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Efficient Machine Learning-Based Semantic
Segmentation Algorithm for Consumer-Grade UAV
Remote Sensing

Hong Ye, Jijing Cai, Jiangtao Deng, Xiaodong Wang, Ali Kashif Bashir, Kai Fang, and Wei Wang

Abstract—The computational complexity of the Transformer
model grows quadratically with input sequence length. This
causes a sharp increase in computational cost and memory
consumption for high-resolution remote sensing images. Con-
sequently, its application in consumer-grade unmanned aerial
vehicle remote sensing is limited. To address this issue, we
propose an efficient machine learning-based semantic segmen-
tation algorithm (EMLSSA). First, EMLSSA incorporates the
hash clustering attention (HCAttention) mechanism. It employs
the locality-sensitive hashing (LSH) algorithm to group similar
features into hash buckets, enabling dynamic token clustering.
Subsequently, tokens in the same hash bucket are aggregated
by weighted summation. This compresses features and reduces
the computational complexity of self-attention. Second, EMLSSA
incorporates the frequency multi-layer perceptron (FMLP) mech-
anism. It combines frequency and spatial domain information,
enhancing the ability of the Transformer to perceive local
features. Experimental results show that EMLSSA-B4 reduces
computational cost by 11.7% on FLAME, PWD, EarthVQA,
and Potsdam datasets. Furthermore, it maintains comparable
segmentation performance to SegFormer-B4.

Index Terms—Machine Learning, Consumer-Grade UAV, Re-
mote Sensing, Locally Sensitive Hashing, Dynamic Clustering,
Frequency Multi-Layer Perceptron.

I. INTRODUCTION

Machine learning-driven semantic segmentation algorithms
endow unmanned aerial vehicle (UAV) systems with robust
environmental perception capabilities. Through pixel-level im-
age classification, UAV systems can identify and segment
various ground features, enabling a detailed understanding of
complex scenes [1]]. The use of consumer-grade UAVs can sig-
nificantly improve the efficiency of land resource monitoring,
agricultural management, and post-disaster rescue. However,
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high-accuracy semantic segmentation algorithms are often
challenging to deploy on resource-constrained UAV systems
due to their high computational complexity [2]. Therefore, de-
veloping efficient semantic segmentation algorithms is of great
importance for empowering consumer-grade UAV systems.
Convolutional neural networks (CNNs) have made signifi-
cant progress in semantic segmentation owing to their multi-
scale receptive fields and powerful capabilities in modeling lo-
cal context information [3]]. However, the local receptive fields
of CNNs limit their ability to capture global context informa-
tion and long-range dependencies. This limitation can lead to
confusion in pixel-level classification of complex scenes. To
address the shortcomings of CNNss in global context modeling,
researchers have introduced the Vision Transformer (ViT) for
semantic segmentation tasks. The global self-attention mecha-
nism of ViT helps to effectively capture long-range dependen-
cies in images. Specifically, ViT first divides the input image
into a series of fixed-size patches. It flattens these patches
into a sequence and uses them as input to the Transformer
encoder. Each image patch is subjected to linear transformation
to generate an embedding vector, which is combined with
positional encoding to retain spatial information from the
original image [4]. Subsequently, the Transformer encoder
processes these embedding vectors through a multihead self-
attention mechanism and feed-forward neural networks. This
allows each image patch to interact with all other patches in
the image [3]. This global modeling mechanism enables ViT to
establish associations between pixels across the entire image,
allowing for a comprehensive understanding of the overall
structure and contextual information in complex scenes [6].
Global contextual information is used to model the semantic
dependencies between long-range pixels in an image, thereby
improving overall semantic consistency and the discriminative
ability for object categories. Local contextual information,
on the other hand, focuses on capturing spatial relationships
between adjacent regions in the image, which is crucial for
accurately modeling object boundaries and preserving texture
details. Although Transformer models, with their self-attention
mechanisms, demonstrate significant advantages in global in-
formation modeling, they still exhibit certain limitations in
capturing local details. This may result in issues such as
blurred object boundaries and missing fine-grained details
in semantic segmentation outcomes [7]. Fig. 1 illustrates
global and local contextual information. The self-attention
mechanism of ViT suffers from quadratic computational com-
plexity growth. Its computational cost scales quadratically
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Fig. 1. TIllustration of global and local contextual information. Local contex-
tual information is modeled through convolution (yellow). Global contextual
information is modeled by random window dependencies (blue). Double-
headed arrows represent information exchange.

with the input sequence length, resulting in a sharp increase
in computational costs when processing high-resolution im-
ages. In addition, memory consumption increases significantly,
further limiting its practical applicability in remote sensing
scenarios[8]]. Therefore, how to effectively integrate local de-
tail features and global contextual information while ensuring
computational efficiency has become a critical bottleneck that
must be addressed in the field of semantic segmentation.

In light of the above, we propose a new semantic seg-
mentation method that balances computational efficiency and
feature representation capability, aiming to enhance remote
sensing scene image analysis. Inspired by the SegFormer
algorithm, we propose an Efficient Machine Learning-Based
Semantic Segmentation Algorithm. This algorithm employs
a hash clustering attention (HCAttention) mechanism, which
significantly reduces the computational complexity of the
self-attention mechanism by reducing the number of input
tokens. Simultaneously, a frequency domain learning module
is introduced into the multilayer perceptron. This enhancement
improves the ability of the model to extract local detailed
information from the input sequence and further boosts its
feature representation capability. Our main contributions are
as follows:

(1) We propose a lightweight Transformer architecture
suitable for remote sensing image semantic segmentation.
This model can handle small objects, occluded objects, and
complex ground features.

(2) To address the high quadratic complexity issue in Trans-
former models, we propose the HashAttention mechanism.
It maps semantically similar high-dimensional vectors to the
same hash bucket using locality-sensitive hashing. By com-
bining this with a token aggregation mechanism to compress
vectors within the same hash bucket, we significantly reduce

the complexity of subsequent self-attention calculations.

(3) To overcome the limitation of Transformer models in
extracting local details, we introduce the frequency multilayer
perceptron module. The module applies feature weighting to
local image patches in the frequency domain, assigning higher
weights to critical local features. Consequently, the sensitivity
of the model to local information is significantly enhanced.

