Please cite the Published Version

Alruhaimi, RS, Hassanein, EHM, Alnasser, SM, Ahmeda, AF, Althagafy, HS, Allam, AMT, Qebesy, HS and Mahmoud, Ayman M (1) (2025) Attenuation of NF-B/NLRP3 inflammasome axis and oxidative stress, and upregulation of Nrf2/HO-1 signaling mediate the protective effect of S-carboxymethylcysteine against cyclophosphamide-induced cardiotoxicity. Tissue and Cell, 97. 103092 ISSN 0040-8166

DOI: https://doi.org/10.1016/j.tice.2025.103092

Publisher: Elsevier

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/641728/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an author accepted manuscript of an article published in Tissue and Cell, by Elsevier. This version is deposited with a Creative Commons Attribution 4.0 licence [https://creativecommons.org/licenses/by/4.0/], in accordance with Man Met's Research Publications Policy. The version of record can be found on the publisher's website.

Data Access Statement: The manuscript contains all data supporting the reported results.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

- 1 Title:
- 2 Attenuation of NF-κB/NLRP3 inflammasome axis and oxidative stress, and upregulation of
- 3 Nrf2/HO-1 signaling mediate the protective effect of S-carboxymethylcysteine against
- 4 cyclophosphamide-induced cardiotoxicity
- 5 Authors and affiliations:
- 6 Reem S. Alruhaimi¹, Emad H.M. Hassanein², Sulaiman M. Alnasser³, Ahmad F. Ahmeda⁴,
- Hanan S. Althagafy⁵, Amr M.T. Allam⁶, Hamada S. Qebesy⁶, Ayman M. Mahmoud⁷*
- 8 ¹Department of Biology, College of Science, Princess Nourah bint Abdulrahman University,
- 9 Riyadh 11671, Saudi Arabia.
- 10 ²Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-
- 11 Assiut, Egypt.
- ³Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University,
- 13 Buraydah, 52571, Saudi Arabia.
- ⁴Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman,
- 15 United Arab Emirates.
- ⁵Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia.
- 17 ⁶Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar
- 18 University, Assiut, Egypt.
- ⁷Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan
- 20 University, Manchester M1 5GD, UK.
- 22 *Corresponding author:

- 23 **Ayman M. Mahmoud**
- 24 Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan
- 25 University, Manchester M1 5GD, UK.
- 26 E-mail: a.mahmoud@mmu.ac.uk
- 27 ORCID ID: 0000-0003-0279-6500

Abstract:

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Cyclophosphamide (CP) is a potent chemotherapeutic and immunosuppressant agent used in the management of lymphoproliferative disorders and solid tumors. However, it induces cardiotoxicity and other severe adverse effects, thereby limiting its clinical application, highlighting the need for safe and effective cardioprotective agents. This study investigates the cardioprotective potential of carbocysteine (S-carboxymethylcysteine (SCMC)), a mucolytic agent with emerging pleiotropic properties, against CP-induced toxicity. The study explores the effect of SCMC on oxidative stress, NF-κB/NLRP3 inflammasome axis and Nrf2/HO-1 signaling. Rats received SCMC for 7 days and a single CP dose on day 5. CP provoked severe evidenced by increased CK-MB, LDH, and troponin-I, alongside injury, histopathological alterations, including vascular congestion, cytoplasmic vacuolization, hypertrophy, and nuclear pyknosis. SCMC significantly alleviated cardiac biomarkers and mitigated tissue damage in CP-treated rats. CP increased MDA, decreased antioxidants, increased cardiac NF-κB, IL-1β, and gasdermin D, upregulated NLRP3, ASC1, and caspase-1, and diminished Nrf2 and HO-1. SCMC reduced MDA, enhanced antioxidant defenses, and downregulated NF-κB, NLRP3, ASC, caspase-1, gasdermin D, and IL-1β in CP-administered rats. In addition, SCMC enhanced the expression of Nrf2 and activity of HO-1 in the heart of CP-administered rats. In conclusion, these findings demonstrate that SCMC mitigates CPinduced cardiotoxicity by targeting oxidative injury and inflammatory signaling. Its cardioprotective mechanism includes mitigation of oxidative stress and NF-κB/NLRP3 inflammasome axis, and upregulation of Nrf2/HO-1 pathway. Given its established clinical safety, SCMC may represent a translatable adjunctive therapy to protect against CP-induced cardiotoxicity. However, further studies and clinical trials are warranted to confirm these findings.

Keywords: Chemotherapy; Cardiotoxicity; Carbocysteine; Oxidative stress; Inflammation.

