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Reinforcing Localization Credibility Through
Convex Optimization

Slavisa Tomic , Marko Beko , Yakubu Tsado, Bamidele Adebisi , and Abiola Oladipo

Abstract—This work proposes a novel approach to reinforce lo-
calization security in wireless networks in the presence of malicious
nodes that are able to manipulate (spoof) radio measurements.
It substitutes the original measurement model by another one
containing an auxiliary variance dilation parameter that disguises
corrupted radio links into ones with large noise variances. This
allows for relaxing the non-convex maximum likelihood estimator
(MLE) into a semidefinite programming (SDP) problem by apply-
ing convex-concave programming (CCP) procedure. The proposed
SDP solution simultaneously outputs target location and attacker
detection estimates, eliminating the need for further application
of sophisticated detectors. Numerical results corroborate excellent
performance of the proposed method in terms of localization accu-
racy and show that its detection rates are highly competitive with
the state of the art.

Index Terms—Attacker detection, convex-concave programming
(CCP), measurement-spoofing, secure localization, semidefinite
programming (SDP).

I. INTRODUCTION

R ELIABLY determining locations of devices in wireless
networks has always been a challenging task and will

play an essential role in the forthcoming 6 G wireless systems,
where manipulated (spoofed) location information can lead to
catastrophic repercussions. Even though secure non-satellite
based localization problem has been attracting interest in recent
years [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], there
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is no uniquely accepted solution and there is still potential
for improvement in all relevant aspects (localization accuracy,
detection rates and complexity).

Several studies have explored secure localization techniques
to mitigate the impact of malicious anchors. Early approaches
include least median of squares (LMS) and radio frequency
(RF) fingerprinting, as investigated in [1]. The LMS method
selects the best localization estimate based on median residues,
while RF fingerprinting employs a median-based distance met-
ric. Attack-resistant methods such as attack-resistant minimum
mean square estimation (ARMMSE) and voting scheme (VS)
were proposed in [2] to detect and exclude malicious anchors by
analyzing inconsistencies or leveraging grid-based voting mech-
anisms. An iterative gradient descent approach for handling
spoofing attacks was introduced in [3], where residues from
malicious anchors tend to be higher and can thus be filtered out
to enhance location estimation. More recent approaches employ
weighted least squares (WLS) estimator [8] and density-based
spatial clustering to distinguish normal from contaminated loca-
tion points, as seen in [4], combined with sequential probability
ratio tests for anchor authentication. Probabilistic models such
as maximum a posteriori (MAP) estimators, solved using varia-
tional message passing, have been applied for secure localization
in mobile wireless sensor networks in [5]. Other methods, such
as the weighted central mass (WCM) approach in [6], exploit
geometric properties to obtain initial estimates and iteratively
refine them using trust region sub-problems (GTRS). A general-
ization of this method was presented in [7], where a generalized
likelihood ratio test (GLRT) was used for detection, and the
law of cosines (LC) was applied to reformulate the problem
into a GTRS. Recent advancements include robust optimization
techniques such as secure weighted least squares (SWLS) and
l1-norm-based approaches, introduced in [9], which use sta-
tistical deviation thresholds and clustering methods to detect
malicious nodes. Additionally, robust formulations using min-
max optimization, second-order cone programming (SOCP),
and robust GTRS (R-GTRS) were proposed in [10] to enhance
localization security by treating attacks as nuisance parameters.
Another approach, based on the alternating direction method
of multipliers (ADMM) that employs least squares criterion
together with a decomposition-coordination iterative scheme to
refine localization estimates was presented in [11]. A VS based
on the distance to hyperplanes formed by pairs of anchors was
introduced in [12], with attacker classification being performed
by confidence intervals.

In huge contrast to the existing solutions, this work takes a
radically different approach and proposes a substitution of the
original measurement model by a different one that accounts for
noise variance dilation in order to capture corrupted measure-
ments as ones with large noise variances. This is achieved by
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defining an auxiliary variance amplification parameter which al-
lows for transformation of the non-convex maximum likelihood
estimator (MLE) into a convex semidefinite programming (SDP)
problem by applying a simple convex-concave programming
(CCP) procedure. The proposed SDP solution not only sets a
new achievable lower bound on localization accuracy, but also
holds within attacker detection estimation, depriving the need
for refined detectors.

II. PROBLEM FORMULATION

Consider a q-dimensional (q = 2 or q = 3) wireless network,
composed of two types of nodes: targets (nodes whose locations
one desires to determine) and anchors (nodes whose locations
are known and are exploited as reference points for localiza-
tion purposes). Targets communicate with anchors that estimate
distance information from the received signal (e.g., via time
of arrival or received signal strength), which is then exploited
for localization process of a single target at a time. The true
location of a target is denoted by x, while the true locations of
anchors are denoted by ai, i = 1, . . ., N . Finally, a fraction of
the anchors is considered corrupted and attempts to hinder the
localization process by modifying its distance measurements,
i.e., by performing spoofing attacks.