II. RELATED WORK
A. Semantic Segmentation Based on Transformer

Semantic segmentation is a fundamental task in computer
vision. It aims to classify each pixel in an image, achieving
pixel-level understanding of the image content. Recently, ViT
has been widely applied for semantic segmentation tasks. Its
advantages in modeling global contextual information have
yielded significant results on multiple benchmark datasets.
Xie et al. [9] proposed the SegFormer algorithm to address
the issues of high computational complexity and poor cross-
resolution robustness of Transformer architectures in semantic
segmentation. This algorithm employs a position-encoding-
free hierarchical Transformer encoder and a lightweight mul-
tilayer perceptron decoder designed in collaboration. By em-
ploying a multiscale feature fusion mechanism, it can achieve
better segmentation results with fewer parameters across mul-
tiple benchmark datasets. Gu et al. [10] proposed the HRViT
algorithm to address the problem of insufficient multiscale
feature representation capability of ViT in dense prediction
tasks. This algorithm deeply integrates a high-resolution multi-
branch architecture with Transformer, significantly enhancing
the ability of ViT to perceive spatial semantic information.
Meanwhile, HRVIiT adopts a heterogeneous branch design
and lightweight linear layers to further improve the efficiency
and expressive power of the model. To address the problem
that convolutional operations struggle to effectively model
global context information, He et al. proposed a semantic
segmentation algorithm called ST-UNet. This algorithm uses
a dual-encoder architecture with parallel Swin Transformers
and CNN:gs. It employs a spatial interaction module to establish
pixel-level associations, enhancing the feature representation
of occluded objects. Additionally, a feature compression mod-
ule is used to optimize detail loss during the Transformer’s
downsampling process. To address the lack of high-level fea-
ture structural information in Transformer decoders for seman-
tic segmentation, Shim et al. proposed the FeedFormer
algorithm, which aims to improve semantic segmentation
performance. This algorithm constructs a cross-level interac-
tion mechanism by employing high-level features as queries
and combining low-level features as keys and values. This
mechanism enables high-level semantic features to effectively
utilize the fine structural information contained in the lowest-
level features, thereby significantly enhancing the complete-
ness of high-level semantic features. To tackle the challenge
of balancing global context modeling and computational effi-
ciency in MetaFormer architectures for semantic segmentation
tasks, Kang et al. introduced the MetaSeg algorithm.
This algorithm employs a CNN backbone network based
on MetaFormer blocks and a novel self-attention decoder



architecture. By employing a Channel Reduction Attention
module, queries and keys are compressed to one dimension.
This reduces computational complexity while enabling global
context modeling and maintaining efficiency. Chen et al. [14]]
proposed a Transformer segmentation algorithm with a hybrid
attention mechanism. Thus, it addresses the challenge of con-
volutional local features struggling to capture global contextual
information in remote sensing image semantic segmentation.
The algorithm employs ResNet50 as an encoder to extract
local image features. The decoder consists of a Channel-
Spatial Transformer (CST) module, designed to capture global
contextual information. Within the CST module, an adaptive
channel re-weighting mechanism is introduced to dynamically
enhance dependencies between different channels, thereby
improving feature representation capabilities. Chen et al. [15]]
proposed the Hierarchical Spatial Perception Transformer to
address the lack of spatial reasoning and attention drift in
Transformer-based semantic segmentation for dynamic driving
scenarios. This method consists of two key components.
The Spatial Depth Perception Auxiliary Network performs
multiscale feature extraction and multilayer depth map pre-
diction. The Hierarchical Pyramid Transformer Network uses
depth estimation as learnable position embeddings, forming
spatially correlated semantic representations and generating
global contextual information.

B. Dynamic Token Generation

The ViT architecture has demonstrated remarkable perfor-
mance in various visual tasks. However, its encoder, when
performing self-attention calculations, experiences a quadratic
growth in computational complexity and parameter count
with the increase in input sequence length. This significant
computational burden poses a challenge to real-time visual
tasks, making it difficult to satisfy real-time requirements. To
address the problem of low computational efficiency caused
by redundant tokens in visual transformers, Rao et al. [16]
proposed a dynamic token sparsification framework. The
algorithm employs a lightweight prediction module and a
hierarchical pruning mechanism, using an attention masking
strategy to block the interaction of redundant tokens for
differentiated pruning. Simultaneously, it optimizes the hier-
archical token importance scores in an end-to-end manner,
enabling the model to dynamically retain critical token subsets
based on input content and significantly reduce computational
complexity. To address high computational costs and the dif-
ficulty of adapting a fixed number of tokens to different input
images in visual transformers, Fayyaz et al. [17] proposed an
adaptive token sampler algorithm, which uses a differentiable
dynamic token scoring mechanism for adaptive downsampling.
It evaluates and selects highly significant tokens layer by layer,
transforming the traditional Transformer into a variable-length
token processing architecture. Grainger et al. [18] proposed
the PaCa-ViT algorithm to address the inherent quadratic
computational complexity bottleneck of traditional block-to-
block attention mechanisms in ViTs. The core of this algorithm
is the introduction of a key-value pair attention mechanism
based on cluster centers. Through an end-to-end joint op-
timization strategy, it synchronously adjusts cluster centers

and attention maps, thereby reducing the original quadratic
complexity to linear complexity. To address the issue of limited
cross-task transferability exhibited by traditional Transformer
models in heterogeneous visual tasks, Liang et al. [[19] pro-
posed a general visual algorithm called ClusterFormer. This
algorithm innovatively employs a recurrent cross-attention
clustering mechanism and a dual feature dispatch architecture.
The recurrent cross-attention clustering mechanism enhances
representation learning by dynamically updating cluster cen-
ters. Meanwhile, the feature dispatch architecture reorganizes
features based on similarity metrics, creating an interpretable
unified visual modeling paradigm. Zeng et al. [20] proposed
the TCFormer architecture to address the problem of the
fixed grid tokenization methods of the traditional Transformer
models, ignoring the inherent semantic associations of images.
TCFormer can effectively capture contextual information and
long-range dependencies in images by adaptively aggregating
regions with similar semantic information into shared visual
tokens through a semantic-aware process. Chao et al. [21]]
proposed a framework called multimodal alignment-guided
dynamic token pruning (MADTP) to address the high com-
putational cost in ViT. The core of this method is the Multi-
modality Alignment Guidance module, which aligns features
of the same semantic concepts from different modalities.
This ensures that the pruned tokens are irrelevant across all
modalities. Additionally, the method includes a dynamic token
pruning module, which adaptively adjusts the token compres-
sion rate for each layer based on different input samples.
To reduce the high computational demands of Transformer
models for UAV tracking, Du et al. [22] introduced a dynamic
token sampling method that improves visual representation by
scoring and dynamically selecting tokens, thereby allowing for
a flexible token count.

Although current research has significantly reduced the
computational complexity of Transformer models, establishing
a balance between lightweight nature and optimum perfor-
mance remains a challenge. This significantly limits their ex-
tensive use in analyzing remote sensing images. Therefore, this
study introduces a new efficient Transformer model for remote
sensing images. This model employs a hashing clustering
algorithm to improve the traditional self-attention mechanism.
Thus, similar vectors can be mapped to the same hash buckets
and subsequently grouped together. This significantly reduces
the computational cost of the model while maintaining a
strong global modeling ability of self-attention. Additionally,
the model incorporates frequency domain operations in its
multilayer perceptron. This aims to enhance the ability of the
model to precisely extract local features. With the combined
advantages of global and local features, this model can sig-
nificantly improve the performance of remote sensing image
analysis.

