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Abstract

Squalene epoxidase is a key enzyme in the cholesterol biosynthesis pathway, making it a
promising therapeutic target for cholesterol-related disorders. In this study, we integrated
computational and experimental approaches to investigate the inhibitory potential of
flavonoids isolated from Erythrina speciosa Andrews, Fabaceae, against squalene
epoxidase. Molecular docking revealed strong binding affinities for apigenin and vitexin,
driven by hydrophobic and electrostatic interactions with critical residues in the squalene
epoxidase active site. Molecular dynamics simulations confirmed their binding stability,
with low root mean square deviation values, consistent hydrogen bonding, and distinct
conformational states supported by potential energy landscape analysis. Interaction
energies calculations and binding free energy calculations using MM/PBSA highlighted
their favorable binding free energies, underscoring their high affinity for squalene
epoxidase. Absorption, distribution, metabolism, and excretion-toxicity analysis
demonstrated that both apigenin and vitexin possess favorable drug-like properties,
including high bioavailability and compliance with Lipinski's rule of five. Experimental
validation through in vitro assays confirmed these findings, with apigenin and vitexin
exhibiting low 1Cso values (4.70 £ 0.09 and 3.13 £ 0.23 pM, respectively). Enzyme
Kinetics revealed distinct inhibition mechanisms: apigenin as a mixed inhibitor (Ki = 2.32
pMM) and vitexin as a noncompetitive inhibitor (Ki = 3.18 puM). This study highlights

apigenin and vitexin as potent squalene epoxidase inhibitors, presenting them as

promising lead compounds for further pharmacological development. Moreover, the

alignment between computational predictions and experimental results underscores the
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reliability of the employed computational pipeline, paving the way for future structure-

based drug design targeting squalene epoxidase and related enzymes.

Keywords

Enzyme inhibition mechanism; Cholesterol-lowering therapeutics; Enzyme Kinetics;

Natural product inhibitors; Molecular modeling
1. Introduction

Squalene epoxidase is a key enzyme in the cholesterol synthesis pathway, responsible for
catalyzing the initial oxygenation of squalene into 2,3-oxidosqualene. (Zhang et al.
2024). This reaction represents a critical regulatory node, as it commits squalene towards
sterol production, including cholesterol in humans and ergosterol in fungi (Chua et al.
2020). Dysregulation of squalene epoxidase activity is associated with various
pathophysiological conditions, such as hypercholesterolemia, metabolic syndrome, and
hormone-dependent cancers like breast and prostate cancer (Giacomini et al. 2021).
Furthermore, overexpression of squalene epoxidase has been linked to poor prognosis in
certain cancers, making it a potential biomarker for tumor progression (Cirmena et al.
2018). In addition to its relevance in human diseases, squalene epoxidase serves as a
promising target for antifungal agents, as the inhibition of ergosterol synthesis in fungi
compromises cell membrane integrity, leading to cell death. Existing squalene epoxidase
inhibitors, such as terbinafine, have demonstrated clinical success, particularly in treating
fungal infections, but challenges such as resistance and off-target effects highlight the
need for novel, selective inhibitors (Cirmena et al. 2018). Therefore, a deeper
understanding of the enzyme's structural dynamics, substrate interactions, and inhibition

mechanisms is crucial for the rational design of next-generation therapeutics.
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Erythrina speciosa Andrews, a member of the Fabaceae family, is a tropical plant widely
recognized for its ornamental value and traditional medicinal uses (Fahmy et al. 2020a).
Native to South America, this species has been extensively studied for its diverse
chemical constituents, which include alkaloids, flavonoids, terpenoids, and phenolic acids
(Konozy et al. 2003; Rambo et al. 2019; Fahmy et al. 2020b). Among these, flavonoids
stand out as bioactive secondary metabolites with a wide range of pharmacological
activities, such as antioxidant, anti-inflammatory, antitumor, and antimicrobial effects
(Hernandez-Rodriguez et al. 2019; Alwaili et al. 2024a; Alruhaimi et al. 2024a). The
therapeutic potential of flavonoids has been attributed to their ability to modulate
biological pathways, interact with enzymes, and scavenge free radicals (Kamel et al.
2016; Kamel et al. 2023a; Alwaili et al. 2024b). Erythrina speciosa, in particular, has
shown promising biological activities, including cytotoxic and antidiabetic properties,
due to its rich phytochemical profile (Tripathi et al. 2021; Kamel et al. 2025b). In recent
years, natural compounds like flavonoids have garnered significant attention as enzyme
inhibitors in drug discovery and development (Alruhaimi et al. 2024b; Kamel et al.
2025a). These compounds often exhibit high specificity, lower toxicity, and reduced side
effects compared to synthetic counterparts, making them attractive candidates for
therapeutic applications (Correia-da-Silva et al. 2014). Their structural diversity allows
them to target enzymes involved in various metabolic and signaling pathways, including
those relevant to cholesterol biosynthesis, inflammation, and oxidative stress (Farzaei et
al. 2019).

The combined use of in vitro and in silico techniques has revolutionized the study of

natural compounds as potential enzyme inhibitors, providing complementary insights into
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their inhibitory mechanisms and therapeutic potential (Kamel et al. 2024c; Kamel et al.
2024d). In vitro studies offer direct evidence of inhibitory activity by measuring enzyme
kinetics and determining critical parameters such as 1Cso and Ki values (Kamel et al.
2024b; Alghtani et al. 2024; Kamel et al. 2024a). These experiments are essential for
validating the efficacy of natural compounds and their specific interactions with enzymes
like squalene epoxidase. On the other hand, in silico methods, including molecular
docking, molecular dynamics (MD) simulations, MM/PBSA (Molecular Mechanics
Poisson-Boltzmann Surface Area) free energy calculations, and principal component
analysis (PCA), offer a deeper understanding of the structural and energetic aspects of
enzyme-ligand interactions (Kamel et al. 2024e; Kamel et al. 2022). Docking studies
provide initial insights into binding modes and affinities, while MD simulations
demonstrate the complex’'s dynamic behavior throughout time. MM/PBSA calculations
are instrumental in quantifying binding free energies, and PCA highlights conformational
changes in the enzyme upon ligand binding (Kamel et al. 2024f; Kamel et al. 2023b, c).
Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
predictions evaluate the pharmacokinetic and safety profiles of the compounds, ensuring
their drug-likeness (Norinder and Bergstrém 2006). Together, these integrated approaches
allow for the comprehensive assessment of natural compounds' inhibitory activity against
squalene epoxidase, bridging the gap between computational predictions and
experimental validation while accelerating the discovery of novel inhibitors.

This investigation aims to investigate the inhibitory potential of flavonoids that have been
isolated from Erythrina speciosa against squalene epoxidase, a key enzyme in the sterol

biosynthesis pathway and a promising target for therapeutic intervention in
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hypercholesterolemia and fungal infections. By employing a combined in vitro and in
silico approach, this study seeks to elucidate the structural and energetic basis of the
interactions between the flavonoids and squalene epoxidase. The in vitro analysis will
determine the inhibitory potency and mode of action, while in silico studies, including
molecular docking, MD simulations, MM/PBSA binding energy calculations, potential
energy landscape (PEL), and ADMET predictions, will provide a comprehensive
understanding of binding affinities, dynamic stability, and pharmacokinetic profiles. This
integrative approach aims to identify promising lead compounds from Erythrina speciosa
flavonoids, laying the foundation for the development of novel squalene epoxidase
inhibitors with potential therapeutic applications.

