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WaveDiffUR: A Wavelet-Domain Diffusion Model for

Ultra-Resolution in Remote Sensing
Yue Shi, Liangxiu Han*, Lianghao Han, Darren Dancey, Xueqin Zhang

Abstract—Deep learning (DL) has significantly advanced1

super-resolution (SR), a technique that enhances low-quality2

images by reconstructing fine details. However, most DL-based3

SR methods struggle at high magnification levels (e.g., ×4 or4

higher) due to dramatically increased ill-posedness. To overcome5

this, we define high-magnification SR as an ultra-resolution6

(UR) problem and introduce WaveDiffUR, a novel wavelet-7

domain diffusion model designed for extreme-scale image re-8

construction. WaveDiffUR decomposes the UR process into se-9

quential steps, first restoring low-frequency wavelet details for10

global consistency and then refining high-frequency components11

for sharper textures. By integrating pre-trained SR models12

as modular components, it reduces ill-posedness and ensures13

adaptability across different applications. Unlike existing SR14

approaches, which struggle with fixed boundary conditions at15

extreme magnifications, WaveDiffUR incorporates the cross-16

scale pyramid (CSP) constraint, an adaptive framework that17

dynamically refines low- and high-frequency wavelet details to18

maintain consistency and high fidelity. Extensive experiments19

demonstrate that WaveDiffUR with CSP notably enhances spatial20

accuracy and consistently generates high-frequency details with21

remarkable fidelity during the SR process. Evaluations are22

conducted across two benchmark evaluation datasets and four23

additional independent datasets. The empirical results reveal24

that, as magnification scales from ×8 to ×128, WaveDiffUR25

achieves an average degradation rate in PSNR, NIQE, and SRE26

of only 19.1%—the best performance among all benchmarked27

models—while consistently delivering sharper images character-28

ized by superior spatial fidelity. By enabling scalable, high-fidelity29

ultra-resolution, WaveDiffUR opens new possibilities for remote30

sensing applications, including environmental monitoring, urban31

planning, disaster response, and precision agriculture.32

Index Terms—Remote sensing Image Super Resolution; Ultra33

Resolution (UR); Diffusion Model; Wavelet Transformation;34

Stochastic Differential Equation (SDE); Multi-Scale Generative35

AI36

I. INTRODUCTION37

REMOTE sensing image super-resolution (SR) remains38

a persistent challenge and continues to be a vibrant39

research topic in both computer vision [1] and geosciences40

[2]. SR aims to reconstruct high-resolution (HR) remote41

sensing images with realistic spectral-spatial details from42

low-resolution (LR) data [3], typically acquired from aerial43
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Fig. 1. Comparison of probability density function (PDF) transitions in (a) a
traditional diffusion-based SR model [7] and (b) the proposed WaveDiffUR
model. Results at ×16 UR, shown as a representative example, illustrate that
the proposed method alleviates the ill-posedness of remote sensing UR tasks
compared to traditional approaches.

platforms (1 - 10 m resolution) [4] or space-based platforms 44

(≥ 10m resolution) [5]. However, most existing SR research 45

focuses on fixed and low-magnification scales (e.g., ×2 or ×4) 46

[6]–[8], which fails to meet the growing demand for high- 47

magnification SR in many Earth observation tasks. In this 48

study, we define high-magnification SR as an ultra-resolution 49

(UR) problem. The high magnification UR introduces big chal- 50

lenges, as small reconstruction errors can lead to significant 51

detail loss or artifacts over large areas. For example, land-cover 52

mapping typically requires a spatial resolution of 1–2 meters, 53

necessitating ×8 UR for 10-meter Sentinel-2 data or ×16 UR 54

for 30-meter Landsat-8 data, where the sub-pixel reconstruc- 55

tion error around boundaries can shift class edges, causing 56

narrow features such as roads, hedgerows, or riparian strips 57

to disappear and leading to systematic misclassification of 58

landcover classes [9]. Similarly, precision agriculture demands 59

resolutions higher than 1 meter, translating to ×16 to ×32 UR 60

for Satellite data, where spectral–spatial biases introduced by 61

UR reconstruction can distort canopy patterns and propagate 62

errors into vegetation indices, resulting in inaccurate crop 63

stress detection [10]. 64

Unlike natural image super-resolution, remote sensing SR 65

presents unique challenges due to complex spatial heterogene- 66

ity and the presence of mixed pixels. These factors further 67

exacerbate the ill-posed nature of high-magnification SR, 68

where a given low-resolution (LR) input can correspond to 69
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an infinite number of possible high-resolution (HR) solutions70

[11].71

Most deep learning-based SR methods attempt to mitigate72

this issue by training neural networks to model probability73

density function (PDF) transitions in the pixel-wise represen-74

tation space, effectively mapping the PDF of LR images to75

their HR counterparts. However, these methods remain limited76

in handling extreme magnification scales, where the solution77

space grows exponentially. Figure 1 presents a comparative78

analysis of popular PDF-based deep learning SR models,79

including our previous approach [12], highlighting their per-80

formance differences at increasing magnification levels.81

Among existing approaches, generative adversarial net-82

works (GANs) use adversarial learning between a generator83

and discriminator to synthesize SR images with realistic high-84

resolution (HR) details that are missing in low-resolution (LR)85

inputs. This process aims to align the probability density86

function (PDF) of SR images with that of the HR counterparts87

[13], [14]. Variational autoencoders (VAEs) take a different88

approach, encoding the LR PDF into a latent space, then89

generating SR images via sampling, ensuring the reconstructed90

SR PDF aligns with the HR image distribution [15].91

Despite their success, these methods struggle at high mag-92

nification levels due to the inherently ill-posed nature of SR.93

Most SR models are trained on LR-HR image pairs with94

low magnification rates (e.g., ×2 or ×4), which provide ef-95

fective cross-scale representations for learning-based models.96

Our previous study [12] explored a GAN-based approach for97

high-magnification SR and found that once the magnification98

exceeds ×8, SR quality deteriorates due to mode collapse and99

perceptual artifacts. This degradation arises from the adversar-100

ial nature of GANs, which are notoriously difficult to converge101

at extreme scales due to the increased complexity of PDF102

transitions [13]. Additionally, at high magnification levels,103

the discontinuity in cross-scale representations reduces the104

model’s ability to estimate HR outputs from LR inputs, making105

the LR-to-HR PDF transition significantly more complex and106

unpredictable.107

Recently, diffusion models (DMs) [16] have gained attention108

in image restoration and have demonstrated promising results109

in remote sensing SR [7], [8], [17]. The strength of DMs lies in110

their denoising diffusion process, which gradually refines the111

LR PDF into the HR PDF through small, incremental noise re-112

moval steps. Unlike GANs, DMs provide a well-defined prob-113

abilistic framework, avoiding training instability and mode114

collapse. However, DM-based UR is far more ill-posed than115

ordinary SR [18], because the extreme magnification factors116

greatly expand the range of plausible high-frequency details;117

consequently, diffusion-based methods—whose sampling pro-118

cess is inherently stochastic—often struggle to maintain co-119

herent spectral-spatial information across large homogeneous120

regions [19].121

To address this challenge, we introduce the cross-scale122

pyramid (CSP) boundary condition, which captures spectral-123

spatial unmixing rules across different magnification levels.124

Building on this concept, we formulate the UR process as125

a conditional diffusion stochastic differential equation (SDE).126

This framework enables low-frequency fidelity enhancement127

by reconstructing global details while ensuring high-frequency 128

consistency refinement by restoring local textures. To solve 129

this SDE, we propose WaveDiffUR, a wavelet-based diffusion 130

UR solver that operates in the wavelet domain, allowing it to 131

mitigate the ill-posed nature of UR. The WaveDiffUR frame- 132

work, shown in Figure 2, seamlessly integrates pre-trained 133

SR pipelines as plug-and-play modules to generate cross- 134

scale conditions, reducing the computational cost of training 135

new models from scratch. However, using fixed boundary 136

conditions throughout the UR process can limit constraint 137

capacity, degrading the consistency and fidelity of the results. 138

To overcome this limitation, we introduce a dynamically 139

updated cross-scale condition named CSP. This serves as a 140

variable boundary condition for the SDE solver, continuously 141

compressing information from adjacent UR sub-processes. By 142

doing so, CSP guides WaveDiffUR to produce accurate UR 143

results with realistic spectral-spatial consistency. Experimen- 144

tal results demonstrate that the baseline WaveDiffUR model 145

without CSP exhibits high performance in terms of usability, 146

adaptability, and cost-effectiveness. Moreover, the enhanced 147

CSP-WaveDiffUR model effectively captures the unmixing 148

rules of realistic spectral-spatial details, thereby improving UR 149

efficiency and robustness in handling high-magnification SR 150

tasks. 151

The primary contributions of this work are as follows: 152

(i) We pioneer a solution to the Ultra-Resolution (UR) 153

problem, termed WaveDiffUR, which decomposes the 154

complex UR process into finite sub-processes. It lever- 155

ages pre-trained SR models to their fullest potential, en- 156

hancing the usability, adaptability, and cost-effectiveness 157

of the UR process. To the best of our knowledge, this is 158

the first work that explicitly addresses the complex and 159

ill-posed UR problem. 160

(ii) We propose an improved version of the SDE solver, CSP- 161

WaveDiffUR, to address the degradation issue caused by 162

fixed boundary conditions in diffusion-based UR SDEs. 163

This model dynamically updates boundary conditions 164

during each UR sub-process, ensuring more stable and 165

high-fidelity UR results. 166

By addressing fundamental challenges in ultra-resolution, 167

WaveDiffUR opens new opportunities for practical remote 168

sensing applications, including environmental monitoring, ur- 169

ban planning, disaster response, and precision agriculture. 170

This study presents a scalable, cost-effective, and high-fidelity 171

approach to advancing remote sensing capabilities at unprece- 172

dented magnification levels. 173

The remainder of this paper is organized as follows: Section 174

II reviews the related work on diffusion models and remote 175

sensing image super-resolution. The methodology is detailed 176

in Section III, including the main framework of the proposed 177

WaveDiffUR method. Section IV presents the experimental 178

results. Finally, Section V concludes this work and highlights 179

future directions. 180

II. RELATED WORK 181

A. Remote Sensing Image Super-Resolution 182

To transform low-resolution remote sensing images into 183

high-resolution counterparts, considerable efforts have been 184
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made to improve image fidelity and restore details. Traditional185