III. EMLSSA

Fig. 2(a) shows the model structure of EMLSSA, which
consists of an encoder and a decoder. In the encoder, the
OverlapPatchEmbed module first transforms the input feature
map into image patches with overlapping regions. These
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Fig. 2. (a) EMLSSA network architecture. (b) Hash Block module. (c) MLP Layer module

patches are then embedded into a high-dimensional space to
capture rich feature information. Subsequently, the global and
local contextual information of the image is deeply extracted
through stacked four-layer HashBlock modules. The resolution
of the feature map gradually decreases during this process to
achieve information abstraction and compression. The model
structure of the HashBlock module is shown in Fig. 2(b).
The principle of the HashBlock module is to efficiently divide
the input sequence into multiple hash buckets using the LSH
algorithm. It performs weighted aggregation on tokens within
each bucket, reducing the number of tokens for processing.
This lowers computational complexity while retaining key
information. Additionally, the frequency-domain multilayer
perceptron module (FMLP) in HashBlock captures local in-
formation by learning in the frequency domain. This enhances
the representation capability of the model. In the decoder part,
the MLP Layer module gradually restores the feature map
to the original resolution through multilayer perceptron and
then performs upsampling operations, thereby effectively re-
constructing feature information. Its module structure is shown
in Fig. 2(c). After upsampling, the feature map undergoes a
linear mapping through the MLP, and the final prediction result
is output.

A. HCAttention

As stated earlier, for high-resolution remote sensing images,
traditional Transformer models face a quadratic increase in
computational complexity with input sequence length. This
considerably limits their practical application on resource-
constrained drone platforms. Although existing efficient at-
tention mechanisms can effectively reduce the computational

load of the models, they struggle to balance computational
efficiency with global modeling capabilities [23]. Therefore,
we propose an innovative HCAttention mechanism aimed to
address the computational bottleneck in remote sensing image
semantic segmentation tasks. This mechanism preserves global
modeling capabilities while significantly reducing computa-
tional complexity. Furthermore, it enables precise capture of
long-range dependencies between ground objects in remote
sensing images, achieving high-precision semantic segmenta-
tion.

Fig. 3 shows the model structure of the HCAttention self-
attention mechanism, which consists of three core components:
hash operation [24]], merge aggregation process, and attention
calculation. First, the HCAttention module performs a hash
operation on the input sequence, mapping semantically sim-
ilar high-dimensional vectors in the input to the same hash
bucket. Subsequently, the merge aggregation operation weights
and combines similar vectors within the same hash bucket,
generating representative feature representations. Finally, these
compressed token features are used for attention calculation to
further extract global contextual information. In this manner,
the representation of the feature map is effectively compressed,
thereby significantly reducing the complexity of subsequent
attention calculations.

Computational Complexity Analysis. The self-attention
mechanism of traditional Transformer models has a compu-
tational complexity of O (N2C) [25] when the input sequence
length is IV and the feature dimension is C'. The HCAttention
mechanism, utilizing the idea of locality-sensitive hashing,
maps the input N tokens to K hash buckets through random
projection, achieving dynamic clustering. The formula for
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calculating the number of hash buckets can be expressed as
(D

where max represents the maximum value, Ceil represents
rounding up, and Sr represents the sampling rate, K < V.

By performing token aggregation operations to weighted
aggregate, the tokens within the same hash bucket are fused
into a representative token, thereby effectively reducing the
complexity of subsequent attention calculations. After token
hashing and token aggregation operations, the number of
input tokens changes from N to K representative tokens, and
the subsequent self-attention calculation complexity becomes
0] (K2C).

Token Hashing. Token hashing maps semantically similar
high-dimensional features to the same hash bucket and gen-
erates hash bucket indices for subsequent feature aggregation.
Let the input vector be V' € REXNXD \where B is the batch
size, N is the sequence length, and D is the feature dimension.
A random rotation matrix R is generated, following a standard
normal distribution.

K = max(Ceil(N  Sr), 1)

RNN(O71) ERBXDXHXK/Q (2)

where H is the number of hash iterations and K is the
number of hash buckets. The product of the input vector V'
and the random rotation matrix R is computed using Einstein
summation convention, yielding the projected vector P.

D
P Nk = Z Ve,N,D - Rp.p .1 K/2 3)

d=1
Through the projection operation, vectors in high-

dimensional space are mapped into low-dimensional hash
buckets, such that similar vectors have a higher probability

&

L

E

of being mapped to the same hash bucket. To eliminate
projection direction bias and enhance feature discriminability,
the projected vector is concatenated with its negative value,
constructing a symmetric projection matrix Q.

Q:[PH—P] GRBXHXNXK/Q (4)

where || denotes the concatenation operation along the last
dimension.

Based on the above derivation, the specific form of the hash
function is defined as:

H(V)= argmaxyeo, ) [V-R;,—V-Rj] 5)

where V' - R; represents the projection value of the input
vector V' onto the direction R;, which measures the similarity
between V and R; . A larger dot product indicates higher sim-
ilarity. The argmax operation selects the index of the direction
with the highest projection value among all directions, which
is then used as the hash bucket index. It is formally defined
as:

argmax f(x) ={z* € Z | f(z*) > f(z),Yx € Z}  (6)

where Z represents the domain of the input =, f(z) is

the objective function, and x* is the input that maximizes
f(x). The condition f(z*) > f(z),Vx € Z ensures that x
corresponds to the global maximum.

Within the range of K hash buckets, a high-dimensional
input vector V' is mapped onto R; Gaussian random direc-
tions and their opposite directions through Gaussian random
rotation, resulting in a set of projection values. The direction
with the maximum projection value is selected via the argmax
operation, and the corresponding index is assigned as the
hash bucket number for the vector. Since similar vectors



tend to exhibit similar maximum response directions under
random projections, they are more likely to be mapped to the
same hash bucket. This property enables efficient clustering of
similar tokens and enhances the effectiveness of the hashing
mechanism. After token hashing, similar tokens share the
same hash bucket index, and a subsequent token aggregation
operation is applied to compress the feature representation
by aggregating input tokens based on their respective bucket
indices.

Token Aggregation. The purpose of the token aggregation
operation is to merge semantically similar tokens into a single
representative token through weighted fusion. Input features
are clustered based on the hash bucket index, number of
clusters, and batch index. This generates a global index,
ensuring unique cluster numbers across different batches. The
global index generation process can be expressed as

idx = idx_buckets + idx_batch x K € REXN @)

where idx_batch represents the batch index, idx_buckets rep-
resents the hash bucket index, and K represents the number
of hash buckets for clustering. Subsequently, the sum of all
weights within each hash bucket is computed using the global
index. The weight of each token is then divided by the total
weight of its bucket, producing the normalized weight w;.

ePi
Dj
Zjeci e

where p; represents the importance score of the j —th token,
obtained through linear mapping, measuring the importance
of the token. eP/ represents the exponential transformation of
the importance score, assigning greater weight to tokens with
higher importance scores, ensuring that information-rich to-
kens have a greater impact on the merged result. C; represents
the new token representation after weighted merging.

The token features within each hash bucket are weighted
summed according to the normalized weights, resulting in the
representative token feature y;.

ePi
J€C: j€C; \IECi

where z; is the feature vector for the j — th token, capturing
its semantic information.

