Please cite the Published Version

Alruhaimi, Reem S, Hassanein, Emad H M, Alnasser, Sulaiman M, Ahmeda, Ahmad F, Althagafy, Hanan S, Allam, Amr M T, Qebesy, Hamada S and Mahmoud, Ayman M (2025) Modulation of NF-B/NLRP3 inflammasome axis Nrf2/HO-1 signaling and attenuation of oxidative stress mediate the protective effect of ambroxol against cyclophosphamide cardiotoxicity. Biochemical and Biophysical Research Communications, 776. 152242 ISSN 1090-2104

DOI: https://doi.org/10.1016/j.bbrc.2025.152242

Publisher: Elsevier

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/642111/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an Author Accepted Manuscript of an article published in Bio-

chemical and Biophysical Research Communications by Elsevier.

Data Access Statement: The manuscript contains all data supporting the reported results.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

1 Title:

- 2 Modulation of NF-κB/NLRP3 inflammasome axis Nrf2/HO-1 signaling and attenuation of
- 3 oxidative stress mediate the protective effect of ambroxol against cyclophosphamide
- 4 cardiotoxicity
- 5 Authors and affiliations:
- 6 Reem S. Alruhaimi¹, Emad H.M. Hassanein², Sulaiman M. Alnasser³, Ahmad F. Ahmeda⁴,
- Hanan S. Althagafy⁵, Amr M.T. Allam⁶, Hamada S. Qebesy⁶, Ayman M. Mahmoud⁷*
- 8 ¹Department of Biology, College of Science, Princess Nourah bint Abdulrahman University,
- 9 Riyadh 11671, Saudi Arabia.
- 10 ²Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-
- 11 Assiut 71524, Egypt.
- ³Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University,
- 13 Buraydah, 52571, Saudi Arabia.
- ⁴Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346,
- 15 United Arab Emirates.
- ⁵Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi
- 17 Arabia.

22

- 18 ⁶Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar
- 19 University, Assiut 71524, Egypt.
- ⁷Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan
- 21 University, Manchester M1 5GD, UK.
- 23 *Corresponding author:
- 24 Ayman M. Mahmoud
- 25 Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan
- 26 University, Manchester M1 5GD, UK. E-mail: a.mahmoud@mmu.ac.uk
- 27 ORCID ID: 0000-0003-0279-6500

Abstract:

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

51

Despite its potent chemotherapeutic efficacy, cyclophosphamide (CP) is associated with severe cardiac complications, limiting its clinical utility. Recent evidence suggests that the mucolytic agent ambroxol (ABX) exhibits antioxidant and anti-inflammatory properties, making it a candidate for mitigating CP cardiotoxicity. This study explores the protective effects of ABX against CP-mediated cardiotoxicity, with emphasis on oxidative stress, NFκB/NLRP3 inflamamsome axis and Nrf2/HO-1 signaling. Rats were administered ABX (20 mg/kg) for 7 days and received a single injection of CP (100 mg/kg) on day 5, and blood and heart samples were collected for analyses. CP administration induced significant cardiac dysfunction, marked by elevated LDH, CK-MB, and troponin-I, alongside histopathological evidence of myocardial injury. ABX alleviated cardiac biomarkers, prevented histopathological alterations, reduced lipid peroxidation, and restored antioxidant defenses. CP upregulated NFκB p65, NLRP3, ASC1, caspase-1, gasdermin D, and IL-1β, and suppressed Nrf2 and HO-1 in the heart of rats. ABX suppressed the NF-κB/NLRP3 inflamamsome axis mediators and upregulated Nrf2 and HO-1. In silico data revealed the binding affinity of ABX towards NFκB p65 and NLRP3 and ASC1 PYD domains. In conclusion, ABX confers significant cardiotoxicity through multifaceted protection against CP-induced mechanisms, including attenuation of oxidative stress, inhibition of NF-κB/NLRP3 inflamamsome axis, and upregulation of Nrf2/HO-1 signaling. These findings suggest that ABX could serve as an effective adjunct therapy to improve the safety profile of CP in clinical oncology.

- 49 Keywords: Chemotherapy; Ambroxol; Cyclophosphamide; Cardiotoxicity; Oxidative stress;
- 50 Inflammation.

1 Introduction

- 52 Drug-induced cardiotoxicity (DICT) represents a significant and growing health concern,
- particularly in the context of cancer therapy. In drug development, DICT is a major concern

and has been estimated to accounting for 10–14% of postmarket withdrawals [1]. Research indicates that cardiovascular safety issues were responsible for approximately 10% of drug withdrawals over the past 40 years, affecting well-known medications [2]. Additionally, cardiotoxicity ranks as the third most frequent cause of adverse drug reactions, linked to 14% of all withdrawals [3]. Chemotherapeutic agents, while effective in targeting malignant cells, often exert serious side effects on the cardiovascular system, leading to acute or chronic cardiac dysfunction. The adverse effects may lead to impaired heart function, forcing clinicians to alter, suspend, or withdraw essential treatments [4]. Therefore, DICT may severely affect well-being and survival of the patients, even when cancer itself is under control [4]. Cyclophosphamide (CP) is a widely used alkylating chemotherapeutic drug used in the treatment of various malignancies, including lymphomas, leukemias, and solid tumors [5, 6]. CP works by crosslinking DNA strands at the N-7 position of guanine, impairing replication and transcription, and ultimately inducing apoptosis in malignant cells [5, 6]. However, the clinical utility of CP is often limited by its severe off-target effects, including hemorrhagic cystitis, myelosuppression, hepatotoxicity, and gonadotoxicity; among these, cardiotoxicity represents a particularly severe and potentially life-threatening complication. The exact molecular mechanisms underlying CP-induced cardiotoxicity remain incompletely elucidated. Current evidence suggests that reactive CP metabolites mediate cardiac injury primarily through reactive oxygen species (ROS) generation and direct endothelial damage, leading to pathological extravasation of plasma proteins, erythrocytes, and cytotoxic compounds [7]. Subsequent endothelial cell disruption exacerbates myocardial and microvascular injury, culminating in characteristic histopathological findings, including tissue edema, interstitial hemorrhage, and microthrombosis [7, 8]. Recent advances in systemic cancer therapies have heightened the importance of managing treatment-associated toxicities to preserve therapeutic continuity and improve patient outcomes [9].

