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ABSTRACT

Electrospun nanofibers are widely studied in biomedical applications, particularly in wound healing, due to their
high surface area, porosity, and structural similarity to the extracellular matrix. However, their clinical per-
formance is often limited by poor mechanical strength and suboptimal surface properties, which hinder cell
attachment and therapeutic effectiveness. Surface modification is therefore critical. Among available techniques,
cold atmospheric plasma (CAP) has emerged as a highly effective, non-contact, and environmentally friendly
method to functionalise nanofiber surfaces without altering their bulk properties. This review provides a
comprehensive overview of electrospinning technology and explores how CAP treatment enhances the physi-
cochemical and biological performance of electrospun nanofibers. Key improvements include increased surface
wettability, enhanced cell adhesion, improved antimicrobial activity, and controlled drug release, making CAP-
treated nanofibers particularly well-suited for advanced wound care applications.By synthesizing current evi-
dence, identifying effective plasma treatment parameters, and evaluating clinical outcomes, this paper highlights
the synergistic potential of combining electrospinning and CAP technologies. The review concludes by outlining

future directions and challenges in translating plasma-modified nanofiber dressings into clinical practice.

1. Introduction

Nanofibers have garnered considerable interest as advanced nano-
materials because of their distinct physicochemical properties, lack of
surfactants, and substantial commercial potential [1,2]. Their ability to
form highly porous, interconnected networks [3], fiber diameters below
1000 nm, a high surface area-to-volume ratio, nanoporous structure,
and excellent drug-loading capacity make them perfect for diverse ap-
plications [4]. These applications leverage the structural resemblance of
nanofibers to the extracellular matrix, making them particularly effec-
tive in tissue engineering [5,6], encompassing biosensing, bioimaging
[7,8], wound care [9], and drug delivery systems [10].

However, nanofibers face significant challenges in biomedical ap-
plications despite their many advantages. These include limited me-
chanical strength, which can hinder their structural integrity in load-
bearing tissues; inconsistent reproducibility across fabrication batches,
leading to variability in scaffold quality; and insufficient control over
surface properties, which affects cell adhesion, proliferation, and overall
biocompatibility. These limitations necessitate the use of advanced

surface modification strategies, such as plasma treatment, to enhance
their biocompatibility and functional performance [11,12].

Table 1 outlines various nanofiber fabrication techniques, high-
lighting their benefits and drawbacks. Compared to other nanofiber
fabrication techniques listed in Table 1, electrospinning offers a unique
combination of scalability, material versatility, and precise control over
fiber morphology, making it particularly well-suited for biomedical
applications. Methods such as drawing, while simple in setup, are
intermittent, poorly scalable, and offer limited control over fiber size
[13]. Template-based synthesis provides some control over fiber di-
mensions but is constrained by limited scalability and the complexity of
template removal [14]. Phase splitting enables the formation of 3D
porous structures with tunable mechanical properties, yet it is restricted
to specific polymers, involves complex processing, and produces poorly
aligned fibers [15]. Self-assembly allows for injectable nanostructures
with good 3D shape control; however, it is limited by short fiber lengths,
narrow diameter ranges, low production yields, and restricted polymer
compatibility, rendering it unsuitable for large-scale biomedical appli-
cations [16]. In contrast, electrospinning stands out for its ability to
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Table 1

Nanofiber fabrication techniques.
Fabrication Advantages Disadvantages
Methods
Drawing e Straightforward devices o Intermittent process

Limited scalability
Lack of control over
fiber size

Limited scalability

Template-based
synthesis

Ongoing process
Fiber size can be adjusted by
using different templates
Basic apparatus

Easy to process

Mechanical properties of
fiber matrices can be adjusted
by altering the polymer
composition

3D pore structure

Pore size and shape are
highly customizable

Phase splitting

Only compatible with
specific polymers
Complicated processes
Poor control over fiber
alignment (size and
orientation)

Low output yield

Self-assembly e Only nanofibers with diameters e Complicated process
of a few nanometers and lengths e No control over fiber
of a few microns can be size
produced e Restricted fiber
Cells can be easily integrated diameter and short

during fiber formation fiber length
Three-dimensional pore e Low production yield

structure e Limited polymer
Injectable for in vivo use compatibility
Excellent control over 3D

shape

Electrospinning e Basic equipment o Jet instability

Use of toxic solvents
Challenges in
packaging, shipping,
and handling

Limited cell
infiltration into the
scaffold core
Primarily 2D scaffolds

.

Capable of producing fiber
diameters ranging from a few
nanometers to several microns
Simple and cost-efficient
method

Long, continuous fibers

Ability to use a wide variety of
materials

o Controllable process o Difficulty in
parameters for different fiber controlling pore size
diameters and orientations and shape

Well-established and well-
characterized technique
Customizable

Adjustable mechanical
properties

produce long, uniform fibers using simple, cost-effective equipment in a
continuous process. It offers precise control over fiber diameter, orien-
tation, and surface texture, enabling the fabrication of scaffolds that
closely mimic the extracellular matrix an essential attribute for tissue
engineering and wound healing [17,18]. Additionally, electrospinning is
compatible with a wide variety of natural and synthetic polymers,
allowing for the integration of bioactive agents and drugs to enhance
therapeutic outcomes [19].

The electrospinning setup comprises three main components: a high-
voltage power supply, a spinneret, and a grounded collector. This
arrangement produces nano- or microfibrous structures that feature high
porosity, a large surface area-to-volume ratio, and excellent tensile
strength [20]. The performance of electrospun scaffolds in tissue engi-
neering is primarily determined by the choice of materials, which in-
fluence key properties such as mechanical strength, biocompatibility,
and degradation rates. While various materials, including polymers
[21], ceramics [22,23], and inorganic compounds [24], can be used for
electrospun fibers, polymers are the preferred material. Their flexibility
in design and superior bulk properties allow for the development of
scaffolds tailored for specific biomedical uses. The widespread use of
both synthetic and natural polymers has been pivotal in advancing tissue
engineering and regenerative medicine [25,26]. The adaptability of
electrospinning also enables the incorporation of bioactive molecules
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and drugs into the fibers, enhancing scaffold functionality. This is
particularly advantageous in drug delivery, where precise control over
release profiles is critical. Additionally, electrospun nanofibers can be
customized with specific surface chemistries to support cell attachment,
proliferation, and differentiation, improving scaffold performance and
aiding integration into living tissues [27,28].

