering greater practical feasibility. For instance, Mei et al.
[29] developed a 3D Fully Convolutional Neural Network
(BD-FCNN) for drone image super-resolution, incorporating
an upsampling process in the early stages. Jiang et al. [30]
proposed the Single Sub-Image Progressive Super-Resolution
(SSPSR) model, which employs a progressive sampling ap-
proach: first for grouped sub-images, followed by the fusion
of interpolated sub-images to construct the entire image. This
approach enhances feature extraction in HSIs and improves
overall training stability. However, it introduces additional
requirements, such as more precise modeling and intricate
network design at each stage.

The Generative Adversarial Network (GAN) is another deep
learning-based model that has gained significant attention in
the field of super-resolution. GANs are particularly valued
for their ability to model complex data distributions, enabling
the generation of high-resolution (HR) images that closely
resemble real-world data in both quality and perceptual char-
acteristics. When incorporated into the SR process, GANs
generate HR images with enhanced perceptual quality. Xiong
et al. [31] proposed an improved Super-Resolution Genera-
tive Adversarial Network (SRGAN) featuring a revised loss
function and an optimized network architecture. These modi-
fications enhance training stability and improve generalization
performance. Shi et al. [12] proposed the Latent Encoder-
Integrated GAN (LE-GAN), which incorporates self-attention
mechanisms to enhance feature extraction in the generator and
stabilize the training process.

In parallel, diffusion probabilistic models (DPMs) have
emerged as another promising approach for super-resolution
tasks. DPMs generate high-quality data distributions through

a structured and well-defined probabilistic diffusion process,
mitigating the training instability often seen in GANs. Re-
cently, Saharia et al. [32] proposed a DPM-based super-
resolution method, using a UNet architecture as the denoiser
to iteratively refine image generation. Luo er al. [33] further
enhanced diffusion-based SR by introducing stochastic differ-
ential equations (SDEs) to more accurately model the degra-
dation process in diffusion. These advancements highlight
the potential of diffusion models in addressing complex SR
challenges. A detailed investigation of diffusion-based super-
resolution is presented in the following section.

B. Diffusion-based Image Super-Resolution

Diffusion-based models, particularly denoising diffusion
probabilistic models (DDPMs) [16], have shown that iterative
denoising can yield high-quality image restoration results,
including super-resolution [7], [34], [35], inpainting [36], [37],
and deblurring [38], [39]. For example, Kawar et al. [40]
introduced Denoising Diffusion Restoration Models (DDRM),
which utilize a pre-trained diffusion model to solve various
linear inverse problems, demonstrating superior performance
across multiple image restoration tasks. Wang et al. [41] pro-
posed DR2, a Diffusion-Based Robust Degradation Remover
for Blind Face Restoration. DR2 first employs a pre-trained
diffusion model for coarse degradation removal, followed
by an enhancement module designed for finer blind face
restoration. Guo et al. [42] developed ShadowDiffusion, which
employs an unrolled diffusion model to tackle the challenging
task of shadow removal by progressively refining results using
degradation and generative priors.

The basic principle of diffusion-based image super-
resolution involves the use of a Markov chain to model the
transformation of high-resolution (HR) image data into noise
and back again [40]. It consists of two opposing processes:
the forward process (diffusion process) and the reverse process
(denoising with a condition). The forward process gradually
corrupts an HR image through a Markov chain, transforming
the HR image distribution into a stochastic Gaussian noise
distribution by progressively adding noise. This process effec-
tively creates a dataset of noisy images representing the HR
data in a stochastic space. In the reverse process, the HR image
is reconstructed from the noisy data using the corresponding
low-resolution image as a conditioning factor to systematically
guide noise removal. The model progressively refines the noisy
data, transforming it back into the HR distribution. Through
this denoising process, the conditional diffusion model ensures
spatial and spectral consistency with the LR input while
reconstructing fine details from the noisy data.

The forward noising process in diffusion-based image super-
resolution is governed by the following stochastic differential
equation (SDE) [43]:

dr = f(x,t)dt + g(t)dw, (1)
where f(z,t) is the linear drift function governing the rate
at which the HR image data z is perturbed at time step t,
g(t) is the scalar diffusion coefficient associated with ¢, and
w denotes the standard Wiener process.
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Using Anderson’s theorem [43], [44], the reverse diffusion
process in SR can be expressed as a reverse stochastic differ-
ential equation (SDE):

dz = [f(z,t) — g(t)*Vilogp(z | y)] dt + g(t)dw, (2)

where x represents the reconstructed HR image, y is a con-
ditioning variable typically derived from the LR image or in-
termediate features, dt denotes the infinitesimal negative time
step, and w represents the reverse Wiener process. The reverse
SDE governs the generative process through the score function
V. log p(z | y) and minimizes the following denoising score-
matching objective:

zo~po(z|y), +~po,+(T¢|z0)
2 3

)

2

Once the parameter 6 for the score function is estimated,
the score function V, logp:(x | y) in Eq. 2 can be replaced
with sg(z+,t) to solve the reverse SDE.

min By (e,1),

Sp ((Eh t) - vzt Ingo,t (xt | 5170)

C. Diffusion Process in the Wavelet Domain

The wavelet transform is highly effective in reducing spatial
dimensions while retaining critical information, distinguishing
it from transformation techniques such as the Fast Fourier
Transform (FFT) and the Discrete Cosine Transform (DCT),
which may suffer from information loss during transformation.
This advantage has led to its adoption in diffusion-based super-
resolution (SR). Studies such as that by Jiang et al. [45]
highlight the benefits of performing diffusion operations in
the wavelet domain rather than directly in the image space.
This approach enhances content reconstruction and reduces
the disparity between ground-truth HR and SR domains. By
integrating wavelet transforms with diffusion-based models,
these methods achieve superior super-resolution performance
and improved evaluation metrics.

In 2D applications, a low-resolution image x € Iy r can be
decomposed into four sub-bands using the 2D discrete wavelet
transform (2D-DWT) with Haar wavelet functions, as follows:

{ALR, VLR7HLR7DLR} =2D-DWT(I1R), €]

where Arr € R 7% *¢ represents the low-frequency Coralpo-
nent of the input image, while Vg, H g, D € R2 xc
correspond to the vertical, horizontal, and diagonal high-
frequency components of the input image, respectively. Specif-
ically, the low-frequency coefficient Ay g preserves the global
structural information of the original image, acting as a
downsampled representation, while the high-frequency coef-
ficients Vi r, Hrr, and Dy i capture sparse local details that
contribute to the fine details and texture of the image.

In image super-resolution, reconstructing images by upscal-
ing high-frequency coefficients helps restore the fine details of
the original images. In contrast, the low-frequency coefficient
primarily governs the global structure, ensuring greater con-
sistency with the original images. In wavelet-domain super-
resolution, particularly at ultra-resolution scales, accurately

upscaling the low-frequency (LL) sub-band to match the high-
resolution scene establishes the global geometry and struc-
ture consistency, furnishing the scaffold on which the high-
frequency sub-bands can later be synthesized to restore fine
textures and edges [46].

