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A Machine Learning Attack Resilient
Authentication Protocol for AI-Driven Consumer

Wearable Health Monitoring
Zahid Ghaffar, Wen-Chung Kuo, Khalid Mahmood Senior Member, IEEE, Nazik Alturki,

Muhammad Asad Saleem, Ali Kashif Bashir Senior Member, IEEE

Abstract—The Internet of Medical Things (IoMT) is trans-
forming healthcare by integrating interconnected consumer med-
ical devices and sensors for remote patient health monitoring
(RPHM). Integrating IoMT with Artificial Intelligence (AI)
enables automated diagnostics and personalized healthcare while
optimizing reliability and efficiency. It transforms healthcare by
enabling RPHM through interconnected medical devices, wear-
able sensors, consumer health devices, and healthcare infrastruc-
ture. However, wireless communication among consumer wear-
able devices introduces significant security and privacy concerns,
making them vulnerable to machine learning-based attacks,
physical tampering, and impersonation threats. Although there
are several authentication protocols, many do not provide robust
resilience against these emerging threats. Therefore, we propose
a machine learning attack resilient authentication protocol for
AI-driven consumer wearable health monitoring to address these
challenges. The protocol integrates an OPUF to mitigate machine
learning-based attacks. We perform formal and informal security
analyses, demonstrating that the proposed protocol provides
mutual authentication, anonymity, and resistance to common
security threats. Furthermore, the performance evaluation shows
that the protocol significantly reduces communication and com-
putation costs compared to existing protocols.

Index Terms—Authentication and Key Agreement, Authenti-
cation protocol, Remote Patient Health Monitoring

I. INTRODUCTION

The Internet of Medical Things (IoMT) comprises a network
of smart medical devices and sensors, enabling seamless data
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exchange within modern healthcare systems. The increas-
ing adoption of consumer-oriented wearable biosensors and
internet-connected health devices has significantly enhanced
remote patient health monitoring (RPHM). It drives major ad-
vancements in personalized healthcare technology [1]. These
wearable healthcare devices provide cost-effective, real-time,
and scalable remote healthcare services. RPHM leverages Arti-
ficial Intelligence (AI) techniques, including big data analytics,
deep learning, and machine learning (ML), to improve tra-
ditional healthcare by ensuring timely medical interventions.
AI-driven RPHM continuously tracks patient health through
wearable biosensors such as electroencephalogram (EEG),
electrocardiogram (ECG), smart bracelets, and gait sensors,
enabling early detection of potential health risks. The con-
tinuous adaptation of AI-powered analysis refines diagnostic
precision, enhancing the efficiency, reliability, and personal-
ization of consumer wearable healthcare technologies [2].

Ensuring data privacy and security is a critical challenge
in the public communication framework of RPHM. In such
environments, interconnected consumer healthcare devices,
wearable sensors, and medical infrastructure exchange real-
time data over public channels, making the system vulner-
able to security threats. Malicious users such as Ad can
exploit these vulnerabilities to gain unauthorized access to
patient information, leading to serious personal and social
consequences [3]. In addition to gaining unauthorized access,
Ad can compromise both long-term and short-term secrets,
enabling the reconstruction of session keys and the disruption
of system states. Furthermore, Ad may exploit power analysis
to extract stored keys and clone them, allowing impersonation
of legitimate devices and bypassing authentication. Addition-
ally, compromised healthcare data can be misused to track
patient locations or expose medical records. Public communi-
cation networks are also susceptible to various cyberattacks,
including impersonation, ephemeral secret leakage attacks, and
ML or modeling [4]. ML or modeling attacks occur when
attackers exploit AI-based security mechanisms to bypass
authentication. They can analyze patterns in authentication
requests to predict or forge valid credentials. Attackers may
also train models on leaked authentication data to mimic
legitimate users [5].

To address these concerns, researchers have proposed var-
ious protocols aimed at enhancing privacy and security, as
summarized in Table I. It presents an analysis of recent
authentication protocols, highlighting their development tech-
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TABLE I: Summary of Related Work

Protocols Year Development Techniques Benefits Drawbacks/Flaws
Shihab and AlTawy [6] 2023 * Hash Function * Resists desynchronization attacks * Vulnerable to physical attacks

* Resists replay attacks * Prone to user impersonation attacks
* Resists stolen device attacks * Susceptible to machine learning attacks

Servati et al. [7] 2023 * ECC * Resists server impersonation * Prone to machine learning attacks
* Hash Function * Resists ephemeral secret leakage attacks * Prone to physical attacks

* Resists stolen verifier attacks * Susceptible to device impersonation attacks
Das et al. [8] 2023 * PUF * Resists replay attacks * Prone to stolen verifier attacks

* Offers Anonymity * Noisy PUF
* Resists physical attacks * Does not resist device impersonation attacks

Saini et al. [9] 2024 * Hash Function * Resists impersonation attacks * Prone to ephemeral secret leakage attacks
* Three factor * Offers Anonymity * Vulnerable to ML or modelling attacks

* Resists stolen verifier attacks * Does not offer perfect forward secrecy
Chen et al. [10] 2024 * Hash Function * Resists impersonation attacks * Susceptible to physical attacks