Plasma science is gaining significant attention for its versatility and
potential across diverse applications. Plasmas are broadly categorized
into two main types based on the thermal equilibrium of their particles:
thermal (hot or equilibrium) plasma and non-thermal (cold or non-
equilibrium) plasma. In thermal plasma, the electron and ion tempera-
tures are in equilibrium, meaning the energy distribution among the
particles is uniform. This results in extremely high gas temperatures,
which makes thermal plasma unsuitable for applications involving heat-
sensitive materials. For example, tissue engineering scaffolds, which are
delicate and can be easily damaged by excessive heat, would not survive
exposure to such high temperatures. It is mainly used for applications
that can withstand high temperatures, such as surface modification of
metals and silicon wafers, nanoparticle production, and hazardous
waste destruction. Non-thermal plasma or cold plasma, is characterized
by a temperature imbalance between electrons and ions [29-33].
Generated by strong electric or magnetic fields, it accelerates electrons,
causing ionization without significantly heating the ions. As a result,
electron temperatures are much higher than ion temperatures, keeping
the overall gas temperature low, typically at or slightly above room
temperature [34]. This makes non-thermal plasma ideal for applications
involving thermosensitive materials, as the low gas temperatures pre-
vent damage to these materials. One of its key uses is in the modification
of polymeric nanofibrous scaffolds, commonly used in biomedical ap-
plications [35-38].

Plasma technology is extensively applied across diverse domains,
such as the microfabrication of electronic devices, biomedicine,
dentistry, agriculture, ozone production, chemical synthesis, surface
modification, coating processes, and disease treatment [39]. Plasma
treatment is particularly significant in improving the adhesion of coat-
ings, inks, and adhesives to various surfaces, including polymers, metals,
and ceramics. It can also be used to clean surfaces by removing con-
taminants and activating them for subsequent processes like bonding or
painting. Additionally, plasma treatment is applied in sterilization,
modifying biomaterial surfaces to promote cell adhesion, and enabling
controlled drug release [40,41]. In the textile industry, plasma treat-
ment improves dye absorption, coating adhesion, and surface func-
tionality [42]. It is also vital in the production of optical components,
such as lenses, mirrors, and waveguides, where it is used for surface
cleaning and modification. Lastly, in semiconductor manufacturing,
plasma treatment is essential for cleaning and activating surfaces to
ensure proper adhesion of thin films and coatings [43]. Plasma surface
treatment is vital in several biomedical applications, including tissue
engineering and wound healing. A major advantage of this technique is
its enhanced sterilization capability, which surpasses traditional
methods due to its superior cleaning properties. Moreover, plasma sur-
face modification has demonstrated improvements in the drug release
behavior of non-degradable polymers. By influencing the water ab-
sorption rate of polymer scaffolds, plasma treatment can regulate the
rate at which drugs are released [44]. Studies have also demonstrated
the effectiveness of plasma treatment in accelerating ulcer healing, with
treated wounds showing faster healing times and a more rapid reduction
in ulcer size. Cold plasma treatment promotes healing by mechanisms
such as acidification, angiogenesis, improved dermal blood circulation,
and stimulation of cell activity [45].

Electrospun polymer nanofibers offer significant advantages for a
wide range of biomedical applications due to their structural similarity
to the extracellular matrix, high surface area-to-volume ratio, and
tunable mechanical properties. These characteristics make them
particularly well-suited for tissue engineering, drug delivery, and,
notably, wound healing. However, to fully realize their potential, it is
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essential to enhance their surface properties to improve biocompati-
bility and therapeutic performance. Plasma treatment has emerged as a
powerful and versatile surface modification technique that can sub-
stantially enhance the physicochemical characteristics of nanofibers
without altering their bulk structure. By precisely adjusting parameters
such as gas composition, discharge power, and exposure duration,
plasma offers a flexible and controllable approach for tailoring nano-
fiber surfaces to meet specific biomedical requirements. This review
aims to provide a comprehensive overview of the electrospinning pro-
cess, surface modification strategies, and the critical role of plasma
treatment in surface functionalization. It also evaluates the performance
of plasma-treated nanofibers and highlights the most effective plasma
techniques for improving surface properties in wound healing
applications.

Despite the extensive body of research on electrospinning and
plasma treatment as separate fields, there is still a lack of integrated
understanding of how specific plasma parameters influence the surface
functionality and therapeutic efficacy of electrospun nanofibers partic-
ularly in the context of wound healing. Existing literature often presents
generalized or fragmented perspectives, focusing narrowly on aspects
such as sterilization or drug release, without offering a holistic frame-
work for the systematic optimization of plasma treatment for biomedical
use. This review addresses that critical gap by thoroughly examining the
interplay between the intrinsic properties of electrospun nanofibers and
the effects of plasma-induced surface modifications, with a particular
emphasis on cold plasma technologies for wound healing. By synthe-
sizing recent advancements, comparing treatment methodologies, and
identifying best practices, this manuscript serves as a comprehensive
and up-to-date resource. It bridges fundamental principles with
emerging biomedical applications, providing valuable insights for re-
searchers seeking to optimize nanofiber-based therapeutic strategies in
modern healthcare.

2. Electrospinning

Electrospinning is a widely recognized method for producing nano-
fibers ranging from the submicron to nanoscale, providing various
morphologies, including non-woven, core-sheath, porous, and aligned
structures. These versatile morphologies make electrospun nanofibers
ideal for a broad range of applications [42]. Due to their one-
dimensional structure, nanofibers have become highly sought after in
biomedical engineering, offering benefits such as a high surface area-to-
volume ratio, nanoporosity, excellent absorption capacity, biocompati-
bility, biodegradability, and favorable properties for breathability and
mass transport [2,46-48]. Furthermore, the flexibility of the
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electrospinning technique enables continuous nanofiber production for
various applications, including electronics, energy storage, textiles,
protective clothing, sensors, and filtration systems [3,49,50]. The pro-
cess involves balancing the surface tension of the polymer solution at the
spinneret tip with an externally applied electric field. When a high
voltage is applied between the polymer solution and a grounded col-
lector, the electrostatic forces from the accumulated charges on the so-
lution’s surface overcome its surface tension, causing the polymer to jet
toward the collector. As the charged jet stretches and accelerates in the
electric field, fibers form and deposit onto the collector [5]. A schematic
diagram of this process is shown in Fig. 1.