2. Materials and methods

2.1. Phytochemical investigation

2.1.1. General experimental procedure

Commercial-grade solvents were used for the phytochemical investigation. TLC analyses
were operated on silica gel 60 GFzs4 plates (Merck) and the compounds were visualized
by spraying with NHs/AICI;. Silica gel 60 (Merck) was utilized for column
chromatography and the preparative paper chromatography was also used for the
separation. The NMR spectra were recorded on Bruker AV-400 spectrometer (400 and
100 MHz for *H and 3C, respectively) using DMSO deuterated solvent for all analyses.
The chemical shifts (3) were reported in parts per million (ppm) from the internal
standard tetramethylsilane. The fresh leaves of Erythrina speciosa Andrew, Fabaceae,
were collected from EI-Orman Botanical Garden, Giza, Egypt in June 2021. The plant

was authenticated by the Botanists in the garden and the Botanists in the Faculty of
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Science, Beni-Suef University. A voucher specimen (BU-NPL-116-150621) was
deposited at the Herbarium of our natural products laboratory at the Faculty of Science,

Beni-Suef University, Egypt.

2.1.2. Extraction and isolation

The shade-dried leaves of Erythrina speciosa (1 kg) were ground and extracted by
maceration in 70% methanol (7 |, repeated 4 times) at room temperature. The extract was
collected and evaporated under reduced pressure at 50 °C until dry, yielding a black
sticky mass (182 g). The crude extract was dissolved in water and then partitioned with
chloroform (1.5 1, five times) and n-butanol (1.5 I, 5 times). The extracts were collected
and evaporated in vacuo to produce chloroform extract (12 g), n-butanol extract (39 g),
and water extract (109 g). A 25 g portion of the n-butanol fraction was chromatographed
over a polyamide column (250 g of polyamide), with the column gradient eluted using
water and ethanol (100:0 to 0:100). The fractions obtained from the polyamide column
were collected and analyzed using paper chromatography, resulting in nine fractions (1-
9). Fraction 2 was further chromatographed on preparative paper chromatography to yield
three subfractions (A, B, and C). Subfraction A was purified on a Sephadex LH-20
column, resulting in compound 4 (16 mg). Fraction 5 (3 g) was subjected to silica gel
column chromatography, yielding two pure compounds: compound 2 (18 mg) and 3 (23

mq). Fraction 6 (0.94 g) was purified on a silica gel column to obtain compound 1 (19
mQ).

Apigenin (1): yellow crystals, *H NMR (400 MHz, DMSO-ds) & 7.90 (2H, d, J = 8.5, H-
2/6'), 6.90 (2H, d, J = 8.5, H-3/5"), 6.70(1H, s, H-3), 6.40 (1H, d, J = 2 Hz, H-8), 6.20

(1H, d, J =2 Hz, H-6). °C NMR (100 MHz, DMSO-ds) 5 181.50 (C-4), 163.80 (C-2),



163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

163.60 (C-7), 161.40 (C-4'), 161.30 (C-5), 157.20 (C-9), 128.30 (C-2/6"), 121.10 (C-1Y),

116.80 (C-5'), 115.80 (C-3'), 103.60 (C-10), 102.80 (C-3), 98.70 (C-6), 93.90 (C-8).

Vitexin (apigenin-8-C-p-glucopyranoside) (2): yellow powder, *H NMR (400 MHz,
DMSO-ds) & 13.16 (s, 1H), 8.03 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 8.3 Hz, 2H), 6.77 (s,
1H), 6.27 (s, 1H), 4.71 (d, J = 9.8 Hz, 1H), 3.86 (d, J = 9.2 Hz, 1H), 3.77 (d, J = 11.6 Hz,
1H), 3.50 (m, 1H), 3.27 (s, 2H). 13C NMR (100 MHz, DMSO-ds) & 182.51, 164.41,
163.39, 161.63, 160.87, 156.46, 129.41, 122.06, 116.32, 105.13, 104.95, 102.89, 98.69,

82.25,79.12, 73.88, 71.34, 71.04, 61.76.

Isovitexin (apigenin-6-C-p-glucopyranoside) (3): yellow powder, *H NMR (400 MHz,
DMSO-ds) & 13.57 (s, 1H), 7.93 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.78 (s,
1H), 6.53 (s, 1H), 4.61 (d, J = 9.8 Hz, 1H), 4.06 (t, J = 9.1 Hz, 1H), 3.70 (dd, J = 11.9,
1.8 Hz, 1H), 3.43 (dd, J = 11.8, 5.7 Hz, 1H), 3.25 — 3.10 (m, 2H). $3C NMR (100 MHz,
DMSO-ds) 6 182.41, 163.99, 163.90, 161.67, 161.13, 156.72, 128.93, 121.56, 116.47,

109.35, 103.83, 103.24, 94.13, 82.02, 79.42, 73.54, 71.08, 70.69, 61.95.

Neoschaftoside (apigenin-6-C-p-D-glucopyranoside-8-C-f-L-arabinopyranoside)  (4):
yellow powder, *H NMR (400 MHz, DMSO-ds) & 13.90 (s, 1H), 8.02 (d, J = 8.5 Hz, 2H),
6.92 (d, J = 8.5 Hz, 2H), 6.78 (s, 1H), 5.48 (br s, 1H), 4.74 (d, J = 9.8 Hz, 1H), 4.09 (s,
1H) 3.86 — 3.76 (m, 2H), 3.70 (m, 1H), 3.66 (s, 2H), 3.61 — 3.52 (m, 1H), 3.44-3.33 (m,
2H), 3.25 (d, J = 9.0 Hz, 1H), 3.17 (s, 1H). 3C NMR (100 MHz, DMSO-ds) & 182.66,
164.55, 162.79, 161.82, 155.50, 129.43, 121.90, 116.37, 110.86, 103.88, 103.67, 102.73,

82.33, 79.14, 73.70, 71.30, 71.12, 71.05, 70.39, 70.23, 67.08, 63.68, 61.84.
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2.2. In silico studies

2.2.1. System preparation

To guarantee stability, the flavonoid structures utilized in this investigation underwent
geometry optimization. Using the 6-311G(d,p) basis set, this procedure was carried out at
the B3LYP functional level, establishing each structure as a real energy minimum by
demonstrating the absence of imaginary frequencies (Lee et al. 1988; Becke 1988; Hehre
et al. 1986). The three-dimensional structure of human squalene epoxidase was retrieved
from the Protein Data Bank (PDB ID: 6C6N, resolution 2.30 A) and subjected to
modeling to restore missing residues using Swiss-PdbViewer (Guex and Peitsch 1997).
Structural refinement of the squalene epoxidase model included an initial inspection with
UCSF Chimera, which involved removing nonstandard residues to prepare the enzyme
for further analysis (Pettersen et al. 2004). For molecular docking, AutoDock Tools 1.5.6
(ADT) was employed to define a grid box around the enzyme's active site, and any co-
crystallized ligands were removed from the structure (Trott and Olson 2010). The grid
box has the following dimensions: size_x = 30, size_y = 46, and size_z = 36; center_x = -
18.424, center y = 76.086, and center z = 55.299. To optimize compatibility with
docking, Density Functional Theory computations were performed on isolated flavonoids
using Gaussian 16, ensuring their geometries were refined for accurate interaction studies
(Frisch et al. 2016). The final preparation steps involved assigning Gasteiger charges to
isolated phytochemicals and Kollman charges to the squalene epoxidase enzyme,

completing the setup for the molecular docking experiments.