III. METHODOLOGY

We hypothesize that the ill-posed UR process can be
modeled as a stochastic diffusion process for spectral-spatial
unmixing, systematically addressing the interplay between
spectral fidelity and spatial consistency. Our primary goal is to
address the ill-posed UR problem using a diffusion UR SDE
and generate high-fidelity, spatially consistent UR images from
their low-resolution counterparts. The proposed UR process is
extended to a finite number of SR steps by formulating them
as the solution to a conditional diffusion SDE, constrained by
a pyramid-shaped multi-scale spectral-spatial unmixing rule.

Inspired by Jiang et al. [45], we adopt a wavelet-domain
implementation for the proposed UR process to enhance
computational efficiency. Wavelet decomposition inherently
provides multi-scale components, aligning with our UR step-
wise restoration strategy. In addition, Wavelet decomposi-
tion divides the UR mapping into multiple frequency bands,
transforming a single highly ill-posed problem into a set of
smaller, more manageable sub-problems. Low-frequency sub-
bands capture large-scale structures that are easier to infer
from low-resolution input, while high-frequency sub-bands
represent fine details, which are reconstructed conditionally.
This separation regularises the solution space by enforcing
that each band’s reconstruction must be physically consistent
when combined. The workflow of the proposed UR approach
is illustrated in Figure 2. The following sections provide a
detailed explanation of the proposed method.

A. Wavelet-Domain Diffusion UR (WaveDiffUR) SDE Solver

According to our hypothesize, the UR process in the wavelet
domain operates as a stochastic diffusion process for spectral-
spatial unmixing, transitioning from low-resolution to high-
resolution space. This is achieved through a series of SR steps
formulated as solutions to conditional diffusion SDEs.

Our proposed WaveDiffUR solver addresses the condi-
tional diffusion UR SDEs to enhance both low-frequency
and high-frequency details. The solver ensures that spectral-
spatial consistency mitigates the ill-posed nature of the UR
task by dynamically adapting to multi-scale constraints across
magnification levels, and preserves the integrity of fine details
during high-magnification upscaling.

Each SR step iteratively refines the wavelet components,
progressively generating UR wavelet representations for each
frequency band. Low-frequency components benefit from pre-
trained SR modules to enhance global structures, while high-
frequency components are upscaled to improve texture and
detail. After processing the wavelet components, the Inverse
Discrete Wavelet Transform (IDWT) reconstructs the image in
the spatial domain. This final reconstruction step ensures that
the synthesized HR image maintains the desired fidelity and
consistency with HR ground-truth data.
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Fig. 2. An illustration of the proposed self-cascade UR pyramid framework,
consisting of: 1) DWT/IDWT: cyclically decomposes a low-resolution image
into the wavelet domain and restores the high-resolution image from the
upscaled wavelet-domain components. 2) SR pipeline: integrates a plug-
and-play tunable SR module into the framework to reconstruct the low-
frequency wavelet components of a high-resolution image from its low-
resolution counterpart. 3) Upscaler: progressively adjusts the high-frequency
wavelet components of low-resolution images to align with those of higher-
resolution images.

The low-frequency and high-frequency components after
DWT in WaveDiffUR can be computed as follows:

Low-Frequency Components. The low-frequency compo-
nents of the target image /sy can be expressed as a function
of the low-resolution image I;r and the upscaling process.
Mathematically, the ideal low-frequency components Agp of
the SR image can be expressed as:

Asp ~ p(Asr|TRANS(ILR)) + €, 5)

where TRAN S is the probability density transformation func-
tion that maps Iy g to the domain of Agg, and independent
Gaussian noise € accounts for uncertainties and imperfections
in the transformation process. The output of TRANS(ILRr)
serves as a conditioning variable that constrains the probability
flow of Agr during the UR process. The low-frequency
components follow the conditional probability distribution
p(ASR|TRANS(ILR>).

However, due to the ill-posed nature of the transformation
function, obtaining an analytical form of TRANS in Eq. 5 is
challenging. Consequently, we approximate the transformation
function using a neural network 7y.

To(ILr) = SRMapping(p(ILRr)) + € — RASE (6)

where SRMapping(p(ILr)) represents any arbitrary pre-
trained SR pipeline that maps Irp to Agpgr, expressed
as Rtk — RAsr Mathematically, 79(I1r) serves as a
projection-based conditioning mechanism to mitigate the ill-
posed nature of the problem. Thus, Aggr is sampled from
the conditional probability distribution p(Agr|7g). The low-
frequency SR process is further formulated as a reverse
diffusion SDE:

dAsr = [f(Asr,t) — §(1)*V asp, logpi(Asry | To(ILR))]
@)
dt + g(t)dw,

where f(-) defines the linear drift function, g(-) presents a
scalar diffusion coefficient, and w denotes the standard Wiener
process.

The conditional score function, Vy,, logp(Isr|m(ILRr)).
necessitates model retraining whenever the cross-scale condi-
tion 79(ILr) is updated. This dependency restricts the gener-
alization capability of the low-frequency SR process.

To overcome this limitation, inspired by [44], we adopt
an unconditional score function, V. logp;(Asr), which is
independent of 7y(I.g). Instead, 79(ILg) is introduced as
an auxiliary input in the score-based framework, guiding the
denoising process while preserving the model’s adaptability.
More specifically, it can be described as follows:

sri—1 = f(Asrt, 80) + G(Asri) -z, 2~ N(0,1), (8)

Aspi—1 =« Agp, 1+ by, )

where « and b; are functions of 79p(ILr) and Agp:. Note
that Eq. 8 corresponds to the unconditional reverse diffusion
term in Eq. 2, whereas Eq. 9 incorporates the projection-based
condition.

High-Frequency Wavelet Components. In WaveDif-
fUR, the upscaler model is responsible for transform-
ing the low-resolution wavelet components VHDpr =
{Vir,Hrr,Drr} into their high-resolution counterparts
VHDsgr = {Vsr,Hsgr,Dsr}. This process is formulated
as an upscaling transformation followed by the addition of
independent Gaussian noise. The upscaler generates VH Dggr
as:

VHDgg ~ N (U(VHDgg),sd*UUT +02I),  (10)

where U represents the upscaling function, sd denotes the stan-
dard deviation associated with VH D g, and 021 corresponds
to independent Gaussian noise. The upscaling function U can
be approximated using a pre-trained SR model. Thus, Eq. 10
can be rewritten as:

VHDgp ~ N (Usp(VHDprR), sd*UsrUgp + 0*I), (11)
The WaveDiffUR method is detailed in Algorithm 1.