One can formulate secure range-based localization problem
as a system of non-linear equations, where each equation cor-
responds to measured distance between an anchor and a target,
corrupted with noise and potentially by a spoofing attack [7].
Hence, the k-th distance measurement sample, with 1 ≤ k ≤ K,
between the target and the i-th anchor (in meters) can be mod-
elled [13], [14] as

di,k = ‖x− ai‖+ δi + ni,k, (1)

whereni,k stands for the measurement noise, modelled as a zero-
mean Gaussian random variable with variance σ2

i,k, i.e., ni,k ∼
N (0, σ2

i,k), and δi ∈ R represents the (unknown) intensity of the
spoofing attack. It is clear that when δi = 0 the i-th anchor is
genuine (i.e., i ∈ G), while δi �= 0 corresponds to the i-th anchor
being corrupted (i.e., i ∈ C).

For simplicity and with no loss of generality in the following
derivations, the median of the K range measurements, di, is
employed as the observation at the i-th anchor; thus, the subscript
k is omitted. Likewise, the noise variances are assumed equal
for all links (and samples), i.e., σ2

1 = . . . = σ2
N = σ2.

From (1) and following maximum likelihood principle [15],
one can formulate the localization problem as an optimization
problem with x and δi as variables [11]. Nevertheless, such a
problem is non-convex [16], since the argument of the square
factor (‖x− ai‖+ δi − di)

2 has a negative region when ‖x−
ai‖+ δi < di, and is under-determined (N + q unknowns with
N equations). Hence, this work circumvents the presence of
spoofed measurements by dilating noise variance, as illustrated
in Fig. 1. To do so, the model in (1) is rewritten as

di = ‖x− ai‖+ εi, (2)

where εi ∼ N (0, ρiσ
2), with ρi =

{
1, if i ∈ G
Ri � 1, if i ∈ C and

Ri being the variance dilation parameter.
Note that the model in (2) is adopted to allow for the following

derivations; the actual observations still come from (1).

Fig. 1. Dilating noise variance to circumvent spoofing.

In what follows, this approximation is justified by showing
that the Cramér-Rao lower bound (CRLB) of an estimator re-
sulting from (2) is approximately equal to the one from (1).
Let θ = [xT , ν1, . . . , νN ]T denote the N + q vector of all un-
known parameters, i.e., νi = δi for (1) and νi = ρi for (2),
i = 1, . . . , N . According to [15], the variance of any unbi-
ased estimator is lower bounded by var(θ̂i) ≥ [F−1(θ)]ii, with
F (θ) being the (N + q)× (N + q) Fisher information ma-

trix, whose elements are defined as [F (θ)]ij = −E[∂
2L(d;θ)
∂θi∂θj

],

where i, j = 1, . . . , N + q and L(d;θ) is the log-likelihood of
d = [d1, . . . , dN ] parametrized by θ. One can partition F (θ) as

F (θ) =

[
A(θ) ∈ Rq×q B(θ) ∈ Rq×N

BT (θ) ∈ RN×q C(θ) ∈ RN×N

]
,

such that A(θ) = 1
σ2

∑N
i=1

(x−ai)(x−ai)
T

‖x−ai‖2 , B(θ) =
1
σ2 [

(x−a1)
‖x−a1‖ , . . . , (x−aN )

‖x−aN‖ ], C(θ) = 1
σ2 IN for (1), and

A(θ) = 1
σ2

∑N
i=1

(x−ai)(x−ai)
T

ρi‖x−ai‖2 , B(θ) = 02×N , C(θ) =

diag([− 1
2ρ2

1
, . . . ,− 1

2ρ2
N
]) for (2). The CRLB for x can then be

derived as var(x̂) ≥ trace(F−1
x (θ)), by computing the Schur

complement of C(θ), i.e.,

F x(θ) = A(θ)−B(θ)C−1(θ)BT (θ).

Recall that δi = 0 and ρi = 1 when i ∈ G; thus, it is clear that
F x = 1

σ2

∑N
i=1

(x−ai)(x−ai)
T

‖x−ai‖2 for the two models, while when
i ∈ C, the CRLBs are approximately equal for ρi � 1.