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

The pathogenesis of CP cardiotoxicity is closely linked to redox imbalance provoked by excessive ROS generation and oxidative stress. These detrimental effects are primarily mediated by its bioactive metabolites, acrolein and phosphoramide mustard generated via the enzymatic activity of hepatic microsomal cytochrome P-450 [10]. Acrolein possesses high reactivity and short biological half-life and is implicated in provoking ROS generation, oxidative stress, and vascular toxicity [11, 12]. Excess ROS along with acrolein can diminish cellular antioxidants and provoke lipid peroxidation (LPO), protein oxidation, and oxidative DNA damage [13, 14]. Additionally, excess ROS can trigger a cascade of inflammatory responses mediated by nuclear factor-kappaB (NF-κB) activation, upregulating numerous proinflammatory mediators [15, 16]. Besides the transcription of pro-inflammatory cytokines, NF-κB activation promotes the assembly of the NLRP3 (NOD-, LRR- and pyrin domaincontaining protein 3) inflammasome, a multiprotein complex that amplifies inflammatory responses by facilitating the maturation and secretion of interleukin-1β (IL-1β) and IL-18 [17]. Following IL-1β secretion, transcriptional activation of genes associated with several disease processes occurs, inducing a pro-inflammatory endothelial phenotype that promotes leukocyte extravasation into injured tissues [18]. The NF-κB/NLRP3 inflammasome axis plays a pivotal role in mediating the inflammatory cascade associated with cardiovascular disease (CVD) and its activation has been observed as a potential driver of cardiotoxicity [19]. Persistent activation of this axis exacerbates myocardial damage, contributing to the development of cardiac dysfunction, atherosclerosis, myocardial infarction, heart failure and other CVD [20]. Therefore, targeting oxidative stress and the NF-κB/NLRP3 inflammasome axis represents a promising therapeutic approach to attenuate chemotherapy-induced cardiotoxicity. Ambroxol (ABX), a mucolytic agent commonly used in the treatment of respiratory diseases, has recently gained attention for its pleiotropic pharmacological properties beyond its

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

traditional clinical applications [21-24]. ABX showed beneficial effects in Gaucher disease,

Parkinson disease, pneumonia and others [22-24], and emerging evidence suggests its antioxidant and anti-inflammatory effects, making it a promising candidate for mitigating CP cardiotoxicity. ABX effectively mitigated LPO induced by doxorubicin (DOX) in murine heart [25], and protected against neurotoxicity [26], ischemic stroke [27], and kidney and liver ischemia-reperfusion (I/R) injury [28-30]; effects linked to suppression of pro-inflammatory mediators [28]. In a mouse model of CP-induced cystitis, ABX has shown protective effects mediated via suppression of inflammation and oxidative stress [31]. However, the cardioprotective effect of ABX against CP toxicity has not been explored. The aim of this study is to investigate the potential of ABX in mitigating CP-induced cardiotoxicity in a rat model, with a focus on its effects on redox homeostasis, NF-κB/NLRP3 inflammasome axis, and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling. Nrf2 is a transcription factor that regulates the expression of antioxidant and cytoprotective genes, including HO-1, thereby mitigating oxidative stress and inflammation [32].

2. Materials and methods

104

105

106

107

108

109

110

111

112

113

114

115

116

- 118 2.1. Animals and experimental design
- Male Wistar rats (180 \pm 10 g) were maintained under standardized conditions (23 \pm 1 °C, 50–
- 120 60% humidity, and 12-h light/dark cycle) with ad libitum access to food and water. Twenty-
- four rats were randomly allocated into four groups (n = 6/group) to assess the cardioprotective
- 122 potential of ABX against CP-induced cardiac injury. All procedures were approved by the
- 123 Institutional Animal Ethics Committee of Al Azhar University, Egypt (Approval no. AZ-
- 124 AS/PH-REC/6/25) and complied with institutional guidelines.
- ABX (GNP, Egypt) and CP (Endoxan; Baxter Oncology, Germany) were suspended in 0.5%
- 126 carboxymethyl cellulose (CMC; Sigma, USA) and physiological saline, respectively. The
- treatment groups were as follows:

- 128 Group I (Control): received 0.5% CMC orally.
- 129 Group II (ABX): administered 20 mg/kg ABX orally [29].
- Group III (CP): injected intraperitoneally (i.p.) with 100 mg/kg CP [33].
- 131 Group IV (ABX + CP): received both CP (100 mg/kg) and ABX (20 mg/kg).
- ABX was administered daily for 7 days, with CP delivered as a single dose on day 5. Groups I
- and II received a single i.p. injection of saline on day 5. On day 8, blood was collected via
- cardiac puncture under ketamine/xylazine (80/10 mg/kg) anesthesia for serum isolation. Rats
- were euthanized, and heart was rapidly excised. Sections were fixed in 10% neutral buffered
- formalin (NBF) for histology and other sample were homogenized in Tris-HCl buffer (pH 7.4)
- for biochemical assays.
- 138 2.2. Biochemical assays
- 139 Serum lactate dehydrogenase (LDH) and creatine kinase (CK)-MB were quantified using
- 140 commercial kits (Spinreact, Spain, Cat. no. 41220 and 1001054, respectively). Heart
- 141 homogenates were analyzed for oxidative stress markers (malondialdehyde (MDA),
- superoxide dismutase (SOD), reduced glutathione (GSH), and catalase) using Biodiagnostic
- kits (Egypt, Cat. no.: MD2528, SD2521, TA2511, and CA2517, respectively). Cardiac NF-κB
- p65 and IL-1β, and serum cardiac troponin I (cTnI) were determined using specific ELISA kits
- 145 (Elabscience, China, Cat. no. E-EL-R0674, E-EL-R0012, and E-EL-R1253, respectively). HO-
- 146 1 activity was assayed following the method of Abraham et al. [34].
- 147 2.3. Histopathological and immunohistochemical (IHC) assessment
- 148 Formalin-fixed heart tissues were paraffin-embedded, sectioned (5 µm), and stained
- with hematoxylin and eosin (H&E) for histopathological evaluation. Other sections were
- stained with Sirius red, periodic acid-Schiff (PAS) and Prussian blue. IHC analysis was

- performed to assess the expression of NRLP3, ASC, caspase-1, gasdermin D (GSDMD), and Nrf2. Briefly, paraffin-embedded sections were treated with citrate buffer (50 mM, pH 6.8) for antigen retrieval and endogenous peroxidase activity was blocked with 0.3% hydrogen peroxide (H₂O₂), followed by incubation with a protein-blocking solution. Sections were incubated overnight at 4 °C with primary antibodies against NRLP3, ASC, caspase-1, GSDMD, and Nrf2 (Biospes, China, Cat. no. YPA1480, YPA1695, YPA2348, YPA2511, and YPA1865, respectively), washed, and then treated with a secondary antibody. Color development was achieved using DAB, and sections were counterstained with Mayer's hematoxylin. Staining intensity was quantified using ImageJ software (NIH, USA) by analyzing six randomly selected fields per sample.
- 161 2.4. Molecular Docking Studies

