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Nrf2/HO-1 signaling mediate the protective effect of S-carboxymethylcysteine against
cyclophosphamide-induced cardiotoxicity

Authors and affiliations:

Reem S. Alruhaimi!, Emad H.M. Hassanein?, Sulaiman M. Alnasser®, Ahmad F. Ahmeda®,

Hanan S. Althagafy®, Amr M.T. Allam®, Hamada S. Qebesy®, Ayman M. Mahmoud’*

!Department of Biology, College of Science, Princess Nourah bint Abdulrahman University,
Riyadh 11671, Saudi Arabia.
2Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-
Assiut, Egypt.
3Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University,
Buraydah, 52571, Saudi Arabia.
*Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman,
United Arab Emirates.
°Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia.
®Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar
University, Assiut, Egypt.
"Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, UK.

*Corresponding author:

Ayman M. Mahmoud

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, UK.

E-mail: a.mahmoud@mmu.ac.uk

ORCID ID: 0000-0003-0279-6500



mailto:a.mahmoud@mmu.ac.uk

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

5l

52

53

94

Abstract:

Cyclophosphamide (CP) is a potent chemotherapeutic and immunosuppressant agent used in
the management of lymphoproliferative disorders and solid tumors. However, it induces
cardiotoxicity and other severe adverse effects, thereby limiting its clinical application,
highlighting the need for safe and effective cardioprotective agents. This study investigates the
cardioprotective potential of carbocysteine (S-carboxymethylcysteine (SCMC)), a mucolytic
agent with emerging pleiotropic properties, against CP-induced toxicity. The study explores
the effect of SCMC on oxidative stress, NF-kB/NLRP3 inflammasome axis and Nrf2/HO-1
signaling. Rats received SCMC for 7 days and a single CP dose on day 5. CP provoked severe
cardiac injury, evidenced by increased CK-MB, LDH, and troponin-1, alongside
histopathological alterations, including vascular congestion, cytoplasmic vacuolization,
hypertrophy, and nuclear pyknosis. SCMC significantly alleviated cardiac biomarkers and
mitigated tissue damage in CP-treated rats. CP increased MDA, decreased antioxidants,
increased cardiac NF-«xB, IL-1p, and gasdermin D, upregulated NLRP3, ASC1, and caspase-1,
and diminished Nrf2 and HO-1. SCMC reduced MDA, enhanced antioxidant defenses, and
downregulated NF-xB, NLRP3, ASC, caspase-1, gasdermin D, and IL-1p in CP-administered
rats. In addition, SCMC enhanced the expression of Nrf2 and activity of HO-1 in the heart of
CP-administered rats. In conclusion, these findings demonstrate that SCMC mitigates CP-
induced cardiotoxicity by targeting oxidative injury and inflammatory signaling. Its
cardioprotective mechanism includes mitigation of oxidative stress and NF-kB/NLRP3
inflammasome axis, and upregulation of Nrf2/HO-1 pathway. Given its established clinical
safety, SCMC may represent a translatable adjunctive therapy to protect against CP-induced
cardiotoxicity. However, further studies and clinical trials are warranted to confirm these

findings.

Keywords: Chemotherapy; Cardiotoxicity; Carbocysteine; Oxidative stress; Inflammation.
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1. Introduction

Drug-induced cardiotoxicity (DICT) poses a significant public health challenge, as it can lead
to severe cardiovascular manifestations, including arrhythmias and heart failure, often
necessitating long-term monitoring and intervention. DICT remains a critical challenge in
clinical oncology and can compromise the therapeutic efficacy of life-saving
chemotherapeutics [1]. Cardiovascular complications account for a substantial proportion of
postmarket drug withdrawals, with estimates suggesting that 10-14% of discontinued
medications are attributed to adverse cardiac effects [1]. In this context, cardiovascular safety
concerns have precipitated in the withdrawal of nearly 10% of pharmaceuticals over four
decades, including several widely prescribed agents [1-3]. Despite their potent antitumor
activity, chemotherapeutic agents frequently induce acute or chronic cardiovascular
dysfunction, necessitating dose modifications or therapy cessation, thereby jeopardizing
patient outcomes [4]. Consequently, DICT not only undermines treatment efficacy but also
significantly impacts long-term survival, even in patients with controlled malignancies [4]. The
alkylating agent cyclophosphamide (CP) is effective against lymphoproliferative disorders and
solid tumors [5-7]. The mechanism of action of CP involves DNA crosslinking, resulting in the
disruption of replication and transcription in rapidly proliferating cells [5, 6]. The severe effects
associated with the use of CP limit its clinical application. These severe effects include
hepatotoxicity, nephrotoxicity, hemorrhagic cystitis, and cardiotoxicity [8-10]. Although the
exact mechanisms underlying CP severe effects and toxicity are not fully understood, the role
of CP metabolites and reactive oxygen and nitrogen species (ROS and RNS) has been
suggested [10, 11].