methods primarily rely on fusion techniques, such as wavelet186

transform and spectral mixing analysis, where the spatial in-187

formation from high-resolution images is leveraged to enhance188

the spatial details of low-resolution images effectively. For189

instance, Zhang et al. [20] introduced a remote sensing image190

fusion technique based on the 3D Wavelet Transform (3DWT),191

where 3DWT effectively harnesses spectral information to192

generate high-quality fused spectral-spatial details.193

In recent years, significant advancements have been made194

in deep learning-based approaches to the SR problem. For195

example, Zheng et al. [21] applied a spectral-spatial attention196

mechanism to neural networks for panchromatic sharpening197

of remote sensing images, enabling the networks to adaptively198

learn both spatial and spectral details. Li et al. [22] designed a199

spectral super-resolution framework by learning a cross-scale200

relationship and achieved a satisfactory result. More recently,201

they transferred the spectral unmixing into the super-resolution202

and hence proposed an effective coupled unmixing framework203

[23].204

Deep learning-based approaches for improving the spa-205

tial resolution of remote sensing images have primarily fol-206

lowed two strategies: fusion with high-spatial-resolution im-207

ages [24]–[26] and single-image-based SR [27], [28]. Fusion-208

based SR techniques leverage external prior information to209

reconstruct images with finer textures. In contrast, single-210

image-based SR techniques operate without auxiliary data,211

offering greater practical feasibility. For instance, Mei et al.212

[29] developed a 3D Fully Convolutional Neural Network213

(3D-FCNN) for drone image super-resolution, incorporating214

an upsampling process in the early stages. Jiang et al. [30]215

proposed the Single Sub-Image Progressive Super-Resolution216

(SSPSR) model, which employs a progressive sampling ap-217

proach: first for grouped sub-images, followed by the fusion218

of interpolated sub-images to construct the entire image. This219

approach enhances feature extraction in HSIs and improves220

overall training stability. However, it introduces additional221

requirements, such as more precise modeling and intricate222

network design at each stage.223

The Generative Adversarial Network (GAN) is another deep224

learning-based model that has gained significant attention in225

the field of super-resolution. GANs are particularly valued226

for their ability to model complex data distributions, enabling227

the generation of high-resolution (HR) images that closely228

resemble real-world data in both quality and perceptual char-229

acteristics. When incorporated into the SR process, GANs230

generate HR images with enhanced perceptual quality. Xiong231

et al. [31] proposed an improved Super-Resolution Genera-232

tive Adversarial Network (SRGAN) featuring a revised loss233

function and an optimized network architecture. These modi-234

fications enhance training stability and improve generalization235

performance. Shi et al. [12] proposed the Latent Encoder-236

Integrated GAN (LE-GAN), which incorporates self-attention237

mechanisms to enhance feature extraction in the generator and238

stabilize the training process.239

In parallel, diffusion probabilistic models (DPMs) have240

emerged as another promising approach for super-resolution241

tasks. DPMs generate high-quality data distributions through242

a structured and well-defined probabilistic diffusion process, 243

mitigating the training instability often seen in GANs. Re- 244

cently, Saharia et al. [32] proposed a DPM-based super- 245

resolution method, using a UNet architecture as the denoiser 246

to iteratively refine image generation. Luo et al. [33] further 247

enhanced diffusion-based SR by introducing stochastic differ- 248

ential equations (SDEs) to more accurately model the degra- 249

dation process in diffusion. These advancements highlight 250

the potential of diffusion models in addressing complex SR 251

challenges. A detailed investigation of diffusion-based super- 252

resolution is presented in the following section. 253

B. Diffusion-based Image Super-Resolution 254

Diffusion-based models, particularly denoising diffusion 255

probabilistic models (DDPMs) [16], have shown that iterative 256

denoising can yield high-quality image restoration results, 257

including super-resolution [7], [34], [35], inpainting [36], [37], 258

and deblurring [38], [39]. For example, Kawar et al. [40] 259

introduced Denoising Diffusion Restoration Models (DDRM), 260

which utilize a pre-trained diffusion model to solve various 261

linear inverse problems, demonstrating superior performance 262

across multiple image restoration tasks. Wang et al. [41] pro- 263

posed DR2, a Diffusion-Based Robust Degradation Remover 264

for Blind Face Restoration. DR2 first employs a pre-trained 265

diffusion model for coarse degradation removal, followed 266

by an enhancement module designed for finer blind face 267

restoration. Guo et al. [42] developed ShadowDiffusion, which 268

employs an unrolled diffusion model to tackle the challenging 269

task of shadow removal by progressively refining results using 270

degradation and generative priors. 271

The basic principle of diffusion-based image super- 272

resolution involves the use of a Markov chain to model the 273

transformation of high-resolution (HR) image data into noise 274

and back again [40]. It consists of two opposing processes: 275

the forward process (diffusion process) and the reverse process 276

(denoising with a condition). The forward process gradually 277

corrupts an HR image through a Markov chain, transforming 278

the HR image distribution into a stochastic Gaussian noise 279

distribution by progressively adding noise. This process effec- 280

tively creates a dataset of noisy images representing the HR 281

data in a stochastic space. In the reverse process, the HR image 282

is reconstructed from the noisy data using the corresponding 283

low-resolution image as a conditioning factor to systematically 284

guide noise removal. The model progressively refines the noisy 285

data, transforming it back into the HR distribution. Through 286

this denoising process, the conditional diffusion model ensures 287

spatial and spectral consistency with the LR input while 288

reconstructing fine details from the noisy data. 289

The forward noising process in diffusion-based image super- 290

resolution is governed by the following stochastic differential 291

equation (SDE) [43]: 292

dx = f̄(x, t)dt+ ḡ(t)dw, (1)

where f̄(x, t) is the linear drift function governing the rate 293

at which the HR image data x is perturbed at time step t, 294

ḡ(t) is the scalar diffusion coefficient associated with t, and 295

w denotes the standard Wiener process. 296
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Using Anderson’s theorem [43], [44], the reverse diffusion297

process in SR can be expressed as a reverse stochastic differ-298

ential equation (SDE):299

dx =
[
f̄(x, t)− ḡ(t)2∇x log pt(x | y)

]
dt+ ḡ(t)dw̄, (2)

where x represents the reconstructed HR image, y is a con-300

ditioning variable typically derived from the LR image or in-301

termediate features, dt denotes the infinitesimal negative time302

step, and w̄ represents the reverse Wiener process. The reverse303

SDE governs the generative process through the score function304

∇x log pt(x | y) and minimizes the following denoising score-305

matching objective:306

min
θ

Et∼U(ϵ,1), x0∼p0(x|y), xt∼p0,t(xt|x0)∥∥∥∥sθ(xt, t)−∇xt log p0,t(xt | x0)

∥∥∥∥2
2

,
(3)

Once the parameter θ for the score function is estimated,307

the score function ∇x log pt(x | y) in Eq. 2 can be replaced308

with sθ(xt, t) to solve the reverse SDE.309

C. Diffusion Process in the Wavelet Domain310

The wavelet transform is highly effective in reducing spatial311

dimensions while retaining critical information, distinguishing312

it from transformation techniques such as the Fast Fourier313

Transform (FFT) and the Discrete Cosine Transform (DCT),314

which may suffer from information loss during transformation.315

This advantage has led to its adoption in diffusion-based super-316

resolution (SR). Studies such as that by Jiang et al. [45]317

highlight the benefits of performing diffusion operations in318

the wavelet domain rather than directly in the image space.319

This approach enhances content reconstruction and reduces320

the disparity between ground-truth HR and SR domains. By321

integrating wavelet transforms with diffusion-based models,322

these methods achieve superior super-resolution performance323

and improved evaluation metrics.324

In 2D applications, a low-resolution image x ∈ ILR can be325

decomposed into four sub-bands using the 2D discrete wavelet326

transform (2D-DWT) with Haar wavelet functions, as follows:327

{ALR, VLR, HLR, DLR} = 2D-DWT(ILR), (4)