152

153

154

155

156

157

158

159

- The interaction between ABX and NF-κB p65 (PDB: 5U01), NLRP3 PYD domain (PDB:
- 163 3QF2) and ASC PYD domain (PDB: 1UCP) was modeled using AutoDock Tools (v1.5.6), and
- virtual screening was performed using PyRx (v0.8) [35]. Visualization of binding interactions
- and modes was carried out using PyMOL (v2.3.2) and LigPlot+ (v2.2.8) [36].
- 166 2.5. Statistical Analysis
- Data are expressed as mean \pm standard deviation (SD). One-way ANOVA with Tukey's post
- hoc test using GraphPad Prism v8 were employed to determine significance. A p-value of <
- 169 0.05 was considered statistically significant.
- 170 **3. Results**
- 3.1. ABX attenuates CP-induced myocardial injury
- 172 The protective effect of ABX against CP-induced cardiotoxicity was assessed using
- biochemical markers (Fig. 1) and histopathological analysis (Fig. 2). CP administration resulted
- in significant increases in serum cTnI (Fig. 1A), CK-MB (Fig. 1B), and LDH (Fig. 1C)

- 175 compared to the control group (p<0.001). Treatment with ABX significantly alleviated these
- 176 changes in myocardial injury biomarkers.
- 177 Histopathological examination of heart tissues revealed normal appearance of the myocardium
- as thin, branched, cylindrical muscle fibers with oval central nuclei, and normal blood vessels
- in both the control (Fig. 2A-B) and ABX-treated groups (Fig. 2C-D). In contrast, CP
- administration caused tissue damage manifested by congested and dilated blood vessels,
- 181 hypertrophied muscle with enlarged nuclei, vacuolated cytoplasm, and hypereosinophilic
- myocytes with pyknotic nuclei (Fig. 2E-H). ABX markedly alleviated these pathological
- alterations and resulted in notable improvements in their myocardial blood vessels and cardiac
- muscle fibers (Fig. 2I-J). In addition to H&E, sections from the heart of all groups were stained
- 185 with Sirius red, PAS, and Prussian blue (Fig. 3) to evaluate changes in collagen,
- mucopolysaccharides (MPS), and iron deposition, respectively. Control and ABX-treated rats
- revealed normal collagen, normal PAS stain intensity and distribution, and negative Prussian
- blue staining. CP increased collagen, MPS, and iron deposition in the heart of rats; effects that
- were prevented by ABX.
- 190 3.2. ABX mitigates CP-induced oxidative stress in rat heart
- 191 CP significantly increased MDA (Fig. 4A) and decreased GSH, SOD, and catalase in the heart
- of rats (p<0.001; Fig. 4B-D). Treatment with ABX significantly reduced cardiac MDA
- 193 (p<0.001) while enhanced GSH (p<0.01) and antioxidant enzyme activities (p<0.001).
- 3.3. ABX suppresses NF-κB/NLRP3 inflammasome axis in CP-treated rats
- 195 CP administration significantly upregulated NF-κB p65 (Fig. 5A), NLRP3 (Fig. 5B-C), ASC1
- 196 (Fig. 5B,D), caspase-1 (Fig. 5B,E), GSDMD (Fig. 5B,F), and IL-1β (Fig. 5G) expression in the
- heart of rats as compared to the control (p<0.001). ABX effectively suppressed the expression
- 198 of NF-κB p65, NLRP3, ASC1, caspase-1, GSDMD, and IL-1β in CP-administered rats. In
- 199 *silico* data revealed the binding affinity of ABX with NF-κB p65 (Fig. 6A), NLRP3 PYD (Fig.

- 6B) and ASC PYD (Fig. 6C) with energies of -5.9, -5.3, and -5.4 kcal/mol, respectively. ABX
- showed hydrophobic interactions with 8, 6, and 7 amino acid residues, and hydrogen bonding
- with 2, 2, and 1 residues of NF-κB p65, NLRP3 PYD and ASC PYD, respectively.
- 3.4. ABX upregulated Nrf2/HO-1 signaling in CP-treated rats
- 204 CP administration significantly downregulated Nrf2 expression (Fig. 7A-B) and decreased HO-
- 205 1 activity (Fig. 7C) in the heart of rats (p<0.001). Treatment with ABX upregulated Nrf2 and
- 206 HO-1 in the heart of CP-exposed rats (p<0.001).

4. Discussion

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

The alkylating agent CP is widely used in the treatment of various malignancies. However, its clinical utility is significantly limited by its adverse effects, including cardiotoxicity, which manifests as myocardial damage, heart failure, and, in severe cases, fatal outcomes [7, 8]. Although the exact mechanism underling CP cardiotoxicity is not fully understood, redox imbalance and inflammation are implicated [8], representing a potential therapeutic target. This study aimed to investigate the protective effects of ABX against CP-induced cardiac injury, with a focus on its ability to modulate oxidative stress, NF-κB/NLRP3 inflammasome axis, and Nrf2/HO-1 signaling. The findings demonstrate that ABX exerts significant cardioprotective effects, as evidenced by improvements in cardiac function markers, histopathological alterations, and molecular signaling pathways. Furthermore, molecular docking studies provide insights into the binding affinity of ABX with key molecular targets, underscoring its potential as a therapeutic agent for mitigating CP cardiotoxicity. The cardiotoxic effects of CP were evident in the significant elevation of cardiac function markers, including CK-MB, LDH, and cTnI, which are well-established indicators of myocardial injury [37]. These biomarkers reflect the extent of cardiomyocyte damage and membrane integrity loss, consistent with the histopathological findings in this study. Histopathological examination using H&E staining revealed congested and dilated blood vessels, hypertrophied muscle with enlarged nuclei, vacuolated cytoplasm, and hypereosinophilic myocytes with pyknotic nuclei. Sirius red staining further demonstrated increased collagen deposition, indicative of fibrogenesis, while PAS staining highlighted elevated deposition of MPS. Cardiovascular pathology is associated with elevated disposition of MPS as shown in patients with mucopolysaccharidosis where the manifestations include cardiac hypertrophy and valvular defects [38]. In addition, Prussian blue staining confirmed iron accumulation, suggesting oxidative stress-mediated ferroptosis. Increased iron deposition in the heart leads to cardiomyopathy characterized by systolic or diastolic dysfunction [39]. Disrupted iron metabolism has been associated with the use of anthracycline and its involvement in cardiotoxicity of these drugs has been suggested [40], and CP increased iron content in the liver and spleen of mice [41]. The findings of our study collectively demonstrate that CP may induce significant metabolic and structural alterations in the heart and show new information on the involvement of MPS and iron deposition in CP cardiotoxicity. ABX markedly attenuated these pathological alterations, restoring cardiac function markers and improving heart architecture. The reduction in collagen, MPS and iron accumulation demonstrate the cardioprotective efficacy of ABX. The ability of ABX to protect the heart against chemotherapeutics has been scarcely studied. In DOX-challenged murine heart, ABX effectively mitigated LPO [25]. The efficacy of ABX to attenuate oxidative stress and inflammation has been demonstrated in pre-clinical models of I/R- and cisplatin-induced liver injury [29, 30, 42]. Owing to the involvement of oxidative stress and inflammation in CP cardiotoxicity [8], the cardioprotective efficacy of ABX could be ascribed to its ability to suppress these pathological processes. This study demonstrated a significant increase in LPO alongside a depletion of GSH and reduced activities of SOD and catalase, demonstrating oxidative stress. The metabolism of CP results in the generation of acrolein which elicits the production of ROS. Acrolein is a highly