Redox imbalance and inflammation have been reported in CP-induced cardiomyopathy [12-
14]. The CP metabolites phosphoramide mustard and acrolein, produced through hepatic

cytochrome P-450 metabolism, provoke ROS overproduction, depleting endogenous
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antioxidants and inducing lipid peroxidation (LPO), protein denaturation, and DNA damage
[15-18]. The metabolites and ROS mediate cardiac injury primarily through direct endothelial
damage and abnormal leakage of plasma proteins, red blood cells, and cytotoxic substances
[11]. Endothelial injury intensifies both myocardial and microvascular injuries, resulting in
characteristic histopathological features, such as interstitial hemorrhage, edema, and the
formation of microthrombi [11, 19]. Excess ROS and oxidative stress are associated with
inflammatory responses mediated via activation of several molecules, including nuclear factor-
kappaB (NF-«B) [20]. ROS-driven activation of NF-«B initiates a pro-inflammatory cascade,
upregulating cytokines and facilitating NLRP3 inflammasome assembly, which exacerbates
tissue damage via interleukin-1p (IL-1p) [21], a cytokine promoting a pro-inflammatory state
in endothelial cells and facilitate the migration of leukocytes into damaged tissues [22].
Sustained inflammasome activation perpetuates endothelial dysfunction, leukocyte infiltration,
and microvascular injury, culminating in myocardial hemorrhage, edema, and fibrosis [23, 24].
Given the central role of oxidative and inflammatory pathways in CP-induced cardiotoxicity,
therapeutic strategies targeting these mechanisms hold significant promise.

Carbocysteine (S-carboxymethylcysteine (SCMC)), a mucoactive agent clinically employed in
chronic respiratory diseases, has recently emerged as a modulator of oxidative and
inflammatory pathways, independent of its mucolytic properties [25, 26]. In addition to its
well-established mucolytic activityy, SCMC has demonstrated anti-inflammatory and
antioxidant properties [25]. Experimental evidence indicates that SCMC effectively suppresses
hydrogen peroxide (H:0:)-mediated oxidative stress in tracheal epithelial cells, thereby
inhibiting apoptotic cell death [27]. Furthermore, preclinical studies in cigarette smoke-
exposed rats revealed that SCMC preserves pulmonary and systemic antioxidant defenses,
exerting significant cytoprotective effects [28]. Given these mechanisms, SCMC may offer

therapeutic potential in mitigating CP-induced myocardial oxidative damage and associated
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tissue damage. However, the protective efficacy of SCMC against CP-mediated myocardial
injury remains unexplored in existing literature. This study investigates the efficacy
of SCMC in attenuating CP-induced cardiotoxicity, with a focus on its modulation of oxidative
stress, NF-kB/NLRP3 inflammasome axis, and the nuclear factor erythroid 2-related factor 2
(Nrf2). Nrf2 regulates gens of antioxidant defenses, such as heme oxygenase-1 (HO-1), which
counteracts oxidative damage and inflammation [29]. By elucidating these mechanisms, we
aim to establish SCMC as a viable adjunctive therapy to mitigate CP-associated cardiovascular
complications.