* ECC * Offers Anonymity * Vulnerable to ML or modelling attacks
* Resists stolen verifier attacks * Susceptible to ephemeral secret leakage attacks

Yu et al. [11] 2025 * Hash Function * Resists impersonation attacks * Vulnerable to ephemeral secret leakage attacks
* Hybrid PUF * Resists ML or Modeling attacks

niques, security strengths, and vulnerabilities. Despite these
advancements, many existing protocols remain susceptible to
security threats, including physical tampering, impersonation,
and ephemeral secret leakage attacks, underscoring the need
for a more resilient authentication mechanism. Moreover, the
main contributions of our work are as follows:

1) We propose a machine learning attack resilient authen-
tication protocol for AI-driven RPHM by integrating
OPUF with ECC. Our protocol combines the unpre-
dictability of OPUF responses with ECC to ensure
tamper-evident, device-specific authentication and se-
cure key agreement.

2) We employ OPUFs to enhance the security of the
authentication mechanism against ML or modeling at-
tacks and physical tampering. Unlike conventional static
PUFs, which produce repeatable responses and are vul-
nerable to pattern analysis, OPUFs generate a fresh,
session-specific response, rendering modeling-based at-
tacks ineffective. This novel design ensures tamper-
evident, device-specific authentication that significantly
advances prior static PUF-based protocols.

3) We incorporate lightweight cryptographic operations to
enhance resource efficiency while significantly reducing
communication and computation costs by an average of
23.62% and 40.54%, respectively.

II. PRELIMINARIES

This section defines key concepts essential to our proposed
approach. Additionally, the notations used throughout the
paper are summarized in Table II.

TABLE II: Notations Table

Notations Elucidations
MGWc Medical Gateway
Sj jth Medical Sensor
Ui ith User of system
λ Master Secret Key of MGWc

SIDj Pseudonym of Sj
IoMT Internet of Medical Things
h(.) One way hash function
|| Concatenation Operator
OPUF One time Physically Unclonable Function
ECC Elliptic Curve Cryptography
Ci,Ri Challenge Response Pair
ListCRP List of Challenge-Response Pair for Sj
P Generator of Elliptic Curve
F.Gen()/F.Rec() Fuzzy Extractor and Re-generator Functions
Ad Adversary/Attacker

A. Adversarial Capabilities

We adopt widely recognized threat models like the Dolev-
Yao (DY) model [12] and Canetti and Krawczyk (CK) model
[13] to rigorously define the capabilities of an adversary (Ad).
Under the DY model, Ad can intercept, manipulate, or forge
messages within the communication channel. Moreover, Ad re-
play any intercepted message. In contrast, the CK model grants
Ad with added capabilities, allowing them to compromise
both long-term and short-term secrets in addition to capturing
messages. With the help of these compromised secrets, Ad

can undermine the security of established session keys and
system states. Apart from the assumptions mentioned earlier,
Ad can potentially leverage power analysis attacks to extract
cryptographic keys stored in Sj’s memory. Ad can further
create a clone of stolen keys, using which he can impersonate
the legitimate Sj by bypassing the authentication process.

B. One Time Physically Unclonable Function

A One-Time Physically Unclonable Function (OPUF) lever-
ages inherent device-specific physical characteristics Ψ to
generate a unique, non-reusable response Ri for each distinct
challenge Ci. Formally, Ri = f(Ci; Ψ), where Ci has not been
previously used. Each response is valid for one-time use, with
the challenge history updated after each invocation to prevent
reuse. The security strength of the OPUF is characterized by
the entropy σ(Ψ) = Entropy(Ri|Ψ), ensuring unpredictability
and resistance to replay and tampering attacks.

C. Network Model

The remote patient health monitoring discussed in this paper
is designed around three principal entities: Sj , Ui, and MGWc,
all depicted in Fig. 1. The system operates primarily through
these interconnected elements to ensure efficient and secure
patient monitoring. Medical sensors are strategically placed on
the patient’s body within the operational environment. These
sensors are tasked with continuously gathering health data,
which they then transmit to the MGWc for processing. Each
sensor is registered with the MGWc, which, in turn, provides a
session key to encrypt the communications, thereby enhancing
the security of the transmitted data.

In the proposed framework, Ui is authenticated by the
trusted MGWc through a smart card issued after registra-
tion. The MGWc secures the identities of both users and
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Fig. 1: Remote Patient Health Monitoring System

Sj , and facilitates mutual authentication. Once authenticated,
a session key is established via MGWc to encrypt sensor
data, ensuring that only authorized users can access the
collected medical information. To support long-term access to
patients’ health data, the server securely stores and manages
encrypted records received from MGWc. This ensures that
historical data remains available for diagnosis and analysis,
even in the absence of real-time monitoring. Whether data
is transmitted automatically or entered manually, the server
provides a reliable and secure storage framework, reinforcing
the integrity and availability of patient information in remote
health monitoring systems.

III. THE PROPOSED PROTOCOL

This section presents our machine learning attack resilient
authentication protocol for AI-driven RPHM. This protocol
is designed to provide robust security against evolving cyber
threats. Unlike the traditional PUF, which relies on reusable
challenge-response pairs and is susceptible to ML or mod-
eling attacks, we integrate OPUF in our protocol with non-
reproducible responses that make it more tamper-resistant. An
illustration of our proposed authentication flow is also given
in Fig. 2. The following subsections detail the step-by-step
phases of the authentication process.