Nanofibers can be made from a variety of materials, such as polymers
[21], ceramics [51], and inorganic compounds [52], with polymers
being the material of choice due to their flexibility in design and supe-
rior bulk properties. Consequently, electrospun scaffolds are primarily
composed of synthetic and natural polymers [25]. Natural polymers like
chitosan, collagen, gelatin, and silk are particularly valued for medical
applications because of their biodegradability and exceptional bioactive
properties. These materials are often derived from the native extracel-
lular matrix (ECM) or other biological sources [53].

The application of natural polymers is often restricted by issues such
as limited availability, variability between batches, weak mechanical
properties, and fast degradation in aqueous conditions. To address these
limitations, synthetic polymers have emerged as viable alternatives in
recent decades, offering enhanced performance, cost-effectiveness, ease
of production, and more consistent properties [54,55]. Synthetic
biodegradable polymers, including polycaprolactone (PCL), poly (I-lac-
tic acid), poly (glycolic acid), and poly (lactic-co-glycolic acid), offer
several advantages over natural polymers, such as improved process-
ability during electrospinning and more precise control over nanofiber
morphology [56]. Numerous studies have investigated the electro-
spinning of both natural and synthetic polymers. For example, Noorani
et al. [57] created nanofibrous scaffolds using a chitosan/gelatin blend,
with fibers having a diameter of 180 nm. Their findings showed that
while gelatin incorporation improved the scaffold’s hydrophilicity and
degradation rate, it also compromised the mechanical strength. The 50/
50 chitosan/gelatin blend exhibited the highest tensile strength (6.93 +
0.63 MPa), whereas the scaffold containing 30 % chitosan had a lower
tensile strength of 3.51 + 0.45 MPa (p < 0.05). The Young’s modulus
values were 1.05 MPa for the 70/30 blend and 2.24 MPa for the 50/50
blend. In another investigation, Noh et al. [58] developed bacterial
cellulose-collagen composite scaffolds in ratios of 1:1, 3:1, and 5:1 to
examine their influence on human mesenchymal stem cells (hMSCs).
The composites exhibited better physical stability and enhanced water
absorption compared to pure collagen, with higher bacterial cellulose

Spherical Elongated Taylor Taylor cone with

droplet droplet  cone polymer jet
Polymer solution /
= 1
. Polymer jet
Syringe pump
|, Nanofiber
I
High voltage (Kv)

Fig. 1. The conceptual illustration of the electrospinning process.



R. Fatahian and R. Erfani

content improving these properties. Gene and protein analyses of UCB-
MSCs cultured for three weeks showed that the 5:1 bacterial cellulose-
collagen ratio provided the most optimal substrate, and in vivo experi-
ments confirmed successful cell engraftment within the scaffolds. Gu
et al. [59] investigated the mechanical and biological characteristics of
aligned conductive nanofibrous scaffolds composed of chitin and poly-
aniline (Chi/PAN:i) to assess their effect on human dermal fibroblast cell
(HDFC) behavior. They used electrospinning with a drum collector to
produce both random and aligned nanofibers. The aligned fibers were
49 % thinner and showed a 91 % increase in electrical conductivity
compared to the random fibers. After one week of culture, cell viability
on aligned fibers was about 2.1 times higher than on random fibers,
highlighting the advantages of fiber alignment for guiding cellular
growth. Additionally, Fu et al. [60] enhanced the surface properties of
PLLA nanofibers by promoting extracellular matrix (ECM) deposition.
MC3T3-E1 cells cultured on the electrospun nanofibers supported ECM
formation, and after two weeks, the cells were removed through
decellularization. The ECM-coated scaffolds demonstrated significantly
better cell adhesion and osteogenic differentiation compared to un-
treated PLLA nanofibers. Tian et al. [61] fabricated aligned nanofibers of
poly (lactic acid) and poly(pyrrole) for nerve regeneration, incorpo-
rating poly(pyrrole) to introduce electrical conductivity. The composite
was coated with polyornithine to enhance surface hydrophilicity.
Neuronal differentiation of PC12 cells showed positive results even
without electrical stimulation. The aligned fibers facilitated increased
cell proliferation, while the poly (lactic acid)-poly(pyrrole) blend
reduced fiber diameters, though it did not improve the biocompatibility
of the scaffold.

3. Techniques for surface modification of electrospun
nanofibers

Nanofiber surface modification is typically achieved through phys-
ical or chemical methods. Physical techniques, such as plasma treat-
ment, physical vapor deposition (PVD), and ion beam implantation,
modify the surface using weak adsorption forces, often resulting in un-
stable changes that are not suitable for long-term or biological appli-
cations. In contrast, chemical methods like surface grafting, cross-
linking, and chelation form more stable modifications by creating co-
valent bonds or adding functional groups. However, these processes
often require harsh conditions, such as organic solvents, high tempera-
tures, or extended reaction times, which can produce toxic byproducts,
degrade the nanofiber material, and reduce biocompatibility, limiting
their applicability in biomedical settings. Both physical and chemical
methods offer effective ways to modify nanofiber properties, but they
come with drawbacks: physical methods tend to provide less stable
surface modifications, while chemical methods may compromise ma-
terial integrity and introduce toxicity. Therefore, there is a need for
more refined, biocompatible surface modification techniques that can
overcome these limitations for enhanced biomedical applications
[62,63].