2. Materials and Methods

2.1. Animal experiments and treatment protocol

Twenty-four adult male Wistar rats (190 £ 10 g) were housed under controlled environment of
temperature and humidity and 12-h light/dark cycle with unrestricted access to food and water.
All animal experiments comply with the National Institutes of Health guide for the care and
use of Laboratory animals (NIH Publications No. 8523, revised 1996). The study was approved
by the ethics committee of Al-Azhar University (AZ-AS/PH-REC/05/25). Following
acclimatization, animals were divided into four experimental groups (n = 6): Group I (Control)
received 0.5% carboxymethyl cellulose (CMC); Group 11 (SCMC) received 250 mg/kg SCMC
(Amriya Pharmaceutical Industries, Egypt); Group Il (CP) received 100 mg/kg CP
(Endoxan®, Baxter) [30]; Group IV (SCMC + CP) received SCMC (250 mg/kg/day orally)
[28] and CP (100 mg/kg i.p.). SCMC and CMC were administered orally for 7 consecutive
days and CP was administered via intraperitoneal (i.p.) injection on day 5. A single i.p.
injection of physiological saline was given to rats of Groups I and 11 on day 5.

On day 8, blood samples were collected under deep ketamine/xylazine anesthesia for serum
separation. Rats were subsequently euthanized by cervical dislocation, and cardiac tissues were

rapidly excised. For histopathological analysis sections of the left ventricle were fixed in 10%



130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

neutral buffered formalin (NBF) for 48 h. The remaining myocardial tissue was homogenized
in ice-cold Tris-HCI buffer (50 mM, pH 7.4) using a Polytron homogenizer, with aliquots stored
at -80°C.

2.2. Biochemical analyses

Serum creatine kinase (CK)-MB and lactate dehydrogenase (LDH) were determined using
Spinreact kits (Spain; Cat. no. 41220 and 1001054, respectively) according to manufacturer’s
protocols. Cardiac malondialdehyde (MDA), reduced glutathione (GSH), superoxide
dismutase (SOD) and catalase were assayed using Biodiagnostic kits (Egypt; Cat. no.:
MD2528, TA2511, SD2521, and CA2517, respectively). Cardiac troponin I (cTnl), IL-1p, and
NF-xB p65 were determined using specific ELISA kits (Elabscience, China; Cat. no. E-EL-
R1253, E-EL-R0012, and E-EL-R0674, respectively), while HO-1 activity was determined via
NADPH-dependent biliverdin reduction as previously described [31].

2.3. Histopathological and immunohistochemical (IHC) evaluation

Formalin-fixed heart samples were processed through graded ethanol series, embedded in
paraffin, and sectioned at 5 um thickness. Sections were stained with hematoxylin & eosin
(H&E) for general histoarchitecture, Sirius red, Prussian blue, and PAS. The histopathological
lesions were graded on a four point score from 0 to 4 according to the presence of congested
blood vessels, myocyte hypertrophy, degenerative changes, and inflammatory cell infiltration
(0 = normal, 1 = mild lesion, 2 = moderate lesions; 3 = severe focal lesions; and 4 = severe
diffuse lesions). The diameter of cardiomyocytes and their nuclei was measured using ImageJ
(NIH). For IHC, antigen retrieval was performed using citrate buffer (50 mM, pH 6.8) followed
by blocking of endogenous peroxidase with 0.3% H:0O.. Primary antibodies for NLRP3, Nrf2,
caspase-1, ASC, and gasdermin D (GSDMD) (Biospes, China; Cat. no. YPA1480, YPA1865,
YPA2348, YPA1695, YPA2511, and respectively) were applied overnight at 4°C and the

sections were washed. HRP-conjugated secondary antibodies (Biospes, China) were applied,
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and DAB was employed for color development. Following counterstaining with Mayer’s
hematoxylin, images were captured, and image analysis was conducted using ImageJ software
(NIH) with six random fields quantified per sample.

2.4. Statistical Analysis

All data are presented as mean + standard deviation (SD). Data normality was assessed using
the Shapiro-Wilk test. Intergroup comparisons were performed using one-way ANOVA
followed by Tukey's post hoc test (GraphPad Prism v8.0). Statistical significance was set at p
< 0.05 for all analyses.