B. Cross-Scale Pyramid (CSP) Constraint WaveDiffUR Solver

In the WaveDiffUR SDE, re-using a fixed boundary condi-
tion 79 (I, g) leads to cumulative errors because the underlying
UR problem is ill-posed. To stabilise the process, we replace
that static boundary with a dynamically updated Cross-Scale
Pyramid (CSP) constraint. This CSP constraint is concep-
tually inspired from the pyramid spectral-spatial unmixing
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Algorithm 1 WaveDiffUR SDE solver
1: Input: Low-resolution image I, i, pre-trained SR pipeline
SR, pre-trained U-Net sy, current resolution r, target UR
resolution R, SR rate k, linear drift function f (+), scalar
diffusion coefficient g(-).
2: Output: High-resolution image I R.
Compute UR rate KX = R/r and number of UR steps
d=K/k.
Apply Discrete Wavelet Transform (DWT).
{ALgr,VHDr} = DWT(ILR)
To(ILr) = SRMapping(p(ILr)) + €
for i = 1 to d (UR steps) do
for ¢ = T to 1 (reverse diffusion process) do
Perform low-frequency wavelet super-resolution

(95}

R P RSN U

(SR)
10: Aspi1 = [(Asrt, s0) + G(Asrt) - 2
11: ASR,t—l Z(X~A19R,t71—|—bi
12: end for
13: Perform high-frequency wavelet restoration
14: VHDggr NN(USR(VHDLR)7Sd2USRU—SrR+U2I)
15: Isgr :]DWT({ASR’mVHDSR})
16: if i # d then > Update for next iteration

17: Irgr =1Igg

18: end if

19: if ¢ = d then > Final assignment
20: Ivr = Isr

21: end if

22: end for

rule across scales [47]. By doing such pyramid-shaped iter-
ations, it preserves the spectral proportions (avoiding spectral
distortion) while increasing spatial detail. In other words,
CSP guides the UR process to ‘unmix’ the pixel information
consistently as resolution increases. To initialize the unmix
rule, the CSP introduces a reference image I..j € R <W'xe
(H' > H, W' > W) and models the joint statistics of the
low-resolution input and its reference:

10(ILr, Irey) = To - p(Iyes, ILr) +€ — RASE . (12)

where Ty is a learnable transform, and e is independent
Gaussian noise accounting for uncertainties. We denote this
low-frequency constraint by Téf . Because 6 is updated at
every magnification level, Téf always stays close to the target
domain, providing a stronger guide for the inverse diffusion
step:

Aspi ~ p(Asralri) + e, (13)

The CSP-WaveDiffUR solver proceeds scale by scale, using
two steps: 1) Low-frequency pass and 2) High-frequency
constraints. For low-frequency pass, we use Eqs. 7-9 with the
current Téf to recover the low-frequency wavelet band Agg.

For high-frequency constraints, the high-frequency sub-
bands, that are vertical (1), horizontal (H), and diagonal
(D), construct CSP constraints, collecting them as T;Lf =

{Te‘/vTeH’TeD}~

78 = To, - D(VLR, Vyey), (14)
T(fl - TQH 'P(HLR; Href)v (15)
78> =Ty, - p(DrR, Drey), (16)

Finally, sparse high-frequency coefficients are predicted
under these constraints:

VHDgp ~ N (M(VHDLR7 ), sd®MMT + 021) ,
a7
where M maps the constrained inputs to predicted details.
Algorithm 2 lists the full solver.

Algorithm 2 CSP-WaveDiffUR SDE Solver
1: Input: Low-resolution image I g, reference image Iy,
pre-trained U-Net sy, CSP encoder Ty, high-frequency
restoration module M, current resolution r, target UR
resolution R, SR rate k.
2: Output: Ultra-resolution image Iy g.
3: Compute UR rate K = R/r and number of UR steps
d = K/k.
4: Apply Discrete Wavelet Transform (DWT):
S: {ALR7 VHDLR} = DWT(ILR)
6: Compute CSP constraints:
7
8
9

: Télj =Ty - p(rey, ILr) + €
c 730 =Ty p(hfres hfLr) + €
: for ¢ =1 to d (UR steps) do

10: for t =T to 1 (reverse diffusion process) do
11: Perform low-frequency wavelet SR:
12: Aspi—1 = [(Asrt, s0) + g(Asr,t) - 2
13: ASR,tfl = A%‘R,t—l +b;
14: end for
15: Perform high-frequency wavelet restoration:
. hf 2 T 2
6. VHDgp~N (M(VHDLR,TG ), sd®MM T + o 1)
17: Reconstruct SR image via inverse DWT:

18: Isg = IDWT({ASRp, VHDSR})
19: if i # d then

20: Update low-resolution image for next iteration:
21: Irr =Isr

22: else

23: Assign final UR image:

24: Iyr =Isg

25: end if

26: end for

C. Model architecture

Figure 3 illustrates the overview of the CSP-WaveDiffUR
framework. The architecture is deliberately split into two
cooperating stages—low-frequency super-resolution (LFSR)
and Cross-Scale high-frequency restoration (HFR)—each re-
sponsible for a distinct part of the ultra-resolution pipeline.
This hierarchical structure first secures a geometrically faithful
low-frequency canvas, then injects the missing fine textures.
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q(xe|xe-1)

X € REHXWXC

>.

Ry € RIHXKWXC

Ies €RT

I g € RHXWXC

{(Vsr, Dsg, Hsg} € REHXEWXC

Fig. 3. An overview of the proposed CSP-WaveDiffUR.

~ ---»>
X )
Cross-scale pyramid
d={1,2,32,1} representation graph
Xref

Fig. 4. An illustration of the Cross-Scale Pyramid Encoder.

1) low-frequency super-resolution module: For the LFSR
stage, we adopt the Latent Diffusion Model (LDM) U-Net
as our baseline generator because of its proven ability to
handle conditional probability density transition while keeping
memory usage modest. The detailed structure of the LDM
refers to Rombach et al [48]’s study. To strengthen its cross-
scale reasoning, we prepend an external Cross-Scale Pyramid
(CSP) encoder. The CSP Encoder is a critical module in
the CSP-WaveDiffUR framework, designed to dynamically
generate cross-scale constraints for spectral-spatial unmixing.
Figure 4 illustrates the structure of the CSP Encoder, which
models the spectral-spatial unmixing relationship between a
given input (£) and its corresponding reference (L,¢y).

To efficiently extract features from the input, we employ
depth-wise separable convolutions [49] in the encoder. The
extracted features are then fed into cross-attention layers to
compute an intermediate representation tensor. The cross-
attention mechanism utilizes information from both  and
Zrey, effectively modeling the joint probability distribution
p(Z | Zres). The intermediate representation tensor is com-
puted as:

Attention(Q, K, V') = softmax <Q\/§) -V, (18)

where Q = WS- ¢i(@sre). K = Wi - 79(&, Erep). and V =
W‘(}) - 79(&, Erep). Here, ¢;(Zgr,:) represents the flattened

)
)
}
)

= @@} -
I-E0-20

[

}
)
)
)

[
[
{

Dyp € RKHxkWxC

s

Hgp € RKHXkWxC

}
)
)
)

Fig. 5. An illustration of the Cross-Scale High-Frequency Restoration Model
(CSHRM).

latent space features generated from a DeepConv block, while
Wé; ), W[({Z), and W‘(/Z ) are learnable projection matrices.

To further enhance the representation of cross-scale spectral-
spatial information, we incorporate a progressive dilation
residual block (ResBlock) into the encoder. In this block,
a sequence of dilated convolutions is applied to expand the
receptive field, binding together distant contextual cues while
preserving local detail.