4. Plasma treatment

Plasma, the most energetic and abundant state of matter, accounts
for approximately 99.9 % of the visible matter. It consists of charged
particles, electrons, photons, and free radicals. Unlike solids, liquids,
and gases, plasma is a complex mixture of ions, electrons, and neutral
particles in both ground and excited states. Although plasma is electri-
cally conductive due to the presence of free charge carriers, it remains
electrically neutral on a macroscopic scale. Plasma is not naturally found
in Earth’s atmosphere and is usually generated from a neutral gas [64].
Plasma technology is highly versatile for material treatment, as it can
involve single components or combinations of components. The ability
to generate and control plasma is essential for its wide range of appli-
cations in fields such as materials science, nanotechnology, and
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biomedical engineering [65]. Plasma treatment is an effective and
widely used method for chemical and physical modifications, steriliza-
tion, decontamination, thin-film formation (plasma polymerization),
and precise surface property adjustments. It is applicable to a wide va-
riety of materials, particularly polymers and polymer fibers [66,67].
Effective plasma modification requires precise control over the plasma
generation process and treatment parameters, such as power, pressure,
gas flow rate, and exposure time. These factors influence key plasma
characteristics, such as density, temperature, and composition, which
determine the degree of surface modification on the material [65].
Plasma processing of polymers is a simple, cost-effective, and safe
technique that alters surface properties without affecting the bulk
properties of the material.

It is commonly used in tissue engineering to improve scaffold sur-
faces, enhancing wettability and introducing new functionalities.
Plasma surface modification can adjust mechanical properties, rough-
ness, hydrophilicity, and surface chemistry, making it highly suitable for
biomedical applications [68-72]. Cold atmospheric plasma (CAP) is a
promising approach for wound healing. Preclinical and early clinical
studies in animals and humans have shown that CAP reduces bacterial
load and promotes healing without harming healthy tissue. It modulates
inflammation, stimulates growth factors linked to angiogenesis, and
introduces tissue-reactive species (e.g., NO, OH, O) that aid repair.
Additionally, helium-based CAP lowers pH levels, contributing to
wound acidification and enhanced healing [73]. These therapeutic
benefits of CAP have also been consistently observed across multiple
clinical trials involving patients with chronic wounds (see Table 2).

By using inert gases like Ar, He, and Nj, plasma treatment generates
functional groups or radicals that enhance adhesion, facilitate polymer
grafting, immobilize biomolecules, or increase surface hydrophilicity.
This clean, fast, and reliable process affects only the surface, preserving
the material’s core properties while improving adhesion for bio-
materials [78,79].

Table 3 presents some of the advantages and disadvantages of the
plasma modification technique.

4.1. Classification of plasma treatment

Classifying plasma types is difficult due to the complexity of selecting
the right criteria. Plasma variations stem from differences in their
physical and chemical properties, as well as the materials they interact
with. Surface plasma treatment can be categorized according to plasma
type, operating conditions, and intended applications [80]. The key
classifications will be discussed in the following sections.

4.1.1. Based on plasma temperature

Plasmas are categorized into thermal (hot) and nonthermal (cold)
types. Thermal plasmas, which are fully ionized and have a uniform
temperature, have been utilized for decades in industrial processes like
metal extraction, refining, ceramic powder production, spray coatings,
and hazardous waste treatment. In medicine, thermal plasmas are
frequently used for endoscopic tissue coagulation, hemostasis during
surgery, and tissue ablation (e.g., tumor removal or treating actinic
keratosis). However, because of their high temperatures, thermal
plasmas are unsuitable for sensitive applications involving living cells or
temperature-sensitive medical equipment. Nonthermal plasma (NTP),
also known as cold atmospheric plasma, differs from thermal plasma in
the behavior of electrons, ions, and overall neutrality. Unlike thermal
plasma, which is generated under high pressure and power with elec-
trons and heavier particles at the same temperature, NTP is produced at
low pressure and power, where electrons have significantly higher
temperatures than the heavier particles, which stay near or at room
temperature [81-86].

NTP treatment is an effective technique for modifying the hydro-
philicity and hydrophobicity of materials without altering their bulk
properties. This eco-friendly, simple, and efficient method can change
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Table 2
Clinical Outcomes of Cold Plasma Therapy in Chronic Ulcer Treatment.
Plasma System Number of Wound Type Cases with Wound Size <0.5 (%) Bacterial load Refs.
wound cases
Cold Atmospheric Plasma 44 Diabetic SC: 36.4 % vs SC + CAP: 77.3 % Significant immediate bacterial load [731
Foot Ulcers reduction after CAP sessions; no long-term
difference between groups
Cold Atmospheric Plasma 14 Chronic Not reported exactly; 1 complete closure; >50 % Significant reduction in bacterial load (p = [74]
(CAP) - PlasmaDerm® VU- Venous Leg reduction in 4/7 CAP patients 0.04)
2010 Figure 2: Ulcers
Low-Temperature Atmospheric 50 Pressure - Significant reduction in bacterial load after 1 [75]
Pressure Plasma (LTAPP) Ulcers treatment; improved PUSH scores and
exudate amount after 1 week
Cold Atmospheric Plasma 20 Diabetic Significant reduction in wound size (p = 0.007), antibacterial effects observed [76]
(Helium gas plasma, 4.5 kV, Foot Ulcers exudate reduction (p = 0.039), and improved wound
22 kHz) grading (p = 0.019)
Cold Plasma Therapy (CPT) 48 Chronic >90 % closure: 16 % (CPT), 0 % (SWT); >60 %: 28  Lower antibiotic use in CPT group (4 % vs23  [77]
Wounds % (CPT), 0 % (SWT); >40 %: 40 % (CPT), 18 % %, p = 0.049); faster wound healing (2.14x
(mixed) (SWT); >25 %: 56 % (CPT), 27 % (SWT) faster, p = 0.039)

.4

Fig. 2. (A) The PlasmaDerm® DBD plasma device (CINOGY GmbH, Duderstadt, Germany) has been utilized in the treatment of venous ulcers on the lower leg. (B)
The kKINPen® MED plasma jet device (neoplas med GmbH, Greifswald, Germany) has been applied to treat diabetic pressure ulcers on the foot.

surface functional groups such as hydroxyl, carbonyl, carboxyl, and
nitrile. Because it operates at low temperatures, NTP is particularly
suitable for treating various biological materials, including solids, lig-
uids, and aerosols [87]. NTP devices, such as jet plasma, dielectric
barrier discharge (DBD) plasma, and spark plasma, function under
ambient room conditions, making them ideal for life sciences and a
broad range of biomedical applications [88,89]. These include sterili-
zation, skin disinfection, dental and oral disease treatment, blood
coagulation, wound healing, cancer therapy, and immunotherapy, all of
which have benefited from NTP advancements [90]. In environmental
applications, devices like gliding arc discharge and corona discharge are
commonly used for removing gaseous pollutants. Recently, DBD and jet
plasmas have garnered more attention due to their non-thermal char-
acteristics, opening up new possibilities in biological and medical fields,
especially for applications involving living tissues, cells, and bio-
materials [91].