3. Results

3.1. SCMC mitigates myocardial injury in CP-administered rats

The cardioprotective effect of SCMC was evaluated through serum biomarkers and
histopathological examination. CP induced a significant elevation in serum cTnl (Fig. 1A),
CK-MB (Fig. 1B), and LDH (Fig. 1C) compared to the control group (P<0.001), indicating
severe cardiac damage. SCMC remarkably ameliorated these alterations, restoring cardiac
injury markers toward normal values (P<0.001).

Histopathological examination of H&E-stained sections revealed preserved myocardial
architecture in control (Fig. 2A-B) and SCMC-only (Fig. 2C-D) groups, showing regular
cardiomyocyte arrangement with intact nuclei and normal vascularity. In contrast, CP-treated
rats (Fig. 2E-H) exhibited myocardial damage, including vascular congestion, cytoplasmic
vacuolization, hypertrophy, enlarged nuclei, elongated nuclei, and nuclear pyknosis. SCMC
markedly improved cardiac histoarchitecture, with near-normal myofibrillar organization and
reduced vascular abnormalities, but some myocytes showed hypertrophy (Fig. 2I-J).
Histopathological damage scoring and histomorphometry revealed significant tissue damage

(Fig. 3A), and increased diameter of myocytes (Fig. 3B) and their nuclei (Fig. 3C) in CP-
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administered rats. SCMC significantly prevented tissue damage and myocardial hypertrophy
(Fig. 3A-C).

Additional staining with Sirius red, PAS, and Prussian blue demonstrated minimal collagen
deposition, normal mucopolysaccharide (MPS) distribution, and absence of iron accumulation
in control and SCMC groups (Fig. 4). CP intoxication caused pronounced interstitial fibrosis,
increased MPS, and focal iron deposition. SCMC pretreatment significantly attenuated these
pathological changes, reducing fibrosis, restoring MPS content, and preventing iron overload
(Fig. 4).

3.2. SCMC attenuates CP-induced cardiac oxidative stress

CP intoxication resulted in significant oxidative damage, evidenced by elevated MDA levels
(P<0.001; Fig. 5A) and depleted antioxidant defenses (GSH, SOD, catalase; P<0.001) (Fig.
5B-D). SCMC effectively reduced LPO while enhancing cellular antioxidants (P<0.001).

3.3. SCMC downregulates NF-kB/NLRP3 Inflammasome axis activation in CP-administered
rats

CP triggered significant upregulation of NF-xB p65, NLRP3, ASC1, caspase-1 (Fig. 6A- E),
GSDMD (Fig. 7A,B), and IL-1B (Fig. 7C) (P<0.001) in the heart of rats. SCMC effectively
inhibited this response as indicated by suppressed NF-«B p65, NLRP3, ASC1, caspase-1,
GSDMD, and IL-1p in CP-induced rats.

3.4. SCMC upregulates myocardial Nrf2/HO-1 pathway in CP-administered rats

CP intoxication suppressed Nrf2 (P<0.001; Fig. 8A-B) and HO-1 activity (P<0.001; Fig. 8C).
SCMC increased Nrf2 expression and HO-1 activity in the myocardium of CP-administered
rats (P<0.001).

4. Discussion

The clinical utility of the alkylating chemotherapeutic agent CP remains significantly

constrained by its dose-dependent cardiotoxicity, which manifests as acute myocardial injury,
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chronic cardiomyopathy, and potentially fatal outcomes in severe cases [11, 19]. Accumulating
evidence implicates oxidative stress and inflammatory cascades as central mediators of CP
cardiotoxicity [11, 19]. The present study investigated the potential of SCMC to mitigate CP-
induced cardiotoxicity, with particular emphasis on its modulatory role on redox balance, NF-
kB/NLRP3 inflammasome axis, and Nrf2/HO-1 pathway. Our results indicate that SCMC
confers substantial protection against CP-induced myocardial injury via multimodal
mechanisms encompassing antioxidant and anti-inflammatory properties.