1. Introduction

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Drug-induced cardiotoxicity (DICT) poses a significant public health challenge, as it can lead to severe cardiovascular manifestations, including arrhythmias and heart failure, often necessitating long-term monitoring and intervention. DICT remains a critical challenge in clinical oncology and can compromise the therapeutic efficacy of life-saving chemotherapeutics [1]. Cardiovascular complications account for a substantial proportion of postmarket drug withdrawals, with estimates suggesting that 10-14% of discontinued medications are attributed to adverse cardiac effects [1]. In this context, cardiovascular safety concerns have precipitated in the withdrawal of nearly 10% of pharmaceuticals over four decades, including several widely prescribed agents [1-3]. Despite their potent antitumor activity, chemotherapeutic agents frequently induce acute or chronic cardiovascular dysfunction, necessitating dose modifications or therapy cessation, thereby jeopardizing patient outcomes [4]. Consequently, DICT not only undermines treatment efficacy but also significantly impacts long-term survival, even in patients with controlled malignancies [4]. The alkylating agent cyclophosphamide (CP) is effective against lymphoproliferative disorders and solid tumors [5-7]. The mechanism of action of CP involves DNA crosslinking, resulting in the disruption of replication and transcription in rapidly proliferating cells [5, 6]. The severe effects associated with the use of CP limit its clinical application. These severe effects include hepatotoxicity, nephrotoxicity, hemorrhagic cystitis, and cardiotoxicity [8-10]. Although the exact mechanisms underlying CP severe effects and toxicity are not fully understood, the role of CP metabolites and reactive oxygen and nitrogen species (ROS and RNS) has been suggested [10, 11]. Redox imbalance and inflammation have been reported in CP-induced cardiomyopathy [12-14]. The CP metabolites phosphoramide mustard and acrolein, produced through hepatic cytochrome P-450 metabolism, provoke ROS overproduction, depleting endogenous antioxidants and inducing lipid peroxidation (LPO), protein denaturation, and DNA damage [15-18]. The metabolites and ROS mediate cardiac injury primarily through direct endothelial damage and abnormal leakage of plasma proteins, red blood cells, and cytotoxic substances [11]. Endothelial injury intensifies both myocardial and microvascular injuries, resulting in characteristic histopathological features, such as interstitial hemorrhage, edema, and the formation of microthrombi [11, 19]. Excess ROS and oxidative stress are associated with inflammatory responses mediated via activation of several molecules, including nuclear factorkappaB (NF-κB) [20]. ROS-driven activation of NF-κB initiates a pro-inflammatory cascade, upregulating cytokines and facilitating NLRP3 inflammasome assembly, which exacerbates tissue damage via interleukin-1\beta (IL-1\beta) [21], a cytokine promoting a pro-inflammatory state in endothelial cells and facilitate the migration of leukocytes into damaged tissues [22]. Sustained inflammasome activation perpetuates endothelial dysfunction, leukocyte infiltration, and microvascular injury, culminating in myocardial hemorrhage, edema, and fibrosis [23, 24]. Given the central role of oxidative and inflammatory pathways in CP-induced cardiotoxicity, therapeutic strategies targeting these mechanisms hold significant promise. Carbocysteine (S-carboxymethylcysteine (SCMC)), a mucoactive agent clinically employed in chronic respiratory diseases, has recently emerged as a modulator of oxidative and inflammatory pathways, independent of its mucolytic properties [25, 26]. In addition to its well-established mucolytic activity, SCMC has demonstrated anti-inflammatory and antioxidant properties [25]. Experimental evidence indicates that SCMC effectively suppresses hydrogen peroxide (H₂O₂)-mediated oxidative stress in tracheal epithelial cells, thereby inhibiting apoptotic cell death [27]. Furthermore, preclinical studies in cigarette smokeexposed rats revealed that SCMC preserves pulmonary and systemic antioxidant defenses, exerting significant cytoprotective effects [28]. Given these mechanisms, SCMC may offer therapeutic potential in mitigating CP-induced myocardial oxidative damage and associated

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

tissue damage. However, the protective efficacy of SCMC against CP-mediated myocardial injury remains unexplored in existing literature. This study investigates the efficacy of SCMC in attenuating CP-induced cardiotoxicity, with a focus on its modulation of oxidative stress, NF-κB/NLRP3 inflammasome axis, and the nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 regulates gens of antioxidant defenses, such as heme oxygenase-1 (HO-1), which counteracts oxidative damage and inflammation [29]. By elucidating these mechanisms, we aim to establish SCMC as a viable adjunctive therapy to mitigate CP-associated cardiovascular complications.

2. Materials and Methods

- 2.1. Animal experiments and treatment protocol
- Twenty-four adult male Wistar rats (190 ± 10 g) were housed under controlled environment of temperature and humidity and 12-h light/dark cycle with unrestricted access to food and water. All animal experiments comply with the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8523, revised 1996). The study was approved by the ethics committee of Al-Azhar University (AZ-AS/PH-REC/05/25). Following acclimatization, animals were divided into four experimental groups (n = 6): Group I (Control) received 0.5% carboxymethyl cellulose (CMC); Group II (SCMC) received 250 mg/kg SCMC (Amriya Pharmaceutical Industries, Egypt); Group III (CP) received 100 mg/kg CP (Endoxan®, Baxter) [30]; Group IV (SCMC + CP) received SCMC (250 mg/kg/day orally) [28] and CP (100 mg/kg i.p.). SCMC and CMC were administered orally for 7 consecutive days and CP was administered via intraperitoneal (i.p.) injection on day 5. A single i.p. injection of physiological saline was given to rats of Groups I and II on day 5.