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

electrophilic metabolite that depletes endogenous antioxidants, including GSH, and promotes LPO [11], as indicated by increased MDA levels in this study. The depletion of GSH, a pivotal regulator of cellular redox balance, compromises antioxidant defense mechanisms, thereby enhancing susceptibility to oxidative injury [43]. A concomitant decline in the antioxidant enzymes, SOD and catalase, leads to ROS accumulation that further aggravates oxidative stress [44]. CP-driven surplus ROS inflicts cellular injury through multiple pathways, including LPO, oxidative protein and DNA damage, and antioxidant depletion. LPO alters membrane integrity by disrupting lipid bilayer fluidity and permeability, while also inactivating integral membrane proteins, culminating in loss of membrane functionality [45]. Additionally, ROS induce posttranslational modifications in structural proteins and oxidatively inactivate critical enzymes, perturbing cellular homeostasis and amplifying oxidative damage [45]. Besides oxidative damage, excess ROS can provoke inflammatory responses mediated by NFκB activation that upregulates numerous pro-inflammatory mediators [15, 16] and promotes the assembly of the NLRP3 inflammasome [17]. NLRP3 inflammasome is a multiprotein complex that amplifies inflammatory responses by promoting the maturation and secretion of IL-1β and IL-18 [17]. Pro-inflammatory cytokines released following NF-κB activation promote inflammation and injury by recruiting immune cells, inducing further ROS production, and promoting fibrotic changes [46]. Together with ROS, the pro-inflammatory mediators provoke mitochondrial dysfunction via alteration of the mitochondrial membrane potential, resulting in enhanced permeability and release of cytochrome c into the cytosol. Cytochrome c interacts with caspase-9 and Apaf-1 to form the apoptosome complex, which subsequently activates caspase-3, initiating the execution phase of apoptosis [47]. In the current study, CP activated the NF-kB/NLRP3 inflammasome axis as demonstrated by upregulated NF-κB, NLRP3, ASC, caspase-1, IL-1β, and GSDMD in the heart of rats. ROS-mediated activation of NF-kB is closely associated with NLRP3 inflammasome induction across

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

multiple pathological conditions [17]. ROS further serve as direct activators of NLRP3, triggering a proinflammatory cascade characterized by increased IL-1ß secretion [17]. This process upregulates disease-associated genes and promotes endothelial cell activation, which enhances immune cell recruitment to sites of tissue injury [18]. Structurally, NLRP3 comprises a NACHT domain with ATPase activity essential for oligomerization [48], an LRR domain, and a PYD domain. The PYD mediates inflammasome assembly by homotypic interactions with the adaptor protein ASC [49]. Subsequent recruitment and activation of caspase-1 catalyzes the proteolytic cleavage of pro-IL-1β into its bioactive form (IL-1β) and processes GSDMD [17]. GSDMD is a protein that plays a crucial role in pyroptosis, a type of programmed cell death, by forming pores in the plasma membrane, leading to cell lysis and the release of inflammatory cytokines [17]. ABX effectively mitigated these changes, reducing MDA levels and restoring GSH, SOD, and catalase activities. These findings suggest that ABX enhances the cellular antioxidant capacity, thereby counteracting CP-induced oxidative damage. The antioxidant properties of ABX are likely mediated through its ability to scavenge ROS and upregulate endogenous antioxidant defenses. This antioxidant efficacy has been reported in murine heart challenged with DOX where ABX attenuated LPO [25]. By attenuating LPO and enhancing antioxidant defenses, ABX mitigates oxidative stress and prevents subsequent cellular damage. Additionally, ABX suppressed the NF-κB/NLRP3 inflammasome axis evidenced by downregulation of NF-κB, ASC, NLRP3, IL-1β and GSDMD. This anti-inflammatory efficacy is likely mediated through the inhibition of ROS generation. The dual anti-inflammatory and antioxidant effect of ABX is supported by previous studies showing its ability to attenuate these processes in organs other than the heart. In rodent models of I/R-liver injury [29, 30] and cisplatin hepatotoxicity [42], ABX suppressed LPO and pro-inflammatory cytokines. Our study added support to the protective role of ABX against inflammation and oxidative stress by revealing its

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

cardioprotective efficacy against CP toxicity. To further explore the mechanism underlying the suppressive effects of ABX on NLRP3 inflammasome activation, we investigated its binding affinity to NLRP3 and ASC PYD domains. The results revealed that ABX forms stable interactions with the PYD domains of NLRP3 and ASC through hydrogen bonding and hydrophobic interactions, consistent with its ability to inhibit inflammasome assembly and activation. These findings highlight the anti-inflammatory properties of ABX, which likely contribute to its cardioprotective effects by attenuating the inflammatory cascade and preventing pyroptosis. Furthermore, the protective effect of ABX against CP cardiotoxicity involved upregulation of the Nrf2/HO-1 signaling pathway in the heart of rats. ABX upregulated Nrf2 expression and HO-1 activity, effects associated with attenuated myocardial oxidative stress and inflammation in CP-administered rats. Nrf2 is a master regulator of antioxidant gene expression. HO-1, a downstream target of Nrf2, is essential for mitigating OS and inflammation [32]. HO-1 catalyzes the degradation of heme into biliverdin and carbon monoxide, thereby exerting antioxidant and anti-inflammatory properties [50]. These findings suggest that ABX exerts its protective effects against CP cardiotoxicity, at least in part, through the modulation of Nrf2/HO-1 signaling. While this study provides compelling preclinical evidence for the cardioprotective effects of ABX against CP-induced toxicity, the preclinical nature of the study, the use of a single dose of ABX, the lack of data showing cytoplasmic and nuclear levels of Nrf2, and the lack of long-term outcome data could be considered as limitations.

5. Conclusion

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

This study demonstrates that ABX exerts significant cardioprotective effects against CP-induced cardiotoxicity by mitigating oxidative stress, suppressing NF-κB/NLRP3 inflammasome axis, and enhancing Nrf2/HO-1 signaling. The improvements in cardiac function markers, alleviation of histopathological alterations, and modulation of key signaling