The cardiotoxic manifestations of CP were unequivocally established in our model through the
remarkable increase in serum cardiac injury biomarkers and characteristic histopathological
alterations. The elevated biochemical markers, CK-MB, LDH, and cTnl, indicate membrane
integrity loss and tissue damage, consistent with previous clinical observations linking CP
administration with acute cardiac events [32]. Histopathological evaluation revealed profound
structural disruptions, including hypertrophied muscle, vascular congestion, vacuolated
cytoplasm, and nuclear pyknosis, findings that correlate with the biochemical data. In addition
to H&E staining, Sirius red revealed an increase in collagen, indicative of fibrosis, while PAS
revealed elevated MPS. Our study provides novel insights into the metabolic perturbations
associated with CP cardiotoxicity, demonstrating the concurrent accumulation of MPS and iron
deposits in cardiac tissue. The observed MPS deposition bears particular pathophysiological
relevance, as excessive glycosaminoglycan accumulation in mucopolysaccharidoses is well-
established to cause progressive valvulopathy and cardiomyopathy [33]. Similarly, the detected
iron overload aligns with emerging evidence implicating ferroptosis, an iron-dependent form
of regulated cell death, in chemotherapy-induced cardiotoxicity [34]. This phenomenon has
been extensively characterized in anthracycline cardiotoxicity [35], and our findings suggest a
parallel mechanism may contribute to CP-induced myocardial injury, supported by prior

reports of CP-induced hepatic and splenic iron accumulation [36]. The present findings reveal
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that CP can trigger both metabolic and structural changes in cardiac tissue and provide novel
insights into the implication of MPS and iron accumulation in CP-induced cardiotoxicity.
SCMC treatment effectively mitigated these changes, demonstrating significant reductions in
serum CK-MB, LDH, and cTnl, and attenuation of histopathological alterations, collagen
deposition, MPS accumulation, and iron overload, effects that collectively underscore its
multimodal cardioprotective activity.

Considering the roles of oxidative stress and inflammation in CP-induced cardiotoxicity [19],
the cardioprotective effects of SCMC may be attributed to its capacity to mitigate these
detrimental pathways. CP intoxication provoked severe oxidative stress, as evidenced by
marked LPO and depletion of endogenous antioxidants (GSH, SOD, and catalase). These
observations align with the established paradigm of acrolein-mediated toxicity, wherein this
reactive CP metabolite depletes cellular thiol reserves and generates cytotoxic ROS through
multiple pathways [16]. The reduction in GSH, a key modulator of intracellular redox
equilibrium, impairs cellular antioxidant capacity, and the simultaneous decrease in the activity
of antioxidant enzymes exacerbate ROS accumulation and increase vulnerability to oxidative
damage [37, 38]. Excessive ROS generation induced by CP triggers cellular injury via different
mechanisms, such as LPO, oxidative modifications of proteins and DNA, and depletion of
antioxidants. LPO compromises membrane stability by altering permeability and impairing
membrane proteins, ultimately leading to impaired membrane function [39]. Furthermore,
ROS-mediated post-translational alterations of structural proteins and oxidative inactivation of
essential enzymes disrupt metabolic equilibrium, exacerbating oxidative injury [39]. The
consequent redox imbalance initiates a vicious cycle of oxidative damage, compromising
membrane integrity through LPO, inducing deleterious protein modifications, and causing

oxidative DNA lesions [39].
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Beyond direct macromolecular damage, ROS serve as critical second messengers in pro-
inflammatory signaling, particularly through activation of the redox-sensitive transcription
factor NF-«xB [20, 40]. Our data demonstrate that CP-induced oxidative stress triggers NF-xB
activation, which in turn orchestrates upregulation of the NLRP3 inflammasome complex, a
finding consistent with recent reports linking this pathway to chemotherapy-induced
cardiotoxicity [23] and cardiovascular diseases [24]. The NLRP3 inflammasome, upon
assembly, facilitates caspase-1-mediated maturation of IL-1 and IL-18 while cleaving
GSDMD to execute pyroptotic cell death [21]. The structural basis of inflammasome activation
involves critical interactions between the PYD domains of NLRP3 and ASC, which serve as
molecular scaffolds for caspase-1 recruitment [41, 42]. This inflammatory cascade assumes
particular significance in myocardial injury, as IL-1p promotes leukocyte recruitment,
enhances vascular permeability, and stimulates cardiac fibrosis, processes that collectively
exacerbate tissue damage [43]. Pro-inflammatory mediators, in conjunction with ROS, disrupt
mitochondrial function, increase membrane permeability and facilitate the translocation of
cytochrome c into the cytosol, which in turn triggers caspase-3 activation, executing the
apoptotic cascade [44]. Additionally, GSDMD serves as a key effector of pyroptosis, a lytic
form of programmed cell death. Upon activation, GSDMD oligomerizes to generate plasma
membrane pores, promoting osmotic destabilization, cellular rupture, and the extracellular
release of pro-inflammatory cytokines [21].