where ALR ∈ RH
2 ×W

2 ×c represents the low-frequency compo-328

nent of the input image, while VLR, HLR, DLR ∈ RH
2 ×W

2 ×c
329

correspond to the vertical, horizontal, and diagonal high-330

frequency components of the input image, respectively. Specif-331

ically, the low-frequency coefficient ALR preserves the global332

structural information of the original image, acting as a333

downsampled representation, while the high-frequency coef-334

ficients VLR, HLR, and DLR capture sparse local details that335

contribute to the fine details and texture of the image.336

In image super-resolution, reconstructing images by upscal-337

ing high-frequency coefficients helps restore the fine details of338

the original images. In contrast, the low-frequency coefficient339

primarily governs the global structure, ensuring greater con-340

sistency with the original images. In wavelet-domain super-341

resolution, particularly at ultra-resolution scales, accurately342

upscaling the low-frequency (LL) sub-band to match the high- 343

resolution scene establishes the global geometry and struc- 344

ture consistency, furnishing the scaffold on which the high- 345

frequency sub-bands can later be synthesized to restore fine 346

textures and edges [46]. 347

III. METHODOLOGY 348

We hypothesize that the ill-posed UR process can be 349

modeled as a stochastic diffusion process for spectral-spatial 350

unmixing, systematically addressing the interplay between 351

spectral fidelity and spatial consistency. Our primary goal is to 352

address the ill-posed UR problem using a diffusion UR SDE 353

and generate high-fidelity, spatially consistent UR images from 354

their low-resolution counterparts. The proposed UR process is 355

extended to a finite number of SR steps by formulating them 356

as the solution to a conditional diffusion SDE, constrained by 357

a pyramid-shaped multi-scale spectral-spatial unmixing rule. 358

Inspired by Jiang et al. [45], we adopt a wavelet-domain 359

implementation for the proposed UR process to enhance 360

computational efficiency. Wavelet decomposition inherently 361

provides multi-scale components, aligning with our UR step- 362

wise restoration strategy. In addition, Wavelet decomposi- 363

tion divides the UR mapping into multiple frequency bands, 364

transforming a single highly ill-posed problem into a set of 365

smaller, more manageable sub-problems. Low-frequency sub- 366

bands capture large-scale structures that are easier to infer 367

from low-resolution input, while high-frequency sub-bands 368

represent fine details, which are reconstructed conditionally. 369

This separation regularises the solution space by enforcing 370

that each band’s reconstruction must be physically consistent 371

when combined. The workflow of the proposed UR approach 372

is illustrated in Figure 2. The following sections provide a 373

detailed explanation of the proposed method. 374

A. Wavelet-Domain Diffusion UR (WaveDiffUR) SDE Solver 375

According to our hypothesize, the UR process in the wavelet 376

domain operates as a stochastic diffusion process for spectral- 377

spatial unmixing, transitioning from low-resolution to high- 378

resolution space. This is achieved through a series of SR steps 379

formulated as solutions to conditional diffusion SDEs. 380

Our proposed WaveDiffUR solver addresses the condi- 381

tional diffusion UR SDEs to enhance both low-frequency 382

and high-frequency details. The solver ensures that spectral- 383

spatial consistency mitigates the ill-posed nature of the UR 384

task by dynamically adapting to multi-scale constraints across 385

magnification levels, and preserves the integrity of fine details 386

during high-magnification upscaling. 387

Each SR step iteratively refines the wavelet components, 388

progressively generating UR wavelet representations for each 389

frequency band. Low-frequency components benefit from pre- 390

trained SR modules to enhance global structures, while high- 391

frequency components are upscaled to improve texture and 392

detail. After processing the wavelet components, the Inverse 393

Discrete Wavelet Transform (IDWT) reconstructs the image in 394

the spatial domain. This final reconstruction step ensures that 395

the synthesized HR image maintains the desired fidelity and 396

consistency with HR ground-truth data. 397
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Fig. 2. An illustration of the proposed self-cascade UR pyramid framework,
consisting of: 1) DWT/IDWT: cyclically decomposes a low-resolution image
into the wavelet domain and restores the high-resolution image from the
upscaled wavelet-domain components. 2) SR pipeline: integrates a plug-
and-play tunable SR module into the framework to reconstruct the low-
frequency wavelet components of a high-resolution image from its low-
resolution counterpart. 3) Upscaler: progressively adjusts the high-frequency
wavelet components of low-resolution images to align with those of higher-
resolution images.

The low-frequency and high-frequency components after398

DWT in WaveDiffUR can be computed as follows:399

Low-Frequency Components. The low-frequency compo-400

nents of the target image ISR can be expressed as a function401

of the low-resolution image ILR and the upscaling process.402

Mathematically, the ideal low-frequency components ASR of403

the SR image can be expressed as:404

ASR ∼ p(ASR|TRANS(ILR)) + ϵ, (5)

where TRANS is the probability density transformation func-405

tion that maps ILR to the domain of ASR, and independent406

Gaussian noise ϵ accounts for uncertainties and imperfections407

in the transformation process. The output of TRANS(ILR)408

serves as a conditioning variable that constrains the probability409

flow of ASR during the UR process. The low-frequency410

components follow the conditional probability distribution411

p(ASR|TRANS(ILR)).412

However, due to the ill-posed nature of the transformation413

function, obtaining an analytical form of TRANS in Eq. 5 is414

challenging. Consequently, we approximate the transformation415

function using a neural network τθ.416

τθ(ILR) = SRMapping(p(ILR)) + ϵ → RASR , (6)

where SRMapping(p(ILR)) represents any arbitrary pre-417

trained SR pipeline that maps ILR to ASR, expressed418

as RILR → RASR . Mathematically, τθ(ILR) serves as a419

projection-based conditioning mechanism to mitigate the ill-420

posed nature of the problem. Thus, ASR is sampled from421

the conditional probability distribution p(ASR|τθ). The low-422

frequency SR process is further formulated as a reverse423

diffusion SDE:424

dASR =
[
f̄(ASR,t, t)− ḡ(t)2∇ASR,t

log pt(ASR,t | τθ(ILR))
]

(7)
dt+ ḡ(t)dw̄,

where f̄(·) defines the linear drift function, ḡ(·) presents a 425

scalar diffusion coefficient, and w̄ denotes the standard Wiener 426

process. 427

The conditional score function, ∇ISR
log p(ISR|τθ(ILR)), 428

necessitates model retraining whenever the cross-scale condi- 429

tion τθ(ILR) is updated. This dependency restricts the gener- 430

alization capability of the low-frequency SR process. 431

To overcome this limitation, inspired by [44], we adopt 432

an unconditional score function, ∇x log pt(ASR), which is 433

independent of τθ(ILR). Instead, τθ(ILR) is introduced as 434

an auxiliary input in the score-based framework, guiding the 435

denoising process while preserving the model’s adaptability. 436

More specifically, it can be described as follows: 437

A′
SR,t−1 = f̄(ASR,t, sθ) + ḡ(ASR,t) · z, z ∼ N(0, I), (8)

ASR,t−1 = α ·A′
SR,t−1 + bt, (9)

where α and bi are functions of τθ(ILR) and ASR,t. Note 438

that Eq. 8 corresponds to the unconditional reverse diffusion 439

term in Eq. 2, whereas Eq. 9 incorporates the projection-based 440

condition. 441

High-Frequency Wavelet Components. In WaveDif- 442

fUR, the upscaler model is responsible for transform- 443

ing the low-resolution wavelet components V HDLR = 444

{VLR, HLR, DLR} into their high-resolution counterparts 445

V HDSR = {VSR, HSR, DSR}. This process is formulated 446

as an upscaling transformation followed by the addition of 447

independent Gaussian noise. The upscaler generates V HDSR 448

as: 449

V HDSR ∼ N
(
U(V HDLR), sd

2UU⊤ + σ2I
)
, (10)

where U represents the upscaling function, sd denotes the stan- 450

dard deviation associated with V HDLR, and σ2I corresponds 451

to independent Gaussian noise. The upscaling function U can 452

be approximated using a pre-trained SR model. Thus, Eq. 10 453

can be rewritten as: 454

V HDSR ∼ N
(
USR(V HDLR), sd

2USRU⊤
SR + σ2I

)
, (11)

The WaveDiffUR method is detailed in Algorithm 1. 455

B. Cross-Scale Pyramid (CSP) Constraint WaveDiffUR Solver 456

In the WaveDiffUR SDE, re-using a fixed boundary condi- 457

tion τθ(ILR) leads to cumulative errors because the underlying 458

UR problem is ill-posed. To stabilise the process, we replace 459

that static boundary with a dynamically updated Cross-Scale 460

Pyramid (CSP) constraint. This CSP constraint is concep- 461

tually inspired from the pyramid spectral-spatial unmixing 462
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Algorithm 1 WaveDiffUR SDE solver
1: Input: Low-resolution image ILR, pre-trained SR pipeline

SR, pre-trained U-Net sθ, current resolution r, target UR
resolution R, SR rate k, linear drift function f̄(·), scalar
diffusion coefficient ḡ(·).

2: Output: High-resolution image IUR.
3: Compute UR rate K = R/r and number of UR steps

d = K/k.
4: Apply Discrete Wavelet Transform (DWT).
5: {ALR, V HDLR} = DWT (ILR)
6: τθ(ILR) = SRMapping(p(ILR)) + ϵ
7: for i = 1 to d (UR steps) do
8: for t = T to 1 (reverse diffusion process) do
9: Perform low-frequency wavelet super-resolution

(SR)
10: A′

SR,t−1 = f̄(ASR,t, sθ) + ḡ(ASR,t) · z
11: ASR,t−1 = α ·A′

SR,t−1 + bi
12: end for
13: Perform high-frequency wavelet restoration
14: V HDSR ∼ N

(
USR(V HDLR), sd

2USRU⊤
SR + σ2I

)
15: ISR = IDWT ({ASR,0, V HDSR})
16: if i ̸= d then ▷ Update for next iteration
17: ILR = ISR

18: end if
19: if i = d then ▷ Final assignment
20: IUR = ISR

21: end if
22: end for

rule across scales [47]. By doing such pyramid-shaped iter-463

ations, it preserves the spectral proportions (avoiding spectral464

distortion) while increasing spatial detail. In other words,465

CSP guides the UR process to ‘unmix’ the pixel information466

consistently as resolution increases. To initialize the unmix467

rule, the CSP introduces a reference image Iref ∈RH′×W ′×c
468

(H ′ ≥ H, W ′ ≥ W ) and models the joint statistics of the469

low-resolution input and its reference:470

τθ(ILR, Iref ) = Tθ · p(Iref , ILR) + ϵ → RASR , (12)

where Tθ is a learnable transform, and ϵ is independent471

Gaussian noise accounting for uncertainties. We denote this472

low-frequency constraint by τ lfθ . Because θ is updated at473

every magnification level, τ lfθ always stays close to the target474

domain, providing a stronger guide for the inverse diffusion475

step:476

ASR,t ∼ p(ASR,t|τ lfθ ) + ϵ, (13)