4.1.2. Based on pressure

Plasmas can be classified by pressure as either low-pressure or
atmospheric-pressure. Low-pressure plasmas, typically operating be-
tween 0.1 and 10 Pa, are effective for surface modification as they
penetrate deeper into materials without damaging the surface [92,93].
The increased mean free path of plasma particles allows them to travel
greater distances, promoting more efficient surface interaction and
leading to enhanced modification [94]. Low-pressure plasmas are
preferred in biomaterials research for their stability and controllable
reactions. However, atmospheric-pressure plasmas (APP) have gained
popularity for industrial use due to their easier integration into pro-
duction lines and lower costs, as they eliminate the need for vacuum
equipment [67].

Atmospheric-pressure plasmas are perfect for large-scale surface

modification because they operate at or near room temperature and do
not require vacuum systems. This makes them cost-effective for treating
extensive surfaces and suitable for modifying heat-sensitive materials
safely [65]. To address homogeneity issues in atmospheric-pressure
plasmas, operation in a pulsed regime can be employed, while high
temperatures resulting from high current densities can be controlled
using dielectric barrier discharges (DBDs) [67].

4.1.3. Based on plasma source

Plasma sources such as capacitively coupled plasma (CCP), induc-
tively coupled plasma (ICP), and microwave plasma provide unique
benefits depending on factors like power input, plasma density, and ease
of control, making them ideal for various industrial and research ap-
plications. CCP is especially favored for surface modification because it
can generate low-pressure, easily controllable plasma. It operates by
applying high-frequency alternating current between two electrodes,
ionizing the gas around them to create plasma with low ion density and
moderate electron temperature, enabling precise control over surface
interactions. The key advantages of CCP include its flexibility in
adjusting power and gas flow, allowing for targeted surface treatments
such as improving wettability, adhesion, and biocompatibility. It is
commonly used for modifying polymer surface energy, enhancing metal
corrosion resistance, and in processes like thin film deposition, etching,
and sterilization. CCP’s versatility makes it valuable across various in-
dustries, including electronics, automotive, biomedical, and packaging.
Its ability to function at low pressures and create uniform plasma makes
it especially suited for high-throughput applications. Additionally, CCP
can be combined with other plasma sources, such as ICP or microwave
plasmas, to further optimize performance for specific tasks [95,96].
Microwaves serve as an alternative energy source for chemical reactions
and processes, offering energy through dielectric heating. This allows
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Table 3
Advantages and disadvantages of plasma modification technique.
Surface
Modification Advantages Disadvantages
Technique
e Allows the attachment of e Surface Damage and
various chemical Degradation
functionalities e Non-Uniform
e Environmentally friendly Treatment
processes (use minimal e Surface-only Effects
chemicals and generate little e Parameter Sensitivity
waste) e Potential Toxicity
e Suitable for treating a wide e Manufacturing Scale-
range of materials (without Up
Plasma altering the bulk properties) o Complexity of
treatment e Utilizes relatively simple and Equipment

Gas Emissions (use of
certain gases in plasma
treatment)

Energy Consumption
(Some plasma
treatment processes)

easily scalable equipment
Reduced processing time and
fewer steps involved

e Highly cost-effective
Enhances biocompatibility
(promoting cell growth and
adhesion)

Capable of modifying the
surface properties of polymers
by replacing chemical groups
Improved wettability
Increased flame resistance
Enhanced adhesive bonding
Better reflection of
electromagnetic radiation
Increased surface hardness

e Control over surface roughness
Economically advantageous
over time

the reaction mixture to be uniformly mixed without direct contact with
the walls. Microwave plasma sources are gaining popularity for pro-
ducing low-pressure, high-density plasmas because of their energy ef-
ficiency and versatility. By exciting gas molecules with microwave
electromagnetic fields, these sources create highly ionized plasmas with
uniform electron energy, making them ideal for applications like ma-
terials processing, surface treatment, sterilization, and environmental
remediation. In materials processing, these plasmas enable precise
etching, deposition, and thin-film coating, critical for semiconductor
and advanced materials manufacturing. For surface treatment, they
provide effective cleaning and modification without the need for high
temperatures or harmful chemicals. In sterilization, microwave plasmas
are used to decontaminate surfaces and equipment in healthcare and
food processing, ensuring hygiene. Microwave plasma sources offer
advantages over traditional plasma sources, including higher process
efficiency, better control, and the ability to process sensitive materials
with minimal thermal damage. As a result, they are increasingly applied
in both industrial and scientific fields, such as electronics, materials
science, and medical sterilization [97-100].

4.1.4. Based on gas type

Plasma can be classified based on the type of gas used, which falls
into two main categories: inert gases and reactive gases. Oxygen gas is
commonly employed for polymer surface activation because, under low
power conditions (<200 W), it generates reactive oxygen atoms that
selectively modify the surface without altering the bulk material. For
example, Nair et al. demonstrated that oxygen plasma treatment of
polycarbonate and PEEK microneedle arrays increased surface energy
and enhanced protein adsorption, potentially improving drug delivery
capabilities for polymer microneedles [101]. Recently, Omrani and her
team utilized oxygen plasma treatment to modify the surface of poly-
ether ether ketone (PEEK) with gelatin for applications in bone injury
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treatment [102]. Similarly, Ghorbani et al. immobilized gelatin onto
oxygen plasma-treated PCL, forming tunable pore structures that are
well-suited for wound healing and skin tissue engineering [103]. Oxy-
gen is also widely used in plasma etching to oxidize surfaces and pro-
duce volatile byproducts. In a study by Amornsudthiwat and
Damrongsakkul, oxygen plasma treatment was applied to silk fibroin,
altering its surface stiffness and enhancing the adhesion of L929 cells
and human mesenchymal stem cells [104]. On the other hand, argon
plasma is commonly used to activate polymer surfaces by reducing hy-
drophobicity through ion bombardment. For oxygen-containing poly-
mers, argon plasma can generate new functional groups, such as
peroxides and hydroperoxides, which promote subsequent grafting. For
instance, collagen was successfully grafted onto argon-treated PCL
membranes via peptide coupling, resulting in improved cell prolifera-
tion compared to untreated membranes [105].