2) Cross-Scale High-Frequency Restoration Module: The
Cross-Scale High-Frequency Restoration (CSHR) module
(Figure 5) in CSP-WaveDiffUR is designed to reconstruct
the high-frequency wavelet coefficients {Vsg, Hsr, Dsr}
from their low-resolution counterparts {Vir, Hrgr, Drr} and
reference coefficients {V,e s, Hye s, Dreys}. This reconstruction
enhances the vertical, horizontal, and diagonal details of the
target SR image by effectively modeling cross-scale spectral-
spatial interactions. The architecture of the CSHR module is
illustrated in Figure 5.

The CSHR module consists of the following key steps:
(1) Feature Extraction: Depth-wise separable convolutions are
applied to efficiently extract features from the input coef-
ficients. (2) Cross-Attention for Detail Enhancement: Two
cross-attention layers [50] model the interaction between V'
and H, augmenting the details in D. (3) Progressive Dilation
ResBlock: Inspired by Hai et al. [51], a progressive dilation
ResBlock is employed. This block consists of a dilation
convolution followed by a shuffle layer for the upscaling of
high-frequency coefficients.

D. Model Training

In addition to the objective function Lg;;; used for op-
timizing the diffusion model, we employ a high-frequency
realness 10ss Lj¢qiness, Which combines Mean Squared Error
(MSE) loss and Total Variation (TV) loss, following a similar
approach to Liu et al. [52]. This loss function is designed to
enhance the reconstruction of high-frequency coefficients.

Lrealness = )\1H{VSR7 HSR, DSR} - {VHa HH7 -DH}”2
+ X1V ({Vsr, Hsr, Dsr}), (19)
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where A\; = 0.1 and A\ = 2 are weighting factors for the re-
spective terms. Additionally, we incorporate a consistency loss
Lconsistent, which combines L1 loss and Structural Similarity
Index (SSIM) loss to ensure the fidelity of the reconstructed
super-resolution image Igp relative to the ground truth high-
resolution image .

Lconsistent - ”ISR - IH”l + (]- - SSIM(ISRa IH))v

The total loss for the proposed neural network is given by:

(20)

Ltotal = Ldsz + Lrealness + Lconsistenh (21)

IV. EXPERIMENT AND DISCUSSION

This section evaluates the performance of the proposed
model through several experimental evaluations: (1) compar-
ative analysis against state-of-the-art (SOTA) models on both
standard SR and UR tasks, and (2) an ablation study to exam-
ine the contribution of individual architectural components.

A. Experimental Setting

1) Dataset: To comprehensively evaluate the effectiveness
of the proposed methods, we trained and fine-tuned our model
on two publicly available datasets: ImageNet 1K [53] and AID
[54]. Additionally, we evaluated the model’s performance on
three public datasets, DOTA drone image [55], DIOR drone
image [56], and Houston hyperspectral image [57], as well as
a self-designed winter wheat drone-satellite synchronization
observation (WWDSSO) multi-spectral dataset [12].

The details of the datasets used for model training, testing,
and evaluation are summarized in Table I. In the pre-training
phase, we used ImageNet 1K for 64 x 64 — 128 x 128
super-resolution tasks, with the development (dev) sets used
for validation. We resized the original images to 64 x 64
(low resolution), 96 x 96 (reference), and 128 x 128 (high
resolution).

In the fine-tuning phase, we used the AID dataset for
64 x 64 — 256 x 256 remote sensing super-resolution tasks.
The AID training set consisted of 8000 randomly selected
images, while the remaining 2000 images were used as the
testing set. Each image was processed into three corresponding
resolutions: 64 x 64, 96 x 96, and 256 x 256.

For model evaluation, we selected subsets of images from
the publicly available DOTA, DIOR, and Houston datasets
and self-collected WWDSSO datasets, as shown in Table I.
During the data pre-processing phase, we applied bicubic
interpolation for image degradation. For real-world analysis,
we used the self-collected WWDSSO dataset. This dataset
comprised 300 drone-satellite synchronous observation pairs,
including Landsat-8 images with a 30m resolution (as low-
resolution input), Sentinel-2 images with a 10m resolution
(as mid-resolution reference), and multispectral drone images
with a 0.23m resolution (as ground truth). We evaluated super-
resolution performance at three scale factors: x10, x20, and
x100. Simulated degradation was applied to the ground-truth
drone images for scale factors ranging from X2 to x 128 super-
resolution.

TABLE I
THE DETAILS OF THE DATASETS FOR MODEL TRAINING, TESTING, AND
EVALUATION.
Data type ImageNet AID DOTA DIOR Houston WWDSSO
Scale for X2 X2, X4 X2, x4 X2, x4 x4 to x64 x4 to x128
Pre-train 1,281,167
Fine-tune 8,000
Testing 500,000 2,000 300 300
Evaluation 180 300 129 300

2) Evaluation Metrics: To comprehensively assess the per-
formance of the super-resolution model, we employed seven
evaluation metrics. These included three full-reference metrics
that measured similarity between the super-resolution and
ground-truth images: Fréchet Inception Distance (FID) [58],
the widely used Peak Signal-to-Noise Ratio (PSNR) [12], [59],
and Structural Similarity Index (SSIM) [60]. Among these,
FID was extensively used in evaluating the generative quality
of the model, as it improved upon the Inception Score (IS) [7]
by directly measuring feature-level distances without relying
on a classifier.

To assess pixel-wise spectral fidelity, we employed two
additional metrics: Spectral Angle Mapper (SAM) [61] and
Spectral Reconstruction Error (SRE) [12]. These metrics com-
puted the average spectral angle and reconstruction error be-
tween super-resolution images and ground-truth data, ensuring
spectral consistency.

Furthermore, we incorporated two reference-free metrics:
the Natural Image Quality Evaluator (NIQE) [62], which
quantified perceptual quality, and Average Gradient (AG) [7],
which evaluated the preservation of high-frequency details.

These metrics provided a holistic evaluation of the model’s
performance by addressing: Quantitative accuracy (PSNR,
SSIM); Perceptual quality (FID, NIQE); Spectral consistency
(SAM, SRE); Sharpness and detail preservation(AG).

3) Comparative Methods: To assess the performance of
the proposed model, we conducted a comparative analy-
sis. This analysis included our model and several state-of-
the-art (SOTA) super-resolution approaches, including LE-
GAN [12], ViIT-ISRGAN [63], DiffuseVAE [17], EDIP-Net
[57], SR3 [32], IRSDE [33], EDiffSR [7], and LWTDM
[8]. These SOTA SR models are dominant techniques in
the field and represent diverse methodologies. Specifically,
LE-GAN and ViT-ISRGAN represent GAN-based methods,
while DiffuseVAE and EDIP-Net correspond to VAE-based
image super-resolution methods. Conversely, SR3 and IRSDE
are cutting-edge diffusion-based models for natural image
super-resolution. EDiffSR and LWTDM are diffusion-based
models specifically designed for remote sensing image super-
resolution. All comparative models were fine-tuned on the
AID training dataset following the configurations specified in
their official implementations, ensuring a fair and consistent
comparison.