The CSP-WaveDiffUR solver proceeds scale by scale, using477

two steps: 1) Low-frequency pass and 2) High-frequency478

constraints. For low-frequency pass, we use Eqs. 7–9 with the479

current τ lfθ to recover the low-frequency wavelet band ASR.480

For high-frequency constraints, the high-frequency sub-481

bands, that are vertical (V ), horizontal (H), and diagonal482

(D), construct CSP constraints, collecting them as τhfθ =483

{τVθ , τHθ , τDθ }.484

τVθ = TθV · p(VLR, Vref ), (14)

τHθ = TθH · p(HLR, Href ), (15)

τDθ = TθD · p(DLR, Dref ), (16)

Finally, sparse high-frequency coefficients are predicted 485

under these constraints: 486

V HDSR ∼ N
(
M(V HDLR, τ

hf
θ ), sd2MM⊤ + σ2I

)
,

(17)
where M maps the constrained inputs to predicted details. 487

Algorithm 2 lists the full solver. 488

Algorithm 2 CSP-WaveDiffUR SDE Solver
1: Input: Low-resolution image ILR, reference image Iref ,

pre-trained U-Net sθ, CSP encoder Tθ, high-frequency
restoration module M, current resolution r, target UR
resolution R, SR rate k.

2: Output: Ultra-resolution image IUR.
3: Compute UR rate K = R/r and number of UR steps

d = K/k.
4: Apply Discrete Wavelet Transform (DWT):
5: {ALR, V HDLR} = DWT (ILR)
6: Compute CSP constraints:
7: τ lfθ = Tθ · p(Iref , ILR) + ϵ

8: τhfθ = Tθ · p(hfref , hfLR) + ϵ
9: for i = 1 to d (UR steps) do

10: for t = T to 1 (reverse diffusion process) do
11: Perform low-frequency wavelet SR:
12: A′

SR,t−1 = f(ASR,t, sθ) + g(ASR,t) · z
13: ASR,t−1 = α ·A′

SR,t−1 + bi
14: end for
15: Perform high-frequency wavelet restoration:
16: V HDSR ∼ N

(
M(V HDLR, τ

hf
θ ), sd2MM⊤ + σ2I

)
17: Reconstruct SR image via inverse DWT:
18: ISR = IDWT ({ASR,0, V HDSR})
19: if i ̸= d then
20: Update low-resolution image for next iteration:
21: ILR = ISR

22: else
23: Assign final UR image:
24: IUR = ISR

25: end if
26: end for

C. Model architecture 489

Figure 3 illustrates the overview of the CSP-WaveDiffUR 490

framework. The architecture is deliberately split into two 491

cooperating stages—low-frequency super-resolution (LFSR) 492

and Cross-Scale high-frequency restoration (HFR)—each re- 493

sponsible for a distinct part of the ultra-resolution pipeline. 494

This hierarchical structure first secures a geometrically faithful 495

low-frequency canvas, then injects the missing fine textures. 496
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Fig. 3. An overview of the proposed CSP-WaveDiffUR.
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Fig. 4. An illustration of the Cross-Scale Pyramid Encoder.

1) low-frequency super-resolution module: For the LFSR497

stage, we adopt the Latent Diffusion Model (LDM) U-Net498

as our baseline generator because of its proven ability to499

handle conditional probability density transition while keeping500

memory usage modest. The detailed structure of the LDM501

refers to Rombach et al [48]’s study. To strengthen its cross-502

scale reasoning, we prepend an external Cross-Scale Pyramid503

(CSP) encoder. The CSP Encoder is a critical module in504

the CSP-WaveDiffUR framework, designed to dynamically505

generate cross-scale constraints for spectral-spatial unmixing.506

Figure 4 illustrates the structure of the CSP Encoder, which507

models the spectral-spatial unmixing relationship between a508

given input (x̂) and its corresponding reference (x̂ref ).509

To efficiently extract features from the input, we employ510

depth-wise separable convolutions [49] in the encoder. The511

extracted features are then fed into cross-attention layers to512

compute an intermediate representation tensor. The cross-513

attention mechanism utilizes information from both x̂ and514

x̂ref , effectively modeling the joint probability distribution515

p(x̂ | x̂ref ). The intermediate representation tensor is com-516

puted as:517

Attention(Q,K, V ) = softmax
(
Q ·Kτ

√
d

)
· V, (18)

where Q = W
(i)
Q ·ϕi(x̂SR,t), K = W

(i)
K ·τθ(x̂, x̂ref ), and V =518

W
(i)
V · τθ(x̂, x̂ref ). Here, ϕi(x̂SR,t) represents the flattened519
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Fig. 5. An illustration of the Cross-Scale High-Frequency Restoration Model
(CSHRM).

latent space features generated from a DeepConv block, while 520

W
(i)
Q , W (i)

K , and W
(i)
V are learnable projection matrices. 521

To further enhance the representation of cross-scale spectral- 522

spatial information, we incorporate a progressive dilation 523

residual block (ResBlock) into the encoder. In this block, 524

a sequence of dilated convolutions is applied to expand the 525

receptive field, binding together distant contextual cues while 526

preserving local detail. 527

2) Cross-Scale High-Frequency Restoration Module: The 528

Cross-Scale High-Frequency Restoration (CSHR) module 529

(Figure 5) in CSP-WaveDiffUR is designed to reconstruct 530

the high-frequency wavelet coefficients {VSR, HSR, DSR} 531

from their low-resolution counterparts {VLR, HLR, DLR} and 532

reference coefficients {Vref , Href , Dref}. This reconstruction 533

enhances the vertical, horizontal, and diagonal details of the 534

target SR image by effectively modeling cross-scale spectral- 535

spatial interactions. The architecture of the CSHR module is 536

illustrated in Figure 5. 537

The CSHR module consists of the following key steps: 538

(1) Feature Extraction: Depth-wise separable convolutions are 539

applied to efficiently extract features from the input coef- 540

ficients. (2) Cross-Attention for Detail Enhancement: Two 541

cross-attention layers [50] model the interaction between V 542

and H , augmenting the details in D. (3) Progressive Dilation 543

ResBlock: Inspired by Hai et al. [51], a progressive dilation 544

ResBlock is employed. This block consists of a dilation 545

convolution followed by a shuffle layer for the upscaling of 546

high-frequency coefficients. 547

D. Model Training 548

In addition to the objective function Ldiff used for op- 549

timizing the diffusion model, we employ a high-frequency 550

realness loss Lrealness, which combines Mean Squared Error 551

(MSE) loss and Total Variation (TV) loss, following a similar 552

approach to Liu et al. [52]. This loss function is designed to 553

enhance the reconstruction of high-frequency coefficients. 554

Lrealness =λ1∥{VSR, HSR, DSR} − {VH , HH , DH}∥2

+ λ2TV ({VSR, HSR, DSR}), (19)
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where λ1 = 0.1 and λ2 = 2 are weighting factors for the re-555

spective terms. Additionally, we incorporate a consistency loss556

Lconsistent, which combines L1 loss and Structural Similarity557

Index (SSIM) loss to ensure the fidelity of the reconstructed558

super-resolution image ISR relative to the ground truth high-559

resolution image IH .560

Lconsistent = ∥ISR − IH∥1 + (1− SSIM(ISR, IH)), (20)

The total loss for the proposed neural network is given by:561

Ltotal = Ldiff + Lrealness + Lconsistent, (21)

IV. EXPERIMENT AND DISCUSSION562

This section evaluates the performance of the proposed563

model through several experimental evaluations: (1) compar-564

ative analysis against state-of-the-art (SOTA) models on both565

standard SR and UR tasks, and (2) an ablation study to exam-566

ine the contribution of individual architectural components.567

A. Experimental Setting568

1) Dataset: To comprehensively evaluate the effectiveness569

of the proposed methods, we trained and fine-tuned our model570

on two publicly available datasets: ImageNet 1K [53] and AID571

[54]. Additionally, we evaluated the model’s performance on572

three public datasets, DOTA drone image [55], DIOR drone573

image [56], and Houston hyperspectral image [57], as well as574

a self-designed winter wheat drone-satellite synchronization575

observation (WWDSSO) multi-spectral dataset [12].576

The details of the datasets used for model training, testing,577

and evaluation are summarized in Table I. In the pre-training578

phase, we used ImageNet 1K for 64 × 64 → 128 × 128579

super-resolution tasks, with the development (dev) sets used580

for validation. We resized the original images to 64 × 64581

(low resolution), 96 × 96 (reference), and 128 × 128 (high582

resolution).583

In the fine-tuning phase, we used the AID dataset for584

64 × 64 → 256 × 256 remote sensing super-resolution tasks.585

The AID training set consisted of 8000 randomly selected586

images, while the remaining 2000 images were used as the587

testing set. Each image was processed into three corresponding588

resolutions: 64× 64, 96× 96, and 256× 256.589

For model evaluation, we selected subsets of images from590

the publicly available DOTA, DIOR, and Houston datasets591

and self-collected WWDSSO datasets, as shown in Table I.592

During the data pre-processing phase, we applied bicubic593

interpolation for image degradation. For real-world analysis,594

we used the self-collected WWDSSO dataset. This dataset595

comprised 300 drone-satellite synchronous observation pairs,596

including Landsat-8 images with a 30m resolution (as low-597

resolution input), Sentinel-2 images with a 10m resolution598

(as mid-resolution reference), and multispectral drone images599

with a 0.23m resolution (as ground truth). We evaluated super-600

resolution performance at three scale factors: ×10, ×20, and601

×100. Simulated degradation was applied to the ground-truth602

drone images for scale factors ranging from ×2 to ×128 super-603

resolution.604

TABLE I
THE DETAILS OF THE DATASETS FOR MODEL TRAINING, TESTING, AND

EVALUATION.