2.2.2. Molecular docking analysis
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The preparation of the squalene epoxidase structure for docking involved a series of
refinements using AutoDock Tools (ADT). To improve possible hydrogen bonding
interactions—a crucial component of precise docking simulations—polar hydrogen atoms
were incorporated into the enzyme model. Grid box parameters were meticulously
defined to encompass the active site residues entirely, ensuring precise targeting of the
binding region (Kamel et al. 2024c). Following these modifications, docking simulations
were performed using AutoDock Vina 1.5.6 to evaluate the binding energies of isolated
flavonoids within the enzyme’s active site (Trott and Olson 2010). The process adhered to
a rigorously developed and previously validated protocol established in our laboratory.
This protocol emphasized precise grid dimension adjustments to maximize docking
accuracy and ensure reliable and reproducible assessments of binding interactions

(Alruhaimi et al. 2024b; Kamel et al. 2024d; Kamel et al. 2024e).
Docking Validation Method

The co-crystallized ligand was extracted from the receptor and re-docked under identical
conditions. The accuracy of the docking protocol was assessed by calculating the root-
mean-square deviation between the top-ranked pose and the original crystallographic
coordinates, with an RMSD of less than 2.0 A indicating an acceptable redocking. Once
the method was validated, the clinically relevant antifungal agent terbinafine was docked
into the active site of squalene epoxidase using the same parameters. The resulting poses
were then evaluated for predicted binding affinity, key ligand-receptor interactions, and
congruence with previously reported structure-activity relationships, thereby ensuring the
robustness of the docking procedure (the results of docking validation are included in the

Supplementary information).

10



229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

2.2.3. Molecular dynamics simulation

To investigate the interaction dynamics between squalene epoxidase (PDB ID: 6C6N)
and the isolated flavonoids, docking was initially employed to explore the enzyme-
inhibitor complexes with the most favorable binding energies. For a thorough assessment
of their behavior, these high-performing complexes were put through MD simulations
using GROMACS 2022.4 that ran for 200 nanoseconds (ns) (Bauer et al. 2022; Abraham
et al. 2015). Before initiating the simulations, the docked inhibitors were extracted and
prepared for parameterization using GROMACS tools. Interaction parameters were
defined using the CHARMM36m force field, and a realistic aquatic environment was
simulated using the CHARMM-modified TIP3P water model (Bauer et al. 2022;
Abraham et al. 2015). Each inhibitor's geometric parameters and topologies were created
using the CGenFF server (https://cgenff.com/) and added to the squalene epoxidase

system's full topology file.

TIP3P water molecules were used to solvate the enzyme-inhibitor complexes and an
unbound squalene epoxidase control, which were placed inside a dodecahedral simulation
box. The ultimate simulation box volume, which was around 856.14 nm3, permitted
unhindered molecule mobility. To balance the system's charge, a chloride ion was added
(MacKerell et al. 1998). Using the steepest descent approach for 10 ps, energy reduction
was carried out to guarantee structural integrity by eliminating any steric conflicts or
unfavorable atomic interactions (Hess et al. 2008). Two phases of system equilibration
ensued, each lasting 100 ps at 300 K: an NVT ensemble phase to stabilize temperature
and volume, and an NPT ensemble phase to equilibrate pressure (Parrinello and Rahman

1981). Subsequently, a 200 ns production run was performed under constant temperature

11
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(300 K) and pressure (1 bar), enabling a detailed analysis of the stability and molecular

interactions of each enzyme-inhibitor complex throughout the simulation.

2.2.4. Potential energy landscape (PEL)

The PEL of the free enzyme and different flavonoids-squalene epoxidase complexes were
constructed using PCA on the MD simulation data to uncover dominant conformational
changes. Initially, all frames from the MD trajectory were aligned to remove translational
and rotational motions, ensuring the analysis focused solely on internal structural
fluctuations. In order to identify the main forms of conformational variation, the analysis
focused on backbone atom motions and eliminated non-enzyme atoms. To determine the
primary directions of structural dynamics, the eigenvalues and eigenvectors of a
covariance matrix of atomic locations were calculated. For additional examination, the
first two principal components (PC1 and PC2)—which caused the biggest conformational

shifts—were chosen.

A two-dimensional depiction of the enzyme's conformational space was created by
projecting each frame of the MD simulation onto the PC1 and PC2 eigenvectors in order
to map the PEL. A grid-based method was used to partition the 2D space into discrete
bins, and the probability distribution of frames within each bin was calculated. The

Boltzmann equation was used to determine each bin's Gibbs free energy:

F=—ksT In(P)

where F is the free energy, kg is the Boltzmann constant, T is the temperature, and P is the

probability associated with each bin. Stable conformations were found in regions with

12
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lower free energy, whereas less advantageous forms were found in regions with higher

energy.

The free energy data was visualized through a two-dimensional contour map, revealing
key energy minima and transition pathways between conformational states. Additionally,
a three-dimensional plot was generated to provide a detailed view of the free energy
distribution, illustrating the dynamic stability and adaptability of the enzyme. This
combined approach offered comprehensive insights into the conformational basins and
the transitions governing the enzyme’s structural behavior over the course of the

simulation.

2.2.5. MM/PBSA analysis

The gmx_MMPBSA tool was used to apply the MM/PBSA approach to the final 50 ns of
the MD simulation in order to determine the binding free energy between the squalene
epoxidase enzyme and each inhibitor (Valdés-Tresanco et al. 2021). In order to provide a
varied and representative group of frames for binding energy estimates, the MD trajectory
was preprocessed to obtain snapshots that were uniformly spaced out before the analysis
began. When used with GROMACS, the gmx_MMPBSA tool made managing the MD
data easier and used the Surface Area and Poisson-Boltzmann approaches to take
solvation effects into consideration. Van der Waals interactions, electrostatic forces, polar
solvation energy, and non-polar solvation energy were the four main components that
were separated out of the binding free energy. The approach yielded precise and reliable
estimations of the interaction energy by averaging these values over the trajectory's
equilibrated section. To determine the relative contributions of various interaction types

to the total binding strength, each energy term was examined separately.
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2.2.6. Absorption, distribution, metabolism, excretion, and toxicity analysis

The pharmacokinetic properties of the tested compounds, including their absorption,
distribution, metabolism, excretion, and toxicity (ADMET), were evaluated using
SwissADME (http://www.swissadme.ch/) to predict their s druglikeness properties
(Daina et al. 2017). The SwissADME platform carried out a thorough analysis, assessing
important aspects like blood-brain barrier penetration, gastrointestinal absorption, and the
compounds' drug-likeness using accepted standards like Veber's guidelines, Ghose's rules,
and Lipinski's rule of five. The platform evaluated the possibility of interactions with
cytochrome P450 enzymes in order to forecast metabolic behavior, finding possible

locations that would be vulnerable to metabolic changes.