SCMC effectively suppressed LPO while concurrently restoring GSH, SOD, and catalase,
underscoring its potent antioxidant capabilities. Through the inhibition of LPO and the
reinforcement of antioxidant system, SCMC effectively counteracts oxidative stress, thereby
protecting cells from subsequent injury. Furthermore, SCMC downregulated NF-xB, NLRP3,
ASC1, Caspase-1, leading to a marked decrease in IL-1p and GSDMD. The antioxidant and

suppression of the NF-kB/NLRP3 inflammasome axis are likely mediated via the efficacy of
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SCMC to inhibit ROS generation. Histopathological assessments further corroborated these
findings, revealing diminished fibrotic alterations and iron deposition, thereby reinforcing the
anti-inflammatory properties of SCMC. By suppressing redox imbalance and NF-«B/NLRP3
inflammasome axis, SCMC attenuates myocardial inflammation and prevents tissue damage.
The dual antioxidant and anti-inflammatory benefits of SCMC observed in this investigation
align with and expand upon prior research. For instance, in oxaliplatin-treated L02 hepatocytes,
SCMC effectively diminished ROS accumulation and mitigated apoptosis [45]. Similarly, in
H20:-exposed tracheal epithelial cells, SCMC alleviated oxidative stress and conferred
substantial protection against apoptotic cell death [27]. In a rodent model of cigarette smoke
exposure, SCMC preserved pulmonary and systemic antioxidant defenses, demonstrating
strong cytoprotective effects against smoke-induced injury [27]. Additionally, SCMC
displayed potent free radical-neutralizing properties, efficiently normalizing ROS levels and
preventing the excessive depletion of GSH following exposure to hydroxyl radicals
[46]. Collectively, these findings highlight the therapeutic promise of SCMC in mitigating
oxidative stress and cell injury in the myocardium. Our study introduces novel evidence
supporting the cardioprotective role of SCMC, demonstrating its efficacy in preventing CP-
induced cardiotoxicity. The cardioprotective effect of SCMC involved upregulation of the
Nrf2/HO-1 signaling. SCMC upregulated Nrf2 expression and HO-1 activity, effects associated
with attenuation of the CP-induced myocardial oxidative stress and inflammation. Nrf2 is a
master regulator of cellular stress responses. Nrf2 orchestrates the transcription of over 200
cytoprotective genes, including those encoding phase Il detoxification enzymes and
antioxidant proteins [29]. HO-1, a downstream effector of Nrf2, plays a critical role in
counteracting oxidative stress and inflammation [29]. The observed upregulation of HO-1 -
which catalyzes heme degradation into biliverdin and carbon monoxide (CO) likely contributed

to the cardioprotective effects of SCMC. Biliverdin is subsequently converted to bilirubin, a
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potent endogenous antioxidant, and CO exerts anti-inflammatory and vasodilatory effects [47].
This coordinated induction of endogenous defense systems distinguishes SCMC from
conventional antioxidants and may underlie its superior efficacy in mitigating CP-induced
cardiotoxicity. Although this study provides compelling evidence of the cardioprotective
potential of SCMC, further mechanistic investigations, such as pathway-specific inhibition or
gene knockdown, are warranted to establish causal relationships. The study focused on a single

dose of SCMC and therefore dose-response relationships remain unexplored.