 On day 8, blood samples were collected under deep ketamine/xylazine anesthesia for serum separation. Rats were subsequently euthanized by cervical dislocation, and cardiac tissues were rapidly excised. For histopathological analysis sections of the left ventricle were fixed in 10%

- neutral buffered formalin (NBF) for 48 h. The remaining myocardial tissue was homogenized
- in ice-cold Tris-HCl buffer (50 mM, pH 7.4) using a Polytron homogenizer, with aliquots stored
- 132 at -80°C.
- 133 2.2. Biochemical analyses
- Serum creatine kinase (CK)-MB and lactate dehydrogenase (LDH) were determined using
- Spinreact kits (Spain; Cat. no. 41220 and 1001054, respectively) according to manufacturer's
- protocols. Cardiac malondialdehyde (MDA), reduced glutathione (GSH), superoxide
- dismutase (SOD) and catalase were assayed using Biodiagnostic kits (Egypt; Cat. no.:
- MD2528, TA2511, SD2521, and CA2517, respectively). Cardiac troponin I (cTnI), IL-1β, and
- NF-κB p65 were determined using specific ELISA kits (Elabscience, China; Cat. no. E-EL-
- 140 R1253, E-EL-R0012, and E-EL-R0674, respectively), while HO-1 activity was determined via
- NADPH-dependent biliverdin reduction as previously described [31].
- 142 2.3. Histopathological and immunohistochemical (IHC) evaluation
- 143 Formalin-fixed heart samples were processed through graded ethanol series, embedded in
- paraffin, and sectioned at 5 µm thickness. Sections were stained with hematoxylin & eosin
- 145 (H&E) for general histoarchitecture, Sirius red, Prussian blue, and PAS. The histopathological
- lesions were graded on a four point score from 0 to 4 according to the presence of congested
- blood vessels, myocyte hypertrophy, degenerative changes, and inflammatory cell infiltration
- 148 (0 = normal, 1 = mild lesion, 2 = moderate lesions; 3 = severe focal lesions; and 4 = severe
- diffuse lesions). The diameter of cardiomyocytes and their nuclei was measured using ImageJ
- (NIH). For IHC, antigen retrieval was performed using citrate buffer (50 mM, pH 6.8) followed
- by blocking of endogenous peroxidase with 0.3% H₂O₂. Primary antibodies for NLRP3, Nrf2,
- caspase-1, ASC, and gasdermin D (GSDMD) (Biospes, China; Cat. no. YPA1480, YPA1865,
- 153 YPA2348, YPA1695, YPA2511, and respectively) were applied overnight at 4°C and the
- sections were washed. HRP-conjugated secondary antibodies (Biospes, China) were applied,

- and DAB was employed for color development. Following counterstaining with Mayer's
- hematoxylin, images were captured, and image analysis was conducted using ImageJ software
- 157 (NIH) with six random fields quantified per sample.
- 158 2.4. Statistical Analysis
- All data are presented as mean \pm standard deviation (SD). Data normality was assessed using
- 160 the Shapiro-Wilk test. Intergroup comparisons were performed using one-way ANOVA
- followed by Tukey's post hoc test (GraphPad Prism v8.0). Statistical significance was set at p
- 162 < 0.05 for all analyses.
- 163 **3. Results**
- 3.1. SCMC mitigates myocardial injury in CP-administered rats
- 165 The cardioprotective effect of SCMC was evaluated through serum biomarkers and
- histopathological examination. CP induced a significant elevation in serum cTnI (Fig. 1A),
- 167 CK-MB (Fig. 1B), and LDH (Fig. 1C) compared to the control group (P<0.001), indicating
- severe cardiac damage. SCMC remarkably ameliorated these alterations, restoring cardiac
- injury markers toward normal values (P<0.001).
- 170 Histopathological examination of H&E-stained sections revealed preserved myocardial
- architecture in control (Fig. 2A-B) and SCMC-only (Fig. 2C-D) groups, showing regular
- 172 cardiomyocyte arrangement with intact nuclei and normal vascularity. In contrast, CP-treated
- 173 rats (Fig. 2E-H) exhibited myocardial damage, including vascular congestion, cytoplasmic
- vacuolization, hypertrophy, enlarged nuclei, elongated nuclei, and nuclear pyknosis. SCMC
- markedly improved cardiac histoarchitecture, with near-normal myofibrillar organization and
- 176 reduced vascular abnormalities, but some myocytes showed hypertrophy (Fig. 2I-J).
- 177 Histopathological damage scoring and histomorphometry revealed significant tissue damage
- 178 (Fig. 3A), and increased diameter of myocytes (Fig. 3B) and their nuclei (Fig. 3C) in CP-