The token aggregation operation performs weighted fusion
of tokens based on their semantic similarity and importance
scores, thereby generating representative dynamic tokens. In
remote sensing images, ground object categories are com-
plex and unevenly distributed; however, dynamic tokens can
adaptively focus on important regions, significantly improving
the ability of the model to perceive detailed features [26].
Furthermore, background regions in remote sensing images
usually occupy a large proportion; however, their contribution
to segmentation tasks is relatively limited [27]. Therefore, by
aggregating tokens from background regions, computational
redundancy can be effectively reduced while ensuring that
tokens from key regions are retained.

®)

'U}j:

After token hashing and token aggregation operations, the
number of tokens in the input sequence is significantly re-
duced, and the semantic information of the remote sensing
image is effectively compressed. The aggregated tokens, serv-
ing as queries, keys, and values, are used for subsequent self-
attention calculations, expressed as follows:

T

. K

Attention(Q, K, V') = softmax (Q =

Vag

where dj, represents the dimension scaling factor used to
prevent excessive gradientsm, Softmax represents the nor-
malization operation, and QK7 represents the correlation
score used to calculate the similarity between query and key.

) v (10)

B. Frequency Domain Multilayer Perceptron

Traditional multilayer perceptrons are ideal at capturing
global features when processing image data but lack the ability
to perceive local detailed information contained in images
[28]. However, in remote sensing image analysis, small targets
often have limited feature information. Relying solely on
global features makes it challenging to model these targets
accurately, which can result in the loss of local features and
negatively impact recognition accuracy [29]. Therefore, we
introduce a frequency domain modulation mechanism into the
multilayer perceptron structure to allow the model utilize local
features and fully explore the frequency domain information
of images, thereby improving the overall feature representation
ability of the model [30].

The structure of the FMLP module is illustrated in Fig.
4. The input sequence X is first linearly projected and then
reshaped into the spatial domain. In the spatial domain, a Patch
Folding operation divides the feature map into multiple P x P
image patches, each represented as Xpuen € RBXCx 5 x T
Subsequently, each image patch undergoes a 2D FFT op-
eration to be transformed into the frequency domain [31].
In the frequency domain, learnable modulation weights W
are applied to adaptively adjust the high- and low-frequency
features of each patch. The output W can be represented as
W e REXIXIxPx(P/24+1) " \where each channel corresponds
to an independent frequency-domain filter. The frequency
domain weighting process can be expressed as:

Y =F(PX)oW (11)

where Y represents the frequency-domain weighted result, 7
denotes the 2D Fourier transform, and P stands for the patch
folding operation applied to the input features. ® indicates
element-wise multiplication, meaning that frequency-domain
modulation is performed on each image patch.

After frequency-domain modulation, the high-frequency
contour information of each local image patch is enhanced
while the low-frequency detail information is preserved, signif-
icantly improving the Transformer model’s ability to perceive
local detail features. Subsequently, the feature information is
transformed back to the spatial domain via a 2D inverse FFT
(IFFT), and patch reconstruction techniques are used to restore
the image features. Finally, depthwise separable convolution



is applied to further capture local contextual information,
followed by activation and linear mapping to output the
enhanced feature representation.

Y =L (GELU (DW (X¢)))
where X represents the features processed in the frequency
domain. P~ represents patch unfolding, restoring the original
feature map, F —1 denotes the inverse Fourier transform. DW
stands for depthwise separable convolution, and L indicates
the linear layer.

Patch
Folding

Linear
B
o

DWConv
®
Linear

Patch Unfolding

O Element-wise Multiplication

Fig. 4. Structure of FMLP module.

The FMLP module introduces a learnable frequency-domain
weighting mechanism to adaptively modulate different fre-
quency components within image features. During training,
the module learns the frequency distribution characteristics of
image patches, enabling it to enhance high-frequency details
while preserving low-frequency structural information. Small
objects in remote sensing images often exhibit prominent high-
frequency features and sharp edge transitions. The FMLP mod-
ule, through its frequency-domain enhancement mechanism,
can adaptively strengthen high-frequency responses, enabling
the model to maintain strong small-object perception even in
complex backgrounds. This contributes to improved detection
accuracy and edge localization performance in remote sensing
imagery.

1V. EXPERIMENTS AND RESULTS
A. Experimental setup

In this study, we comprehensively evaluated the perfor-
mance of the EMLSSA model by conducting experiments on
three publicly available datasets and one self-collected dataset.
The datasets used are as follows:

(1) FLAME Forest Fire Dataset [32]]. The dataset consists
of 2003 high-resolution fire images, which were acquired
by drones during prescribed burning in the pine forest area
of Arizona, USA. The RGB images in the dataset provide
rich visual information, offering strong support for accu-
rate segmentation of fire areas [33]]. However, owing to the
dynamic evolution and irregular morphological changes of
fires, accurate segmentation of fire areas remains a challenge.
The introduction of this dataset not only provides key data
support for forest fire monitoring but also further promotes

the application of drone technology in disaster emergency
response.

(2) PWD Dataset. We collected 1,106 high-resolution im-
ages of infected pine forests within four town-level areas
in Longyou County, Quzhou City, Zhejiang Province, China
and then constructed a precise segmentation dataset targeting
the pathological features of pine wilt disease. The study
area is approximately 8 square kilometers, covering typical
Masson pine forests and broadleaf evergreen forests, with
sampling points mainly distributed in pine forest areas with
a high degree of pine wilt disease infection [34} 35]. Spe-
cific sampling sites involve six representative forest lands,
including Hengshan Town, Shifo Town, and Zhaxi Town, to
ensure regional representativeness and diversity of the data.
Data annotation was meticulously processed using the X-
AnyLabeling semantic segmentation tool and calibrated by
experts in pest and disease prevention and control to ensure
the accuracy and scientific nature of the annotations. This
dataset is useful for training semantic segmentation algorithms.
Furthermore, it serves as a reliable benchmark for evaluating
model generalization in complex backgrounds and various
disease distribution conditions. The study area and sampling
sites are shown in Fig. 5. In this figure, red sampling points
represent the training set, while yellow points indicate the
validation and test sets.
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Fig. 5. Study area and sampling site.

(3) EarthVQA Land Cover Dataset [36]. The dataset con-
sists of 6,000 high-resolution remote sensing images, collected
from Nanjing, Changzhou, and Wuhan, China, aiming to ex-
plore the differences between urban and rural geographical en-
vironments. The EarthVQA dataset includes seven land cover
categories, namely, buildings, roads, water bodies, wasteland,
forests, agriculture, and playgrounds, providing high-quality
remote sensing data support for multi-category land cover
classification tasks. This dataset presents several challenges
for researchers. Remote sensing images contain target objects



of different scales, requiring models to have strong multiscale
information processing capabilities to adapt to the morpho-
logical and scale changes of land cover. Meanwhile, there
are significant differences in the category distribution between
urban and rural scenes. Models need strong generalization
capabilities to manage changes in ground object features
across different environments.