A. Ui Registration Phase
In this phase, each user (Ui) initiates registration by sub-

mitting their identity IDi, password PWi, and biometric data
BIOi. The user generates a random nonce ri and computes
HPWi = h(IDi∥PWi∥ri), which is sent to the trusted
gateway MGWc along with IDi. Upon receiving this, MGWc

computes Di = h(IDv∥λ), selects a k-bit string ki, and
derives Bi = h((h(IDi∥ki∥Di) ⊕ HPWi) mod n0). It then
sends {Bi, Di, ki} to Ui. The user, using their biometric
input, generates (α, β) ← F.Gen(BIOi), computes Keyi =
h(IDi∥α) ⊕ ki and DMi = Di ⊕ ki, and securely stores
{Bi,Keyi, DMi, β, ri} for future authentication.

B. Sj Registration Phase
A trusted MGWc being the trusted authority, performs the

registration of each medical sensor (Sj), where (j = 1, 2, 3,...,

Fig. 2: Illustration of the Authentication Flow

ns) in an IoMT environment. The communication between Sj
and MGWc in this stage occurs on a private channel. In order
to register each Sj , MGWc selects a unique identity SIDj

for each Sj . After that, MGWc produces a list of challenge
response pairs CRP , and calculates kj = h(SIDj∥λ), where
λ is a master secret key of MGWc. After performing the above
steps, MGWc keeps the information < kj , CRPj > against
each SIDj .

C. Authentication and Key Agreement Phase
This phase represents the login and authentication phase

among User (Ui), Medical Sensor (Sj), and Medical Gateway
(MGWc). This communication occurs on an open or insecure
channel. During this, we determine the session key among Ui,
Sj and MGWc. We execute the following steps for a specific
session to establish the session key as depicted in Fig. 3.

1: First of all, Ui inputs IDi, PWi and imprints BIOi

and determines α← REP (BIOi, β), ki = h(IDi∥α)⊕
Keyi, Di = DMi ⊕ ki, Bi

?
= h((h(IDi∥ki∥Di) ⊕

HPWi) mod n0. Further, Ui engenders an arbitrary
nonce a and determines J1 = aP , J2 = aX ,
J3 = (IDi∥ki) ⊕ J2, J4 = SIDj ⊕ h(J1∥J2), J5 =
h(IDi∥SIDj∥ki∥Di∥J2) and then transmits login re-
quest message W1 ← {J1, J3, J4, J5} towards MGWc

via insecure channel.
2: After getting request message W1 ← {J1, J3, J4, J5}

from the particular Ui, MGWc computes J2 = λ.J1,
(IDi∥ki) = J3 ⊕ J2, SIDj = J4 ⊕ h(J1∥J2),
Di = h(IDv∥λ), J5

?
= h(IDi∥SIDj∥ki∥Di∥J2).

MGWc retrieves {CRPj , kj} against SIDj and com-
putes (αj , βj) ← F.Gen(Rj), J6 = Cj ⊕ SIDj ,
J7 = h(SIDj∥kj∥J1∥αj). After that, it transmits W2 ←
{J1, J6, J7} towards Sj .

3: After receiving the message W2 ← {J1, J6, J7} from
MGWc, Sj determines Cj = J6 ⊕ SIDj , Rj ← (Cj),
(αj , βj) ← F.Gen(Rj), J7 = h(SIDj∥kj∥J1∥αj).
After that, Sj engenders an arbitrary nonce c and de-
termines J8 = cP , J9 = cJ1, J10 = αj ⊕ J8,
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Ui MGWc Sj

• Step#1:
• Inputs IDi, PWi and imprints BIOi

• α← REP (BIOi, β)
• ki = h(IDi∥α)⊕Keyi
• Di = DMi ⊕ ki
• Bi

?
= h((h(IDi∥ki∥Di)⊕HPWi) mod n0

• Generates a
• Computes J1 = aP
• J2 = aX
• J3 = (IDi∥ki)⊕ J2
• J4 = SIDj ⊕ h(J1∥J2)
• J5 = h(IDi∥SIDj∥ki∥Di∥J2)

W1 ← {J1, J3, J4, J5}

• Step#2:
• Computes: J2 = λ.J1
• (IDi∥ki) = J3 ⊕ J2
• SIDj = J4 ⊕ h(J1∥J2)
• Di = h(IDv∥λ)
• J5

?
= h(IDi∥SIDj∥ki∥Di∥J2)

• Retrieves {CRPj , kj} against SIDj

• (αj , βj)← F.Gen(Rj)
• Computes: J6 = Cj ⊕ SIDj

• Computes: J7 = h(SIDj∥kj∥J1∥αj)

W2 ← {J1, J6, J7}

• Step#3:
• Cj = J6 ⊕ SIDj

• Rj ← (Cj)
• (αj , βj)← F.Gen(Rj)
• Computes: J7 = h(SIDj∥kj∥J1∥αj)
• Generates c
• J8 = cP , J9 = cJ1
• J10 = αj ⊕ J8
• SK = h(SIDj∥J1∥J8∥J9)
• J11 = h(SIDj∥αj∥J8∥J1)W3 ← {J10, J11}