4) Implementation Details: We used a high-end GPU work-
station with one NVIDIA A100 Tensor Core GPU and 40 GB
of memory to run the algorithms in PyTorch. Training used
the Adam optimizer with a learning rate of 0.001 and a batch
size of 32.
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TABLE II
A QUANTITATIVE COMPARISON OF SOTA SR MODELS (LE-GAN [12],
VIT-ISRGAN [63], DIFFUSEVAE [17], EDIP-NET [57], SR3 [32],
IRSDE [33], EDIFFSR [7], AND LWTDM [8]) PRE-TRAINED ON THE
IMAGENET DATASET (X2) AND FINE-TUNED ON THE AID DATASET (X2,
x4) IN TERMS OF FID, PSNR, SSIM, SAM, SRE, NIQE, AND AG. THE
TESTS WERE CONDUCTED ON THE DEV SPLIT TEST DATA. THE BEST
VALUES ARE HIGHLIGHTED.

TABLE 111
A QUANTITATIVE COMPARISON OF THE GENERALIZATION CAPABILITY OF
SOTA SR MODELS (LE-GAN [12], VIT-ISRGAN [63], DIFFUSEVAE
[17], EDIP-NET [57], SR3 [32], IRSDE [33], EDIFFSR [7], AND
LWTDM [8]) ON INDEPENDENT DOTA, DIOR, HOUSTON, AND
WWDSSO DATASETS FOR X4 SUPER-RESOLUTION TASKS IN TERMS OF
FID, PSNR, SSIM, SAM, SRE, NIQE, AND AG. THE BEST VALUES ARE
HIGHLIGHTED IN BOLD.

ImageNet DOTA
Category Method Scale FID | PSNRt SSIMt SAM| SRE| NIQE| AGT Category Method Scale FID ] PSNRT SSIMt SAM| SRE, NIQE| AG*?T
GAN LE-GAN 4839 4827 085 561 516 1282 451 GAN LE-GAN 2634 2131 0.78 648 704 1468  2.14
VIT-ISRGAN 5326 4802 0.84 697 835 1224 431 VIT-ISRGAN 2689 2169 073 981 1078 1743 348
VAE DiffuseVAE 4715 4561 0.8 766 904 1327 498 VAE DiffuseVAE 2965 2027 081 1099 1327 1867 228
EDIP-Net 4744 4549 0.84 7.84 8.28 12.84 5.12 EDIP-Net 2946  20.26 0.8 1251 1273 18.22 2.09
SR3 x2 4052 5047 0.95 6.55 7.32 10.48 4.82 SR3 x4 2493 2182 0.79 11.51 10.81 14.42 2.73
IRSDE 4503 48.56 0.85 6.62 7.94 1242 536 IRSDE 2682 219 0.7 117 1196 1663  3.07
Diffusion  EDIffSR 4041 4985 088 668 717 1104 562 Diffusion EDiffSR 2492 2266 0.71 921 1103 1677 258
LWIDM 4398 463 0.77 78 907 1427 433 LWTDM 2748 2116 074 165 1322 1997 1.9
Proposed 4045 5297 095 579 565 986 585 Proposed 2063 2853 093 658 661 1018  6.23
AID DOTA
Category Method Scale FID ] PSNRT SSIMT SAM | SRE|, NIQE| AGT LE-GAN 26.72 19.55 0.72 11.86 11.41 1937 2.06
GAN V.';}i's?{giN 5;3;'123 13;'582 %77] 3'22 1766781 1164633 33'991 GAN  ViTISRGAN 3129 2054 067 1406 144 2078 345
1 b : X g - - DiffuseVAE 3452 2015 072 1457 163 2304 224
DiffuseVAE 5076 377 067 1039 1146 1701 373 VAE
VAE EDIP-Net 3298 1794 071 1527 1562 2165 204
EDIP-Net 6021 3722 0.7 1058 1137 1706  3.65 SR3 w1 o744 043 om 307 1546 1805 269
43 . X X 3 2 X ’ - g b > g g
SR3 x2Sl 40.8 0671007 103113 398 IRSDE 2748 1962 0.62 1315 1621 2096  3.06
IRSDE 538 4041 071 935 1046 157 406 o ;
Diffusion EDIffSR S0 4149 073 o1l 900 1408 407 Diffusion  EDiffSR 2775 2234 068 1422 1322 2084 255
LWTDM 3506 3956 064 1072 1205 1804 365 LWTDM 3031 1987 059 152 1415 2234 187
Proposed 509 4148 075 807 771 1203 424 Proposed 2265 2821 091 72 782 1198 617
GAN LE-GAN 56.19  35.14 0.7 10.14 9.12 16.32 3.46 Houston
V‘Tf'fIS‘fGAN 6105 3564 063 1131 1275 1867 2.8 Category Method Scale FID | PSNRT SSIM{ SAM| SRE| NIQE| AG1t
vag  DiffuseVAE 6004 3382 06 1201 1324 1926 335 LE-GAN 2609 2271 079 1001 1175 1897 541
EDIP-Net 6625 3297 063 1179 1312 1904 3.7 GAN i R GAN 3056 1846 065 17 1506 1866 ea7
SR3 x4 0002 3385 06 ILSI 1184 1486 34 DiffuseVAE 3059 1704 062 1267 2437 2051 2.62
IRSDE 5058 3575 064 1122 1182 1736 298 VAE EDIP Net 32 o6t 1126 2088 1957  2c6
Diffusion  EDIffSR 5667 3717 066 1006 1105 168 355 SR3 w4 1A 2395 och 342 187 1852 ih
LWTDM 67.34 3223 058 1263 1411 2011 252 IRSDE 081 2281 068 1195 1802 1636 405
Proposed 5318 3864 071 897 847 1375 414 . o . - : g i :
Diffusion  EDIffSR 2832 2491 0.63 1373 1844 1592 507
LWTDM 2935 1905 065 1278 1809 1978 325
Proposed 2104 2776 0.87 971 837 1512 7.89
WWDSSO
B. Model Evaluation on SR Tasks GAN LE-GAN 33.62 19.4 0.62 1269 12.69 19.77 2.04
VIT-ISRGAN 3297 1865 039 1838 1639 2313 344
DiffuseVAE 3689 1778 0.54 1324 1951 1966 215
The average FID, PSNR, SSIM, SAM, NIQE, and AG val- VAE EDIP-Net 3502 1726 056 1619 1555 2237 197
: SR3 x4 3223 1873 058 1561 1462 1901 259
ues for the ImageNet and AID test sets are shown in Table II. IRSDE bol 1715 038 1500 1363 2115 297
: . Diffusi EDIffSR 2741 1835 057 1486 1592 221 256
On the ImageNet dataset, the proposed model achieves top-tier o DM s 1se 03 143 117 oz 19
Proposed 2463 2771 082 1004 971 1466 592

performance, ranking first or exhibiting negligible differences
(< 0.1%) from leading SOTA models (e.g., SR3 and EDiffSR)
in FID, PSNR, and SSIM. Notably, the proposed model
surpasses diffusion-based models, achieving a 13.12% higher
SAM score than SR3. It also obtains the best reference-free
metrics (NIQE and AG), underscoring its structural integrity
in low-frequency components. Similar trends are observed on
the AID dataset. The proposed model matches EDiffSR in
FID, PSNR, and SSIM, is comparable to LE-GAN in SAM
and SRE, and outperforms in NIQE and AG.