- 325 pathways underscore the therapeutic potential of ABX in preventing CP cardiotoxicity.
- 326 Molecular docking studies further elucidate the binding affinity of ABX with NLRP3 and ASC
- 327 PYD domains, providing a mechanistic basis for its multi-faceted protective effects. These
- findings suggest that ABX could be repurposed as an adjunctive therapy to enhance the safety
- and efficacy of CP-based chemotherapy. Future studies are warranted to validate these findings
- in clinical settings and explore the translational potential of ABX in cardioprotection.
- 331 Acknowledgment
- 332 Princess Nourah bint Abdulrahman University Researchers Supporting Project Number
- 333 (PNURSP2025R381), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- 334 Declaration of Competing Interest
- All authors declare no conflict of interests in relation to the manuscript.
- 336 Availability of data and materials
- The manuscript contains all data supporting the reported results.
- 338 **References:**
- 339 [1] S. Seal, O. Spjuth, L. Hosseini-Gerami, M. García-Ortegón, S. Singh, A. Bender, A.E.
- Carpenter, Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public
- 341 Classifiers for FDA Drug-Induced Cardiotoxicity Rank, Journal of Chemical Information and
- 342 Modeling 64(4) (2024) 1172-1186.
- 343 [2] Z.V. Varga, P. Ferdinandy, L. Liaudet, P. Pacher, Drug-induced mitochondrial dysfunction and
- cardiotoxicity, American Journal of Physiology-Heart and Circulatory Physiology 309(9) (2015)
- 345 H1453-H1467.
- 346 [3] I.J. Onakpoya, C.J. Heneghan, J.K. Aronson, Post-marketing withdrawal of 462 medicinal
- products because of adverse drug reactions: a systematic review of the world literature, BMC
- 348 Med 14 (2016) 10.
- [4] M.B. Morelli, C. Bongiovanni, S. Da Pra, C. Miano, F. Sacchi, M. Lauriola, G. D'Uva,
- 350 Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection,
- 351 Front Cardiovasc Med 9 (2022) 847012.
- 352 [5] A. Moignet, Z. Hasanali, R. Zambello, L. Pavan, B. Bareau, O. Tournilhac, M. Roussel, T. Fest,
- 353 A. Awwad, K. Baab, Cyclophosphamide as a first-line therapy in LGL leukemia, Leukemia 28(5)
- 354 (2014) 1134-1136.
- 355 [6] J.G. Omole, O.A. Ayoka, Q.K. Alabi, M.A. Adefisayo, M.A. Asafa, B.O. Olubunmi, B.A. Fadeyi,
- 356 Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats, J Evid
- 357 Based Integr Med. 23 (2018) 2156587218757649.
- 358 [7] S. Dhesi, M.P. Chu, G. Blevins, I. Paterson, L. Larratt, G.Y. Oudit, D.H. Kim,
- 359 Cyclophosphamide-Induced Cardiomyopathy: A Case Report, Review, and Recommendations
- 360 for Management, J Investig Med High Impact Case Rep 1(1) (2013) 2324709613480346.

- 361 [8] A. Iqubal, M.K. Iqubal, S. Sharma, M.A. Ansari, A.K. Najmi, S.M. Ali, J. Ali, S.E. Haque,
- 362 Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a
- 363 new vision, Life Sciences 218 (2019) 112-131.
- 364 [9] A. Rizzo, A. Cusmai, S. Acquafredda, F. Giovannelli, L. Rinaldi, A. Misino, G. Palmiotti,
- 365 KEYNOTE-522, IMpassion031 and GeparNUEVO: changing the paradigm of neoadjuvant
- immune checkpoint inhibitors in early triple-negative breast cancer, Future Oncol 18(18) (2022)
- 367 2301-2309.
- 368 [10] S.R. Fahmy, A.I. Amien, F.M. Abd-Elgleel, S.M. Elaskalany, Antihepatotoxic efficacy of
- 369 Mangifera indica L. polysaccharides against cyclophosphamide in rats, Chem Biol Interact. 244
- 370 (2016) 113-120.
- 371 [11] A. Moghe, S. Ghare, B. Lamoreau, M. Mohammad, S. Barve, C. McClain, S. Joshi-Barve,
- 372 Molecular mechanisms of acrolein toxicity: relevance to human disease, Toxicol Sci. 143(2)
- 373 (2015) 242-255.
- 374 [12] Z. Yousefipour, K. Ranganna, M.A. Newaz, S.G. Milton, Mechanism of acrolein-induced
- 375 vascular toxicity, J Physiol Pharmacol 56(3) (2005) 337-53.
- 376 [13] G.B. McDonald, J.T. Slattery, M.E. Bouvier, S. Ren, A.L. Batchelder, T.F. Kalhorn, H.G.
- 377 Schoch, C. Anasetti, T. Gooley, Cyclophosphamide metabolism, liver toxicity, and mortality
- following hematopoietic stem cell transplantation, Blood 101(5) (2003) 2043-2048.
- 379 [14] A.D. Ricart, Drug-induced liver injury in Oncology, Annals of Oncology 28(8) (2017) 2013-
- 380 2020
- 381 [15] P.A. Baeuerle, V.R. Baichwal, NF-kappa B as a frequent target for immunosuppressive and
- anti-inflammatory molecules, Advances in immunology 65 (1997) 111-37.
- [16] K. Asehnoune, D. Strassheim, S. Mitra, J.Y. Kim, E. Abraham, Involvement of reactive oxygen
- 384 species in Toll-like receptor 4-dependent activation of NF-kappa B, Journal of immunology
- 385 (Baltimore, Md.: 1950) 172(4) (2004) 2522-9.
- 386 [17] N. Kelley, D. Jeltema, Y. Duan, Y. He, The NLRP3 Inflammasome: An Overview of
- 387 Mechanisms of Activation and Regulation, Int J Mol Sci 20(13) (2019).
- 388 [18] C.A. Dinarello, Immunological and inflammatory functions of the interleukin-1 family, Annu
- 389 Rev Immunol 27 (2009) 519-50.
- 390 [19] A.G. Mauro, E. Mezzaroma, S. Toldo, G.C. Melendez, R.L. Franco, E.J. Lesnefsky, A. Abbate,
- 391 W.G. Hundley, F.N. Salloum, NLRP3-mediated inflammation in cardio-oncology: sterile yet
- 392 harmful, Transl Res 252 (2023) 9-20.
- 393 [20] Y. Zheng, L. Xu, N. Dong, F. Li, NLRP3 inflammasome: The rising star in cardiovascular
- 394 diseases, Front Cardiovasc Med 9 (2022) 927061.
- 395 [21] Z. Wang, M. Yang, X. Chen, R. Xiao, Y. Dong, M. Chu, G. Song, Y. Wang, Polypharmacology of
- ambroxol in the treatment of COVID-19, Biosci Rep 43(2) (2023).
- 397 [22] X. Zhan, H. Zhang, G.H.B. Maegawa, Y. Wang, X. Gao, D. Wang, J. Li, Use of Ambroxol as
- 398 Therapy for Gaucher Disease, JAMA Netw Open 6(6) (2023) e2319364.
- 399 [23] S. Mullin, L. Smith, K. Lee, G. D'Souza, P. Woodgate, J. Elflein, J. Hällqvist, M. Toffoli, A.
- 400 Streeter, J. Hosking, W.E. Heywood, R. Khengar, P. Campbell, J. Hehir, S. Cable, K. Mills, H.
- Zetterberg, P. Limousin, V. Libri, T. Foltynie, A.H.V. Schapira, Ambroxol for the Treatment of
- 402 Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A
- 403 Nonrandomized, Noncontrolled Trial, JAMA Neurol 77(4) (2020) 427-434.
- 404 [24] H. Tang, Z. Yuan, J. Li, Q. Wang, W. Fan, The application of ambroxol hydrochloride
- 405 combined with fiberoptic bronchoscopy in elderly patients with severe pneumonia: A meta-
- analysis and systematic review, Medicine (Baltimore) 101(4) (2022) e28535.
- 407 [25] D. Nowak, G. Pierscinski, J. Drzewoski, Ambroxol inhibits doxorubicin-induced lipid
- 408 peroxidation in heart of mice, Free Radical Biology and Medicine 19(5) (1995) 659-663.
- 409 [26] S.C. Lin, C.C. Chang, S.H. Tsou, P.Y. Chiu, J.F. Cheng, H.C. Hung, W.J. Chen, Y.J. Ho, C.L. Lin,
- 410 Protective Effects of Ambroxol on Aβ and α-Synuclein-Induced Neurotoxicity Through