• Step#4:
• J8 = αj ⊕ J10

• J11
?
= h(SIDj∥αj∥J8∥J1)

• J12 = J8 ⊕ J2
• J13 = h(SIDj∥J8∥J1.J8)

W4 ← {J12, J13}

• Step#5:
• J8 = J12 ⊕ J2
• J13

?
= h(SIDj∥J8∥J1.J8)

• J9 = a.J8
• SK = h(SIDj∥J1∥J8∥J9)

Fig. 3: Login and Authentication phase for Patient’s e-healthcare Monitoring

SK = h(SIDj∥J1∥J8∥J9), J11 = h(SIDj∥αj∥J8∥J1).
Further, it transmits the W3 ← {J10, J11} towards
MGWc.

4: Upon getting message W3 ← {J10, J11} from
Sj , MGWc computes J8 = αj ⊕ J10, J11

?
=

h(SIDj∥αj∥J8∥J1), J12 = J8 ⊕ J2, J13 =
h(SIDj∥J8∥J1.J8) and transmits W4 ← {J12, J13}
towards Ui.

5: When Ui gets the information W4 ← {J12, J13}
from MGWc, it computes J8 = J12 ⊕ J2, J13

?
=

h(SIDj∥J8∥J1.J8), J9 = a.J8 and lastly determines
the SK = h(SIDj∥J1∥J8∥J9) which is mutually shared
among the participating entities.

IV. SECURITY ANALYSIS

This section conducts a comprehensive security analysis of
the proposed authentication protocol, utilizing both informal
and formal methods as suggested in [14].

A. Informal Security Analysis

We conduct an informal analysis of the proposed protocol,
focusing on its resilience to various security attacks.

1) Ensures Anonymity: In the proposed protocol, user (Ui)
keeps IDi private. The transmitted public message W1 ←
J1, J3, J4, J5 does not reveal any guess of IDi to adversary
(Ad). J3 invloves IDi as J3 = (IDi∥ki) ⊕ J2. Each session
employs a distinct J3 because J2 in J3 is session-specific
as it is determined as J2 = aX . This distinct J3 makes it
impossible for Ad to track Ui through monitoring different
messages from the same Ui. Moreover, to determine J3, Ad

needs to calculate ki, which requires the knowledge of actual
IDi and α. However, Ad don’t have access to these values.
Therefore, this inability of Ad to trace actions or discern
the real IDi of Ui confirms the protocol’s effectiveness in
ensuring Ui anonymity.

2) Resists Physical Attacks: If Ad attempts to tamper Sj
physically, the embedded PUF within Sj exhibits a sudden
and noticeable behavioral alteration. This disruption prevents
PUF from performing its intended functionality. It causes it to
fail to generate the expected response (αj , βj)← F.Gen(Rj)
during the physical attack attempt. Moreover, MGWc verifies
the response by validating J11

?
= h(SIDj∥αj∥J8∥J1). As a

result, any physical tampering on Sj by Ad is immediately
detectable and resistable by MGWc. Thus, the proposed
protocol demonstrates robust resistance to physical attacks.

3) Machine Learning and Modelling Attacks: To formally
argue the resilience of OPUF against modeling attacks (e.g.,
logistic regression, linear SVM), we define the OPUF as a
probabilistic function f : Ci × Ψ → Ri, where Ci is the
challenge space, Ψ is an internal hidden state (e.g., time,
nonce), and Ri is the response space. The state s ∈ Ψ
evolves after each invocation, ensuring that no two inputs
(ci, si) and (cj , sj) are the same across queries. This renders
f a non-repeatable oracle, meaning the adversary observes
at most one response per unique challenge–state pair. The
adversary’s goal is to learn a hypothesis function h : Ci → Ri

that minimizes prediction error: Pr(c,s)∼D[h(c) = f(c, s)].
However, due to the non-reusability of challenges and the
evolving state, the learning setting lacks the identically dis-
tributed structure and repeated samples required for effective
generalization. Therefore, for any machine learning algorithm
A, we have:Pr[A(c) = f(c, s)] ≤ 1

|Ri| + ε, where ε is
negligible. This bound implies that the adversary’s success is
no better than random guessing, establishing formal resistance
against modeling attacks.

4) Ui, MGWc, and Sj Impersonation Attacks: The pro-
posed protocol is resistant to impersonation attacks targeting
Ui, MGWc, and Sj . To impersonate Ui, an adversary Ad

must access secret values like IDi, ki, and Di, which are
not exposed. Impersonating MGWc requires computing values
based on SIDj and kj , both derived using the master secret
λ, which is kept confidential. Similarly, impersonating Sj
requires reproducing the non-clonable PUF response αj and
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SIDj , which are inaccessible without λ. Hence, the protocol
ensures robust protection against all impersonation threats.