Data type ImageNet AID DOTA DIOR Houston WWDSSO
Scale for ×2 ×2, ×4 ×2, ×4 ×2, ×4 ×4 to ×64 ×4 to ×128
Pre-train 1,281,167
Fine-tune 8,000
Testing 500,000 2,000 300 300

Evaluation 180 300 129 300

2) Evaluation Metrics: To comprehensively assess the per- 605

formance of the super-resolution model, we employed seven 606

evaluation metrics. These included three full-reference metrics 607

that measured similarity between the super-resolution and 608

ground-truth images: Fréchet Inception Distance (FID) [58], 609

the widely used Peak Signal-to-Noise Ratio (PSNR) [12], [59], 610

and Structural Similarity Index (SSIM) [60]. Among these, 611

FID was extensively used in evaluating the generative quality 612

of the model, as it improved upon the Inception Score (IS) [7] 613

by directly measuring feature-level distances without relying 614

on a classifier. 615

To assess pixel-wise spectral fidelity, we employed two 616

additional metrics: Spectral Angle Mapper (SAM) [61] and 617

Spectral Reconstruction Error (SRE) [12]. These metrics com- 618

puted the average spectral angle and reconstruction error be- 619

tween super-resolution images and ground-truth data, ensuring 620

spectral consistency. 621

Furthermore, we incorporated two reference-free metrics: 622

the Natural Image Quality Evaluator (NIQE) [62], which 623

quantified perceptual quality, and Average Gradient (AG) [7], 624

which evaluated the preservation of high-frequency details. 625

These metrics provided a holistic evaluation of the model’s 626

performance by addressing: Quantitative accuracy (PSNR, 627

SSIM); Perceptual quality (FID, NIQE); Spectral consistency 628

(SAM, SRE); Sharpness and detail preservation(AG). 629

3) Comparative Methods: To assess the performance of 630

the proposed model, we conducted a comparative analy- 631

sis. This analysis included our model and several state-of- 632

the-art (SOTA) super-resolution approaches, including LE- 633

GAN [12], ViT-ISRGAN [63], DiffuseVAE [17], EDIP-Net 634

[57], SR3 [32], IRSDE [33], EDiffSR [7], and LWTDM 635

[8]. These SOTA SR models are dominant techniques in 636

the field and represent diverse methodologies. Specifically, 637

LE-GAN and ViT-ISRGAN represent GAN-based methods, 638

while DiffuseVAE and EDIP-Net correspond to VAE-based 639

image super-resolution methods. Conversely, SR3 and IRSDE 640

are cutting-edge diffusion-based models for natural image 641

super-resolution. EDiffSR and LWTDM are diffusion-based 642

models specifically designed for remote sensing image super- 643

resolution. All comparative models were fine-tuned on the 644

AID training dataset following the configurations specified in 645

their official implementations, ensuring a fair and consistent 646

comparison. 647

4) Implementation Details: We used a high-end GPU work- 648

station with one NVIDIA A100 Tensor Core GPU and 40 GB 649

of memory to run the algorithms in PyTorch. Training used 650

the Adam optimizer with a learning rate of 0.001 and a batch 651

size of 32. 652
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TABLE II
A QUANTITATIVE COMPARISON OF SOTA SR MODELS (LE-GAN [12],

VIT-ISRGAN [63], DIFFUSEVAE [17], EDIP-NET [57], SR3 [32],
IRSDE [33], EDIFFSR [7], AND LWTDM [8]) PRE-TRAINED ON THE

IMAGENET DATASET (×2) AND FINE-TUNED ON THE AID DATASET (×2,
×4) IN TERMS OF FID, PSNR, SSIM, SAM, SRE, NIQE, AND AG. THE

TESTS WERE CONDUCTED ON THE DEV SPLIT TEST DATA. THE BEST
VALUES ARE HIGHLIGHTED.

ImageNet

Category Method Scale FID ↓ PSNR↑ SSIM↑ SAM ↓ SRE↓ NIQE ↓ AG ↑
GAN LE-GAN

×2

48.39 48.27 0.85 5.61 5.16 12.82 4.51
ViT-ISRGAN 53.26 48.02 0.84 6.97 8.35 12.24 4.81

VAE DiffuseVAE 47.15 45.61 0.8 7.66 9.04 13.27 4.98
EDIP-Net 47.44 45.49 0.84 7.84 8.28 12.84 5.12

Diffusion

SR3 40.52 50.47 0.95 6.55 7.32 10.48 4.82
IRSDE 45.03 48.56 0.85 6.62 7.94 12.42 5.36

EDiffSR 40.41 49.85 0.88 6.68 7.17 11.04 5.62
LWTDM 43.98 46.3 0.77 7.8 9.07 14.27 4.33
Proposed 40.45 52.97 0.95 5.79 5.65 9.86 5.85

AID

Category Method Scale FID ↓ PSNR↑ SSIM↑ SAM ↓ SRE↓ NIQE ↓ AG ↑
GAN LE-GAN

×2

53.13 39.8 0.71 8.09 7.68 14.3 3.9
ViT-ISRGAN 55.2 39.62 0.7 9.66 10.71 16.08 3.91

VAE DiffuseVAE 59.76 37.7 0.67 10.39 11.46 17.01 3.73
EDIP-Net 60.21 37.22 0.7 10.58 11.37 17.06 3.65

Diffusion

SR3 51.43 40.8 0.67 10.07 10.31 13.2 3.98
IRSDE 53.8 40.41 0.71 9.35 10.46 15.7 4.06

EDiffSR 51.49 41.49 0.73 9.11 9.99 14.98 4.07
LWTDM 55.06 39.56 0.64 10.72 12.03 18.04 3.65
Proposed 50.9 41.48 0.75 8.07 7.71 12.03 4.24

GAN LE-GAN

×4

56.19 35.14 0.7 10.14 9.12 16.32 3.46
ViT-ISRGAN 61.05 35.64 0.63 11.31 12.75 18.67 2.82

VAE DiffuseVAE 66.04 33.82 0.6 12.01 13.24 19.26 3.35
EDIP-Net 66.25 32.97 0.63 11.79 13.12 19.04 3.17

Diffusion

SR3 66.02 35.85 0.6 11.51 11.84 14.86 3.4
IRSDE 59.58 35.75 0.64 11.22 11.82 17.36 2.98

EDiffSR 56.67 37.17 0.66 10.06 11.05 16.8 3.55
LWTDM 67.34 32.23 0.58 12.63 14.11 20.11 2.52
Proposed 53.18 38.64 0.71 8.97 8.47 13.75 4.14

B. Model Evaluation on SR Tasks653

The average FID, PSNR, SSIM, SAM, NIQE, and AG val-654

ues for the ImageNet and AID test sets are shown in Table II.655

On the ImageNet dataset, the proposed model achieves top-tier656

performance, ranking first or exhibiting negligible differences657

(< 0.1%) from leading SOTA models (e.g., SR3 and EDiffSR)658

in FID, PSNR, and SSIM. Notably, the proposed model659

surpasses diffusion-based models, achieving a 13.12% higher660

SAM score than SR3. It also obtains the best reference-free661

metrics (NIQE and AG), underscoring its structural integrity662

in low-frequency components. Similar trends are observed on663

the AID dataset. The proposed model matches EDiffSR in664

FID, PSNR, and SSIM, is comparable to LE-GAN in SAM665

and SRE, and outperforms in NIQE and AG.666

Additional results for assessing the generalization ca-667

pacity of the models on ×4 SR on independent RGB668

(DOTA and DIOR), hyperspectral (Houston), and multispectral669

(WWDSSO) datasets are shown in Table III, where the highest670

performances are highlighted in bold. The evaluation results671

indicate that the proposed model ranks first in 6 out of 7 met-672

rics on the DOTA dataset and achieves the highest score in all673

metrics for the DIOR, Houston, and WWDSSO datasets. These674

findings confirm the proposed model’s excellent generalization675

capacity.676

A visual comparison between the proposed model and the677

SOTA SR models is also conducted. Figure 6 demonstrates678

a comparison of ×2 super-resolution results (64 × 64 →679

128× 128) on the AID, DOTA, and DIOR test sets. Our pro-680

posed model consistently generates more realistic and detailed681

reconstruction closely resembling the ground truth image. In682

the case of the “farmland145” image from the AID test set,683

the proposed model captures fine textures in farmland patches.684

TABLE III
A QUANTITATIVE COMPARISON OF THE GENERALIZATION CAPABILITY OF

SOTA SR MODELS (LE-GAN [12], VIT-ISRGAN [63], DIFFUSEVAE
[17], EDIP-NET [57], SR3 [32], IRSDE [33], EDIFFSR [7], AND
LWTDM [8]) ON INDEPENDENT DOTA, DIOR, HOUSTON, AND

WWDSSO DATASETS FOR ×4 SUPER-RESOLUTION TASKS IN TERMS OF
FID, PSNR, SSIM, SAM, SRE, NIQE, AND AG. THE BEST VALUES ARE

HIGHLIGHTED IN BOLD.