- administered rats. SCMC significantly prevented tissue damage and myocardial hypertrophy
- 180 (Fig. 3A-C).
- Additional staining with Sirius red, PAS, and Prussian blue demonstrated minimal collagen
- deposition, normal mucopolysaccharide (MPS) distribution, and absence of iron accumulation
- in control and SCMC groups (Fig. 4). CP intoxication caused pronounced interstitial fibrosis,
- increased MPS, and focal iron deposition. SCMC pretreatment significantly attenuated these
- pathological changes, reducing fibrosis, restoring MPS content, and preventing iron overload
- 186 (Fig. 4).
- 187 3.2. SCMC attenuates CP-induced cardiac oxidative stress
- 188 CP intoxication resulted in significant oxidative damage, evidenced by elevated MDA levels
- 189 (P<0.001; Fig. 5A) and depleted antioxidant defenses (GSH, SOD, catalase; P<0.001) (Fig.
- 190 5B-D). SCMC effectively reduced LPO while enhancing cellular antioxidants (P<0.001).
- 3.3. SCMC downregulates NF-κB/NLRP3 Inflammasome axis activation in CP-administered
- 192 rats
- 193 CP triggered significant upregulation of NF-κB p65, NLRP3, ASC1, caspase-1 (Fig. 6A- E),
- 194 GSDMD (Fig. 7A,B), and IL-1β (Fig. 7C) (P<0.001) in the heart of rats. SCMC effectively
- inhibited this response as indicated by suppressed NF-κB p65, NLRP3, ASC1, caspase-1,
- 196 GSDMD, and IL-1 β in CP-induced rats.
- 3.4. SCMC upregulates myocardial Nrf2/HO-1 pathway in CP-administered rats
- 198 CP intoxication suppressed Nrf2 (P<0.001; Fig. 8A-B) and HO-1 activity (P<0.001; Fig. 8C).
- 199 SCMC increased Nrf2 expression and HO-1 activity in the myocardium of CP-administered
- 200 rats (P<0.001).
- **4. Discussion**
- 202 The clinical utility of the alkylating chemotherapeutic agent CP remains significantly
- 203 constrained by its dose-dependent cardiotoxicity, which manifests as acute myocardial injury,

chronic cardiomyopathy, and potentially fatal outcomes in severe cases [11, 19]. Accumulating evidence implicates oxidative stress and inflammatory cascades as central mediators of CP cardiotoxicity [11, 19]. The present study investigated the potential of SCMC to mitigate CPinduced cardiotoxicity, with particular emphasis on its modulatory role on redox balance, NFκB/NLRP3 inflammasome axis, and Nrf2/HO-1 pathway. Our results indicate that SCMC confers substantial protection against CP-induced myocardial injury via multimodal mechanisms encompassing antioxidant and anti-inflammatory properties. The cardiotoxic manifestations of CP were unequivocally established in our model through the remarkable increase in serum cardiac injury biomarkers and characteristic histopathological alterations. The elevated biochemical markers, CK-MB, LDH, and cTnI, indicate membrane integrity loss and tissue damage, consistent with previous clinical observations linking CP administration with acute cardiac events [32]. Histopathological evaluation revealed profound structural disruptions, including hypertrophied muscle, vascular congestion, vacuolated cytoplasm, and nuclear pyknosis, findings that correlate with the biochemical data. In addition to H&E staining, Sirius red revealed an increase in collagen, indicative of fibrosis, while PAS revealed elevated MPS. Our study provides novel insights into the metabolic perturbations associated with CP cardiotoxicity, demonstrating the concurrent accumulation of MPS and iron deposits in cardiac tissue. The observed MPS deposition bears particular pathophysiological relevance, as excessive glycosaminoglycan accumulation in mucopolysaccharidoses is wellestablished to cause progressive valvulopathy and cardiomyopathy [33]. Similarly, the detected iron overload aligns with emerging evidence implicating ferroptosis, an iron-dependent form of regulated cell death, in chemotherapy-induced cardiotoxicity [34]. This phenomenon has been extensively characterized in anthracycline cardiotoxicity [35], and our findings suggest a parallel mechanism may contribute to CP-induced myocardial injury, supported by prior reports of CP-induced hepatic and splenic iron accumulation [36]. The present findings reveal

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

that CP can trigger both metabolic and structural changes in cardiac tissue and provide novel insights into the implication of MPS and iron accumulation in CP-induced cardiotoxicity. SCMC treatment effectively mitigated these changes, demonstrating significant reductions in serum CK-MB, LDH, and cTnI, and attenuation of histopathological alterations, collagen deposition, MPS accumulation, and iron overload, effects that collectively underscore its multimodal cardioprotective activity. Considering the roles of oxidative stress and inflammation in CP-induced cardiotoxicity [19], the cardioprotective effects of SCMC may be attributed to its capacity to mitigate these detrimental pathways. CP intoxication provoked severe oxidative stress, as evidenced by marked LPO and depletion of endogenous antioxidants (GSH, SOD, and catalase). These observations align with the established paradigm of acrolein-mediated toxicity, wherein this reactive CP metabolite depletes cellular thiol reserves and generates cytotoxic ROS through multiple pathways [16]. The reduction in GSH, a key modulator of intracellular redox equilibrium, impairs cellular antioxidant capacity, and the simultaneous decrease in the activity of antioxidant enzymes exacerbate ROS accumulation and increase vulnerability to oxidative damage [37, 38]. Excessive ROS generation induced by CP triggers cellular injury via different mechanisms, such as LPO, oxidative modifications of proteins and DNA, and depletion of antioxidants. LPO compromises membrane stability by altering permeability and impairing membrane proteins, ultimately leading to impaired membrane function [39]. Furthermore, ROS-mediated post-translational alterations of structural proteins and oxidative inactivation of essential enzymes disrupt metabolic equilibrium, exacerbating oxidative injury [39]. The consequent redox imbalance initiates a vicious cycle of oxidative damage, compromising membrane integrity through LPO, inducing deleterious protein modifications, and causing oxidative DNA lesions [39].