5) Ephemeral Secret Leakage Attacks: According to the
assumptions outlined in Section II-A, Ad could potentially
reconstruct the session key if they gain access to the ephemeral
secrets of a session. The session key is determined as SK =
h(SIDj∥J1∥J8∥J9), where J1 = aP , J8 = cP and J9 = cJ1.
So, in the session key computation, the ephemeral secrets a
and c are used. Since a and c remain private and are never
publicly transmitted, Ad cannot directly retrieve them. Even in
the worst-case scenario, where Ad manages to deduce SK for
a specific session, previously established session keys remain
uncompromised. Thus, our protocol ensures resilience against
ephemeral secret leakage attacks.

6) Ensures Perfect Forward Secrecy: The SK is computed
as SK = h(SIDj∥J1∥J8∥J9), incorporating the session-
specific values J1, J8, and J9. These values are unique for
each session. This approach ensures that even if the current
session key is compromised, deriving previous session keys
remains infeasible. Consequently, Ad cannot exploit com-
promised values to reconstruct past session keys. Thus, the
proposed protocol guarantees perfect forward secrecy.

B. Formal Security Analysis

In this section, the proposed protocol undergoes a formal
analysis within the random oracle model [13], [15] to demon-
strate its provable security in meeting the specified security
requirements. Additionally, the proof of the protocol is detailed
in Theorem 1 to underscore the importance of session key
agreement.

Security Model: Our formal security analysis incorporates
three key entities: Ui, MGWc and Sj , which are represented
as Πa

Ui
, Πb

MGWc
and Πc

Sj respectively. To rigorously evaluate
the protocol’s security, we analyze the query capabilities of
adversary Ad, defined by K = {Πa

Ui
,Πb

MGWc
,Πc

Sj}. We
outline the specific query operations that Ad can execute to
potentially undermine the security of the protocol as follows:

• Execute(K) : Ad can intercept the exchanged messages
between Ui, MGWc and Sj over the public channel.
This query operation illustrates a passive attack scenario
where an Ad merely observes the exchanged information
without altering it.

• Hash(St) : This query permits Ad to submit a string
St and receive the resultant hash value calculated by the
hash function.

• Send(K,Msg) : Ad has the capability to transmit Msg

to (K) and retrieve the response message from (K).
• Corrupt (K) : Ad can access confidential parameters of

a specific entity, including the long-term key, temporarily
produced information, and data maintained in the smart
device.

• Test: The Test query facilitates evaluating the semantic
security of the session key (SK) formed during the enti-
ties’ communication. Ad conducts this query by tossing a
coin Con, which can result in either 0 or 1. Should Con
= 1, Ad gains access to the actual SK; if Con = 0, Ad

receives a random string identical in length to SK.

Theorem 1: Consider Ad as an adversary with the capability
to execute the aforementioned queries and launch attacks on
our protocol PR within probabilistic polynomial time, to
compromise the protocol’s semantic security. The measure
of Ad’s success in compromising PR is presented as:
AdvgtPR

Ad
(φ) ≤ q2hs

|Hash| +
H2

Puf

|OPUF |+2
{
max

{
C · qss′ ,

qsd
2ln

}
+ AdvgtECDLP (pt)

}
Here, qhs represents the total number of Hash queries exe-

cuted, qsd denotes the total number of Send queries executed,
|Hash| corresponds to the range of the hash function h(·),
HPuf indicates Puf queries and |OPUF | output range space
queries are made, respectively. ln indicates the bit length of the
arbitrary biometric key, and C and s′ are constant parameters
defined in Zipf’s law [16]. AdvgtECDLP(pt) represents the
advantage of an Ad using algorithm to solve the discrete
logarithm problem in polynomial time (pt).

We develop a series of games ranging from GM0 to GM5,
which include participants K and Ad. To establish the security
of the protocol, we rigorously analyze these games. Through-
out the proof, the notation SucsGMi

Ad
signifies the likelihood

of participant A correctly predicting the outcome of a coin
toss Con in game GMi. The term AdvgtPR

Ad
(φ) represents

the advantage that A has in successfully compromising the
security of the protocol.
GM(0) : In the initial round, Ad refrains from

initiating any query operation and begins the game
by tossing a coin Con. From this, we can derive:

AdvgtPR
Ad

(φ) = |2Pr[Sucs
GM(0)

Ad
]− 1| (1)

GM(1) : In this game, Ad conducts the Execute query
to simulate an eavesdropping attack. This allows Ad to
intercept the messages {W1,W2,W3,W4} transmitted over
the public channel. After GM(1), Ad employs the Test
query, utilizing the gathered parameters to calculate SK.
However, because Ad fails to intercept {α, ki, Di, J5, Ci},
the probability of Ad’s success in this round does not ex-
ceed that of the previous round. Consequently, the probabil-
ity for GM(1) remains equivalent to GM(0), expressed as:

Pr[SucsGM(1) ] = Pr[SucsGM(0) ] (2)
GM(2) : In this game, an active attack model is

introduced by enabling Ad to issue Send and Hash
queries, unlike GM(1). The adversary attempts to deceive
participants with forged messages and checks for hash
collisions. However, since the exchanged messages
W1,W2,W3,W4 include dynamic and unpredictable elements
(e.g., random numbers, identities, and long-term secrets),
no collisions occur. Based on the birthday paradox, the
probability of a successful collision remains negligible.