2.3. Invitro inhibitory activity assays

2.3.1. Chemicals and reagents

For the in vitro studies, recombinant human squalene epoxidase, a critical enzyme in the
investigation, was obtained from MyBioSource (7030346). Chemicals and solvents of the
highest commercially available purity, usually HPLC grade, were used to guarantee the
correctness of all experimental techniques. According to earlier research, radiolabeled
[14C]-squalene was created utilizing tried-and-true procedures to allow for accurate
activity monitoring (Philippe et al. 2018). High-quality reagents necessary for the
enzymatic tests were provided by Cusabio for the recombinant human NADPH
cytochrome P450 reductase and Sigma-Aldrich for the recombinant human superoxide

dismutase (SOD). To standardize the experimental conditions, trisnorsqualene
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cyclopropylamine was employed as a positive control (10 uM), acting as a constant point

of comparison and confirmation during the trials.

2.3.2. Squalene epoxidase inhibitory activity assay

The inhibitory assay was carried out in accordance with published procedures (Abe et al.
2000). 20 mM Tris-HCI at pH 7.4, 1.5 mg/ml recombinant squalene epoxidase, 0.05 U
recombinant human NADPH cytochrome P450 reductase, 0.1 mM flavin adenine
dinucleotide (FAD), and 0.1% Triton X-100, which served as a stand-in for the
supernatant protein factor, were all added to a 200 pl reaction buffer. The addition of 50
MM [14C]-squalene and 1 mM NADPH as substrates started the enzymatic activity. After
dissolving the test chemicals in two milliliters of ethanol, they were added to the reaction
mixture. The combination was first incubated for 15 minutes at 37 °C, and then it was
incubated for another 60 minutes to allow the reaction to finish. 200 ul of 10% potassium
hydroxide in methanol and 10 pl of 0.1% cold carrier squalene and oxidosqualene
dissolved in ethanol were added to stop the enzyme activity. After that, 0.5 | of
dichloromethane was used for lipid extraction, and a 5% ethyl acetate in hexane solvent
solution was used to separate the lipid fraction on preparative thin-layer chromatography
(TLC) plates. TLC scanning was used to measure the separated chemicals' radioactivity.
To ensure accurate measurement of squalene epoxidase activity in vitro, human
recombinant SOD was included in the assay to neutralize any superoxide radicals formed

during the reaction.

2.3.3. Enzyme Kinetics analysis
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This assay involved reevaluating previously tested materials with different substrate and
inhibitor doses under carefully monitored experimental conditions. Using four distinct
substrate doses (0.125, 0.25, 0.375, and 0.50 mM) and matching inhibitor concentrations
chosen based on previous ICso values, the time-dependent inhibition was evaluated in
triplicate. (Abe et al. 2000). Ten micrograms of squalene epoxidase and the selected
inhibitor were added to each reaction mixture, which had a total volume of 200
microliters. 20 pl samples were taken from the inhibited squalene epoxidase solution at
time intervals of 0, 10, 20, and 30 minutes, and they were promptly moved to 180 uL of
reaction buffer. This buffer contained 5 uM [14C], 0.1 mM FAD, 1 mM NADPH, 0.1%
Triton X-100, 0.05 U NADPH-cytochrome P450 reductase, and 20 mM Tris-HCI (pH
7.4).-squalene. To guarantee a full reaction, the reaction mixtures were then incubated for
an extra 60 minutes at 37 °C. Plotting the reciprocal of substrate concentration (1/[S])
against the reciprocal of reaction velocity (1/V) allowed for the creation of a Lineweaver-
Burk plot, which was used to examine the inhibition mechanism. This plot enabled the
determination of the inhibition constant (K;), which provided insights into the type and
potency of the inhibition. Both the K; and ICso values were derived through nonlinear

regression analysis using GraphPad Prism 9.0 software.
3. Results and discussion

3.1. Phytochemical studies

The phytochemical analysis of the n-butanol soluble fraction led to the isolation of four
flavonoids. The structures of these isolated compounds were confirmed using *H-NMR
and ¥C-NMR spectroscopy. The compounds were identified as apigenin (1) (Mariappan
et al. 2012), apigenin-8-C-B-glucopyranoside (vitexin) (2) (Kim et al. 2005), apigenin-6-
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C-B-glucopyranoside (isovitexin) (3) (Peng et al. 2005), and apigenin-6-C-p-D-

glucopyranoside-8-C-B-L-arabinopyranoside (neoschaftoside) (4) (Xie et al. 2003).
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3.2. Molecular docking analysis

The docking analysis of the four flavonoids isolated from Erythrina speciosa against
squalene epoxidase provides significant insights into their binding characteristics, as
illustrated in Figures 1 and 2. The binding affinities reveal that apigenin (-9.5 kcal/mol)
and vitexin (-9.2 kcal/mol) exhibit the strongest interactions, while isovitexin (-8.2
kcal/mol) and neoschaftoside (-5.9 kcal/mol) show moderate to weaker binding. Figures
1A and 2A depict the positioning of these ligands within squalene epoxidase, where
apigenin, isovitexin, and vitexin are deeply embedded in the primary binding pocket. In
contrast, neoschaftoside occupies an alternative binding site on the enzyme surface, as
shown in Figure 2A. The LigPlot representations (Figures 1C and 2C) detail the critical
residues involved in stabilizing the ligand-enzyme complexes. Apigenin forms strong
hydrophobic interactions with Leu333, Leu509, and Tyrl195, contributing to its high
binding affinity. Similarly, vitexin demonstrates robust interactions with Pro389, Asp408,
and Leu287, as seen in Figure 2C. Isovitexin interacts with residues such as Leul34,
Asp408, and Ala284 (Figure 1C), although its binding within the pocket is less optimal.
Neoschaftoside, binding on the enzyme surface, engages in interactions with His522,
Ala525, and Tyr529 (Figure 2C), indicating a potential allosteric inhibition mechanism.

The surface representations in Figures 1B and 2B further illustrate the spatial
arrangement of the ligands within squalene epoxidase. Apigenin, isovitexin, and vitexin
are well-suited to the enzyme's binding pocket, maximizing hydrophobic and polar
contacts. In contrast, neoschaftoside's location on the surface site suggests a unique mode
of action distinct from the other flavonoids. Thus, the docking results (Figures 1 and 2)

suggest that apigenin and vitexin are promising lead compounds for squalene epoxidase
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inhibition due to their high binding affinities and deep interactions within the primary
binding pocket. Neoschaftoside, with its surface binding location, may act through a
novel inhibitory mechanism, while isovitexin might require further structural
modifications to improve its binding efficiency. These findings underscore the potential

of these flavonoids as inhibitors and warrant further experimental validation.
3.3. Molecular dynamics simulation

In this section, we present and discuss the key findings from our MD simulations. Our
analysis focuses on a range of parameters that provide insight into structural stability,
conformational flexibility, and interaction profiles, including root mean square deviation
(RMSD), radius of gyration (Rg), solvent-accessible surface area (SASA), root mean
square fluctuation (RMSF), hydrogen bonding patterns, interaction energy profiles, PEL,
and binding free energy estimates via MM/PBSA. By integrating these metrics, we gain a
comprehensive perspective on the behavior and stability of the simulated system

throughout the trajectory.
3.3.1. Molecular stability and dynamic behavior

The RMSD analysis of the four flavonoid-squalene epoxidase complexes provides
insights into the stability and structural dynamics during the 200 ns MD simulation, as
shown in Figure 3. Figure 3A represents the RMSD of the flavonoids relative to the
squalene epoxidase binding site, whereas Figure 3B illustrates the RMSD of the enzyme
backbone for both the free enzyme and its complexes with the flavonoids. In Figure 3A,
the RMSD values reveal distinct binding stability trends among the flavonoids. Apigenin
exhibited the lowest RMSD fluctuations, remaining consistently below 0.5 nm

throughout the simulation, indicating its strong and stable binding to the squalene
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epoxidase active site. Vitexin also demonstrated low RMSD values, maintaining
structural stability similar to apigenin. Isovitexin showed slightly higher fluctuations,
with RMSD values reaching around 0.8 nm, reflecting moderate stability in its binding
interactions. In contrast, neoschaftoside displayed the highest RMSD fluctuations, with
values exceeding 2.5 nm after 50 ns. This suggests significant movement or weaker
binding of neoschaftoside, consistent with its occupation of an alternative surface binding
site.