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Beyond direct macromolecular damage, ROS serve as critical second messengers in proinflammatory signaling, particularly through activation of the redox-sensitive transcription factor NF-κB [20, 40]. Our data demonstrate that CP-induced oxidative stress triggers NF-κB activation, which in turn orchestrates upregulation of the NLRP3 inflammasome complex, a finding consistent with recent reports linking this pathway to chemotherapy-induced cardiotoxicity [23] and cardiovascular diseases [24]. The NLRP3 inflammasome, upon assembly, facilitates caspase-1-mediated maturation of IL-1β and IL-18 while cleaving GSDMD to execute pyroptotic cell death [21]. The structural basis of inflammasome activation involves critical interactions between the PYD domains of NLRP3 and ASC, which serve as molecular scaffolds for caspase-1 recruitment [41, 42]. This inflammatory cascade assumes particular significance in myocardial injury, as IL-1β promotes leukocyte recruitment, enhances vascular permeability, and stimulates cardiac fibrosis, processes that collectively exacerbate tissue damage [43]. Pro-inflammatory mediators, in conjunction with ROS, disrupt mitochondrial function, increase membrane permeability and facilitate the translocation of cytochrome c into the cytosol, which in turn triggers caspase-3 activation, executing the apoptotic cascade [44]. Additionally, GSDMD serves as a key effector of pyroptosis, a lytic form of programmed cell death. Upon activation, GSDMD oligomerizes to generate plasma membrane pores, promoting osmotic destabilization, cellular rupture, and the extracellular release of pro-inflammatory cytokines [21]. SCMC effectively suppressed LPO while concurrently restoring GSH, SOD, and catalase, underscoring its potent antioxidant capabilities. Through the inhibition of LPO and the reinforcement of antioxidant system, SCMC effectively counteracts oxidative stress, thereby protecting cells from subsequent injury. Furthermore, SCMC downregulated NF-κB, NLRP3, ASC1, Caspase-1, leading to a marked decrease in IL-1β and GSDMD. The antioxidant and suppression of the NF-κB/NLRP3 inflammasome axis are likely mediated via the efficacy of

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

SCMC to inhibit ROS generation. Histopathological assessments further corroborated these findings, revealing diminished fibrotic alterations and iron deposition, thereby reinforcing the anti-inflammatory properties of SCMC. By suppressing redox imbalance and NF-κB/NLRP3 inflammasome axis, SCMC attenuates myocardial inflammation and prevents tissue damage. The dual antioxidant and anti-inflammatory benefits of SCMC observed in this investigation align with and expand upon prior research. For instance, in oxaliplatin-treated L02 hepatocytes, SCMC effectively diminished ROS accumulation and mitigated apoptosis [45]. Similarly, in H₂O₂-exposed tracheal epithelial cells, SCMC alleviated oxidative stress and conferred substantial protection against apoptotic cell death [27]. In a rodent model of cigarette smoke exposure, SCMC preserved pulmonary and systemic antioxidant defenses, demonstrating strong cytoprotective effects against smoke-induced injury [27]. Additionally, SCMC displayed potent free radical-neutralizing properties, efficiently normalizing ROS levels and preventing the excessive depletion of GSH following exposure to hydroxyl radicals [46]. Collectively, these findings highlight the therapeutic promise of SCMC in mitigating oxidative stress and cell injury in the myocardium. Our study introduces novel evidence supporting the cardioprotective role of SCMC, demonstrating its efficacy in preventing CPinduced cardiotoxicity. The cardioprotective effect of SCMC involved upregulation of the Nrf2/HO-1 signaling. SCMC upregulated Nrf2 expression and HO-1 activity, effects associated with attenuation of the CP-induced myocardial oxidative stress and inflammation. Nrf2 is a master regulator of cellular stress responses. Nrf2 orchestrates the transcription of over 200 cytoprotective genes, including those encoding phase II detoxification enzymes and antioxidant proteins [29]. HO-1, a downstream effector of Nrf2, plays a critical role in counteracting oxidative stress and inflammation [29]. The observed upregulation of HO-1 which catalyzes heme degradation into biliverdin and carbon monoxide (CO) likely contributed to the cardioprotective effects of SCMC. Biliverdin is subsequently converted to bilirubin, a

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

potent endogenous antioxidant, and CO exerts anti-inflammatory and vasodilatory effects [47]. This coordinated induction of endogenous defense systems distinguishes SCMC from conventional antioxidants and may underlie its superior efficacy in mitigating CP-induced cardiotoxicity. Although this study provides compelling evidence of the cardioprotective potential of SCMC, further mechanistic investigations, such as pathway-specific inhibition or gene knockdown, are warranted to establish causal relationships. The study focused on a single dose of SCMC and therefore dose-response relationships remain unexplored.