According to (2), one can cast the localization problem as

(x̂, ρ̂) = arg max
x,ρ

L(x,ρ) (3)

where ρ = [ρ1, . . . , ρN ]T and L(x,ρ) = −
N∑
i=1

ln{ 1√
2πρiσ2

exp{− (di−‖x−ai‖)2
2ρiσ2 }} is the log-likelihood function. Then,

since

L(x,ρ) ∝
N∑
i=1

(di − ‖x− ai‖)2
ρi

+

N∑
i=1

ln(ρi)

and by relaxing the binary variable ρi into a continuous variable
in the range [1,∞), yields

minimize
x,ρ

N∑
i=1

(di − ‖x− ai‖)2
ρi

+

N∑
i=1

ln(ρi) (4a)

subject to ρi ≥ 1, i = 1, . . . , N. (4b)
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The problem in (4) involves an objective function that is a
sum of non-convex and concave terms and is thus difficult to
tackle directly. Nevertheless, the following section shows how
this problem can be converted into a convex, SDP, problem.

III. THE PROPOSED SDP ESTIMATOR

Current section offers details on the derivation of the pro-
posed algorithm for credible localization. Start by defining aux-
iliary variables yi = di − ‖x− ai‖, Y = yyT and X = xxT ,
where y = [y1, . . . , yN ]T . Then, it follows that

(yi − di)
2=‖x− ai‖2⇔Yii − 2diyi + d2i

=tr(X)− 2aT
i x+ ‖ai‖2

and consequently

(yi − di)(yj − dj) = ‖x− ai‖‖x− aj‖,
which, by applying the Cauchy–Schwarz inequality, yields

Yij ≥
∣∣tr(X)−aT

j x− aT
i x+ aT

j ai

∣∣ +djyi+diyj−didj .

Moreover, introduce ei =
(di−‖x−ai‖)2

ρi
= (yi)

2

ρi
= Yii

ρi
as an epi-

graph variable. This substitution, together with ρi ≥ 1 results in

ei ≥ 0, and Yii ≥ ei.

It also allows to deal with the second (concave term) summation
of (4a) efficiently through an iterative CCP [17] as follows. Note
first that ln(ρi) = ln(Yii)︸ ︷︷ ︸

concave

− ln(ei)︸ ︷︷ ︸
convex

. Thus, for a feasible initial

point, Ŷ (0)
ii , the concave terms are convexified in iteration t by

an affine approximation (gradient evaluation) around that point,
i.e.,

ln
(
Yii; Ŷ

(t)
ii

)
= ln

(
Ŷ

(t)
ii

)
+

(
Yii − Ŷ

(t)
ii

)
Ŷ

(t)
ii

,

for t = 0, . . . , T , with T being the maximum number of steps.
Therefore, by joining all described steps together, one arrives

at the proposed SDP as

minimize
x,y,X,Y ,e

N∑
i=1

ei −
N∑
i=1

ln(ei) +

N∑
i=1

Yii

Ŷ
(t)
ii

(5a)

subject to ei ≥ 0, i = 1, . . . , N, (5b)

Yii ≥ ei, i = 1, . . . , N, (5c)

Yii = tr(X)− 2aT
i x+ ‖ai‖2 + 2diyi − d2i , i = 1, . . . , N,

(5d)

Yij ≥
∣∣tr(X)−aT

j x− aT
i x+ aT

j ai

∣∣ +djyi+diyj−didj ,

i = 1, . . . , N, j = 1, . . . , N, (5e)[
Y y

yT 1

]
� 0N+1,

[
X x

xT 1

]
� 0q+1, (5f)

where all terms having no influence on minimization are omit-
ted, the constraints Y = yyT and X = xxT are relaxed and
written as semidefinite cone (SDC) constraints by applying the
Schur complement, whereas the respective rank-1 constraints
are dropped. The problem in (5) is an SDP and can be readily
solved by CVX [18].

Algorithm 1: Pseudo-code for the Proposed SDP Algo-
rithm.

Require: N : Number of anchors in the network
Require: ai : True anchor locations i = 1, . . ., N
Require: K : Number of measurement samples
Require: di,k : k-th distance measurement sample at i-th
anchor

Require: T : Maximum number of iterations
Require: τ : Threshold for stopping criterion

1: Set: Ŷ
(0)

= 0.1× IN , x̂(0) = 106 × 1q×1,
x̂(1) = 0q×1, M̂ = ∅ and t = 1

2: while t ≤ T and ‖x̂(t) − x̂(t−1)‖ > τ do
3: Solve: (5)

4: Update: Ŷ
(t)

:= Ŷ

5: Update: x̂(t) := x̂
6: Update: t := t+ 1
7: end while
8: for i = 1, . . . , N do
9: if ŷ2

i

ei
> 1 then

10: Detect attacker: M̂ := M̂ ∪ {i}
11: end if
12: end for
13: Return: x̂ and M̂

The proposed solution for secure localization is summarized
as a pseudo-code in Algorithm 1. It is worth mentioning that

the initial Ŷ
(0)

is chosen assuming that all measurements are
genuine. Given this, and since Yii = (di − ‖x− ai‖)2 by con-
struction, Ŷ (0)

ii is initially set to a relatively low value.