Pr[SucsGM(2) ]− Pr[SucsGM(1) ] ≤ q2hs
2|Hash|

(3)

GM(3) : After obtaining the user’s smart card and executing
Corrupt(K), Ad can extract sensitive information, such as
{Bi,Keyi, DMi, β, ri}, which is encrypted and stored
within the smart card’s memory. Ad must perform
PUF queries to access this confidential information.
Since the PUF generates a unique response for each
distinct challenge, Ad cannot find any collisions while
conducting these queries. Consequently, we derive:

Pr[SucsGM(3) ]− Pr[SucsGM(2) ] ≤
H2

Puf

2|OPUF | (4)
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GM(4) : In this game, Ad uses the Corrupt query to extract
sensitive values from Ui’s smart card via power analysis. Since
the protocol relies on both a password PWi and biometric key
α derived from BIOi, Ad may attempt an offline password-
guessing attack. However, success depends on knowing
the ln-bit biometric key α, with a guessing probability of
approximately 1/2ln. Additionally, the system limits password
attempts, and Zipf’s law further reduces the attack’s feasibility.

Pr[SucsGM(4) ]− Pr[SucsGM(3) ] ≤ max
{
C · qss′ ,

qsd
2ln

}
(5)

GM(5) : This is the final game, where Ad attempts to pass
authentication checks and derive key SK by intercepting
the communication sequences: W1 ← {J1, J3, J4, J5},
W2 ← {J1, J6, J7}, W3 ← {J10, J11} and W4 ← {J12, J13}.
For reaching SK, Ad has to pass the mutual
authentication checks (i.e., J5

?
= h(IDi∥SIDj∥ki∥Di∥J2),

J7
?
= h(SIDj∥kj∥J1∥αj), J11

?
= h(SIDj∥αj∥J8∥J1) and

J13
?
= h(SIDj∥J8∥J1.J8)). For each authentication check,

Ad must produce a valid hash value without knowing all the
correct secrets {k = J1, J2, J7, J8}. Here h is modeled as a
random oracle and Ad must query h(x) on the exact input k.
Despite these efforts, Ad fails to compute J1 = aP J2 = λ.J1,
J9 = a.J8 and J7 = h(SIDj∥kj∥J1∥αj) within a feasible
time due to the complexities associated with the Elliptic Curve
Discrete Logarithm Problem (ECDLP). Consequently, Ad’s
likelihood of success in GM(5) can be quantified as follows.

Pr[SucsGM(5) ]− Pr[SucsGM(4) ] ≤ AdvgtECDLP(pt) (6)
Once all the games have been completed, Ad makes a random
guess for bit c using the Test query. Therefore, we obtain:

Pr[SucsGM(5) ] =
1

2
(7)

As a result, it is evident that Ad has only a negligible chance
of compromising the semantics of SK in our protocol. The
following result can be derived from equation (1,2) and (7).

1

2
.AdvgtPR

Ad
= |Pr[Sucs

GM(0) ]− 1

2
|

= |Pr[Sucs
GM(1) ]− Pr[Sucs

GM(5) ]|
(8)

By applying the triangle inequality, we can obtain
the following result from equations (3-6) and (8):
1

2
AdvgtPR

Ad
(φ) = |Pr[SucsGM(1) ]− Pr[SucsGM(5) ]|

≤ |Pr[SucsGM(1) ]− Pr[SucsGM(2) ]|
+|Pr[SucsGM(2) ]− Pr[SucsGM(3) ]|
+|Pr[SucsGM(3) ]− Pr[SucsGM(4) ]|
+|Pr[SucsGM(4) ]− Pr[SucsGM(5) ]|

≤ q2hs
2|Hash| +

H2
Puf

2|OPUF | +max
{
C · qss′ ,

qsd
2ln

}
+AdvgtECDLP (pt)

(9)
At last, by multiplying both sides of the equation
(9) by two, the required result can be obtained:
AdvgtPR

Ad
(φ) ≤ q2hs

|Hash| +
H2

Puf

|OPUF |+2
{
max

{
C · qss′ ,

qsd
2ln

}
+ AdvgtECDLP (pt)

}
V. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
patient e-healthcare monitoring protocol, focusing on the com-
putation cost, scalability analysis, communication cost, and

security features provision. The evaluation primarily considers
the authentication phase only, as the registration phase for
users and sensor nodes is relatively infrequent. The perfor-
mance of the proposed protocol is further compared with
competing protocols [6], [9], [10], [17]–[19] to determine
its effectiveness. For comparative analysis, we only selected
recent benchmark protocols designed specifically for our net-
work model, emphasizing authentication, key management,
and contemporary advancements in e-healthcare security to
highlight our protocol’s robustness and efficiency. The perfor-
mance evaluation details are further elaborated in the following
subsections.