DOTA

Category Method Scale FID ↓ PSNR↑ SSIM↑ SAM ↓ SRE↓ NIQE ↓ AG ↑
GAN LE-GAN

×4

26.34 21.31 0.78 6.48 7.04 14.68 2.14
ViT-ISRGAN 26.89 21.69 0.73 9.81 10.78 17.43 3.48

VAE DiffuseVAE 29.65 20.27 0.81 10.99 13.27 18.67 2.28
EDIP-Net 29.46 20.26 0.8 12.51 12.73 18.22 2.09

Diffusion

SR3 24.93 21.82 0.79 11.51 10.81 14.42 2.73
IRSDE 26.82 21.9 0.7 11.17 11.96 16.63 3.07

EDiffSR 24.92 22.66 0.71 9.21 11.03 16.77 2.58
LWTDM 27.48 21.16 0.74 11.65 13.22 19.97 1.9
Proposed 20.63 28.53 0.93 6.58 6.61 10.18 6.23

DOTA

GAN LE-GAN

×4

26.72 19.55 0.72 11.86 11.41 19.37 2.06
ViT-ISRGAN 31.29 20.54 0.67 14.06 14.4 20.78 3.45

VAE DiffuseVAE 34.52 20.15 0.72 14.57 16.3 23.04 2.24
EDIP-Net 32.98 17.94 0.71 15.27 15.62 21.65 2.04

Diffusion

SR3 27.44 20.43 0.72 13.07 15.46 18.05 2.69
IRSDE 27.48 19.62 0.62 13.15 16.21 20.96 3.06

EDiffSR 27.75 22.34 0.68 14.22 13.22 20.84 2.55
LWTDM 30.31 19.87 0.59 15.2 14.15 22.34 1.87
Proposed 22.65 28.21 0.91 7.27 7.82 11.98 6.17

Houston

Category Method Scale FID ↓ PSNR↑ SSIM↑ SAM ↓ SRE↓ NIQE ↓ AG ↑
GAN LE-GAN

×4

26.09 22.71 0.79 10.11 11.75 18.97 5.41
ViT-ISRGAN 30.56 18.46 0.65 11.17 18.06 18.66 6.37

VAE DiffuseVAE 30.59 17.04 0.62 12.67 24.37 20.51 2.62
EDIP-Net 31.49 22.7 0.64 11.26 20.88 19.57 2.66

Diffusion

SR3 27.7 23.75 0.64 13.42 18.7 18.52 3.2
IRSDE 30.81 22.84 0.68 14.99 18.02 16.36 4.05

EDiffSR 28.32 24.91 0.63 13.73 18.44 15.92 5.07
LWTDM 29.35 19.05 0.65 12.78 18.09 19.78 3.25
Proposed 21.04 27.76 0.87 9.71 8.37 15.12 7.89

WWDSSO

GAN LE-GAN

×4

33.62 19.4 0.62 12.69 12.69 19.77 2.04
ViT-ISRGAN 32.97 18.65 0.59 18.38 16.39 23.13 3.44

VAE DiffuseVAE 36.89 17.78 0.54 13.24 19.51 19.66 2.15
EDIP-Net 35.12 17.26 0.56 16.19 15.55 22.37 1.97

Diffusion

SR3 32.23 18.73 0.58 15.61 14.62 19.11 2.59
IRSDE 32.91 17.15 0.58 15.09 13.63 21.15 2.97

EDiffSR 27.41 18.35 0.57 14.86 15.92 22.1 2.56
LWTDM 31.8 18.63 0.53 14.32 15.17 24.39 1.79
Proposed 24.63 27.71 0.82 10.04 9.71 14.66 5.92

The VAE-based models like DiffuseVAE and LWTDM show 685

over-smoothed regions, losing critical texture details. In the 686

case of the “P2541” image from the DOTA test set, the 687

grass area reconstructed by the proposed model aligns more 688

accurately with the ground truth, but competing models (e.g., 689

DiffuseVAE) exhibit blurred details, reflecting weaker spatial 690

generalization. In the case of the “21778” image from the 691

DIOR test set, the proposed model restores clear spatial details 692

of densely built-up areas (as highlighted in the zoomed-in 693

frames), outperforming other models like DiffuseVAE, IRSDE, 694

and LWTDM, which produce noticeable blurs. 695

C. Evaluation for UR Tasks 696

In this section, we present the evaluation results of the 697

proposed WaveDiffUR SDE solver for UR tasks. In the DOTA, 698

DIOR, and Houston testing sets, the highest-resolution data 699

was treated as ground truth, and lower-resolution data was 700

generated using bicubic downsampling. For UR resolutions 701

beyond the highest available ground truth, pseudo-ground-truth 702

images were generated by upsampling the ground truth to 703

match the UR results for evaluation. PSNR and SRE were 704

employed to evaluate spatial fidelity and spectral consistency, 705

respectively. The results are presented in Table IV. 706

The proposed model achieved the highest PSNR and SRE 707

scores across all independent datasets and for all evaluated 708
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AID test
‘farmland_145’

LE-GAN
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SR3

IRSDE EdiffSR LWTDM

DOTA test
‘P2541’

DIOR test
‘21778’

LE-GAN

Proposed Ground truth

SR3

IRSDE EdiffSR LWTDM

LE-GAN

Proposed Ground truth

SR3

IRSDE EdiffSR LWTDM

ViT-ISRGAN DiffuseVAE EDIP-Net

ViT-ISRGAN DiffuseVAE EDIP-Net

ViT-ISRGAN DiffuseVAE EDIP-Net

Fig. 6. ×2 visual comparisons of the proposed model and the SOTA SR
models (LE-GAN [12], ViT-ISRGAN [63], DiffuseVAE [17], EDIP-Net [57],
SR3 [32], IRSDE [33], EDiffSR [7], and LWTDM [8]) on AID, DOTA, and
DIOR test sets. The square image at the left side is the input 64× 64 image,
and the rectangular frames indicate the zoomed-in view of the ×2 super-
resolution results for a better view.

upscaling factors. It significantly outperformed its competitors,709

with an approximate 43% improvement in PSNR and SRE710

for large-scale (> ×32) UR. At extreme magnifications (e.g.,711

×128), it achieved up to 2× improvement in PSNR and SRE.712

This is attributed to the Cross-Scale Pyramid constraint in the713

proposed model, which effectively guides diffusion-denoising714

inference, enabling accurate reconstruction of both spectral715

and spatial details in UR tasks.716

Figure 7 provides a comparative analysis of visual results717

when increasing the UR scale factor from ×16 to ×128. The718

analysis highlights the challenges and performance degrada-719

tion of existing methods when increasing the scale factor.720

Most SOTA models exhibit noticeable degradation in UR721

performance. For example, in the “11834” image from the722

DIOR test, EDIP-Net and DiffuseAVE produce over-smoothed723

outputs. In the “P0615” image from the DOTA test, the724

bridges reconstructed by DiffuseAVE, IRSDE, and LWTDM725

are plagued with textural blurring. In the Houston test,726

LWTDM introduces noticeable color artefacts. In contrast, our727

proposed model leverages the cross-scale pyramid architecture728

of the proposed model in predicting contextual prior to recover729

fine-grained texture, enhancing the performance of diffusion730

models in UR tasks. Such as the details of the bridge in731

“P0615” image from the DOTA test, and the details of the732

building in the Houston test.733

D. Ablation Studies734

In this section, we present extensive experiments to demon-735

strate the effectiveness of each component within our self-736

cascade model.737

1) Component analysis: To evaluate the effectiveness of each738

component in the proposed self-cascade model, we conducted739

an ablation study by removing three key elements from the740

proposed model: CSP conditions, high-frequency restoration,741

and the self-cascade structure, one by one. This produced742

TABLE IV
A QUANTITATIVE COMPARISON OF MODEL PERFORMANCE IN TERMS OF

PSNR AND SRE METRICS OF BACKBONE MODELS (SCALING FROM ×8 TO
×128) USING THE INDEPENDENT DATASETS DOTA, DIOR, HOUSTON,
AND WWDSSO. OUTPUTS MARKED WITH AN ASTERISK (*) INDICATE

EVALUATIONS PERFORMED WITH PSEUDO-GROUND-TRUTH IMAGES,
WHERE THE UR IMAGE RESOLUTION EXCEEDS THE GROUND TRUTH

RESOLUTION.

DOTA

Method Scale
8 16 32 64* 128*

LE-GAN 25.56/8.28 23.91/12.12 21.56/13.87 15.37/16.93 16.51/17.63
ViT-ISRGAN 24.81/9.28 24.71/9.72 19.93/12.02 14.21/16.69 14.31/21.13
DiffuseVAE 25.78/7.82 24.41/10.66 21.34/12.2 16.38/14.43 13.61/19.67
EDIP-Net 26.61/9.98 25.14/10.63 20.34/14.03 16.61/20.99 13.94/26.44

SR3 24.92/10.25 23.38/10.74 20.98/12.74 15.32/22.26 13.58/26.75
IRSDE 25.32/15.31 21.95/14.32 16.35/20.32 14.92/24.12 11.95/34.33

EDiffSR 28.18/7.88 26.21/9.83 21.21/12.83 18.18/17.89 16.21/19.84
LWTDM 23.99/15.62 19.42/16.92 16.62/23.32 15.79/24.43 9.22/37.93
Proposed 28.31/7.37 27.32/8.23 23.32/12.23 20.31/14.38 17.32/15.24

DIOR

Method Scale
8 16 32* 64* 128*

LE-GAN 21.56/11.88 19.31/11.92 18.56/14.87 11.77/18.53 12.31/19.43
ViT-ISRGAN 23.19/9.78 22.71/11.42 18.35/14.74 13.81/15.99 9.92/21.53
DiffuseVAE 23.33/10.68 21.42/11.86 19.81/12.89 15.19/16.52 11.05/20.15
EDIP-Net 23.82/11.78 20.62/12.54 15.91/14.98 15.51/21.33 14.19/24.63

SR3 22.59/10.82 19.59/13.71 17.29/15.12 14.01/18.54 12.15/23.71
IRSDE 21.38/9.83 18.48/13.86 15.42/17.82 11.01/22.41 6.32/27.53