5. Conclusion

This study provides compelling evidence that SCMC mitigates CP-induced cardiotoxicity by
attenuating  oxidative  stress,  suppressing NF-xB/NLRP3 inflammasome axis
activation, and potentiating Nrf2/HO-1 cytoprotective signaling. The cardioprotective efficacy
of SCMC was demonstrated by its ability to alleviate serum cardiac biomarkers, preserve
myocardial architecture, and mitigate histopathological alterations, including fibrosis and iron
deposition. These findings were further corroborated by the capacity of SCMC to restore redox
balance, inhibit pro-inflammatory signaling, and enhance endogenous antioxidant defenses.
The translational implications of these findings are substantial. Given the established safety
profile of SCMC in clinical use for respiratory conditions, it represents a promising candidate
for repurposing as an adjunctive therapy in CP-based chemotherapy regimens. Future
directions should focus on validating the findings of this study in clinical trials, particularly in
oncology patients receiving CP. Additional preclinical studies could explore dose-response
relationships, long-term cardioprotective outcomes, and potential synergies with other
cardioprotective agents.
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460
461  Fig. 1. SCMC alleviated serum cTnl (A), CK-MB (B), and LDH (C) in CP-administered rats.

462  Data are mean *+ SD, (n=6). "P<0.05, “P<0.01 and ““P<0.001 versus Control. **P<0.001
463  versus CP.
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CP CP SCMC Control

SCMC +CP

H&E-stained sections from the control (A-B) and SCMC-supplemented rats (C-D) showing
normal intact thin elongated branched cardiac muscle fibers with oval central nuclei (M and
arrows); (E-H) CP-treated rats showing congested and dilated myocardial blood vessels (C).
Furthermore, the cardiac muscle fibers displayed vacuolation (arrows), hyalinization (H),
myocyte hypertrophy, enlarged nuclei (white arrowheads), and elongated nuclei (black
arrowheads); and CP-administered rats treated with SCMC showing notable improvements in
blood vessels and cardiac muscle fibers (M and blue arrows) , but some myocytes showed
hypertrophy (arrowhead).
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474
475 Fig. 3. SCMC mitigated CP-induced tissue injury (A) and alleviated the diameter of

476  cardiomyocytes (B) and their nuclei (C). Data are mean + SD, (n=6). “"P<0.01 and ""P<0.001
477  versus Control. #P<0.05 and #*#P<0.001 versus CP.

Sirius red Prussian blue
SN Lo P e (27 7]y 1)
N " \ = %\\ %
- NS X \’\

SCMC +CP

478 SR = % 2 v c p 7l s e > = = >
479  Fig. 4. Photomicrographs of heart sections stained with Sirius red, Prussian blue, and PAS.
480  Sirius red staining shows a little amount of collagen fibers (arrows) in control and SCMC-

481  treated rats, increased collagen fibers (arrows) in CP-administered rats and normal collagen
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490

491
492

fiber (arrows) content in CP-administered rats treated with SCMC. Control and SCMC-
administered rats show negative Prussian blue staining affinity, CP-administered rats show
hemosiderin deposits (arrows), and CP-administered rats treated with SCMC show no deposits.
Control and SCMC-treated rats show normal PAS stain intensity and distribution (arrows),
whereas CP-administered rats show increased and uneven distribution of PAS with some
muscle fibers displaying a highly intense reaction to the stain (arrows). SCMC alleviated PAS
staining in CP-administered rats and the sections appear normal.
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Fig. 5. SCMC attenuated CP-induced oxidative stress. SCMC decreased MDA (A), and
increased GSH (B), SOD (C), and catalase (D) in the heart of CP-administered rats. Data are

*kKk

mean * SD, (n=6). "P<0.05 and ~P<0.001 versus Control. **P<0.001 versus CP.
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Fig. 6. SCMC suppressed NF-«B/NLRP3 inflammasome axis in CP-treated rats. SCMC
decreased NF-xB p65 (A), NLRP3 (B-C), ASC1 (B,D), and caspase-1 (B,E) in CP-
administered rats. Data are mean + SD, (n=6). “"P<0.01 and "“P<0.001 versus Control.
##p<0.001 versus CP.
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498
499  Fig. 7. SCMC decreased GSDMD (A,B), and IL-1 (C) in CP-administered rats. Data are mean
500 =+ SD, (n=6). ""P<0.001 versus Control and *#P<0.001 versus CP.
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501
502  Fig. 8. SCMC increased Nrf2 expression (A-B) and HO-1 activity (C) in CP-administered rats.

503  Data are mean + SD, (n=6). ""P<0.001 versus Control and ##P<0.001 versus CP.
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