A. Experimental Setup

We have developed an experimental setup to determine
the execution time of cryptographic operations utilized in the
proposed and competing protocols. For the OPUF implemen-
tation, we utilized an SRAM-based OPUF deployed on an
Xilinx Spartan-7 FPGA board. Moving forward, a Raspberry
Pi model 3 (RPi3) has been employed to simulate the cryp-
tographic operations performed on sensor nodes, considering
the resource-constrained nature of IoT. Since the sensors do
not have built-in processing capabilities, RPi3 handles the
computation of cryptographic operations, ensuring efficient
data processing and analysis. However, the operations executed
on the medical gateway and user sides are implemented on
a dedicated system and a mobile device, respectively. The
specifications of the Raspberry Pi, dedicated system, and
mobile device are listed in Table III. To ensure unbiased
results, the cryptographic operations of the proposed and com-
peting protocols were executed multiple times under identical
conditions. The execution times for various cryptographic
operations, corresponding to their respective implementation
devices, are presented in Table IV.

TABLE III: Specifications of Implementation Devices

Implementation DevicesFeature(s) Raspberry Pi Dedicated System Mobile Device
Model Raspberry Pi 3 Model B+ Lenovo V15 G4 Redmi Note 13
Operating System Raspberry Pi OS Windows 11 MIUI 14
Processing Speed 1.2 GHz 3.7 GHz 2.8 Ghz
RAM 1GB 16GB 8GB
Language Python 3.12 Python 3.12 Python 3.12
Library cryptography cryptography cryptography

TABLE IV: Execution Time of Cryptographic Operations
Execution Time (ms)Operation(s) Raspberry Pi System Mobile

Hash Function (Eh) 2.315 0.331 0.749
Point Multiplication (Epm) 3.105 0.636 1.139
Symmetric Encryption/Decryption (Ese/sd) 2.602 0.310 0.911
One Time Physically Unclonable Function (Eopuf ) 1.106 0.105 0.209
Fuzzy Extractor (Efe) 0.905 0.110 0.195

B. Analysis of Computation Cost

The computation cost of the proposed and competing proto-
cols is evaluated based on the execution time of cryptographic
operations listed in Table IV. In the authentication phase
of the proposed patient e-healthcare monitoring protocol, Ui

performs seven hash functions, one point multiplication, and
one fuzzy extractor operation, resulting in a total cost of 7Eh+
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TABLE V: Computation Cost & Communication Cost: A Comparative Analysis
Computation Cost (ms) Communication Cost (bits)Protocol Ui MGWc Sj Accumulative Cost Ui MGWc Sj Accumulative Cost

Proposed 7Eh + 1Epm + 1Efe ≈ 6.577 6Eh + 1Epm + 1Eopuf ≈ 2.837 3Eh + 1Efe ≈ 7.85 17.26 992 1152 416 2560
[17] 27Eh + 1Efe ≈ 20.418 12Eh ≈ 3.972 13Eh ≈ 30.095 54.49 832 2176 672 3680
[6] 8Eh ≈ 5.992 10Eh ≈ 3.31 5Eh ≈ 11.575 20.88 832 1920 672 3424
[9] 15Eh + 2Epm + 1Efe ≈ 13.708 10Eh + 4Epm ≈ 5.854 5Eh ≈ 11.575 31.14 1056 1088 672 3648

[10] 9Eh + 1Ese/sd + 1Efe ≈ 7.847 8Eh ≈ 2.648 15Eh + 1Ese/sd ≈ 37.327 47.82 1088 1504 672 3264
[18] 11Eh + 2Ese/sd ≈ 10.061 16Eh + 3Ese/sd ≈ 6.226 6Eh + 1Ese/sd ≈ 16.482 32.78 960 1952 992 3904
[19] 8Eh ≈ 5.992 8Eh ≈ 2.648 4Eh ≈ 9.260 17.90 832 1268 512 2612

h: Hash Function, pm: Point Multiplication, se/sd: Symmetric Encryption/Decryption, opuf : One Time Physically Unclonable Function, fe: Fuzzy Extractor

1Epm+1Efe ≈ 6.577 ms. Similarly, MGWc executes six hash
functions, one point multiplication, and one OPUF operation,
leading to a computation cost of (6Eh + 1Epm + 1Eopuf ) ≈
2.837 ms. Additionally, Sj utilizes three hash functions and
one fuzzy extractor, incurring a cost of (3Eh+1Efe) ≈ 7.850
ms. The cumulative computation cost of the proposed protocol
sums to (6.557+ 2.837+ 7.850) ≈ 17.26 ms. In contrast, the
computation costs of the competing protocols [6], [9], [10],
[17]–[19] are 54.49, 20.88, 31.14, 47.82, 32.78, and 17.90
ms, respectively. A detailed comparison of the computation
costs for the proposed and competing protocols is presented
in Table V. The results demonstrate that the proposed protocol
achieves a 40.54% reduction in computation cost compared to
competing protocols, highlighting its lightweight nature.

C. Scalability and Practical Limits

We determined the scalability of our protocol by increasing
the number of iterations up to 100, simulating a large-scale
e-healthcare deployment with simultaneous authentication re-
quests. The results presented in Figure 4 show a linear increase
in computation overhead, highlighting the protocol’s ability to
maintain efficient performance as the system scales. Notably,
at 100 iterations, the computation overhead remains consistent,
demonstrating that our protocol can effectively manage a rising
volume of authentication requests. It achieves this while keep-
ing computation overheads low and providing robust security
assurances in real-world healthcare settings. This analysis un-
derscores the protocol’s scalability and its potential to handle
large-scale deployments in practical healthcare environments.