The RMSD analysis of the enzyme backbone highlights the structural stability of
squalene epoxidase in both the free and bound states is represented in Figure 3B. The free
enzyme maintained low RMSD values, remaining under 0.2 nm throughout the
simulation, indicating inherent structural rigidity. Among the complexes, apigenin-
squalene epoxidase and vitexin-squalene epoxidase exhibited similar low RMSD profiles,
signifying minimal perturbation of the enzyme's structure upon binding. Isovitexin-
squalene epoxidase showed slightly higher RMSD values, suggesting minor
conformational changes in the enzyme structure. Neoschaftoside-squalene epoxidase
displayed the highest RMSD values among the complexes, with more pronounced
fluctuations, further supporting the hypothesis of weaker binding or surface interaction
that introduces flexibility to the enzyme structure. Overall, the RMSD analysis indicates
that apigenin and vitexin form the most stable complexes with squalene epoxidase, with
minimal structural disruption to the enzyme. Isovitexin shows moderate binding stability,
while neoschaftoside exhibits significant instability, likely due to its unique binding site
on the enzyme surface. These findings align with the docking results and underscore the

potential of apigenin and vitexin as strong inhibitors of squalene epoxidase.
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The RMSD analysis of the flavonoid structures relative to their initial conformations
highlights distinct trends in binding stability over the 200 ns MD simulation (Figure
S12A). Apigenin exhibited the lowest RMSD fluctuations (below 0.1 nm), indicating
exceptional stability and minimal deviation from its starting configuration. This suggests
a highly stable interaction with squalene epoxidase, consistent with its deep embedding in
the enzyme's active site. Vitexin displayed slightly higher RMSD values, fluctuating but
generally remaining below 0.15 nm. This indicates a stable binding conformation, though
with occasional minor deviations. Isovitexin exhibited moderate RMSD values (up to 0.2
nm), reflecting slightly less stable binding but maintaining an overall consistent
interaction. Conversely, neoschaftoside showed the highest RMSD values, frequently
exceeding 0.2 nm. This significant deviation indicates considerable conformational
flexibility, consistent with its occupation of an alternative binding site on the enzyme

surface and weaker overall binding stability.

Hydrogen bonding profiles revealed additional distinctions in the interaction dynamics of
the flavonoid-squalene epoxidase complexes (Figure S12B). Vitexin formed the highest
and most consistent number of hydrogen bonds, averaging 6—7 bonds throughout the
simulation. This robust hydrogen bond network supports its high binding affinity and
stable interaction within the squalene epoxidase binding pocket. Isovitexin maintained a
moderate hydrogen bond count (4-5 bonds on average), which correlates with its
moderately stable binding observed in the RMSD analysis. Neoschaftoside exhibited the
weakest hydrogen bonding profile, forming only 1-2 bonds on average, further
reinforcing its characterization as a weaker binder with surface-level interactions.

Interestingly, apigenin formed fewer hydrogen bonds (2—3 bonds on average) compared

22



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

to vitexin. Despite this, its binding stability is likely driven by strong hydrophobic
interactions with key residues, as previously observed in docking studies. These findings
align with docking analysis, highlighting the superior binding stability of apigenin and

vitexin.

Figure S13A highlights the RMSF values of individual residues for free and ligand-bound
squalene epoxidase. The free squalene epoxidase displays the lowest fluctuations,
particularly in the active site and secondary structural elements, indicating inherent
structural stability. The apigenin-squalene epoxidase and vitexin-squalene epoxidase
complexes show similar low fluctuations across the enzyme, especially in residues
forming the binding pocket, suggesting strong and stable binding. In contrast, isovitexin-
squalene epoxidase displays slightly elevated RMSF values, particularly in flexible loop
regions around residues 300-350, indicating moderate perturbations in enzyme stability.
Neoschaftoside-squalene epoxidase exhibits the highest fluctuations in residues 300-350
and 450-500, consistent with its surface binding and the lack of strong interactions

anchoring it to the enzyme.

The Rg profile, depicted in Figure S13B, provides insights into the compactness of
squalene epoxidase in its free and bound forms. The free enzyme maintains an Rg of
~2.22 nm throughout the simulation, reflecting its structural integrity. The apigenin-
squalene epoxidase and vitexin-squalene epoxidase complexes exhibit slightly increased
Rg values (~2.23 nm), indicative of stable and compact conformations due to deep
binding within the active site. The isovitexin-squalene epoxidase complex demonstrates
higher Rg values (~2.24-2.25 nm) with moderate fluctuations, suggesting minor

conformational changes in the enzyme structure. The neoschaftoside-squalene epoxidase
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complex exhibits the highest Rg (~2.26-2.27 nm) and increased variability, indicating
reduced compactness due to surface-level binding, which introduces greater flexibility to

the overall enzyme structure.

The solvent-accessible surface area, shown in Figure S13C, reflects the extent of solvent
exposure of the enzyme. The free squalene epoxidase maintains consistent SASA values
(~205 nm?), demonstrating stable solvent accessibility. The apigenin-squalene epoxidase
and vitexin-squalene epoxidase complexes exhibit reduced SASA (~202-204 nm?),
corresponding to their deep embedding in the binding pocket, which shields parts of the
enzyme from solvent exposure. The isovitexin-squalene epoxidase complex shows
slightly higher SASA values (~206-208 nm?), reflecting partial solvent exposure due to
suboptimal binding. Neoschaftoside-squalene epoxidase demonstrates the highest SASA
(~210-212 nm?), consistent with its surface binding, which leaves most of the enzyme
exposed to the solvent. These findings reinforce the potential of apigenin and vitexin as
strong inhibitors of squalene epoxidase, while structural optimization may be required to

enhance the inhibitory potential of isovitexin and neoschaftoside.

3.3.2. Interaction energies

The Coul-SR interaction energy (electrostatic short-range interaction) profiles for the
flavonoid-squalene epoxidase complexes give information on the strength of electrostatic
interactions (Figure S14 A). The optimum (lowest) Coul-SR energy values are displayed
by vitexin-squalene epoxidase, which continuously hovers around -250 kJ/mol over the
200 ns simulation, suggesting robust and steady electrostatic interactions inside the
binding pocket. Apigenin-squalene epoxidase also shows unfavorable Coul-SR energy
values, supporting its hydrophobic binding within the pocket. In contrast, isovitexin-
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squalene epoxidase displays moderately favorable electrostatic, while neoschaftoside-
squalene epoxidase shows weaker interactions due to its surface-level binding and lower

interaction depth with squalene epoxidase.