Additional results for assessing the generalization ca-
pacity of the models on x4 SR on independent RGB
(DOTA and DIOR), hyperspectral (Houston), and multispectral
(WWDSSO) datasets are shown in Table III, where the highest
performances are highlighted in bold. The evaluation results
indicate that the proposed model ranks first in 6 out of 7 met-
rics on the DOTA dataset and achieves the highest score in all
metrics for the DIOR, Houston, and WWDSSO datasets. These
findings confirm the proposed model’s excellent generalization
capacity.

A visual comparison between the proposed model and the
SOTA SR models is also conducted. Figure 6 demonstrates
a comparison of X2 super-resolution results (64 x 64 —
128 x 128) on the AID, DOTA, and DIOR test sets. Our pro-
posed model consistently generates more realistic and detailed
reconstruction closely resembling the ground truth image. In
the case of the “farmland;45” image from the AID test set,
the proposed model captures fine textures in farmland patches.

The VAE-based models like DiffuseVAE and LWTDM show
over-smoothed regions, losing critical texture details. In the
case of the “P2541” image from the DOTA test set, the
grass area reconstructed by the proposed model aligns more
accurately with the ground truth, but competing models (e.g.,
DiffuseVAE) exhibit blurred details, reflecting weaker spatial
generalization. In the case of the “21778” image from the
DIOR test set, the proposed model restores clear spatial details
of densely built-up areas (as highlighted in the zoomed-in
frames), outperforming other models like DiffuseVAE, IRSDE,
and LWTDM, which produce noticeable blurs.

C. Evaluation for UR Tasks

In this section, we present the evaluation results of the
proposed WaveDiffUR SDE solver for UR tasks. In the DOTA,
DIOR, and Houston testing sets, the highest-resolution data
was treated as ground truth, and lower-resolution data was
generated using bicubic downsampling. For UR resolutions
beyond the highest available ground truth, pseudo-ground-truth
images were generated by upsampling the ground truth to
match the UR results for evaluation. PSNR and SRE were
employed to evaluate spatial fidelity and spectral consistency,
respectively. The results are presented in Table IV.

The proposed model achieved the highest PSNR and SRE
scores across all independent datasets and for all evaluated
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ViT-ISRGAN DiffuseVAE EDIP-Net SR3

EdiffSR LWTDM Proposed Ground truth
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‘farmland_145’
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‘P2541"

Proposed

DIOR test
21778’
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Fig. 6. %2 visual comparisons of the proposed model and the SOTA SR
models (LE-GAN [12], ViT-ISRGAN [63], DiffuseVAE [17], EDIP-Net [57],
SR3 [32], IRSDE [33], EDiffSR [7], and LWTDM [8]) on AID, DOTA, and
DIOR test sets. The square image at the left side is the input 64 x 64 image,
and the rectangular frames indicate the zoomed-in view of the X2 super-
resolution results for a better view.

upscaling factors. It significantly outperformed its competitors,
with an approximate 43% improvement in PSNR and SRE
for large-scale (> x32) UR. At extreme magnifications (e.g.,
% 128), it achieved up to 2x improvement in PSNR and SRE.
This is attributed to the Cross-Scale Pyramid constraint in the
proposed model, which effectively guides diffusion-denoising
inference, enabling accurate reconstruction of both spectral
and spatial details in UR tasks.

Figure 7 provides a comparative analysis of visual results
when increasing the UR scale factor from x16 to x128. The
analysis highlights the challenges and performance degrada-
tion of existing methods when increasing the scale factor.
Most SOTA models exhibit noticeable degradation in UR
performance. For example, in the “11834” image from the
DIOR test, EDIP-Net and DiffuseAVE produce over-smoothed
outputs. In the “P0615” image from the DOTA test, the
bridges reconstructed by DiffuseAVE, IRSDE, and LWTDM
are plagued with textural blurring. In the Houston test,
LWTDM introduces noticeable color artefacts. In contrast, our
proposed model leverages the cross-scale pyramid architecture
of the proposed model in predicting contextual prior to recover
fine-grained texture, enhancing the performance of diffusion
models in UR tasks. Such as the details of the bridge in
“P0615” image from the DOTA test, and the details of the
building in the Houston test.

D. Ablation Studies

In this section, we present extensive experiments to demon-
strate the effectiveness of each component within our self-
cascade model.

1) Component analysis: To evaluate the effectiveness of each
component in the proposed self-cascade model, we conducted
an ablation study by removing three key elements from the
proposed model: CSP conditions, high-frequency restoration,
and the self-cascade structure, one by one. This produced

TABLE IV
A QUANTITATIVE COMPARISON OF MODEL PERFORMANCE IN TERMS OF
PSNR AND SRE METRICS OF BACKBONE MODELS (SCALING FROM X8 TO
X 128) USING THE INDEPENDENT DATASETS DOTA, DIOR, HOUSTON,
AND WWDSSO. OUTPUTS MARKED WITH AN ASTERISK (*) INDICATE
EVALUATIONS PERFORMED WITH PSEUDO-GROUND-TRUTH IMAGES,
WHERE THE UR IMAGE RESOLUTION EXCEEDS THE GROUND TRUTH