EDiffSR 23.21/9.81 21.92/10.32 18.84/14.32 14.22/17.12 10.36/21.96
LWTDM 21.03/11.11 17.72/12.23 15.72/16.91 12.91/19.01 9.31/22.88
Proposed 24.92/8.87 23.31/8.72 22.33/12.21 17.79/15.42 13.32/18.85

Houston

Method Scale
8 16 32 64 128*

LE-GAN 24.96/9.28 21.51/10.52 17.66/13.67 18.97/16.73 17.01/16.83
ViT-ISRGAN 32.61/11.67 30.79/13.82 27.39/18.34 23.81/22.19 18.41/25.31
DiffuseVAE 29.71/9.36 33.19/11.78 28.99/14.12 20.85/21.35 21.42/22.57
EDIP-Net 34.32/14.14 33.31/14.61 28.01/15.13 26.19/20.43 21.72/30.8

SR3 33.29/11.31 27.19/14.72 22.49/17.01 20.65/19.31 14.65/28.71
IRSDE 26.78/17.86 25.92/21.52 16.71/28.39 14.18/33.73 10.88/32.82

EDiffSR 35.42/10.19 32.34/10.32 24.72/14.52 21.36/17.62 17.63/20.81
LWTDM 28.22/18.03 26.27/22.91 19.61/26.29 12.58/29.28 11.91/34.45
Proposed 37.69/7.35 32.83/8.46 29.79/12.75 26.32/14.65 23.98/15.45

WWDSSO

Method Scale
8 16 32 64 128

LE-GAN 28.36/7.48 26.91/9.92 20.36/11.67 17.37/15.73 18.51/17.03
ViT-ISRGAN 27.71/16.47 24.39/19.42 22.59/21.34 19.01/25.99 14.21/30.31
DiffuseVAE 28.61/12.76 26.49/15.38 23.39/18.72 18.95/22.75 15.52/26.17
EDIP-Net 30.12/16.94 25.71/18.41 23.61/18.53 17.09/25.63 13.82/33.2

SR3 29.39/13.51 26.99/17.12 21.79/17.21 17.35/21.51 14.95/28.91
IRSDE 22.88/23.26 20.62/25.32 13.41/32.19 8.48/36.53 6.68/36.62

EDiffSR 31.92/10.39 28.84/12.32 24.22/15.12 20.36/19.62 16.13/21.21
LWTDM 28.32/19.03 25.97/25.11 22.51/26.69 15.38/31.88 14.11/32.85
Proposed 34.19/8.75 31.33/9.26 27.79/13.95 25.32/14.85 22.48/16.85

four simplified models: Baseline (i.e. Latent Diffusion U- 743

Net [48]), Model-1 (adding CSP constraints only), Model-2 744

(adding wavelet domain only), Model-3 (adding CSP con- 745

straints and wavelet domain), and the proposed model. Table 746

V summarizes the model configurations and performance 747

evaluation results in terms of FID, SRE, and NIQE. As shown 748

in Table V, the non-wavelet diffusion U-Net (baseline) failed 749

to converge in terms of FID, SRE, and NIQE, indicating 750

the baseline generated results suffer from severe blur in the 751

spectral and spatial domain. In comparison, Model-1 generated 752

better fidelity in FID (63.62 vs. 81.28), indicating the wavelet 753

decomposition helps constrain the solution in UR process. 754

Model-2 produced better results in spectral details (SRE: 19.15 755

vs. 27.74), indicating that high-frequency restoration improves 756

spectral consistency. 757

When both CSP constraints and the high-frequency restora- 758

tion module are combined into the Model-3 model, the FID 759

and SRE metrics improve substantially. The proposed embed- 760

ding with self-cascade strategy requires no additional external 761

parameters, as the same model is reused without fine-tuning. 762

This integration yields significant improvements across all 763
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Fig. 7. The visual comparisons with SOTA SR models (LE-GAN [12], ViT-
ISRGAN [63], DiffuseVAE [17], EDIP-Net [57], SR3 [32], IRSDE [33],
EDiffSR [7], and LWTDM [8]) on ×16 DIOR, ×32 DOTA, ×64 Houston
(R:46, G:30, B:14) and ×128 WWDSSO (R:4, G:3, B:2) test set. The square
image at the left side is the input 64× 64 image, and the rectangular frames
indicate the zoomed-in view of the UR results for a better view.

TABLE V
ABLATION ANALYSIS OF THE PROPOSED METHODOLOGY IN THE ×8 UR

TASK AS AN EXAMPLE.

Model CSP constraints Wavelet domain Self-cascade Param.(M) FID SRE NIQE

Baseline [48] 18.84 81.28 27.74 18.89
Model-1 ✓ 24.82 63.62 26.49 16.82
Model-2 ✓ 22.14 87.82 19.15 15.52
Model-3 ✓ ✓ 29.12 59.15 16.24 14.33
Proposed ✓ ✓ ✓ 29.12 54.82 9.81 14.03

metrics, including FID, SRE, and NIQE.764

These findings demonstrate the effectiveness of the pro-765

posed methodology in enhancing large-scale image upscaling.766

Moreover, the low-complexity design of the components en-767

sures that the self-cascade architecture remains both efficient768

and powerful.769

2) Effectiveness of CSP constraints: We analyzed the impact770

of varying the number of heads in the cross-attention blocks771

for modeling CSP constraint conditions. As shown in Figure 8,772

the proposed model achieves slightly better FID performance773

with 16 heads compared to 12 heads, while the highest PSNR774

results are obtained with 12 heads. To balance model size and775

performance effectively, we set the default number of heads776

to 12.777

3) Effectiveness of high-frequency restoration: To demon-778

strate the capability of high-frequency restoration in recovering779

fine details for accurate UR reconstruction, we present a visual780

comparison in Figure 9.781

Comparing the UR outputs of Model-1 (cross-scale con-782

dition only) and Model-2 (high-frequency predictor only), it783

is evident that Model-2 produces overly sharpened details784

compared to Model-1. Comparing the UR results of Model-3785

and proposed model, the combination of the high-frequency786
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Fig. 8. Ablation analysis of CSP constraint conditions with different numbers
of heads in cross-attention blocks in terms of FID and SRE.

LR Model-1 Model-2

HRModel-3 Model-4

Fig. 9. Visual ablation analysis of the ×128 UR results from the model
configurations listed in Table V.

predictor and cross-scale condition achieves a superior balance 787

between high-frequency and low-frequency components. This 788

is particularly noticeable in features such as road edges and 789

surface textures. These observations emphasize that the high- 790

frequency predictor significantly enhances UR performance 791

by predicting enriched high-frequency details with additional 792

priors, effectively improving overall reconstruction quality. 793

4) Effectiveness of self-cascade strategy: Figure 10 illus- 794

trates a quantitative comparison of model performance be- 795

tween traditional one-step fine-tuning and self-cascade strategy 796

with different backbone models in terms of NIQE and AG 797

metrics. Performance degradation is observed across all mod- 798

els in large-scale UR tasks, but the self-cascade strategy with 799

different backbone models demonstrates robust performance. 800

The proposed approach achieves the best performance in NIQE 801

and AG, with only 11.8% and 19.1% performance degradation 802

in NIQE and AG, respectively, as the magnification scale 803

increases from ×4 to ×128. These observations indicate the 804

proposed WaveDiffUR architecture with self-cascade strategy 805

is compatible with existing SR models to handle the ill-pose 806

problem in the UR task. 807

To provide an intuitive comparison, we present a visual 808
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Fig. 10. A comparison of model performance between WaveDiffUR-based
models with different backbone models (i.e., LE-GAN, EDiffSR, and Diffu-
seVAE) in the traditional one-step fine-tuning and self-cascade strategy for
UR tasks in terms of NIQE and AG.

analysis of the traditional one-step fine-tuning and self-cascade809

strategy in Figure 11. We observe that the self-cascade-based810

UR images recover more accurate details (e.g., white lines on811

the bay and embankment in simulated evaluations, or roads812

in real-world evaluations). In contrast, the one-step-based UR813

images tend to introduce exaggerated sharpening with pseudo-814

details. A possible explanation is the accumulation of cross-815

scale biases during the one-step transition, which hampers the816

realistic reconstruction of high-frequency components, leading817

to overly sharp and unnatural details.818

5) Model efficiency: To evaluate the efficiency of the self-819

cascade strategy, we compared the parameters, VRAM usage,820

training time, number of FLOPs, and inference times of the821

models on one NVIDIA A100 Tensor Core GPU and 40822

GB of memory. As shown in Figure 12, while the proposed823

baseline model is not the lightest among existing DPM-based824

SR models in terms of parameters, VRAM usage and the825

number of FLOPs, it remains highly competitive in terms of826

efficiency.827

Notably, the proposed model within the self-cascade UR ar-828

chitecture demonstrates faster inference speeds compared to its829

competitors, especially for large-scale UR tasks (> ×16). This830

efficiency gain is primarily due to the wavelet transformation831

integrated into our model. By compressing the input data and832

processing high-frequency and low-frequency components in833

parallel at each UR scale, the wavelet transformation reduces834

memory requirements for storing intermediate feature maps835

and decreases the number of convolutional operations, thereby836

lowering computational costs. These optimizations enable the837

self-cascade architecture to outperform other approaches in838

computational efficiency, making our method more practical839

and scalable for real-world applications.840

V. CONCLUSIONS AND FUTURE WORK841

This study introduces the WaveDiffUR architecture, ad-842

dressing the challenges of remote sensing SR and UR tasks.843

The proposed CSP-WaveDiffUR model achieves superior per-844

formance compared to SOTA methods by incorporating CSP845

constraint conditions based on cross-scale spectral-spatial un-846

mixing rules. This approach effectively mitigates degrada-847

tion in accuracy, perceptual quality, spectral consistency, and848

detail sharpness. CSP-WaveDiffUR achieves up to threefold849

x32 pseudo x64 pseudo x128 pseudo

x2 UR x4 UR x8 UR x16 UR x32 UR x64 UR x128 UR
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b. 
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Fig. 11. Visual comparison of UR images generated by the one-step and
self-cascade approaches, highlighting spatial fidelity and channel consistency
on (a) the DIOR dataset and (b) the WWDSSO dataset. Zoom-in views within
the yellow boxes offer enhanced visual detail.