The LJ-SR interaction energy (van der Waals short-range interaction) profiles highlight
the contribution of non-polar interactions to complex stability (Figure S14B). Vitexin and
apigenin-squalene epoxidase complexes exhibits the most favorable LJ-SR energy values,
underscoring their strong hydrophobic interactions with the squalene epoxidase binding
site. The isovitexin-squalene epoxidase complex shows intermediate LJ-SR energy
values, while neoschaftoside-squalene epoxidase displays the weakest van der Waals
interactions, correlating with its less stable and surface-oriented binding mode. The
combined analysis of Coul-SR and LJ-SR interaction energies underscores the superior
binding affinities of vitexin and apigenin toward squalene epoxidase, driven by strong
electrostatic and van der Waals interactions. These observations align with their deeply
embedded and stable binding modes observed in RMSD and hydrogen bonding analyses.
In contrast, neoschaftoside's weaker interaction energies and isovitexin's moderate profile
highlight the need for structural optimization to enhance their binding efficacy. The
results further emphasize the potential of vitexin and apigenin as promising lead

compounds for squalene epoxidase inhibition.

3.3.3. Potential energy landscape

The potential energy landscape (PEL) analysis provides valuable insights into the
conformational dynamics of free squalene epoxidase and its complexes with flavonoids
(Figures 4 and 5). The free squalene epoxidase (Figure 4) exhibits a broad and symmetric
energy basin centered around the origin in the 2D contour map, reflecting high
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conformational flexibility. This indicates that in its apo form, the enzyme explores a wide
range of low-energy conformations, characteristic of an unbound state. The binding of
flavonoids introduces varying degrees of conformational restriction, as evident in the
PEL profiles. The apigenin/squalene epoxidase complex (Figure 4) demonstrates a
significantly narrower energy basin with a deep well in the 3D PEL, suggesting a more
stable and confined conformational space. This stabilization likely arises from strong
hydrophobic and hydrogen-bonding interactions, as corroborated by structural analysis in
Figure 6, which highlights key residues such as E165, F165, and L324. These interactions
not only stabilize the enzyme structure but also contribute to apigenin’s strong inhibitory

potential.

In contrast, the isovitexin/squalene epoxidase complex (Figure 4) reveals a broader
energy basin with a relatively shallow energy well. This indicates weaker binding and
reduced structural stabilization compared to apigenin. The structural visualization in
Figure 6 shows that isovitexin interacts with residues such as M381, 1334, and H226, but
with fewer hydrogen bonds and hydrophobic contacts. This aligns with the less confined
PEL and suggests weaker inhibitory potential for isovitexin. Further insights are provided
by the neoschaftoside and vitexin complexes (Figure 5). Neoschaftoside exhibits an
intermediate PEL profile, with a moderately deep energy well reflecting partial
stabilization of squalene epoxidase upon binding. Its interactions with key residues like
H522 and E500 involve hydrogen bonding and aromatic stacking, as shown in Figure 6,
supporting moderate binding affinity. On the other hand, the vitexin/squalene epoxidase
complex demonstrates a highly confined energy landscape with a deep and asymmetric

energy well. The structural data reveal extensive hydrogen bonding with residues such as
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T417, L416, and MA413, alongside strong hydrophobic interactions. This robust
interaction network corresponds to vitexin's tight binding and significant stabilization of
the enzyme. To sum up, the combined PEL and structural analysis reveal that apigenin
and vitexin are the strongest inhibitors of squalene epoxidase, as evidenced by their deep

and narrow energy wells and extensive residue interactions.

3.3.4. MM/PBSA analysis

The MM/PBSA results provide detailed insights into the binding free energy
contributions of the flavonoids to squalene epoxidase based on the final 50 ns of MD
trajectory (Table 1). The energy components considered include van der Waals energy
(AEvdw), electrostatic energy (AEele), solvation energy (AGso), gas-phase energy (AGgas),
and the total binding free energy (AGrotar), Which together help evaluate the stability and
strength of the flavonoid-squalene epoxidase interactions. Among the flavonoids, vitexin
exhibited the most favorable van der Waals interactions and electrostatic interactions with
squalene epoxidase, suggesting that it forms strong hydrophobic and hydrogen-bonding
interactions within the squalene epoxidase binding pocket. In contrast, apigenin showed
significant but slightly weaker interactions. Isovitexin and neoschaftoside had weaker
van der Waals interactions and less favorable electrostatic interactions, indicating that
these flavonoids interact less favorably with squalene epoxidase. In terms of solvation
energy, all complexes experienced unfavorable contributions due to the desolvation
penalty upon binding. However, vitexin exhibited the highest solvation penalty, likely due
to its polar substituents, which increase the desolvation cost compared to the other
flavonoids. The gas-phase energy, which combines van der Waals and electrostatic

interactions, was most favorable for vitexin, followed by apigenin.
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When considering the total binding free energy (AGuotal), Vitexin exhibited the most
favorable binding (-37.39 kcal/mol), indicating strong and stable binding to squalene
epoxidase. This result is consistent with the favorable van der Waals and electrostatic
interactions observed for vitexin. Apigenin followed with AGtotar = —23.43 kcal/mol,
showing moderate binding affinity due to its significant hydrophobic interactions despite
its lower electrostatic contributions. Isovitexin and neoschaftoside showed weaker total
binding affinities (AGiota = —16.39 kcal/mol and —12.90 kcal/mol, respectively), in line
with the MD simulations, which suggested that isovitexin binds less efficiently and
neoschaftoside binds at the enzyme surface in an allosteric manner. Thus, the MM/PBSA
results corroborate the molecular docking and MD simulations, with vitexin emerging as
the most potent squalene epoxidase inhibitor, followed by apigenin. These two flavonoids
exhibit the strongest binding affinities due to their favorable van der Waals and

electrostatic interactions.

3.4. ADMET analysis

The ADMET properties of apigenin, isovitexin, neoschaftoside, and vitexin were
analyzed to evaluate their drug-likeness and pharmacokinetic profiles (Table 2). Key
properties influencing drug behavior, such as molecular weight (MW), hydrogen bonding
potential, lipophilicity, solubility, metabolic stability, and bioavailability, were assessed
and are summarized below. Apigenin displayed favorable ADMET properties, aligning
well with drug-likeness criteria. Its low molecular weight and a single rotatable bond
indicate structural simplicity and limited flexibility, which contribute to higher stability
and predictability in biological systems. Apigenin met Lipinski’s rule of five with zero

violations, showing potential for oral bioavailability. It exhibited high gastrointestinal
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(GI) absorption and moderate lipophilicity (log Po/w = 2.11), consistent with effective
membrane permeability. However, the compound is not blood-brain barrier (BBB)
permeable and shows moderate solubility (logS = -3.94), suggesting limited CNS
penetration but suitable systemic exposure. Apigenin interacts with multiple cytochrome
P450 enzymes, particularly CYP1A2, CYP2D6, and CYP3A4, which may influence its

metabolic stability. Its bioavailability score (0.55) indicates promising drug-likeness.