(4) Potsdam Dataset [37]. This dataset is a benchmark
dataset, specifically designed for remote sensing image anal-
ysis tasks. It was acquired in Potsdam, Germany, through a
high-precision aerial platform, and contains 38 orthophoto tile
slices with a ground sampling distance of 5 cm: each image
with a size of 6000x6000 pixels. We processed the Potsdam
dataset to generate 3804 high-resolution images. The dataset
mainly covers targets such as buildings, roads, trees, low
vegetation, and cars. The dataset contains diverse scenes and
object categories, which can effectively test the generalization
ability of algorithms in complex environments. Additionally,
there is visual similarity between low vegetation and tree
categories, making it difficult for the model to distinguish
between them. This challenge helps assess the ability of the
model to recognize subtle differences.

Implementation Details: We developed the EMLSSA se-
mantic segmentation algorithm based on the mmsegmentation
framework. In addition, we trained it for 80k iterations on four
remote sensing datasets using an RTX 4090 GPU. This en-
sured full convergence in an efficient computing environment.
The training parameters and experimental environment during
the experiment are specified in Tables I and II, respectively.

TABLE I
TRAINING PARAMETERS

Training Parameters Details
Iterations 80k

Input size 512 x 512
Batch size 4

Workers 8
Optimizer SGD
Learning rate 0.01
Weight decay 0.0005

TABLE 11
EXPERIMENTAL ENVIRONMENT

Experimental Environment Details

Operating System Ubuntu 20.04

Develop Framework MMsegmentation

MMCV 1.7.2

Deep Learning Framework PyTorch 1.11.0

GPU NVIDIA GeForce RTX 4090

During the training process, the model is pre-trained on
ImageNet-1K. The primary evaluation metric used is mloU
(mean intersection over union), which comprehensively mea-
sures the segmentation accuracy across different categories.
This ensures the performance stability and robustness of the

model in remote sensing image semantic segmentation tasks.
The calculation formula for mloU is as follows.

N TP,

1
ToU = —
miol N;TPH-FPH-FM

13)

where NN represents the number of categories in the remote
sensing image, T'P; represents the number of correctly pre-
dicted pixels for category ¢, F'P; represents the number of
false positive pixels for category ¢, and F'N; represents the
number of false negative pixels for category <.

B. Ablation Experiment

To verify the effectiveness of each module of the proposed
EMLSSA semantic segmentation algorithm, we performed ab-
lation analysis using the FLAME Forest Fire Dataset. Through
this experiment, we evaluated the performance of EMLSSA
under different module combinations to analyze its adaptability
and advantages in remote sensing image scenarios. In Table
III, we sequentially added the HCAttention module and the
FMLP module to the SegFormer model to demonstrate the
performance gain of different module optimizations to the
model.

First, the HCAttention mechanism is introduced to achieve
significant model compression through a hash-driven dynamic
clustering strategy. Specifically, the computational load of the
model is reduced by 11.7%, while the mloU value is in-
creased by 0.51%. The HCAttention module utilizes a locality-
sensitive hashing algorithm to map high-dimensional input
data to a low-dimensional hash space, thereby mapping similar
feature vectors into the same hash bucket. Thereafter, the token
aggregation operation is used to perform weighted aggregation
of tokens within the same hash bucket, effectively reducing the
computational complexity of the self-attention mechanism.

Subsequently, the FMLP module is incorporated, resulting
in a slight increase in the parameters load of the model as
well as an improvement in the mloU value by 0.66%, reaching
91.25%. The FMLP module reconstructs the feature tensor into
8 % 8 local patches and uses fast Fourier transform to convert
spatial features into frequency features. In the frequency
domain, FMLP applies weighted learning to local patches,
making the model sensitive to local feature changes. This
effectively enhances the overall performance of the model.

C. Comparison with State-of-the-art Methods

To verify the superiority of the EMLSSA model to other
advanced methods, we conducted systematic comparative ex-
periments on four remote sensing datasets: FLAME, PWD,
EarthVQA, and Potsdam. Tables IV, V, and VI present the
test results of each model on different datasets. They include
metrics such as model parameters, computational complexity,
and mloU values.

The experimental results in Table IV show that on the
FLAME dataset, the EMLSSA model reduces computational
load by 11.7% compared to SegFormer and 56.6% compared
to MMLN. Meanwhile, it increases mloU by 1.17% and
0.03%, respectively. In the PWD dataset, the mIoU value of the



TABLE III
ABLATION EXPERIMENT

Model Backbone  Input Size  Params(M) GFLOPs mIOU(%)

SegFormer MIT-B4 512512 64.13 95.76 90.08

+HCAttention MIT-B4 512x512 64.13 84.53 90.59

+HCAttention+FMLP(EMLSSA) MIT-B4 512x512 65.83 84.53 91.25
TABLE IV

COMPARISON WITH STATE-OF-THE-ART METHODS ON FLAME AND PWD DATASETS

Method Backbone  Params (M) GFLOPs FLAME mloU (%) PWD mloU (%)
Unet [38] ResNet50 43.93 91.7 87.26 86.12
PSPNet [39] ResNet50 49.08 178.76 87.62 84.20
DeepLabV3+ [40] ResNet50 43.69 177.46 87.86 84.56
SegFormer MiT-B4 64.13 95.76 90.08 87.13
Mask2Former [41] Swin-B 102 195 91.16 87.23
SSformer [42] Swin-T 87.5 91.01 90.88 86.37
MMLN [43] Swim-S 62.2 194.9 91.22 87.23
EMLSSA (Ours) MiT-B4 65.83 84.53 91.25 87.59
TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON EARTHVQA DATASET

Method Background Building Road  Water Barren Forest Agriculture Playground  mloU(%)
Unet 99.19 47.89 5778  54.73 69.34 20.93 46.87 55.41 56.52
PSPNet 99.35 46.21 60.34  58.23 71.02 25.08 449 57.23 57.80
DeepLabV3+ 99.32 45.16 61.51  58.55 70.98 20.05 45.09 56.04 57.09
SegFormer 99.49 47.56 6395 58.74 72.52 30.05 49.59 64.15 60.75
Mask2Former 99.5 47.23 61.8 61.37 73.68 32.74 50.68 60.19 60.90
SSformer 98.7 43.45 46.44  43.85 63.15 18.74 43.24 55.05 51.57
MMLN 99.36 48.81 5134 47.49 73.98 43.26 63.03 65.33 61.58
EMLSSA 99.55 47.92 65.34  60.91 74.18 31.79 50.13 65.58 61.93

EMLSSA model is 0.46% higher than that of the SegFormer
model. These data demonstrate the excellent performance of
the EMLSSA model in binary classification tasks, providing
a solid theoretical basis for its promotion in remote sensing
applications, such as forest fire and pest and disease detection.