RESOLUTION.
DOTA
Method Scale
8 16 32 64* 128%
LE-GAN 2556/828  2391/12.12  21.56/13.87 1537/1693  1651/17.63
VIT-ISRGAN  24.81/928  24.71/9.72  19.93/12.02  1421/16.69  14.31/21.13
DiffuseVAE ~ 25.78/7.82  24.41/10.66  21.34/122  16.38/1443  13.61/19.67
EDIP-Net  26.61/9.98  25.14/10.63 20.34/14.03  16.61/20.99  13.94/26.44
SR3 24.92/1025 23381074 20.98/12.74  15.32/22.26  13.58/26.75
IRSDE 2532/1531  21.95/1432  1635/2032  14.92/24.12  11.95/34.33
EDIffSR 28.18/7.88  2621/9.83  2121/12.83  18.18/17.89  16.21/19.84
LWTDM  23.99/15.62  19.42/1692  16.62/2332  15.79/2443  9.22/37.93
Proposed 2831/7.37  27.32/823  2332/12.23  20.31/14.38  17.32/15.24
DIOR
Scale
Method 8 16 30+ 64+ 128+
LE-GAN  2156/11.88 1931/11.92 18.56/1487 11.77/1853 12.31/1943
VITISRGAN  23.19/9.78  22.71/11.42  1835/1474  13.81/1599  9.92/21.53
DiffuseVAE ~ 23.33/10.68  21.42/11.86  19.81/12.89  15.19/1652  11.05/20.15
EDIP-Net  23.82/11.78  20.62/12.54 15.91/1498 15.51/21.33  14.19/24.63
SR3 2259/10.82  19.59/13.71  17.29/15.12  14.01/18.54  12.15/23.71
IRSDE 21.38/9.83  18.48/13.86  1542/17.82  11.01/2241  6.32/27.53
EDIffSR 2321/9.81  21.92/1032  18.84/14.32  1422/17.12  10.36/21.96
LWTDM  21.03/11.11 17.72/12.23  1572/1691  12.91/19.01  9.31/22.88
Proposed 2492/887  2331/872  22.33/1221  17.79/1542  13.32/18.85
Houston
Method Scale
8 16 32 64 128+
LE-GAN 2496/928  21.51/1052  17.66/13.67 18.97/1673 17.01/16.83
VITISRGAN  32.61/11.67 30.79/13.82  27.39/18.34  23.81/22.19  18.41/25.31
DiffuseVAE  20.71/9.36  33.19/11.78  28.99/14.12  20.85/21.35  21.42/22.57
EDIP-Net  3432/14.14 3331/14.61 28.01/15.13  26.19/2043  21.72/30.8
SR3 3329/11.31  27.19/1472  2249/17.01  20.65/19.31  14.65/28.71
IRSDE 26.78/17.86 25922152 16.71/2839  14.18/33.73  10.88/32.82
EDIffSR  3542/10.19 3234/1032 24721452 2136/17.62  17.63/20.81
LWTDM  2822/18.03 2627/2291  19.61/2629  12.58/29.28  11.91/34.45
Proposed 37.69/7.35  32.83/846  29.79/1275  26.32/14.65  23.98/15.45
WWDSSO
Scale
Method 8 16 3 64 128
LE-GAN 2836/748 26910992 2036/11.67 17.37/1573 18.51/17.03
VIT-ISRGAN  27.71/1647  24.39/19.42  22.59/21.34  19.01/2599  14.21/30.31
DiffuseVAE ~ 28.61/12.76  26.49/1538  23.39/18.72  18.95/22.75  15.52/26.17
EDIP-Net  30.12/1694 2571/1841 23.61/1853  17.09/25.63  13.82/33.2
SR3 2939/13.51  26.99/17.12  21.7917.21  17.35/2151  14.95/28.91
IRSDE 22.88/23.26  20.62/2532  1341/32.19  8.48/36.53  6.68/36.62
EDIffSR  31.92/1039 28.84/12.32 24.22/15.12  2036/19.62  16.13/21.21
LWTDM  28.32/19.03 2597/25.11 22.51/26.69 15.38/31.88  14.11/32.85
Proposed 34.19/875 3133926 27.79/13.95 25.32/14.85  22.48/16.85

four simplified models: Baseline (i.e. Latent Diffusion U-
Net [48]), Model-1 (adding CSP constraints only), Model-2
(adding wavelet domain only), Model-3 (adding CSP con-
straints and wavelet domain), and the proposed model. Table
V summarizes the model configurations and performance
evaluation results in terms of FID, SRE, and NIQE. As shown
in Table V, the non-wavelet diffusion U-Net (baseline) failed
to converge in terms of FID, SRE, and NIQE, indicating
the baseline generated results suffer from severe blur in the
spectral and spatial domain. In comparison, Model-1 generated
better fidelity in FID (63.62 vs. 81.28), indicating the wavelet
decomposition helps constrain the solution in UR process.
Model-2 produced better results in spectral details (SRE: 19.15
vs. 27.74), indicating that high-frequency restoration improves
spectral consistency.

When both CSP constraints and the high-frequency restora-
tion module are combined into the Model-3 model, the FID
and SRE metrics improve substantially. The proposed embed-
ding with self-cascade strategy requires no additional external
parameters, as the same model is reused without fine-tuning.
This integration yields significant improvements across all
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X 16 DIOR test Proposed

‘11834’

LE-GAN ViT-ISRGAN DiffuseVAE

IRSDE Ground truth

EDIP-Net

SR3

Proposed Ground truth

X 32 DOTA test IRSDE
‘P0615"

ViT-ISRGAN

EdiffSR LwWTDM

DiffuseVAE

X 64 Houston test IRSDE EdiffSR LWTDM Proposed Ground truth

X 128 WWDSSO test  IRSDE EdiffSR LWTDM Proposed

Ground truth

Fig. 7. The visual comparisons with SOTA SR models (LE-GAN [12], ViT-
ISRGAN [63], DiffuseVAE [17], EDIP-Net [57], SR3 [32], IRSDE [33],
EDiffSR [7], and LWTDM [8]) on x16 DIOR, x32 DOTA, x64 Houston
(R:46, G:30, B:14) and x128 WWDSSO (R:4, G:3, B:2) test set. The square
image at the left side is the input 64 X 64 image, and the rectangular frames
indicate the zoomed-in view of the UR results for a better view.

TABLE V
ABLATION ANALYSIS OF THE PROPOSED METHODOLOGY IN THE X8 UR
TASK AS AN EXAMPLE.

Model

Baseline [48]
Model-1

CSP constraints ~ Wavelet domain  Self-cascade ~ Param.(M) FID SRE

18.84 81.28  27.74
24.82 63.62 2649

NIQE

18.89
16.82

Model-2 v 22.14 87.82  19.15 1552
Model-3 v v 29.12 59.15 1624 1433
Proposed v v v 29.12 5482 981 14.03

metrics, including FID, SRE, and NIQE.

These findings demonstrate the effectiveness of the pro-
posed methodology in enhancing large-scale image upscaling.
Moreover, the low-complexity design of the components en-
sures that the self-cascade architecture remains both efficient
and powerful.

2) Effectiveness of CSP constraints: We analyzed the impact
of varying the number of heads in the cross-attention blocks
for modeling CSP constraint conditions. As shown in Figure 8,
the proposed model achieves slightly better FID performance
with 16 heads compared to 12 heads, while the highest PSNR
results are obtained with 12 heads. To balance model size and
performance effectively, we set the default number of heads
to 12.

3) Effectiveness of high-frequency restoration: To demon-
strate the capability of high-frequency restoration in recovering
fine details for accurate UR reconstruction, we present a visual
comparison in Figure 9.

Comparing the UR outputs of Model-1 (cross-scale con-
dition only) and Model-2 (high-frequency predictor only), it
is evident that Model-2 produces overly sharpened details
compared to Model-1. Comparing the UR results of Model-3
and proposed model, the combination of the high-frequency

11

12 |

Number of head

20 22 24 26 28
[IPSNR EFID

Fig. 8. Ablation analysis of CSP constraint conditions with different numbers
of heads in cross-attention blocks in terms of FID and SRE.

Model-3 Model-4
Fig. 9. Visual ablation analysis of the X128 UR results from the model
configurations listed in Table V.

predictor and cross-scale condition achieves a superior balance
between high-frequency and low-frequency components. This
is particularly noticeable in features such as road edges and
surface textures. These observations emphasize that the high-
frequency predictor significantly enhances UR performance
by predicting enriched high-frequency details with additional
priors, effectively improving overall reconstruction quality.