- 411 Glucocerebrosidase Activation in HT-22 Hippocampal Neuronal Cells, Int J Mol Sci 25(22)
- 412 (2024).
- 413 [27] K. Patzwaldt, G. Berezhnoy, T. Ionescu, L. Schramm, Y. Wang, M. Owczorz, E. Calderón, S.
- 414 Poli, L.M. Serna Higuita, I. Gonzalez-Menendez, L. Quintanilla-Martinez, K. Herfert, B. Pichler, C.
- 415 Trautwein, S. Castaneda-Vega, Repurposing the mucolytic agent ambroxol for treatment of sub-
- acute and chronic ischaemic stroke, Brain Commun 5(2) (2023) fcad099.
- 417 [28] Ç. Gültekin, S. Sayiner, Ş. Çetinel, A. Şehirli, Does Ambroxol alleviate kidney ischemia-
- 418 reperfusion injury in rats?, Iran J Basic Med Sci 25(8) (2022) 1037-1041.
- 419 [29] K. Jiang, X. Wang, X. Mao, H. Lao, J. Zhang, G. Wang, Y. Cao, I. Tong, F. Zhang, Ambroxol
- 420 alleviates hepatic ischemia reperfusion injury by antioxidant and antiapoptotic pathways,
- 421 Transplant Proc 45(6) (2013) 2439-45.
- 422 [30] C. Gultekin, A.O. Sehirli, S. Cetinel, S. Sayiner, Could Ambroxol reduce cytokines in hepatic
- ischemia-reperfusion injury in rats?, Bratisl Lek Listy 123(5) (2022) 381-384.
- 424 [31] E.N. Barut, S. Engin, B. Barut, C. Kaya, G. Kerimoglu, A. Ozel, M. Kadioglu, Uroprotective
- 425 effect of ambroxol in cyclophosphamide-induced cystitis in mice, Int Urol Nephrol 51(5) (2019)
- 426 803-810.
- 427 [32] S. Satta, A.M. Mahmoud, F.L. Wilkinson, M. Yvonne Alexander, S.J. White, The Role of Nrf2 in
- 428 Cardiovascular Function and Disease, Oxid Med Cell Longev 2017 (2017) 9237263.
- 429 [33] A.A. Sahu, A. Mukherjee, S.K. Nirala, M. Bhadauria, Cyclophosphamide-induced multiple
- organ dysfunctions: unravelling of dose dependent toxic impact on biochemistry and histology,
- 431 Toxicol Res (Camb) 13(6) (2024) tfae201.
- 432 [34] N.G. Abraham, J.D. Lutton, R.D. Levere, Heme metabolism and erythropoiesis in abnormal
- iron states: Role of δ-aminolevulinic acid synthase and heme oxygenase, Experimental
- 434 Hematology 13(8) (1985) 838-843.
- 435 [35] S. Dallakyan, A.J. Olson, Small-molecule library screening by docking with PyRx, Methods
- 436 Mol Biol 1263 (2015) 243-50.
- 437 [36] A.C. Wallace, R.A. Laskowski, J.M. Thornton, LIGPLOT: a program to generate schematic
- 438 diagrams of protein-ligand interactions, Protein Eng 8(2) (1995) 127-34.
- [37] M. Kemp, J. Donovan, H. Higham, J. Hooper, Biochemical markers of myocardial injury, Br J
- 440 Anaesth 93(1) (2004) 63-73.
- [38] S. Sestito, G. Rinninella, A. Rampazzo, F. D'Avanzo, L. Zampini, L. Santoro, O. Gabrielli, A.
- Fiumara, R. Barone, N. Volpi, M. Scarpa, R. Tomanin, D. Concolino, Cardiac involvement in MPS
- patients: incidence and response to therapy in an Italian multicentre study, Orphanet Journal of
- 444 Rare Diseases 17(1) (2022) 251.
- [39] P. Gujja, D.R. Rosing, D.J. Tripodi, Y. Shizukuda, Iron overload cardiomyopathy: better
- 446 understanding of an increasing disorder, J Am Coll Cardiol 56(13) (2010) 1001-12.
- 447 [40] J.C. Kwok, D.R. Richardson, Examination of the mechanism(s) involved in doxorubicin-
- 448 mediated iron accumulation in ferritin: studies using metabolic inhibitors, protein synthesis
- inhibitors, and lysosomotropic agents, Mol Pharmacol 65(1) (2004) 181-95.
- 450 [41] Y. Sheng, Y.J. Chen, Z.M. Qian, J. Zheng, Y. Liu, Cyclophosphamide induces a significant
- increase in iron content in the liver and spleen of mice, Hum Exp Toxicol 39(7) (2020) 973-983.
- 452 [42] A. Bishr, N. Sallam, M. Nour El-Din, A.S. Awad, S.A. Kenawy, Ambroxol attenuates cisplatin-
- induced hepatotoxicity and nephrotoxicity via inhibition of p-JNK/p-ERK, Can J Physiol
- 454 Pharmacol 97(1) (2019) 55-64.
- 455 [43] D.A. Averill-Bates, The antioxidant glutathione, Vitam Horm 121 (2023) 109-141.
- 456 [44] J.M. Matés, C. Pérez-Gómez, I. Núñez de Castro, Antioxidant enzymes and human diseases,
- 457 Clin Biochem 32(8) (1999) 595-603.
- 458 [45] R.L. Smathers, J.J. Galligan, B.J. Stewart, D.R. Petersen, Overview of lipid peroxidation
- 459 products and hepatic protein modification in alcoholic liver disease, Chem Biol Interact. 192(1-
- 460 2) (2011) 107-112.