Table V presents the test results on the EarthVQA dataset.
The EMLSSA model has the highest mloU of 61.93%, outper-
forming the traditional SegFormer model by 1.18%, demon-
strating its performance advantage. The EMLSSA model
has a slightly larger parameter size than UNet, PSPNet,
DeepLabV3+, and MMLN. However, its computational com-
plexity is significantly lower, achieving superior performance
with only half the computational load. While its segmentation
performance for categories, such as water bodies, forests, and
farmland, is slightly insufficient, it achieves the highest overall
mloU.

The results in Table VI show that the EMLSSA model out-
performs SegFormer and Mask2Former, increasing mloU by
0.34% and 3.64%, respectively. Compared to UNet, PSPNet,

and DeepLabV3+, it achieves mloU improvements of 7.66%,
2.64%, and 3.04%, respectively. These results further confirm
the advantages of EMLSSA in complex remote sensing image
segmentation tasks.

To comprehensively evaluate the practical value of the
proposed method and highlight the performance advantages
of the EMLSSA module under lightweight constraints, we
selected four representative lightweight semantic segmentation
algorithms for comparative analysis. The experimental results
are shown in Table VII.

Although the computational cost of the EMLSSA model is
higher than that of some lightweight algorithms, unlike these
methods which suffer from significant accuracy degradation,
the proposed approach introduces the HCAttention module
to effectively reduce computation while maintaining high
segmentation performance. This method demonstrates notable
advantages in edge computing scenarios and is better suited
for real-world deployment needs.

Experimental results demonstrate that the EMLSSA model
significantly reduces computational overhead compared to



TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE POTSDAM DATASET

Method Background  Surfaces  Low Vegetation  Tree Car Building  mloU(%)
Unet 89.81 66.54 70.71 41.56 7847 80.94 71.34
PSPNet 93.14 74.19 75.70 54.19 77.16 83.76 76.36
DeepLabV3+ 92.37 72.97 75.14 53.37  178.70 83.23 75.96
SegFormer 93.84 74.91 77.57 5726 82.84 85.52 78.66
Mask2Former 91.86 73.32 73.56 46.55 81.28 85.63 75.36
SSformer 91.77 71.97 76.33 48.16  75.56 83.11 74.48
MMLN 91.96 72.98 76.71 62.64 81.76 84.81 78.48
EMLSSA 93.85 75.64 77.81 58.05 82.72 85.91 79.0
TABLE VII

COMPARISON OF LIGHTWEIGHT MODEL PERFORMANCE
Method Params (M) GFLOPs FLAME mloU (%) PWD mloU (%) EARTHVQA mloU (%) POTSDAM mloU (%)
EMLSSA 65.83 84.53 91.25 87.59 61.93 79.00
Fast-SCNN 1.14 0.78 86.74 82.83 54.25 68.48
ESPNet 0.35 1.78 83.60 81.73 56.97 72.66
Paca-ViT 23.41 47.25 87.60 83.06 45.59 73.73
MetaSeg 29.60 30.40 88.12 85.90 49.43 69.63

other baseline models, while also achieving superior mloU
scores across various segmentation tasks. This performance
advantage is primarily attributed to the introduction of the
HCAttention self-attention mechanism. This mechanism per-
forms dynamic aggregation of the input sequence through a
hash clustering operation, effectively reducing the number of
redundant tokens and thus substantially lowering computa-
tional complexity. The tokens generated after aggregation are
more representative and retain critical semantic information.
When combined with the global modeling capability of the
self-attention mechanism, these representative token features
further enhance the model’s perception of structural informa-
tion in remote sensing images.

Additionally, to compensate for potential loss of local
features during the token aggregation process, EMLSSA
incorporates the FMLP module. This module dynamically
learns weighted representations of local image patches in
the frequency domain, thereby enhancing the model’s ability
to capture fine-grained local details. As a result, the model
achieves improved recognition and segmentation accuracy at
the detail level, while maintaining computational efficiency.

D. Qualitative Results

Through qualitative analysis, the segmentation effect of
the model at object edge details and its ability to manage
complex backgrounds can be intuitively observed [44, 45]]. To
evaluate the performance advantages of the EMLSSA model in
remote sensing image segmentation tasks, we conducted quali-
tative analysis on four representative datasets: FLAME, PWD,
EarthVQA, and Potsdam. We examined its improvements by
comparing it to the SegFormer model. The qualitative results
are shown in Figs. 6, 8, 10, and 11. These figures compare the

original input images, ground truth annotations, and predicted
segmentation masks, revealing the performance differences of
each model in various scenarios.

The qualitative results on the FLAME dataset are shown in
Fig. 6. Compared with the ground truth masks, the prediction
results of SegFormer and EMLSSA are almost identical, mak-
ing them difficult to distinguish with the naked eye. Therefore,
we calculated the segmentation areas of the prediction results
of the two models and the ground truth masks. As shown in
Fig. 7, in different predicted images, the segmentation area
of the EMLSSA model is closest to the ground truth masks,
indicating that it contains richer detail information and can
accurately segment object boundaries.

Fig. 8 shows the qualitative results of different models on
the PWD dataset. In the pine wilt disease segmentation task,
a detailed comparison of the segmentation areas in Fig. 8(e)
shows that the EMLSSA model has clearer and more accurate
segmentation boundaries. It effectively distinguishes between
infected and uninfected areas. Meanwhile, the SegFormer
model exhibits obvious false negatives and false positives,
as shown in the red boxes in Fig. 8(f) and 8(g). In Fig.
8(f), the SegFormer model fails to accurately segment all
infected areas. In Fig. 8(g), the SegFormer model mistakenly
identifies land as infected areas, resulting in false positives.
However, the EMLSSA model can more accurately segment
the contours and details of the infected areas. We calculated
the segmentation areas of the prediction results of the two
models and the ground truth masks to further verify the
segmentation effect of the EMLSSA model. In Fig. 9, it can be
observed that the segmentation area of the EMLSSA model is
closer to the ground truth mask area in different images. This
improvement is mainly owing to the ability of the EMLSSA
model to effectively model long-range dependencies in images,
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Fig. 6. Qualitative results on FLAME dataset.

4000 . : :

T
GT
EMLSSA
SegFormer
3000 -
o
©
B
£2000 B
[+
2
<
1000 - |—m .
0 T T T T
a b c d

Images

Fig. 7. Comparison results of segmentation area in FLAME dataset.

m !

EMLSSA

Ground Truth SegFormer

Fig. 8. Qualitative results on PWD dataset.

EMLSSA SegFormer
4000 : : :
GT
EMLSSA
SegFormer
3000 4 =
2
o
RS —
£ 2000 B
3
<
1000 —
0 T T T
e f g
Images

Fig. 9. Comparison results of segmentation area in PWD dataset.

enhancing its perception of global information. Additionally,
the FMLP module precisely extracts local detailed features,
allowing the EMLSSA model to capture key feature infor-
mation more accurately when managing small and occluded
targets commonly found in remote sensing images.