4.2. Plasma treatment of the electrospun nanofibers

A range of strategies, including physical, chemical, and biological
methods, have been employed to design surface-functionalized nano-
fibers. Techniques for modifying the surface of nanofibers include
plasma treatment, wet chemical methods, surface graft polymerization,
and co-electrospinning of surface-active agents with polymers. Among
these, plasma treatment is a commonly used approach for both physical
and chemical modifications of polymer surfaces and nanofibers [11].
Fig. 3 illustrates the various methods used to modify the surface of
nanofibers individually. Surface-functionalized nanofibers are charac-
terized using techniques such as SEM and TEM for imaging, FTIR for
chemical analysis, DSC for thermal properties, and AFM for surface
topography. XRD reveals crystallinity, while XPS and EDAX provide
chemical and elemental analysis. BET analysis measures surface area
and porosity, and mercury porosimetry assesses pore size distribution.
These methods offer a comprehensive evaluation of nanofiber properties
[106,107].

Plasma treatment is an eco-friendly, clean, and sustainable method
for modifying the surface of nanofibers without affecting their bulk
properties. It enhances the adhesion and wettability of materials such as
nanofibers by altering their surface chemistry and structure. It in-
troduces functional groups and increases surface roughness, enhancing
interaction with liquids. This process is crucial for boosting the
biocompatibility of nanofibers in biomedical applications, such as tissue
engineering and drug delivery, by promoting cell attachment, growth,
and reducing bacterial adhesion. It also minimizes inflammation and
improves tissue integration, making plasma-treated nanofibers more
effective in clinical use [108-111]. plasma treatment incorporates polar
functionalities, such as oxygen- or amine-rich groups, which improve
the hydrophilicity and surface topography of nanofibrous mats. These
changes enhance cellular proliferation, adhesion, and viability, while
also facilitating protein interactions and promoting better integration
with surrounding tissues [112-114].

Furthermore, the impact of plasma treatments on the mechanical
properties of nanofibrous materials used in biomedical applications is a
crucial consideration. These treatments not only modify surface chem-
istry but also affect key mechanical characteristics such as tensile
strength, elasticity, and stiffness, which are essential for the material’s
performance in tissue engineering and wound healing. The type of
plasma treatment whether atmospheric, low-pressure radio frequency,
or microwave can have a significant impact on the mechanical proper-
ties of nanofibrous mats. Each plasma method differs in terms of energy,
reactive species, and treatment duration, leading to unique changes in
the morphology and structural integrity of the fibers [12,115]. When
applied with the correct parameters, plasma treatment can induce cross-
linking that enhances both the thermal and mechanical properties of
electrospun membranes, while also improving their storage stability. It
also addresses low surface functionality by facilitating the grafting,
polymerization, or immobilization of molecules onto the nanofiber
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Fig. 3. Surface modification techniques for nanofibers.

surface. Moreover, plasma treatment can raise the porosity of nano-
fibers, thus expanding the surface area and enhancing their interaction
potential with the surrounding environment. Plasma treatment modifies
nanofiber surfaces by increasing hydrophilicity, roughness, and
porosity, enhancing drug diffusion and enabling tunable release profiles
based on drug-polymer interactions. Additionally, plasma treatment
results in a higher drug release rate as treatment time increases,
improving the antibacterial activity of the nanofibers and creating a
sustained inhibition zone over an extended period [116-118].

While surface plasma treatment offers numerous benefits and ap-
plications, there are several negative points and limitations to consider,
particularly when applied to sensitive materials like electrospun nano-
fibers for medical applications: High-energy plasma can cause degra-
dation or alteration of the nanofiber structure, affecting their
mechanical properties and performance. The increase in surface
roughness of nanofibers after plasma treatment can be attributed to the
bombardment by energetic particles, including electrons, ions, radicals,
neutrals, and excited atoms/molecules. These high-energy species
interact with the nanofiber surface, causing physical etching and
modifying the surface topography, which results in increased roughness.
This alteration in surface morphology can enhance properties like
wettability, cell adhesion, and interaction with biomolecules, making it
particularly beneficial for biomedical applications. Some plasma gases
or treatment byproducts may be toxic or harmful to biological systems.
Careful selection of plasma gases and thorough characterization of
treated nanofibers are necessary to ensure biocompatibility and safety
for medical applications. Achieving consistent and uniform treatment
across large batches of electrospun nanofibers may require optimization
of process parameters and equipment. Despite its positive and negative
aspects, plasma treatment provides a versatile, efficient, and environ-
mentally friendly method for improving the surface properties of a wide
variety of materials, making it highly valuable in numerous industrial
and biomedical applications [119,120] [36]. Table 4 summarizes
various studies conducted on the use of plasma for surface treatment of
nanofibers across different applications.

4.3. Plasma modification of nanofibers for wound healing

Wound healing is a multifaceted and carefully controlled process
that unfolds in four overlapping stages, as shown in Fig. 4: (1) coagu-
lation/hemostasis, (2) inflammation, (3) proliferation, and (4) remod-
eling. Various factors, including advanced age, diabetes, and obesity,

can interfere with the normal healing process, frequently leading to
persistent inflammation and delayed or impaired tissue repair [140].

Key factors such as wound closure, interaction with exudates, me-
chanical properties, and biocompatibility are essential performance in-
dicators for medical dressings. While traditional treatments have faced
challenges in addressing the complexities of wound healing, nano-
materials present an opportunity for precise manipulation at the atomic
level, allowing dressings to cater to the specific requirements of both
acute and chronic wound care. Electrospinning, renowned for its high
versatility, is utilized to produce ultrafine fibers that offer numerous
advantages. These include enhanced adaptability to the wound envi-
ronment, controlled release of biopharmaceuticals, promotion of gas
exchange between the wound and its surroundings, absorption of exu-
dates, and potential surface functionalization to improve biocompati-
bility and wound management. These properties enable electrospun
nanofibers to positively impact skin cells at the wound site, promoting
extracellular matrix (ECM) deposition, as well as cell proliferation,
migration, and differentiation. Furthermore, electrospun nanofibers are
becoming increasingly popular in wound healing due to their antibac-
terial properties, ability to promote rapid hemostasis, and exceptional
biocompatibility, which supports cell growth [141-145].