improvement in PSNR and twofold reduction in SRE at ex- 850

treme magnifications (e.g., ×128), while maintaining leading 851

performance in NIQE and AG metrics. 852

Despite its advantages, the method relies on high-quality 853

LR and reference image pairs and struggles with degradation 854

variability across different systems. Future work will focus on 855

reducing dependency on reference images for blind SR tasks 856

and enhancing adaptability to diverse degradation patterns. 857

Additionally, we aim to improve the model’s generalization 858

ability by incorporating self-supervised learning techniques 859

and domain adaptation strategies, enabling robust performance 860

across diverse imaging conditions. Moreover, integrating real- 861

time processing capabilities will be a key focus, facilitating 862

deployment in time-sensitive applications such as disaster 863

response and environmental monitoring. These improvements 864

aim to extend the framework’s applicability and robustness, 865

with potential transformative impacts on environmental mon- 866

itoring, urban planning, disaster response, and precision agri- 867

culture. We will release the source code on GitHub upon publi- 868

cation with this link: https://github.com/nedvede/WaveDiffUR. 869

We hope this will encourage further research in remote sensing 870

ultra-resolution. 871
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Fig. 12. Efficiency comparison of SR models: (a) number of parameters (M),
(b) VRAM usage (GB), (c) training time for 500 epochs on a single NVIDIA
A100 GPU (hours), (d) GFLOPs per forward pass, and (e) inference time
(s) across varying upscaling rates (UR). The proposed model demonstrates
competitive efficiency and significantly faster inference, especially at higher
UR scales (e.g., ×16 and above.

REFERENCES872

[1] G. Vivone, L.-J. Deng, S. Deng, D. Hong, M. Jiang, C. Li, W. Li,873

H. Shen, X. Wu, J.-L. Xiao et al., “Deep learning in remote sensing874

image fusion: Methods, protocols, data, and future perspectives,” IEEE875

Geoscience and Remote Sensing Magazine, vol. 13, pp. 269 – 310, 2024.876

[2] X. Wang, J. Yi, J. Guo, Y. Song, J. Lyu, J. Xu, W. Yan, J. Zhao,877

Q. Cai, and H. Min, “A review of image super-resolution approaches878

based on deep learning and applications in remote sensing,” Remote879

Sensing, vol. 14, no. 21, p. 5423, 2022.880

[3] Z.-C. Wu, Y.-J. Li, T.-Z. Huang, L.-J. Deng, and G. Vivone, “Crodosr:881

Tensor cross-domain rank for hyperspectral image super-resolution,”882

IEEE Transactions on Geoscience and Remote Sensing,, vol. 62, 2024.883

[4] S. Chen, L. Zhang, and L. Zhang, “Cross-scope spatial-spectral in-884

formation aggregation for hyperspectral image super-resolution,” IEEE885

Transactions on Image Processing, vol. 33, pp. 5878–5891, 2024.886

[5] Q. Liu, X. Meng, F. Shao, and S. Li, “Supervised-unsupervised com-887

bined deep convolutional neural networks for high-fidelity pansharpen-888

ing,” Information Fusion, vol. 89, pp. 292–304, 2023.889

[6] J. Zhang, J. Lei, W. Xie, Z. Fang, Y. Li, and Q. Du, “Superyolo: Super890

resolution assisted object detection in multimodal remote sensing im-891

agery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61,892

pp. 1–15, 2023.893

[7] Y. Xiao, Q. Yuan, K. Jiang, J. He, X. Jin, and L. Zhang, “Ediffsr: An894

efficient diffusion probabilistic model for remote sensing image super-895

resolution,” IEEE Transactions on Geoscience and Remote Sensing,896

vol. 62, 2023.897

[8] T. An, B. Xue, C. Huo, S. Xiang, and C. Pan, “Efficient remote898

sensing image super-resolution via lightweight diffusion models,” IEEE899

Geoscience and Remote Sensing Letters, vol. 21, 2024.900

[9] D. He, Q. Shi, J. Xue, P. M. Atkinson, and X. Liu, “Very fine901

spatial resolution urban land cover mapping using an explicable sub-902

pixel mapping network based on learnable spatial correlation,” Remote903

Sensing of Environment, vol. 299, p. 113884, 2023.904

[10] Y. Shi, L. Han, A. Kleerekoper, S. Chang, and T. Hu, “Novel cropdocnet905

model for automated potato late blight disease detection from unmanned906

aerial vehicle-based hyperspectral imagery,” Remote Sensing, vol. 14,907

no. 02, p. 396, 2022.908

[11] H. Fu, F. Peng, X. Li, Y. Li, X. Wang, and H. Ma, “Continuous optical909

zooming: A benchmark for arbitrary-scale image super-resolution in real910

world,” in Proceedings of the IEEE/CVF Conference on Computer Vision911

and Pattern Recognition, 2024, pp. 3035–3044.912

[12] Y. Shi, L. Han, L. Han, S. Chang, T. Hu, and D. Dancey, “A latent 913

encoder coupled generative adversarial network (le-gan) for efficient hy- 914

perspectral image super-resolution,” IEEE Transactions on Geoscience 915

and Remote Sensing, vol. 60, pp. 1–19, 2022. 916

[13] X. Zhu, L. Zhang, L. Zhang, X. Liu, Y. Shen, and S. Zhao, “Gan- 917

based image super-resolution with a novel quality loss,” Mathematical 918

Problems in Engineering, vol. 2020, no. 1, p. 5217429, 2020. 919

[14] J. Song, H. Yi, W. Xu, X. Li, B. Li, and Y. Liu, “Esrgan-dp: Enhanced 920

super-resolution generative adversarial network with adaptive dual per- 921

ceptual loss,” Heliyon, vol. 9, no. 4, 2023. 922

[15] Z.-S. Liu, W.-C. Siu, and Y.-L. Chan, “Photo-realistic image super- 923

resolution via variational autoencoders,” IEEE Transactions on Circuits 924

and Systems for video Technology, vol. 31, no. 4, pp. 1351–1365, 2020. 925

[16] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” 926

Advances in neural information processing systems, vol. 33, pp. 6840– 927

6851, 2020. 928

[17] J. Liu, Z. Yuan, Z. Pan, Y. Fu, L. Liu, and B. Lu, “Diffusion model 929

with detail complement for super-resolution of remote sensing,” Remote 930

Sensing, vol. 14, no. 19, p. 4834, 2022. 931

[18] Y. Liu, J. Yue, S. Xia, P. Ghamisi, W. Xie, and L. Fang, “Diffusion 932

models meet remote sensing: Principles, methods, and perspectives,” 933

IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1– 934

22, 2024. 935

[19] Z. Yu, M. Y. I. Idris, and P. Wang, “A diffusion-based framework 936

for terrain-aware remote sensing image reconstruction,” 2025. [Online]. 937

Available: https://arxiv.org/abs/2504.12112 938

[20] Y. Zhang and M. He, “Multi-spectral and hyperspectral image fusion 939

using 3-d wavelet transform,” Journal of electronics (China), vol. 24, 940

pp. 218–224, 2007. 941

[21] Y. Zheng, J. Li, Y. Li, J. Guo, X. Wu, and J. Chanussot, “Hyperspectral 942

pansharpening using deep prior and dual attention residual network,” 943

IEEE transactions on geoscience and remote sensing, vol. 58, no. 11, 944

pp. 8059–8076, 2020. 945

[22] J. Li, K. Zheng, W. Liu, Z. Li, H. Yu, and L. Ni, “Model-guided coarse- 946

to-fine fusion network for unsupervised hyperspectral image super- 947

resolution,” IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 948

1–5, 2023. 949

[23] J. Li, K. Zheng, Z. Li, L. Gao, and X. Jia, “X-shaped interactive 950

autoencoders with cross-modality mutual learning for unsupervised hy- 951

perspectral image super-resolution,” IEEE Transactions on Geoscience 952

and Remote Sensing, vol. 61, pp. 1–17, 2023. 953

[24] X. Zheng, R. Feng, J. Fan, W. Han, S. Yu, and J. Chen, “Msisr- 954

stf: Spatiotemporal fusion via multilevel single-image super-resolution,” 955

Remote Sensing, vol. 15, no. 24, p. 5675, 2023. 956

[25] L. Gao, J. Li, K. Zheng, and X. Jia, “Enhanced autoencoders with 957

attention-embedded degradation learning for unsupervised hyperspectral 958

image super-resolution,” IEEE Transactions on Geoscience and Remote 959

Sensing, vol. 61, pp. 1–17, 2023. 960

[26] L. Chen, H. Liu, M. Yang, Y. Qian, Z. Xiao, and X. Zhong, “Remote 961

sensing image super-resolution via residual aggregation and split atten- 962

tional fusion network,” IEEE Journal of Selected Topics in Applied Earth 963

Observations and Remote Sensing, vol. 14, pp. 9546–9556, 2021. 964

[27] H. Chen, X. He, L. Qing, Y. Wu, C. Ren, R. E. Sheriff, and C. Zhu, 965

“Real-world single image super-resolution: A brief review,” Information 966

Fusion, vol. 79, pp. 124–145, 2022. 967

[28] P. Behjati, P. Rodriguez, C. Fernández, I. Hupont, A. Mehri, and 968
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