- 461 [46] T. Lawrence, The nuclear factor NF-kappaB pathway in inflammation, Cold Spring Harb
- 462 Perspect Biol 1(6) (2009) a001651.
- 463 [47] P. Chen, Y.-F. Hu, L. Wang, W.-F. Xiao, X.-Y. Bao, C. Pan, H.-S. Yi, X.-Y. Chen, M.-H. Pan, C.
- 464 Lu, Mitochondrial apoptotic pathway is activated by H2O2-mediated oxidative stress in BmN-
- 465 SWU1 cells from Bombyx mori ovary, PLoS One 10(7) (2015) e0134694.
- 466 [48] J.A. Duncan, D.T. Bergstralh, Y. Wang, S.B. Willingham, Z. Ye, A.G. Zimmermann, J.P. Ting,
- 467 Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate
- inflammatory signaling, Proc Natl Acad Sci U S A 104(19) (2007) 8041-6.
- 469 [49] P.R. Vajjhala, R.E. Mirams, J.M. Hill, Multiple binding sites on the pyrin domain of ASC
- 470 protein allow self-association and interaction with NLRP3 protein, J Biol Chem 287(50) (2012)
- 471 41732-43.

- 472 [50] H.O. Pae, H.T. Chung, Heme oxygenase-1: its therapeutic roles in inflammatory diseases,
- 473 Immune Netw 9(1) (2009) 12-9.

476 Figures:

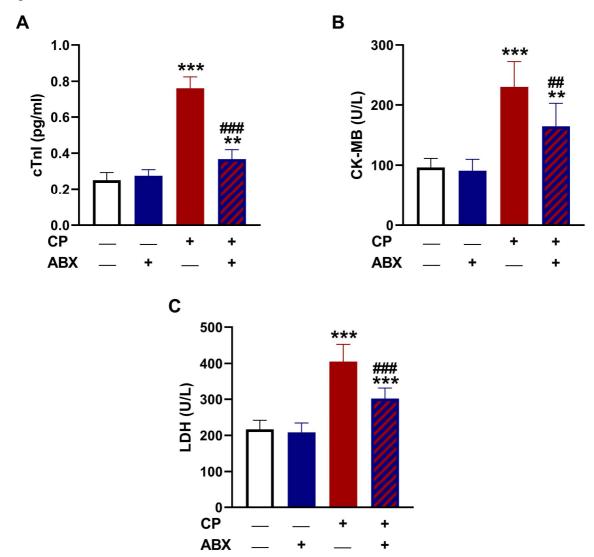


Fig. 1. ABX ameliorated serum cTnI (A), CK-MB (B), and LDH (C) in CP-administered rats. Data are mean \pm SD, (n=6). **p<0.01 and ***p<0.001 versus Control. *#p<0.01 and *##p<0.001 versus CP.

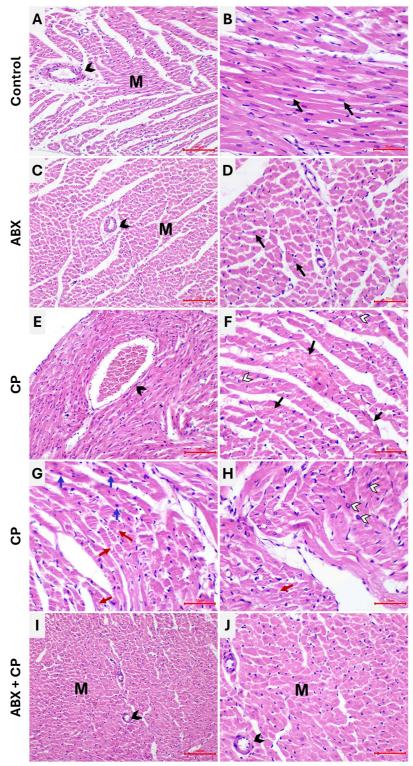


Fig. 2. ABX prevented cardiac injury in CP-administered rats. Photomicrographs of H&E-stained sections from the control (A-B) and ABX-supplemented rats (C-D) showing normal myocardium (M and arrows) and blood vessels (arrowheads); (E-H) CP-treated rats showing hypertrophied muscle with enlarged nuclei (white arrowheads), vacuolated cytoplasm (red arrows), congested and dilated blood vessels (black arrowheads and black arrows), and hypereosinophilic myocytes with pyknotic nuclei (blue arrows); and CP-administered rats treated with ABX showing notable improvements in blood vessels and cardiac muscle fibers (M and blue arrows) and relatively appear as the control group. (Scale bar = $100 \mu m$ (A, C, E, and I) and $50 \mu m$ (B, D, F, G, H and J)).

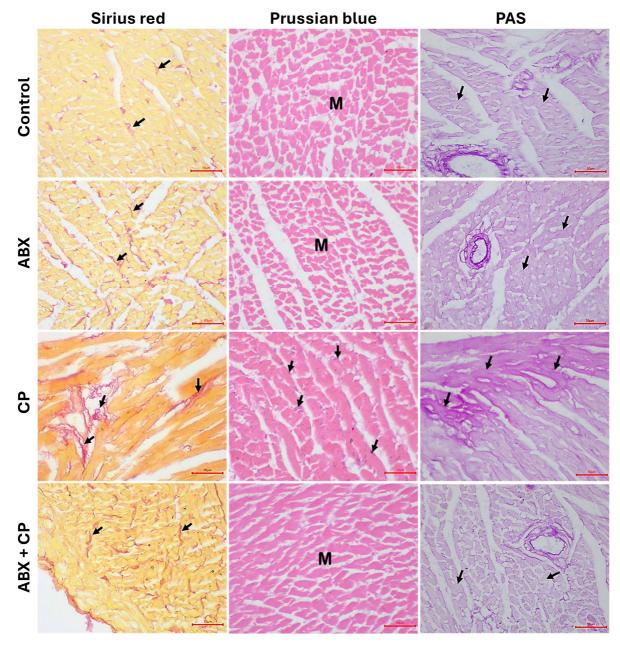


Fig. 3. Photomicrographs of Sirius red-, Prussian blue-, and PAS-stained heart sections. Sirius red staining shows normal distribution of a little amount of collagen fibers between the cardiac muscle fibers (arrows) in control and ABX-treated rats, increased collagen fibers (arrows) in CP-administered rats and normal collagen fiber (arrows) content in CP-administered rats treated with ABX. Control and ABX-supplemented rats show negative Prussian blue staining affinity, CP-administered rats show hemosiderin deposits (arrows), and CP-administered rats treated with ABX show no deposits. The heart of control and ABX-treated rats shows normal PAS stain intensity and distribution (arrows), whereas CP-administered rats show uneven distribution of PAS stain throughout the cardiac muscle fibers, with some muscle fibers displaying a highly intense reaction to the stain (arrows). ABX treatment alleviated PAS staining in CP-administered rats and the sections appear normal. (Scale bar = $50 \mu m$).