Isovitexin demonstrated suboptimal pharmacokinetic properties compared to apigenin,
with a higher molecular weight (432.38 g/mol) and increased flexibility due to three
rotatable bonds. The compound violated Lipinski’s rule due to excessive hydrogen bond
donors (7), which could hinder membrane permeability. Its high polarity (TPSA = 181.05
A2) and low lipophilicity (log Po/w = -0.02) suggest poor membrane permeability,
supported by its low GI absorption. Despite these limitations, isovitexin showed
moderate solubility (logS = -2.84) and a bioavailability score of 0.55, indicating some
potential for further optimization. Unlike apigenin, isovitexin did not interact with any
tested cytochrome P450 enzymes, which may reduce its risk of metabolic interactions but

might also limit metabolic activation.

Neoschaftoside exhibited the least favorable ADMET properties due to its high molecular
weight (564.49 g/mol) and significant polarity (TPSA = 250.97 A?), which severely
restrict its permeability across biological membranes. The compound had three violations
of Lipinski’s rule (MW > 500, O > 10, OH > 5), emphasizing its limited drug-likeness.
Neoschaftoside showed very low bioavailability (0.17), low GI absorption, and poor
solubility (logS = -1.99), making it unsuitable for systemic therapeutic applications

without structural modifications. Its low lipophilicity (Log Po/w = -1.87) and non-
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interaction with cytochrome P450 enzymes further underscore its poor pharmacokinetic

profile.

Vitexin shared several ADMET properties with isovitexin, including the same molecular
weight (432.38 g/mol) and polarity (TPSA = 181.05 A2, resulting in similar
pharmacokinetic challenges. The compound also violated Lipinski’s rule due to excessive
hydrogen bond donors (7) and exhibited low GI absorption. However, it maintained a
moderate solubility profile (logS = -2.84) and bioavailability score (0.55), suggesting
potential for oral administration after optimization. Like isovitexin, vitexin did not
interact with cytochrome P450 enzymes, highlighting its likely metabolic stability but
limited activation potential. Thus, apigenin emerged as the most promising candidate
based on its favorable ADMET profile, including high GI absorption, adequate solubility,
and good bioavailability. In contrast, isovitexin and vitexin demonstrated limited
permeability and absorption, likely due to high polarity and hydrogen bonding, while

neoschaftoside displayed poor drug-likeness properties overall.

3.5. In vitro squalene epoxidase inhibitory activity assay

The in vitro inhibitory activity and enzyme kinetics analysis of the isolated flavonoids
against squalene epoxidase provided crucial insights into their potential as inhibitors. The
results are presented in Figure 7, showcasing the dose-response curves, ICso values, and
enzyme Kinetic analyses. These findings complement the in silico predictions and
validate their relevance in identifying effective inhibitors for squalene epoxidase. The
dose-response curves (Figure 7A) demonstrated a concentration-dependent inhibition of
squalene epoxidase activity by all tested flavonoids. Among the compounds, vitexin and
apigenin exhibited the most potent inhibitory activities, with 1Cso values of 3.13 £+ 0.23
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UM and 4.70 £ 0.09 uM, respectively (Figure 7B). These values are comparable to the
reference inhibitor trisnorsqualene cyclopropylamine (ICsp = 2.76 £ 0.05 uM),
underscoring their efficacy. Conversely, isovitexin and neoschaftoside showed weaker
inhibition, with 1Cso values of 19.44 = 3.84 uM and 36.24 + 2.98 uM, respectively,
aligning with their less favorable binding affinities and interaction profiles observed in
the in silico docking and MD simulation studies. The high potency of apigenin and
vitexin correlates well with their strong hydrophobic and electrostatic interactions with

the squalene epoxidase active site, as identified in MD simulations.

Further Kinetic characterization was conducted for apigenin and vitexin, the two
compounds with the lowest ICsq values. Lineweaver-Burk plots (Figures 7C and 7D) and
Michaelis-Menten plots (Figures 7E and 7F) revealed distinct inhibition mechanisms for
these flavonoids. Apigenin exhibited a mixed inhibition mode with a Kjvalue of 2.32 uM,
indicating that it interacts with both the squalene epoxidase active site and an allosteric
site, affecting enzyme activity regardless of substrate binding. This is consistent with its
predicted binding mode from in silico studies, which highlighted its strong interactions
with key catalytic residues. The K and Vmax values of apigenin are 10.62 uM and 53.26
uM/min/mg, respectively. In contrast, vitexin demonstrated a noncompetitive inhibition
mechanism with a Ki value of 3.18 uM. This suggests that vitexin binds to an allosteric
site, inducing conformational changes that impair enzymatic activity without directly
obstructing substrate binding. This inhibition mode aligns with its unique binding profile
observed in molecular docking, which indicated favorable interactions outside the active
site region. The Ky and Vmax values of vitexin are 15.08 uM and 55.48 pM/min/mg,

respectively.
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The experimental findings strongly validate the in silico predictions. Both apigenin and
vitexin, identified as the most potent inhibitors through computational studies,
demonstrated superior activity in vitro, reflected in their low ICso values and distinct
kinetic behaviors. The weaker inhibition by isovitexin and neoschaftoside further
supports their lower binding affinities and suboptimal pharmacokinetic profiles predicted
during in silico analyses. These results highlight the robustness of combining in silico and
in vitro approaches to identify potent inhibitors. Apigenin and vitexin emerge as
promising lead compounds for further development as squalene epoxidase inhibitors,
with their mixed and noncompetitive inhibition mechanisms offering complementary
therapeutic potential. The study also underscores the need for structural optimization of
less active flavonoids like isovitexin and neoschaftoside to enhance their inhibitory

efficacy.

4. Conclusion

This study successfully integrates computational and experimental approaches to uncover
the molecular mechanisms underlying the inhibition of squalene epoxidase by naturally
derived flavonoids from Erythrina speciosa. Molecular docking revealed that apigenin
and vitexin exhibited the strongest binding affinity among the tested compounds, driven
by favorable hydrophobic and electrostatic interactions. MD simulations further
highlighted their strong binding stability with squalene epoxidase, supported by stable
dynamic behavior, low RMSD values, and consistent hydrogen bonding patterns.
Potential energy landscape analysis underscored distinct energetic favorability for their
conformational states, corroborating the role of key residues in their binding. The

MM/PBSA free energy and interaction energy calculations affirmed the superior binding
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free energies of apigenin and vitexin, driven primarily by hydrophobic and electrostatic
interactions. These findings were further corroborated by ADMET analysis, which
demonstrated that both compounds possess favorable drug-like properties, including high

bioavailability and adherence to Lipinski's rule of five.