IV. PERFORMANCE ANALYSIS

In this section, the performance of the proposed solution is
validated from various perspectives, including computational
complexity, localization accuracy and detection rates.

A. Complexity Analysis

The worst case computational complexity of an SDP is cal-
culated [19] as

O
(
C

(
m

Nsd∑
i=1

(
nsd
i

)3
+m2

Nsd∑
i=1

(
nsd
i

)2
+m3

))
,

where C is the iteration complexity, m denotes the number of
equality constraint, nsd

i is the dimension of the i-th SDC and
Nsd is the number of SDC constraints.

Assuming thatBmax andBADMM stand for the maximum num-
ber of iterations for the GTRS-based and for the ADMM-based
algorithms respectively, the worst-case computational complex-
ity of the considered algorithms is summarized in Table I. The
table shows that the proposed solution is computationally the
most burdensome, but this is compensated in accuracy, as will
be seen in the following subsection.

B. Localization and Detection Assessment

The following figures disclose numerical results where N
anchors and a single target (at a time) were randomly deployed
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Fig. 2. Localization and detection performance comparisons in different scenarios.

TABLE I
SUMMARY OF THE CONSIDERED ALGORITHMS

within a two-dimensional area of B ×B m2, with B = 100.
Moreover, at most N /2 anchors were randomly chosen as cor-
rupted, and this selection process was repeated NC = 20 times
for each node deployment, considering ND = 1000 node de-
ployments in total. All measurements were generated according
to (1), where K = 10 measurement samples were considered
and attacks were modelled through an exponential distribution
whose rate was drawn from a uniform distribution on the interval
[0,Δ] (m), i.e., δi ∼ ±E(U [0,Δ]), ∀i, where ± represents a
random sign attribution to δi. Results of the proposed SDP were
achieved in maximum T = 3 iterations with the threshold set at
τ = B/200 m. Note that the results could be further improved
by fine-tuning T and τ , but our experiments have shown that
its performance for the adopted values is sufficient. Lastly, all
methods were tested against exactly the same noise and attack
realizations to guarantee a fair comparison.

The main performance metric for localization is the
root mean square error (RMSE), defined as RMSE =√∑Mc

m=1
‖xm−x̂m‖2

MC
, where x̂m is the estimate of the true target

location, xm, in the m-th Monte Carlo, MC = ND ×NC , run,
while detection is validated through the probability of correct
detection, PCD. It is worth noting that this work considers that
the event space is composed of two possible events: a malicious
anchor is correctly detected (CD) or not detected (ND); thus,
PCD = NCD

NCD+NND
, where NCD, and NND denote respectively

the number of CD and ND corrupted anchors.

Fig. 2 validates the performance of the considered algo-
rithms in different scenarios. In terms of localization accu-
racy, Fig. 2 shows that the proposed SDP algorithm outper-
forms the existing ones in general, being R-GTRS the only
true competitor in some cases. However, note that R-GTRS
in [10] requires additional knowledge about model parameters,
namely on the magnitude of the attack intensity, |δi| in (1);
thus, the true value of |δi| is given to R-GTRS in all pre-
sented simulations. Obviously, perfect knowledge about this
parameter can hardly be possible in practice beforehand, and
R-GTRS could exhibit significant performance impairments in
more practical settings. Still, the proposed SDP gains almost
20% in terms of accuracy over R-GTRS when Δ = 30, σ = 15
and N = 10. In terms of detection rates, the figure corrobo-
rates the effectiveness of the proposed approach, classifying
it among the most superior ones in all considered scenarios.
This goes to show that competitive attacker detection can be
accomplished even without resorting to sophisticated detection
procedures.

V. CONCLUSION

This work introduced a novel approach to reinforce local-
ization credibility in wireless networks in the presence of cor-
rupted/malfunctioning nodes. It proposed neutralizing malicious
attacks by considering a surrogate measurement model with di-
lated noise variance to eliminate malicious attacks by disguising
corrupted radio links into ones with large noise variances. In this
way, one is able to transform the non-convex MLE into an SDP
via a simple CCP procedure. Overall, the proposed method is
straightforward to implement and represents a good trade off be-
tween localization accuracy and computational complexity, car-
rying higher computational burden than the existing solutions,
but compensating for that by improved localization accuracy.
The proposed solution is aimed towards mission-critical applica-
tions that require accurate and trustworthy location information
and have abundant computational resources available. It also
serves to show that the current lower bound on the achievable
localization performance can still be brought down.
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