Fig. 10 shows the qualitative results on the EarthVQA
dataset. The colors represent different categories. Red boxes
highlight the differences between the predictions of different
models and the true masks. As shown in Fig. 10, our EMLSSA
model performs significantly better than the SegFormer model
in terms of segmentation boundary clarity. This is true for
categories such as roads and barren land. EMLSSA can gen-
erate sharper and more accurate edges. Therefore, EMLSSA
can capture the actual range and shape of these features
more precisely and reduces blurry or jagged segmentation.
Furthermore, in complex areas with multiple overlapping or
closely adjacent categories, the EMLSSA model shows a



=

Ground Truth

EMLSSA

SegFormer

3

@ Agriculture

Fig. 10. Qualitative results on EarthVQA dataset.

‘.

Surfaces

Low Vegetation

&=
Background

A

Building

Images Ground Truth SegFormer

Fig. 11. Qualitative results on the Potsdam dataset.

stronger ability to distinguish between them. It can accurately
identify and differentiate objects. However, the SegFormer
model often shows category confusion in these areas.

In the land cover segmentation task on the Potsdam dataset,
the performance of various models varies significantly across
different scenarios. As shown in Fig. 11, the SegFormer
model struggles to accurately segment land cover features
and even exhibits omissions. While the DeepLabV3+ and
Mask2Former models can identify most land cover categories,
they show noticeable false detections in their predictions. The
segmentation results of the MMLN model are similar to those
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of the EMLSSA model, but some boundaries remain unclear.
However, the EMLSSA model demonstrates superior segmen-
tation performance and stronger robustness when managing
complex land cover scenarios in the Potsdam dataset.

The performance of the EMLSSA model improved because
of its precise capture of global contextual information and
local detailed features. This combination enables the model
to comprehensively understand complex scenes in remote
sensing images. Specifically, the introduction of the HCAt-
tention self-attention mechanism effectively guides the model
to focus on key target regions through dynamic clustering



while maintaining its lightweight design. This mechanism
reduces interference from irrelevant information and allows the
model to accurately define boundaries between different land
covers, thereby significantly improving segmentation accuracy.
Additionally, the optimization of the FMLP enhances the
capability of the model to extract edge detail information. Edge
details often contain important land cover information, such as
the precise contours of buildings, roads, and vegetation. The
FMLP optimization enables the model to capture land cover
features in complex scenarios more effectively, demonstrating
excellent performance in small object recognition, occluded
object detection, and understanding complex multi-object
scenes. According to this qualitative analysis, the EMLSSA
model has significant advantages in remote sensing image
analysis tasks, particularly in challenging complex scenarios.
Its precise capture of global and local features, along with
the enhancements from HCAttention and FMLP, collectively
contribute to improved model performance.

V. CONCLUSION

The proposed EMLSSA efficient semantic segmentation
model effectively reduces computational complexity, making
it ideal for remote sensing image semantic segmentation
tasks. This model innovatively introduces the HCAttention
self-attention mechanism to compress input token features,
thereby improving computational efficiency. To enhance the
ability of the model to capture local detailed textures, this
study incorporates the FMLP module. This module performs
feature weighting on local image patches in the frequency
domain, effectively strengthening the representation of local
features. Experimental results show that the EMLSSA model
demonstrates outstanding performance across multiple public
remote sensing image semantic segmentation datasets, validat-
ing its effectiveness and superiority in remote sensing image
segmentation tasks.

REFERENCES

[1] X. Xiao, X. Wang, and W. Lin, “Joint aoi-aware uavs trajectory
planning and data collection in uav-based iot systems: A deep reinforce-
ment learning approach,” IEEE Transactions on Consumer Electronics,
vol. 70, no. 4, pp. 6484-6495, 2024.

[2] J.Li, S. Zhang, Y. Sun, Q. Han, Y. Sun, and Y. Wang, “Frequency-driven
edge guidance network for semantic segmentation of remote sensing
images,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2024.

[3] C. Xie, X. Zhai, H. Chi, W. Li, X. Li, Y. Sha, and K. Li, “A novel
fusion pruning-processed lightweight cnn for local object recognition
on resource-constrained devices,” IEEE Transactions on Consumer
Electronics, vol. 70, no. 4, pp. 6713-6724, 2024.

[4] L. Wang, X.-s. Tang, and K. Hao, “Gfpe-vit: vision transformer with
geometric-fractal-based position encoding,” The Visual Computer, pp.
1-16, 2024.

[5] S. Reza, M. C. Ferreira, J. J. Machado, and J. M. R. Tavares, “A multi-
head attention-based transformer model for traffic flow forecasting with
a comparative analysis to recurrent neural networks,” Expert Systems
with Applications, vol. 202, p. 117275, 2022.

[6] X.Dong, Q. Wang, H. Deng, Z. Yang, W. Ruan, W. Liu, L. Lei, X. Wu,
and Y. Tian, “From global to hybrid: A review of supervised deep
learning for 2d image feature representation,” IEEE Transactions on
Artificial Intelligence, 2025.

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

K. Fang, J. Deng, C. Dong, U. Naseem, T. Liu, H. Feng, and W. Wang,
“Mocfl: Mobile cluster federated learning framework for highly dynamic
network,” arXiv preprint arXiv:2503.01557, 2025.

H. Su, L. Liu, G. Jeon, Z. Wang, T. Guo, and M. Gao, “Remote sensing
image dehazing based on dual attention parallelism and frequency do-
main selection network,” IEEE Transactions on Consumer Electronics,
vol. 70, no. 3, pp. 5300-5311, 2024.

E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation
with transformers,” Advances in neural information processing systems,
vol. 34, pp. 12077-12090, 2021.

J. Gu, H. Kwon, D. Wang, W. Ye, M. Li, Y.-H. Chen, L. Lai, V. Chandra,
and D. Z. Pan, “Multi-scale high-resolution vision transformer for
semantic segmentation,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2022, pp. 12094-12 103.
X. He, Y. Zhou, J. Zhao, D. Zhang, R. Yao, and Y. Xue, “Swin
transformer embedding unet for remote sensing image semantic segmen-
tation,” IEEE transactions on geoscience and remote sensing, vol. 60,
pp. 1-15, 2022.

J.-h. Shim, H. Yu, K. Kong, and S.-J. Kang, “Feedformer: Revisiting
transformer decoder for efficient semantic segmentation,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 37, no. 2, 2023,
pp. 2263-2271.

B. Kang, S. Moon, Y. Cho, H. Yu, and S.-J. Kang, “Metaseg:
Metaformer-based global contexts-aware network for efficient semantic
segmentation,” in Proceedings of the IEEE/CVF winter conference on
applications of computer vision, 2024, pp. 434-443.

Y. Chen, Q. Dong, X. Wang, Q. Zhang, M. Kang, W. Jiang, M. Wang,
L. Xu, and C. Zhang, “Hybrid attention fusion embedded in transformer
for remote sensing image semantic segmentation,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 17, pp. 4421-4435, 2024.

S. Chen, T. Han, C. Zhang, J. Su, R. Wang, Y. Chen, Z. Wang, and
G. Cai, “Hspformer: Hierarchical spatial perception transformer for se-
mantic segmentation,” IEEE Transactions on Intelligent Transportation
Systems, 2025.

Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, “Dynam-
icvit: Efficient vision transformers with dynamic token sparsification,”
Advances in neural information processing systems, vol. 34, pp. 13937-
13949, 2021.

M. Fayyaz, S. A. Koohpayegani, F. R. Jafari, S. Sengupta, H. R. V. Joze,
E. Sommerlade, H. Pirsiavash, and J. Gall, “Adaptive token sampling
for efficient vision transformers,” in European Conference on Computer
Vision. Springer, 2022, pp. 396-414.

R. Grainger, T. Paniagua, X. Song, N. Cuntoor, M. W. Lee, and T. Wu,
“Paca-vit: learning patch-to-cluster attention in vision transformers,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 18 568-18 578.

J. Liang, Y. Cui, Q. Wang, T. Geng, W. Wang, and D. Liu, “Clusterfomer:
clustering as a universal visual learner,” Advances in neural information
processing systems, vol. 36, pp. 64 029-64 042, 2023.

W. Zeng, S. Jin, L. Xu, W. Liu, C. Qian, W. Ouyang, P. Luo, and
X. Wang, “Tcformer: Visual recognition via token clustering trans-
former,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2024.

J. Cao, P. Ye, S. Li, C. Yu, Y. Tang, J. Lu, and T. Chen, “Madtp: Multi-
modal alignment-guided dynamic token pruning for accelerating vision-
language transformer,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2024, pp. 15710-15719.

G. Du, P. Zhou, N. Yadikar, A. Aysa, and K. Ubul, “Ddctrack dynamic
token sampling for efficient uav transformer tracking,” in International
Conference on Pattern Recognition. Springer, 2025, pp. 129-144.

J. Ruan, S. Xiang, M. Xie, T. Liu, and Y. Fu, “Malunet: A multi-attention
and light-weight unet for skin lesion segmentation,” in 2022 [EEE
International Conference on Bioinformatics and Biomedicine (BIBM).
IEEE, 2022, pp. 1150-1156.

N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient trans-
former,” arXiv preprint arXiv:2001.04451, 2020.

Q. Ge, J. Li, X. Wang, Y. Deng, K. Zhang, and H. Sun, “Litetransnet:



[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

An interpretable approach for landslide displacement prediction using
transformer model with attention mechanism,” Engineering Geology,
vol. 331, p. 107446, 2024.

O. Ghozatlou, M. Datcu, A. Focsa, M. H. Conde, and S. L. Ullo, “A
review and a perspective of deep active learning for remote sensing im-
age analysis: Enhanced adaptation to user conjecture,” IEEE Geoscience
and Remote Sensing Magazine, 2024.

K. K. Brar, B. Goyal, A. Dogra, M. A. Mustafa, R. Majumdar,
A. Alkhayyat, and V. Kukreja, “Image segmentation review: Theoretical
background and recent advances,” Information Fusion, p. 102608, 2024.
N. Sharma and R. K. Sunkaria, “The enigmatic u-wave delineation and
classification based on hybrid feature fusion using stationary wavelet
transform and ensemble machine learning algorithm,” IEEE Transac-
tions on Consumer Electronics, vol. 70, no. 3, pp. 5286-5299, 2024.
X. Yuan, J. Shi, and L. Gu, “A review of deep learning methods for
semantic segmentation of remote sensing imagery,” Expert Systems with
Applications, vol. 169, p. 114417, 2021.

L. Kong, J. Dong, J. Ge, M. Li, and J. Pan, “Efficient frequency domain-
based transformers for high-quality image deblurring,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 5886-5895.

P. Li, R. Zhou, J. He, S. Zhao, and Y. Tian, “A global-frequency-domain
network for medical image segmentation,” Computers in Biology and
Medicine, vol. 164, p. 107290, 2023.

A. Shamsoshoara, F. Afghah, A. Razi, L. Zheng, P. Z. Fulé, and
E. Blasch, “Aerial imagery pile burn detection using deep learning: The
flame dataset,” Computer Networks, vol. 193, p. 108001, 2021.

H. Feng, J. Qiu, L. Wen, J. Zhang, J. Yang, Z. Lyu, T. Liu, and K. Fang,
“U3unet: An accurate and reliable segmentation model for forest fire
monitoring based on uav vision,” Neural Networks, p. 107207, 2025.
J. Yuan, L. Wang, T. Wang, A. K. Bashir, M. M. Al Dabel, J. Wang,
H. Feng, K. Fang, and W. Wang, “Yolov8-rd: High-robust pine wilt
disease detection method based on residual fuzzy yolov8,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
2024.

L. Wang, J. Cai, T. Wang, J. Zhao, T. R. Gadekallu, and K. Fang,
“Pine wilt disease detection based on uav remote sensing with an
improved yolo model,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 2024.

J. Wang, Z. Zheng, Z. Chen, A. Ma, and Y. Zhong, “Earthvqa: To-
wards queryable earth via relational reasoning-based remote sensing
visual question answering,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, no. 6, 2024, pp. 5481-5489.

L. Wang, R. Li, C. Zhang, S. Fang, C. Duan, X. Meng, and P. M.
Atkinson, “Unetformer: A unet-like transformer for efficient semantic
segmentation of remote sensing urban scene imagery,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 190, pp. 196-214, 2022.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical image computing and
computer-assisted intervention—-MICCAI 2015: 18th international con-
ference, Munich, Germany, October 5-9, 2015, proceedings, part Il 18.
Springer, 2015, pp. 234-241.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 2881-2890.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801-818.

B. Cheng, 1. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmentation,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 1290-1299.

W. Shi, J. Xu, and P. Gao, “Ssformer: A lightweight transformer for
semantic segmentation,” in 2022 IEEE 24th international workshop on
multimedia signal processing (MMSP). 1EEE, 2022, pp. 1-5.

H. Sun, Y. Xie, D. Ren, F. Wen, L. Tong, and L. Chang, “MmIn: Multi-
directional and multi-constraint learning network for remote sensing
imagery semantic segmentation,” IEEE Journal of Selected Topics in

[44]

[45]

Applied Earth Observations and Remote Sensing, 2024.

J. Liang, Q. Zhang, and X. Gu, “Lightweight convolutional neural
network driven by small data for asphalt pavement crack segmentation,”
Automation in Construction, vol. 158, p. 105214, 2024.

Z. Guo, D. Cai, Z. Jin, T. Xu, and F. Yu, “Research on unmanned aerial
vehicle (uav) rice field weed sensing image segmentation method based
on cnn-transformer,” Computers and Electronics in Agriculture, vol. 229,
p. 109719, 2025.



	Introduction
	Related Work
	Semantic Segmentation Based on Transformer
	Dynamic Token Generation

	EMLSSA
	HCAttention
	Frequency Domain Multilayer Perceptron

	Experiments and Results
	Experimental setup
	Ablation Experiment
	Comparison with State-of-the-art Methods
	Qualitative Results

	Conclusion