Importantly, the in vitro assays validated the in silico predictions, with apigenin and
vitexin displaying potent inhibitory activity against squalene epoxidase, as evidenced by
their low 1Cso values (4.70 = 0.09 puM and 3.13 + 0.23 pM, respectively). Enzyme
kinetics analysis revealed distinct mechanisms of inhibition, with apigenin acting as a
mixed inhibitor (Ki = 2.32 uM) and vitexin exhibiting a noncompetitive mode of
inhibition (Ki = 3.18 uM). These findings highlight the potential of apigenin and vitexin
as promising lead compounds for the development of novel squalene epoxidase
inhibitors, offering therapeutic potential against cholesterol-related disorders.
Furthermore, the alignment between in silico and experimental results underscores the
robustness of the computational pipeline employed, setting a foundation for future
structure-based drug design targeting squalene epoxidase and other enzymes critical to

metabolic pathways.
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939  Figure 1. Docking analysis of apigenin and isovitexin against squalene epoxidase. (A)
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940  Position of the ligands within the primary binding site of squalene epoxidase, (B) Surface
941  representation of squalene epoxidase, illustrating the ligands deeply embedded within the
942  binding pocket, and (C) LigPlot representation highlighting polar and hydrophobic
943  interactions between squalene epoxidase and the ligands. SQLE: squalene epoxidase.
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Figure 2. Docking analysis of neoschaftoside and vitexin against squalene epoxidase. (A)
Position of the ligands within squalene epoxidase, (B) Surface representation of squalene
epoxidase, and (C) LigPlot representation illustrating polar and hydrophobic interactions.

SQLE: squalene epoxidase.
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953
954  Figure 3. RMSD analysis of squalene epoxidase and its complexes with flavonoids

955  during a 200 ns molecular dynamics simulation. (A) RMSD of the ligands relative to the
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956  binding site of squalene epoxidase, and (B) RMSD of the enzyme backbone for the free

957  enzyme and its complexes with the flavonoids. SQLE: squalene epoxidase.
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959  Figure 4. Potential energy landscape (PEL) of free squalene epoxidase, apigenin-bound
960 SQLE, and isovitexin-bound squalene epoxidase. (A) 2D contour maps of the PEL
961  constructed from principal component analysis (PCA) with PC1 and PC2 as collective
962  variables. The color gradient represents Gibbs free energy (kcal/mol), with red indicating

963  higher energy and blue indicating lower energy, and (B) 3D representations of the PEL.
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Figure 5. Potential energy landscape (PEL) of neoschaftoside- and vitexin-bound

squalene epoxidase. (A) 2D contour maps of the PEL generated from PCA, with PC1 and

PC2 as collective variables, and (B) 3D representations of the PEL.
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Free SQLE

968 Vitexin/ SQLE

969  Figure 6. Lowest-energy conformations in the PEL of squalene epoxidase in the free state

970  and in complex with flavonoids.
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Figure 7. In vitro inhibitory activity and enzyme kinetics of flavonoids against squalene
epoxidase. (A) Dose-response curves of the isolated flavonoids showing the percentage
of relative SQLE activity at varying concentrations of each compound, (B) ICso values of
the flavonoids and the reference inhibitor trisnorsqualene cyclopropylamine, calculated
from the dose-response data, (C, D) Lineweaver-Burk plots for apigenin (C) and vitexin
(D), and (E, F) Michaelis-Menten plots for apigenin (E) and vitexin (F). Data represent

the mean + standard deviation of three independent experiments.
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980 Tables
981  Table 1: MM/PBSA computation findings for the final 50 ns of the MD trajectory (kcal/mol)
Comp|EX AE\/dW AEele AGsolv AGgas AGtotaI
Apigenin/squalene
. —-35.82+£054| —9.03+£1.01 |21.41+£0.39| -44.85+1.20 |—23.43+1.26
epoxidase
Isovitexin/squalene
. —29.09+£0.88 | —21.39+3.97 |34.09+£1.55| —34.09+£4.10 |-16.39 £ 4.38
epoxidase
Neoschaftoside/squalene
_ —2247+117| -8.95+1.38 |1852+158| 3142181 |-12.90+2.40
epoxidase
Vitexin/squalene
3859+ 1.33 | —61.29+1.87 |62.49+1.75| ~99.88+£2.29 |-37.39+2.89

epoxidase

982

983

984

985

986

987

988

989
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990

991

Table 2. The findings of the ADMET analysis used to assess the isolated flavonoids' drug-likeness

characteristics.

Bioavailability radar

BOILED-Egg model

ADMET properties

Apigenin

LIPO

FLEX SIZE

INSATU POLAR

INSOLU

Size: MW = 270.24 g/mol

Num. H-bond donors: 3

Num. H-bond acceptors: 5

Saturation: Fraction Csp®= 0.00
Flexibility: number of rotatable bonds = 1
Molar Refractivity: 73.99

Log Pow = 2.11

TPSA (polarity): 90.90 A2

Lipophilicity: XLOGP3= 3.02
Solubility: logS (ESOL) =-3.94
Bioavailability score = 0.55
CYP1A2(Yes), CYP2C19(No), CYP2C9
(No), CYP2D6(Yes), and CYP3A4(Yes)
Log K (skin permeation) = -5.80 cm/s
Gl absorption: High

BBB permeant: No

P-gp substrate: No

Lipinski (Druglikeness): Yes; O violation

Isovitexin

LIPO

FLEX SIZE

INSATU POLAR

INSOLU

Size: MW = 432.38 g/mol

Num. H-bond donors: 7

Num. H-bond acceptors: 10

Saturation: Fraction Csp®= 0.29
Flexibility: number of rotatable bonds = 3
Molar Refractivity: 106.61

Log Pow = -0.02

TPSA (polarity): 181.05 A2
Lipophilicity: XLOGP3=0.21
Solubility: logS (ESOL) =-2.84
Bioavailability score = 0.55
CYP1A2(No), CYP2C19(No), CYP2C9
(No), CYP2D6(No), and CYP3A4(No)
Log K (skin permeation) = -8.79 cm/s
Gl absorption: Low

BBB permeant: No

P-gp substrate: No

Lipinski (Druglikeness): Yes; 1 violation:
OH>5
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Neoschafto
side

FLEX

INSATU

LIPO

SIZE

POLAR

INSOLU

Size: MW = 564.49 g/mol

Num. H-bond donors: 10

Num. H-bond acceptors: 14

Saturation: Fraction Csp®= 0.42
Flexibility: number of rotatable bonds = 4
Molar Refractivity: 133.26

Log Pow = -1.87

TPSA (polarity): 250.97 A2

Lipophilicity: XLOGP3=-2.19
Solubility: logS (ESOL) =-1.99
Bioavailability score = 0.17
CYP1A2(No), CYP2C19(No), CYP2C9
(No), CYP2D6(No), and CYP3A4(No)
Log Kp (skin permeation) = -11.30 cm/s
Gl absorption: Low

BBB permeant: No

P-gp substrate: No

Lipinski (Druglikeness): Yes; 3 violations:
MW>500, 0>10, OH>5

Vitexin

FLEX

INSATU

LIPO

SIZE

POLAR

INSOLU

Size: MW = 432.38 g/mol

Num. H-bond donors: 7

Num. H-bond acceptors: 10

Saturation: Fraction Csp®= 0.29
Flexibility: number of rotatable bonds = 3
Molar Refractivity: 106.61

Log Pow = -0.02

TPSA (polarity): 181.05 A2
Lipophilicity: XLOGP3=0.21
Solubility: logS (ESOL) =-2.84
Bioavailability score = 0.55
CYP1A2(No), CYP2C19(No), CYP2C9
(No), CYP2D6(No), and CYP3A4(No)
Log Kp (skin permeation) = -8.79 cm/s
Gl absorption: Low

BBB permeant: No

P-gp substrate: No

Lipinski (Druglikeness): Yes; 1 violation:
OH>5
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