5. Conclusion

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

327

- This study provides compelling evidence that SCMC mitigates CP-induced cardiotoxicity by NF-κB/NLRP3 attenuating oxidative stress. suppressing inflammasome axis activation, and potentiating Nrf2/HO-1 cytoprotective signaling. The cardioprotective efficacy of SCMC was demonstrated by its ability to alleviate serum cardiac biomarkers, preserve myocardial architecture, and mitigate histopathological alterations, including fibrosis and iron deposition. These findings were further corroborated by the capacity of SCMC to restore redox balance, inhibit pro-inflammatory signaling, and enhance endogenous antioxidant defenses. The translational implications of these findings are substantial. Given the established safety profile of SCMC in clinical use for respiratory conditions, it represents a promising candidate for repurposing as an adjunctive therapy in CP-based chemotherapy regimens. Future directions should focus on validating the findings of this study in clinical trials, particularly in oncology patients receiving CP. Additional preclinical studies could explore dose-response relationships, long-term cardioprotective outcomes, and potential synergies with other cardioprotective agents.
- 325 Acknowledgment
- 326 Princess Nourah bint Abdulrahman University Researchers Supporting Project Number

(PNURSP2025R381), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

- 328 Declaration of Competing Interest
- 329 All authors declare no conflict of interests in relation to the manuscript.
- 330 Availability of data and materials
- The manuscript contains all data supporting the reported results.

332 **References:**

- [1] S. Seal, O. Spjuth, L. Hosseini-Gerami, M. García-Ortegón, S. Singh, A. Bender, A.E. Carpenter,
- 334 Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers
- for FDA Drug-Induced Cardiotoxicity Rank, Journal of Chemical Information and Modeling 64(4)
- 336 (2024) 1172-1186.
- 337 [2] Z.V. Varga, P. Ferdinandy, L. Liaudet, P. Pacher, Drug-induced mitochondrial dysfunction and
- cardiotoxicity, American Journal of Physiology-Heart and Circulatory Physiology 309(9) (2015)
- 339 H1453-H1467.
- 340 [3] I.J. Onakpoya, C.J. Heneghan, J.K. Aronson, Post-marketing withdrawal of 462 medicinal
- 341 products because of adverse drug reactions: a systematic review of the world literature, BMC
- 342 Med 14 (2016) 10.
- 343 [4] M.B. Morelli, C. Bongiovanni, S. Da Pra, C. Miano, F. Sacchi, M. Lauriola, G. D'Uva,
- 344 Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection,
- 345 Front Cardiovasc Med 9 (2022) 847012.
- 346 [5] A. Moignet, Z. Hasanali, R. Zambello, L. Pavan, B. Bareau, O. Tournilhac, M. Roussel, T. Fest,
- A. Awwad, K. Baab, Cyclophosphamide as a first-line therapy in LGL leukemia, Leukemia 28(5)
- 348 (2014) 1134-1136.
- 349 [6] J.G. Omole, O.A. Ayoka, Q.K. Alabi, M.A. Adefisayo, M.A. Asafa, B.O. Olubunmi, B.A. Fadeyi,
- Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats, J Evid Based
- 351 Integr Med. 23 (2018) 2156587218757649.
- 352 [7] O. Yamada, H. Mizoguchi, K. Oshimi, Cyclophosphamide therapy for pure red cell aplasia 353 associated with granular lymphocyte-proliferative disorders, Br J Haematol 97(2) (1997) 392-9.
- 354 [8] L.H. Fraiser, S. Kanekal, J.P. Kehrer, Cyclophosphamide Toxicity, Drugs 42(5) (1991) 781-795.
- 355 [9] S.H. Aladaileh, M.H. Abukhalil, S.A.M. Saghir, H. Hanieh, M.A. Alfwuaires, A.A. Almaiman, M.
- 356 Bin-Jumah, A.M. Mahmoud, Galangin Activates Nrf2 Signaling and Attenuates Oxidative Damage,
- 357 Inflammation, and Apoptosis in a Rat Model of Cyclophosphamide-Induced Hepatotoxicity,
- 358 Biomolecules 9(8) (2019).
- 359 [10] A. Korkmaz, T. Topal, S. Oter, Pathophysiological aspects of cyclophosphamide and
- ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as
- 361 well as PARP activation, Cell Biol Toxicol 23(5) (2007) 303-12.
- 362 [11] S. Dhesi, M.P. Chu, G. Blevins, I. Paterson, L. Larratt, G.Y. Oudit, D.H. Kim,
- 363 Cyclophosphamide-Induced Cardiomyopathy: A Case Report, Review, and Recommendations
- 364 for Management, J Investig Med High Impact Case Rep 1(1) (2013) 2324709613480346.
- 365 [12] D.H. Adeyemi, M.A. Hamed, D.T. Oluwole, A.I. Omole, R.E. Akhigbe, Acetate attenuates
- 366 cyclophosphamide-induced cardiac injury via inhibition of NF-kB signaling and suppression of
- caspase 3-dependent apoptosis in Wistar rats, Biomed Pharmacother 170 (2024) 116019.
- 368 [13] A.C. Famurewa, R.E. Akhigbe, M.Y. George, Y.A. Adekunle, P.A. Oyedokun, T.M. Akhigbe, A.A.
- 369 Fatokun, Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy:
- 370 protective and therapeutic effects of ginger, 6-qingerol and zingerone in preclinical studies,
- 371 Naunyn Schmiedebergs Arch Pharmacol 398(5) (2025) 4747-4778.