Plasma-treated nanofibers have emerged as multifunctional plat-
forms for wound healing, functioning both as scaffolds for cell attach-
ment and as vehicles for the controlled delivery of therapeutic agents.
Plasma treatment enhances the surface properties of nanofibrous ma-
terials, such as wettability, permeability, and antimicrobial activity—-
thereby improving their interaction with cells and overall regenerative
potential [146,147]. Compared to untreated fibers, plasma-
functionalized nanofibers exhibit superior cell behavior, including
enhanced attachment and proliferation, significantly advancing tissue
regeneration. Moreover, plasma treatment facilitates the covalent
immobilization of bioactive molecules, such as proteins, directly onto
wound dressing surfaces, further supporting the healing process
[148-150]. This technique also enables the integration of therapeutic
cells and genetic materials, including stem cells, siRNA, mRNA, micro-
RNA, and antimicrobial peptides, into wound care systems. These ad-
vancements hold particular promise for treating chronic and complex
wounds, including cancer-related lesions [151,152].

Recent preclinical studies further demonstrate the practical appli-
cability of plasma-functionalized nanofibers in wound management. For
instance, a cold atmospheric plasma-integrated gelatin scaffold (CAP-
GS) enabled sustained, localized CAP delivery without repeated
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Table 4
Plasma modification in different nanofiber materials.
Nanofiber material Plasma system Process gases Properties/Results Application Refs.
Gelatin Atmospheric Air Argon /argon-oxygen  Increased Surface roughness/ improvement Skin Tissue engineering [121]
Plasma hydrophilicity/ the number of fibroblast cells
was increased
Polylactic acid Radio-frequency (RF) - Enhanced antimicrobial activity/ sufficient Tissue engineering [69]
wettability/ suitable surface and mechanical
properties.
Polyamide-6/ polypropylene Diffuse Coplanar - Enhancing the adhesive strength to carrie Coated nonwovens [66]
nonwoven Dielectric Barrier substrates/DBD treatment of PA6 fibers
Discharge results in the oxidation of the polymer
surface
Polycaprolactone /Polyaniline Cold Atmospheric Argon Hydrophilic surface/ viability/conductive Tissue [122]
Argon electrospun nanofibrous engineering
chitosan Dielectric Barrier Argon/Oxygen/ Enhance wettability/ enhanced the adhesion ~ Bone tissue engineering [123]
(CS)/polyethylene oxide (PEO)/ Discharge Nitrogen and proliferation/ enhanced the performance
natural coral of osteoblasts
Polycaprolactone/ Diffuse Coplanar Argon Improving the material wettability /positive ~ Tissue engineering [124]
hydroxyapatite nanoparticles Dielectric Barrier influence on cell activity/enhanced the cell
Discharge (DCSBD) proliferation
polycaprolactone Dielectric Barrier Argon and nitrogen Improve the Biomedical and [125]
Discharge wettability/sufficient cell adhesion and tissue engineering
proliferation
Polyvinylpyrrolidone/ TiO, Diffuse Coplanar Dry ambient air, Flexible composite core/shell fibers/surface Industrial application like [126]
Dielectric Barrier nitrogen, and pure area improvement photo and heterogeneous
Discharge (DCSBD) hydrogen. catalysis.
poly(i-lactide-co-e-caprolactone) Radio Frequency (RF) Nitrogen-argon Increased the surface roughness, wettability, = Biomedical like nerve guide [127]
(PLCL) and poly (i-lactide- and hydrophilicity of the scaffolds, thereby conduits and nerve protectant
coglycolide) (PLGA) promoting cell attachment and proliferation. =~ wraps.
poly(N-vinylpyrrolidone/ Microwave Argon Argon Excellent visible light photocatalytic Photodegradation of harmful, [128]
copper (II) plasma activity/ highest rate of photodegradation persistent organic pollutants in
efficacy the environmet.
poly(3- Dielectric Barrier Argon/ Oxygen Increase surface hydrophilicity/ Increase Drug delivery platform for [129]
caprolactone) (PCL)/ calcium Discharge permeability tissue engineering
carbonate
Polycaprolactone Radio Frequency (RF) Hydrogen/Argon Enhances the wettability of the polymeric Tissue engineering [130]
mats without altering their morphology,
resulting in increased adhesion force.
Polystyrene (PS)/ chitosan (CS)/ Low-temperature Oxygen/Argon Improved surface charge and wettability Tissue engineering and [113]
bovine serum albumin (BSA) plasma following plasma treatment, with low cell biomedicine fields
cytotoxicity.
polylactic acid Atmospheric pressure Argon and oxygen Polymer bond degradation and oxidation Tissue engineering [131]
barrier discharge at processes, leading to improved
low temperatures hydrophilicity and increased surface energy.
Polysuccinimide/ allylamine Low pressure non- - Plasma-treated meshes maintained their Drug delivery [132]
equilibrium air plasma integrity, making them a feasible and
treatment effective tool for simultaneous crosslinking
and sterilization.
Polyvinyl alcohol (PVA)/ Bombyx Dielectric Barrier Oxygen Improves wettability / increasing surface Wound dressing [133]
mori silk fibroin (BMSF)/ Discharge energy /better mechanical behavior/
amoxicillin trihydrate prolonged antibacterial activities
poly lactic acid (PLA) Atmospheric-pressure Argon Improving the electrospinnability Tissue engineering [134]
argon plasma jet /Production of smooth, uniform, bead-free
PLA nanofibers /significant changes to the
main physical properties
Polyvinyl alcohol (PVA)/Aloe Vera  Atmospheric Dielectric =~ Oxygen Improved surface wettability/improvement Biomedical [135]