D. Analysis of Communication Cost

The communication cost of the proposed and competing
protocols is evaluated based on the assumptions outlined in
[20]. In the proposed patient e-healthcare monitoring protocol,
the participating entities Ui, MGWc, and Sj exchange a total
of four messages to complete the authentication process. The
entity Ui initiates one message, W1 ← {J1, J3, J4, J5}, with
a total size of (320+ 160+ 256+ 256) = 992 bits. Similarly,
MGWc transmits two messages: W2 ← {J1, J6, J7} and
W4 ← {J12, J13}, which require (320 + 160 + 256) = 736
bits and (160 + 256) = 416 bits, respectively, resulting in
a total cost of (736 + 416) = 1152 bits. Additionally, Sj
sends one message, W3 ← {J10, J11}, to MGWc, with a
total size of (160 + 256) = 416 bits. The proposed protocol’s
total communication cost is (992 + 1152 + 416) = 2560 bits.
In comparison, the communication costs of the competing
protocols [6], [9], [10], [17]–[19] are 3680, 3424, 3648, 3264,
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Fig. 4: Scalability Analysis

3904, and 2612 bits, respectively. A comparative analysis
of the communication costs for the proposed and competing
protocols is provided in Table V. The results demonstrate
that the proposed protocol achieves a 23.62% reduction in
communication cost compared to competing protocols.

E. Security Comparison

This subsection presents a comparative analysis of the secu-
rity features among the proposed and competing protocols [6],
[9], [10], [17]–[19]. The comparison is conducted based on the
cryptanalysis of the competing protocols. The detailed results
of this analysis are provided in Table VI. As evident from the
table, all competing protocols fail to offer resistance against
physical and machine learning attacks. Additionally, protocols
[17], [6], [9], and [18] do not ensure perfect forward secrecy.
Moreover, protocols [6], [10], [18], and [19] are vulnerable to
ESL attacks. In comparison, the proposed protocol effectively
withstands various attacks and ensures a high level of security,
demonstrating its superiority over competing protocols.

TABLE VI: Security Features: A Comparative Analysis
Features ↓ / Protocols → Proposed [17] [9] [10] [6] [18] [19]
E-Anonymity ✔ ✔ ✔ ✔ ✔ ✔ ✔
W -Physical Attack ✔ ✘ ✘ ✘ ✘ ✘ ✘
W -Machine Learning Attack ✔ ✘ ✘ ✘ ✘ ✘ ✘
W -Ui Impersonation ✔ ✔ ✔ ✔ ✔ ✔ ✔
W -MGWc Impersonation ✔ ✔ ✔ ✔ ✔ ✔ ✔
W -Sj Impersonation ✔ ✔ ✔ ✔ ✔ ✔ ✔
W -Stolen Verifier Attack ✔ ✔ ✔ ✔ ✘ ✔ ✔
W -ESL Attack ✔ ✔ ✘ ✘ ✔ ✘ ✘
E-Perfect Forward Secrecy ✔ ✘ ✘ ✔ ✘ ✘ ✔
✔: Yes; ✘: No; E: Ensures, W : Withstand
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F. Significance of Results

The results presented in Section V demonstrate the effec-
tiveness of the proposed protocol in reducing both computation
and communication costs, which are important for resource-
constrained IoT devices in a healthcare environment. The
computation overhead of the proposed protocol is reduced by
40.54% compared to competing protocols. This is particularly
important for healthcare devices that rely on limited battery
power. Additionally, the reduction in communication cost by
23.62% makes the protocol well-suited for environments with
limited bandwidth, such as remote healthcare monitoring.
These improvements in both computation and communication
costs not only enhance the efficiency of the protocol but
also ensure its scalability, as demonstrated by the consistent
performance even with increasing authentication requests. Fur-
thermore, the security comparison highlights the robustness of
our protocol against various attacks, ensuring better overall
security. These results emphasize the practical applicability of
the protocol in real-world healthcare environments, where both
security and resource efficiency are essential. By improving
performance in terms of both security and efficiency, the
proposed protocol is a viable solution for large-scale, secure
healthcare monitoring systems.

VI. CONCLUSION

This article proposes a machine-learning attack-resilient au-
thentication protocol for AI-driven consumer wearable health
monitoring in IoMT environments. The proposed protocol
employs a three-factor authentication mechanism and elliptic
curve cryptography to ensure robust security and efficiency.
Additionally, integrating an OPUF strengthens resistance
against machine learning or modelling attacks. Moreover,
it resists physical tampering, impersonation, and ephemeral
secret leakage attacks. We demonstrate the security of our
protocol through informal and formal analysis, where the
informal analysis highlights its ability to withstand poten-
tial security attacks, and the formal analysis validates its
security. Furthermore, a comparative performance evaluation
shows that the proposed protocol outperforms existing authen-
tication protocols by significantly reducing communication
and computation overheads. This makes it well-suited for
resource-constrained consumer wearable healthcare devices.
In future work, we will move beyond the current testbed and
Raspberry Pi simulations towards real-time implementation on
medical-grade hardware, addressing practical constraints such
as reliability, certification, and clinical real-time processing
requirements. This advancement will facilitate broader clinical
validation and applicability in healthcare scenarios.
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