- [14] M.M.M. Refaie, S. Shehata, M. El-Hussieny, W.M. Abdelraheem, A.M.A. Bayoumi, Role of ATP-
- 373 Sensitive Potassium Channel (K(ATP)) and eNOS in Mediating the Protective Effect of Nicorandil
- in Cyclophosphamide-Induced Cardiotoxicity, Cardiovasc Toxicol 20(1) (2020) 71-81.
- 375 [15] S.R. Fahmy, A.I. Amien, F.M. Abd-Elgleel, S.M. Elaskalany, Antihepatotoxic efficacy of
- 376 Mangifera indica L. polysaccharides against cyclophosphamide in rats, Chem Biol Interact. 244 (2016) 113-120.
- 378 [16] A. Moghe, S. Ghare, B. Lamoreau, M. Mohammad, S. Barve, C. McClain, S. Joshi-Barve,
- 379 Molecular mechanisms of acrolein toxicity: relevance to human disease, Toxicol Sci. 143(2) 380 (2015) 242-255.
- 381 [17] G.B. McDonald, J.T. Slattery, M.E. Bouvier, S. Ren, A.L. Batchelder, T.F. Kalhorn, H.G. Schoch,
- 382 C. Anasetti, T. Gooley, Cyclophosphamide metabolism, liver toxicity, and mortality following
- hematopoietic stem cell transplantation, Blood 101(5) (2003) 2043-2048.
- 181 A.D. Ricart, Drug-induced liver injury in Oncology, Annals of Oncology 28(8) (2017) 2013-2020.
- 386 [19] A. Iqubal, M.K. Iqubal, S. Sharma, M.A. Ansari, A.K. Najmi, S.M. Ali, J. Ali, S.E. Haque,
- Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision, Life Sciences 218 (2019) 112-131.
- 389 [20] K. Asehnoune, D. Strassheim, S. Mitra, J.Y. Kim, E. Abraham, Involvement of reactive oxygen
- species in Toll-like receptor 4-dependent activation of NF-kappa B, Journal of immunology (Baltimore, Md.: 1950) 172(4) (2004) 2522-9.
- 392 [21] N. Kelley, D. Jeltema, Y. Duan, Y. He, The NLRP3 Inflammasome: An Overview of Mechanisms
- of Activation and Regulation, Int J Mol Sci 20(13) (2019).
- 394 [22] C.A. Dinarello, Immunological and inflammatory functions of the interleukin-1 family, Annu
- 395 Rev Immunol 27 (2009) 519-50.
- 396 [23] A.G. Mauro, E. Mezzaroma, S. Toldo, G.C. Melendez, R.L. Franco, E.J. Lesnefsky, A. Abbate,
- W.G. Hundley, F.N. Salloum, NLRP3-mediated inflammation in cardio-oncology: sterile yet harmful, Transl Res 252 (2023) 9-20.
- 399 [24] Y. Zheng, L. Xu, N. Dong, F. Li, NLRP3 inflammasome: The rising star in cardiovascular diseases, Front Cardiovasc Med 9 (2022) 927061.
- 401 [25] E. Pace, I. Cerveri, D. Lacedonia, G. Paone, A. Sanduzzi Zamparelli, R. Sorbo, M. Allegretti, L.
- Lanata, F. Scaglione, Clinical Efficacy of Carbocysteine in COPD: Beyond the Mucolytic Action,
- 403 Pharmaceutics 14(6) (2022).
- 404 [26] S.C. Mitchell, G.B. Steventon, S-carboxymethyl-L-cysteine, Drug Metab Rev 44(2) (2012) 129-
- 405 47.
- 406 [27] M. Yoshida, K. Nakayama, H. Yasuda, H. Kubo, K. Kuwano, H. Arai, M. Yamaya, Carbocisteine
- inhibits oxidant-induced apoptosis in cultured human airway epithelial cells, Respirology 14(7)
- 408 (2009) 1027-34.
- 409 [28] M. Hanaoka, Y. Droma, Y. Chen, T. Agatsuma, Y. Kitaguchi, N.F. Voelkel, K. Kubo,
- Carbocisteine protects against emphysema induced by cigarette smoke extract in rats, Chest
- 411 139(5) (2011) 1101-1108.
- 412 [29] S. Satta, A.M. Mahmoud, F.L. Wilkinson, M. Yvonne Alexander, S.J. White, The Role of Nrf2 in
- 413 Cardiovascular Function and Disease, Oxid Med Cell Longev 2017 (2017) 9237263.
- 414 [30] A.A. Sahu, A. Mukherjee, S.K. Nirala, M. Bhadauria, Cyclophosphamide-induced multiple
- organ dysfunctions: unravelling of dose dependent toxic impact on biochemistry and histology,
- 416 Toxicol Res (Camb) 13(6) (2024) tfae201.
- 417 [31] N.G. Abraham, J.D. Lutton, R.D. Levere, Heme metabolism and erythropoiesis in abnormal
- 418 iron states: Role of δ-aminolevulinic acid synthase and heme oxygenase, Experimental
- 419 Hematology 13(8) (1985) 838-843.
- 420 [32] M. Kemp, J. Donovan, H. Higham, J. Hooper, Biochemical markers of myocardial injury, Br J
- 421 Anaesth 93(1) (2004) 63-73.