(AV) Barrier Discharge(A-

DBD)

of mechanical parameters/improves surface
roughness

exposure, significantly accelerating wound closure through immune
modulation and reduced inflammation [153]. Similarly, study identifies
Olfactomedin-like 3 (Olfml3) as a potent ECM-related protein that en-
hances scaffold performance without prior cell seeding. Gas plasma
treatment was used to improve the hydrophilicity of PCL surfaces and
introduce functional groups for efficient protein attachment. Plasma-
treated and untreated patches were coated with increasing concentra-
tions of recombinant Olfml3-FLAG protein (0-1 pg/mL), and protein
binding was quantified using an HRP-conjugated anti-Olfml3 antibody.
In vivo, Olfml3 accelerated wound healing, enhanced vascularization,
and promoted cell infiltration, supporting its potential for cost-effective,
cell-free tissue regeneration [154]. In another study, ibuprofen-loaded
polylactic acid (PLA) nanofibrous scaffolds treated with plasma exhibi-
ted improved biocompatibility and wound healing performance. When

seeded with human skin cells, these scaffolds not only reduced wound
contraction but also significantly enhanced neovascularization [155].
Also, another research demonstrated that plasma-treated electrospun
polycaprolactone (PCL)/gelatin nanofiber scaffolds significantly
improved wound healing in full-thickness rat skin models by enhancing
fibroblast proliferation, collagen synthesis, and neovascularization
[156]. Together, these examples underscore the clinical relevance and
translational promise of plasma-functionalized nanofibrous materials in
regenerative medicine.

In addition to their therapeutic advantages, plasma-treated nano-
fibers exhibit strong potential for clinical scalability and cost-
effectiveness. Plasma surface modification is a dry, solvent-free, and
relatively low-cost process that requires minimal reagents and produces
little waste, making it environmentally friendly. It can be uniformly
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Fig. 4. Stages of wound healing: (a) Hemostasis stage, (b) Inflammation stage, (c) Proliferation stage, (d) Remodeling stage.

applied to large surface areas and easily integrated into existing elec-
trospinning production lines, supporting mass production and chain
processing, particularly with atmospheric cold plasma systems. The
short processing times and compatibility with scalable fabrication
further enhance their industrial appeal [116]. Moreover, plasma treat-
ments enhance material performance without relying on expensive
biochemical coatings or complex cell-based therapies, positioning
plasma-functionalized nanofiber dressings as practical, cost-efficient
solutions for widespread clinical use, even in resource-limited health-
care settings [154]. Table 5 summarises various studies conducted on
the use of plasma modification of electrospinning nanofiber for wound
healing application.

5. Conclusions

Electrospun nanofibers represent a promising innovation in the
biomedical field due to their unique features, including high surface
area, porosity, and the ability to integrate bioactive molecules. These
characteristics make electrospun nanofibers ideal for applications in
tissue engineering, drug delivery, and wound healing. The electro-
spinning process is versatile, scalable, and cost-effective, allowing the
production of nanofibers with customized properties to address specific
biomedical requirements. Despite these advantages, optimizing their
performance for clinical use often requires surface modification to
enhance biocompatibility, cell adhesion, and interactions with the sur-
rounding biological environment. Among these approaches, plasma
treatment stands out as an environmentally friendly and effective

Table 5
Plasma modification of electrospinning nanofiber for wound healing application.
Nanofiber material Method Plasma type Inert and Observation Refs.
reactive gases
Polycaprolactone nanofibrous/ Plasma treatment Low-pressure Oxygen -argon  Improved the adhesion/sufficient wettability [136]
Polypropylene spunbond fabric after electrospinning plasma -Atmospheric or argon/
(support) pressure plasma slit nitrogen
jet
Bombyxmori silk/Amoxicillin Plasma treatment Dielectric Barrier Oxygen Enhancement in tensile strength, Young’s modulus, [42]
hydrochloride trihydrate (AMOX)/  after electrospinning Discharge wettability and surface energy/ good antibacterial activity/
polyvinyl enhanced cell adhesion/ enhanced drug release ability and
alcohol (PVA) biocompatibility
poly (vinyl alcohol) (PVA)/ chitosan Pre-electrospinning Atmospheric pressure  Argon Enhanced the electrospinnability of various polymers/ [137]
(CS)/ poly (ethylene glycol) (PEG)/  plasma treatment plasma jet production of nanofibers of improved quality/
Mangifera extract (ME) anti-infective properties/ promote faster wound healing
Chitosan/ Cotton gauze substrate Plasma treated cotton  Dielectric Barrier Helium/ Increased the adhesion between nanofiber layers and gauze  [138]
substrate Discharge Oxygen substrate/ reduced degradation of the nanofiber/improve
antibacterial properties/ enhance absorption of wound
exudates and blood
Polyvinyl Plasma treatment Atmospheric pressure = — Enhanced the interfacial bond strength / reduced fibrous [139]
Alcohol/Polylactic Acid after electrospinning plasma diameter/ increased roughness/ shortened the coagulation
time/ improving the hemostatic performance/ good
biocompatibility
Polyvinyl Plasma treatment Dielectric Barrier Oxygen/ Improve the [12]
Alcohol /Chitosan after electrospinning Discharge Argon wettability/ formation of nano-structured roughness/

improved mechanical strength and biocompatibility/
haemolytically safe
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method for functionalizing nanofiber surfaces. This technique improves
wettability, promotes cell attachment, and enhances antimicrobial
properties, all without altering the nanofibers’ bulk characteristics.
Additionally, plasma treatment can improve the mechanical strength of
nanofibers, broadening their potential for various medical applications,
from wound healing to tissue regeneration. The integration of plasma
treatment with electrospun nanofibers presents exciting opportunities
for advancing biomedical technologies, particularly in creating smart
wound dressings, tissue scaffolds, and controlled drug delivery systems.
Future research should aim to refine plasma treatment techniques by
addressing current challenges, such as optimizing treatment parameters,
improving reproducibility, and minimizing potential cytotoxic effects.
Moreover, combining plasma treatments with other surface modifica-
tion methods could yield synergistic benefits, paving the way for more
effective and versatile nanofiber-based solutions for clinical
applications.

In summary, the combination of electrospinning and plasma treat-
ment offers tremendous potential to transform the field of biomaterials.
This approach promises innovative solutions to various healthcare
challenges, with the ultimate goal of enhancing patient care and out-
comes. This comprehensive review underscores the critical advance-
ments in surface modification techniques and their pivotal role in the
future of wound healing technologies. By bridging current knowledge
gaps and proposing future research directions, this paper aims to inspire
continued innovation and interdisciplinary collaboration in the field of
biomedical engineering.
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