4) Effectiveness of self-cascade strategy: Figure 10 illus-
trates a quantitative comparison of model performance be-
tween traditional one-step fine-tuning and self-cascade strategy
with different backbone models in terms of NIQE and AG
metrics. Performance degradation is observed across all mod-
els in large-scale UR tasks, but the self-cascade strategy with
different backbone models demonstrates robust performance.
The proposed approach achieves the best performance in NIQE
and AG, with only 11.8% and 19.1% performance degradation
in NIQE and AG, respectively, as the magnification scale
increases from x4 to x128. These observations indicate the
proposed WaveDiffUR architecture with self-cascade strategy
is compatible with existing SR models to handle the ill-pose
problem in the UR task.

To provide an intuitive comparison, we present a visual
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Self-cascade

=== One-step fine-tuning

NIQE
8
AG
N

Self-cascade

— — — One-step fine-tuning

4 8 16 32 64 128 4 8 16 32 64 128
Rate Rate

I LE-GAN [] EDIffSR [ DiffuseVAE [ Proposed

Fig. 10. A comparison of model performance between WaveDiffUR-based
models with different backbone models (i.e., LE-GAN, EDiffSR, and Diffu-
seVAE) in the traditional one-step fine-tuning and self-cascade strategy for
UR tasks in terms of NIQE and AG.

analysis of the traditional one-step fine-tuning and self-cascade
strategy in Figure 11. We observe that the self-cascade-based
UR images recover more accurate details (e.g., white lines on
the bay and embankment in simulated evaluations, or roads
in real-world evaluations). In contrast, the one-step-based UR
images tend to introduce exaggerated sharpening with pseudo-
details. A possible explanation is the accumulation of cross-
scale biases during the one-step transition, which hampers the
realistic reconstruction of high-frequency components, leading
to overly sharp and unnatural details.

5) Model efficiency: To evaluate the efficiency of the self-
cascade strategy, we compared the parameters, VRAM usage,
training time, number of FLOPs, and inference times of the
models on one NVIDIA A100 Tensor Core GPU and 40
GB of memory. As shown in Figure 12, while the proposed
baseline model is not the lightest among existing DPM-based
SR models in terms of parameters, VRAM usage and the
number of FLOPs, it remains highly competitive in terms of
efficiency.

Notably, the proposed model within the self-cascade UR ar-
chitecture demonstrates faster inference speeds compared to its
competitors, especially for large-scale UR tasks (> x16). This
efficiency gain is primarily due to the wavelet transformation
integrated into our model. By compressing the input data and
processing high-frequency and low-frequency components in
parallel at each UR scale, the wavelet transformation reduces
memory requirements for storing intermediate feature maps
and decreases the number of convolutional operations, thereby
lowering computational costs. These optimizations enable the
self-cascade architecture to outperform other approaches in
computational efficiency, making our method more practical
and scalable for real-world applications.

V. CONCLUSIONS AND FUTURE WORK

This study introduces the WaveDiffUR architecture, ad-
dressing the challenges of remote sensing SR and UR tasks.
The proposed CSP-WaveDiffUR model achieves superior per-
formance compared to SOTA methods by incorporating CSP
constraint conditions based on cross-scale spectral-spatial un-
mixing rules. This approach effectively mitigates degrada-
tion in accuracy, perceptual quality, spectral consistency, and
detail sharpness. CSP-WaveDiffUR achieves up to threefold

12
X2 GT x4 GT X8 GT x16 GT  x32 pseudo x64 pseudo x128 pseud
) : .

Self-cascade x2 UR x4 UR x16 UR x32 UR x64 UR x128 UR

wdai[2

x32 UR

One-step x2 UR x4 UR x16 UR x64 UR x128 UR

SISl

x16 GT x32 GT

x64 GT

x128 GT

x8 UR x16 UR x128 UR

n ] |

x8 UR

x32 UR

x64 UR

x16 UR x32 UR x64 UR x128 UR

Fig. 11.
self-cascade approaches, highlighting spatial fidelity and channel consistency
on (a) the DIOR dataset and (b) the WWDSSO dataset. Zoom-in views within
the yellow boxes offer enhanced visual detail.

Visual comparison of UR images generated by the one-step and

improvement in PSNR and twofold reduction in SRE at ex-
treme magnifications (e.g., x128), while maintaining leading
performance in NIQE and AG metrics.

Despite its advantages, the method relies on high-quality
LR and reference image pairs and struggles with degradation
variability across different systems. Future work will focus on
reducing dependency on reference images for blind SR tasks
and enhancing adaptability to diverse degradation patterns.
Additionally, we aim to improve the model’s generalization
ability by incorporating self-supervised learning techniques
and domain adaptation strategies, enabling robust performance
across diverse imaging conditions. Moreover, integrating real-
time processing capabilities will be a key focus, facilitating
deployment in time-sensitive applications such as disaster
response and environmental monitoring. These improvements
aim to extend the framework’s applicability and robustness,
with potential transformative impacts on environmental mon-
itoring, urban planning, disaster response, and precision agri-
culture. We will release the source code on GitHub upon publi-
cation with this link: https://github.com/nedvede/WaveDiffUR.
We hope this will encourage further research in remote sensing
ultra-resolution.

850

851

852

853

854

855

856

857

858

859

860

861

862

863

865

866

867

868

869

870

871



872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

JOURNAL OF KTEX CLASS FILES, VOL.

Proposed

14, NO. 8, AUGUST 2021

a. The scale of parameters (M) b. VRAM usage (GB)

Proposed

—
IWTDM s wToMm
EDIFfSR EDIffSR
IRSDE IRSDE
SR3 SR3
EDIP-Net | EDIP-Net

DiffuseVAE i

VIT-ISRGAN  |ss VIT-ISRGAN
LE-GAN | LE-GAN

0 20 40 60 80  >100 0 2 4 6 8 10

c. The training time for 500 epoch (h) d. GFLOPs per forward pass

Proposed — Proposed
wTom WToM
EDIffSR EDIffSR
IRSDE IRSDE
SR3 | SR3
EDIP-Net fsss EDIP-Net
DiffuseVAE s DiffuseVAE
VIT-ISRGAN e VIT-ISRGAN
LE-GAN  |sss LE-GAN

0 20 a0 60 20 >100 3 10 20 30 40 50

Times (s)

>1600

e. The Inference time (s)

1400 (60
1200
1000
800
600
400
200

2 4 8 16 32 64 128

UR rate
SR3 EDIP-Net EDIffSR —IWTDM —Proposed

Fig. 12. Efficiency comparison of SR models: (a) number of parameters (M),
(b) VRAM usage (GB), (c) training time for 500 epochs on a single NVIDIA
A100 GPU (hours), (d) GFLOPs per forward pass, and (e) inference time
(s) across varying upscaling rates (UR). The proposed model demonstrates
competitive efficiency and significantly faster inference, especially at higher
UR scales (e.g., x16 and above.
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