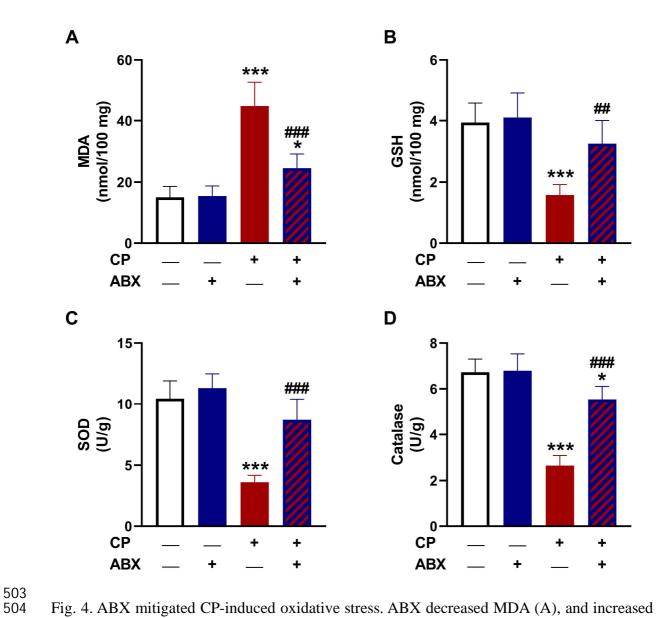


Fig. 4. ABX mitigated CP-induced oxidative stress. ABX decreased MDA (A), and increased GSH (B), SOD (C), and catalase (D) in the heart of CP-administered rats. Data are mean \pm SD, (n=6). *p<0.05 and ***p<0.001 versus Control. *p<0.01 and *p<0.001 versus CP.

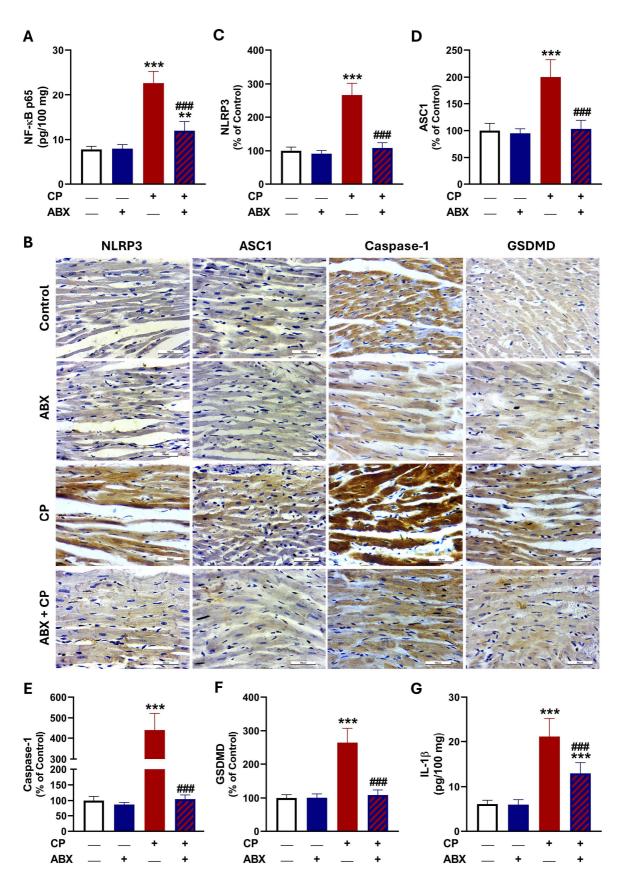


Fig. 5. ABX prevented NF- κ B/NLRP3 inflammasome axis activation in CP-treated rats. ARB decreased NF- κ B p65 (A), NLRP3 (B-C), ASC1 (B,D), caspase-1 (B,E), GSDMD (B,F), and IL-1 β (G) in CP-administered rats. Data are mean \pm SD, (n=6). **p<0.01 and ***p<0.001 versus Control. *##p<0.001 versus CP.

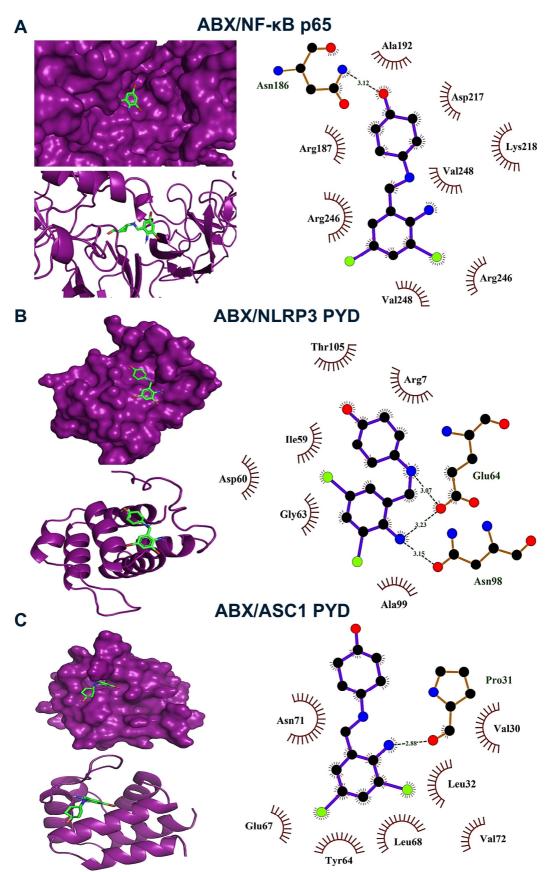


Fig. 6. Molecular docking showing the interaction between ABX and NF- κ B p65 (A), NLRP3 PYD (B), and ASC1 PYD (C).

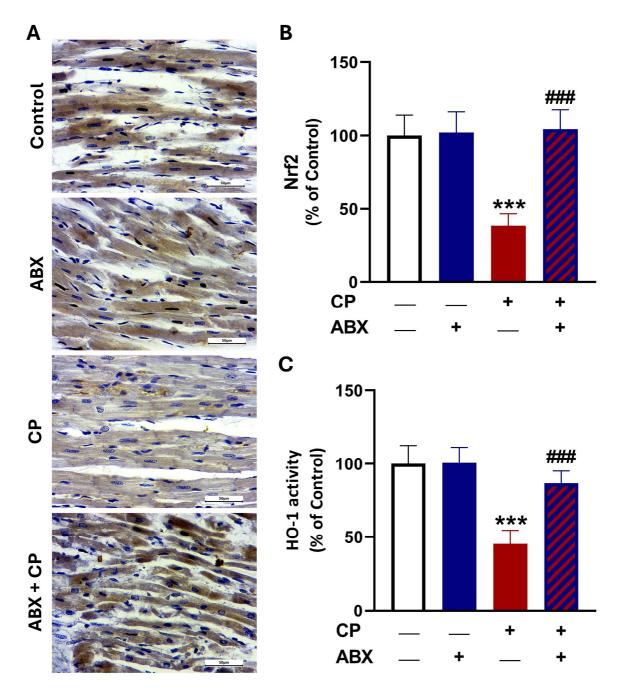


Fig. 7. ABX upregulated Nrf2/HO-1 signaling in the heart of CP-administered rats. ABX increased Nrf2 expression (A-B) and HO-1 activity (C) in CP-administered rats. Data are mean \pm SD, (n=6). ***p<0.001 versus Control and *##p<0.001 versus CP.