- 422 [33] S. Sestito, G. Rinninella, A. Rampazzo, F. D'Avanzo, L. Zampini, L. Santoro, O. Gabrielli, A.
- 423 Fiumara, R. Barone, N. Volpi, M. Scarpa, R. Tomanin, D. Concolino, Cardiac involvement in MPS
- 424 patients: incidence and response to therapy in an Italian multicentre study, Orphanet Journal of
- 425 Rare Diseases 17(1) (2022) 251.
- 426 [34] P. Gujja, D.R. Rosing, D.J. Tripodi, Y. Shizukuda, Iron overload cardiomyopathy: better
- 427 understanding of an increasing disorder, J Am Coll Cardiol 56(13) (2010) 1001-12.
- 428 [35] J.C. Kwok, D.R. Richardson, Examination of the mechanism(s) involved in doxorubicin-
- 429 mediated iron accumulation in ferritin: studies using metabolic inhibitors, protein synthesis
- inhibitors, and lysosomotropic agents, Mol Pharmacol 65(1) (2004) 181-95.
- 431 [36] Y. Sheng, Y.J. Chen, Z.M. Qian, J. Zheng, Y. Liu, Cyclophosphamide induces a significant
- increase in iron content in the liver and spleen of mice, Hum Exp Toxicol 39(7) (2020) 973-983.
- 433 [37] D.A. Averill-Bates, The antioxidant glutathione, Vitam Horm 121 (2023) 109-141.
- 434 [38] J.M. Matés, C. Pérez-Gómez, I. Núñez de Castro, Antioxidant enzymes and human diseases,
- 435 Clin Biochem 32(8) (1999) 595-603.
- 436 [39] R.L. Smathers, J.J. Galligan, B.J. Stewart, D.R. Petersen, Overview of lipid peroxidation
- products and hepatic protein modification in alcoholic liver disease, Chem Biol Interact. 192(1-
- 438 2) (2011) 107-112.
- 439 [40] P.A. Baeuerle, V.R. Baichwal, NF-kappa B as a frequent target for immunosuppressive and
- anti-inflammatory molecules, Advances in immunology 65 (1997) 111-37.
- 441 [41] J.A. Duncan, D.T. Bergstralh, Y. Wang, S.B. Willingham, Z. Ye, A.G. Zimmermann, J.P. Ting,
- 442 Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate
- inflammatory signaling, Proc Natl Acad Sci U S A 104(19) (2007) 8041-6.
- 444 [42] P.R. Vajjhala, R.E. Mirams, J.M. Hill, Multiple binding sites on the pyrin domain of ASC protein
- allow self-association and interaction with NLRP3 protein, J Biol Chem 287(50) (2012) 41732-43.
- 446 [43] T. Lawrence, The nuclear factor NF-kappaB pathway in inflammation, Cold Spring Harb
- 447 Perspect Biol 1(6) (2009) a001651.
- 448 [44] P. Chen, Y.-F. Hu, L. Wang, W.-F. Xiao, X.-Y. Bao, C. Pan, H.-S. Yi, X.-Y. Chen, M.-H. Pan, C. Lu,
- 449 Mitochondrial apoptotic pathway is activated by H2O2-mediated oxidative stress in BmN-SWU1
- 450 cells from Bombyx mori ovary, PLoS One 10(7) (2015) e0134694.
- 451 [45] Q. Zhai, X.L. Bian, S.R. Lu, B. Zhu, B. Yu, Carbocisteine reduces the cytotoxicity of oxaliplatin,
- 452 Z Naturforsch C J Biosci 67(3-4) (2012) 215-21.
- 453 [46] M.L. Garavaglia, E. Bononi, S. Dossena, A. Mondini, C. Bazzini, L. Lanata, R. Balsamo, M.
- Bagnasco, M. Conese, G. Bottà, M. Paulmichl, G. Meyer, S-CMC-Lys protective effects on human
- respiratory cells during oxidative stress, Cell Physiol Biochem 22(5-6) (2008) 455-64.
- 456 [47] H.O. Pae, H.T. Chung, Heme oxygenase-1: its therapeutic roles in inflammatory diseases,
- 457 Immune Netw 9(1) (2009) 12-9.

459 Figures:

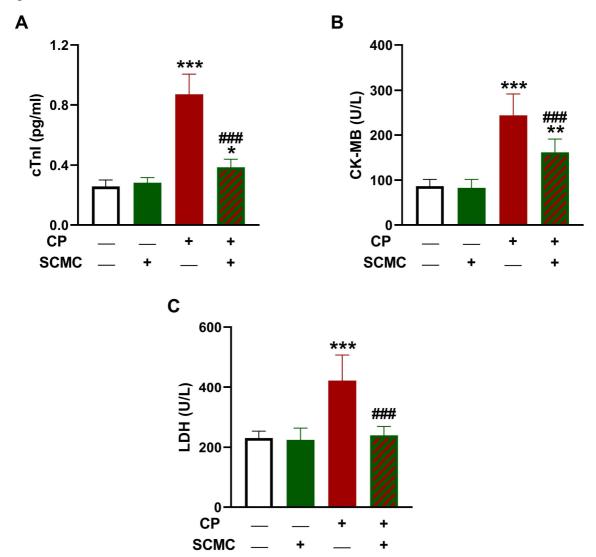


Fig. 1. SCMC alleviated serum cTnI (A), CK-MB (B), and LDH (C) in CP-administered rats. Data are mean \pm SD, (n=6). * P<0.05, * P<0.01 and *** P<0.001 versus Control. $^{###}$ P<0.001 versus CP.

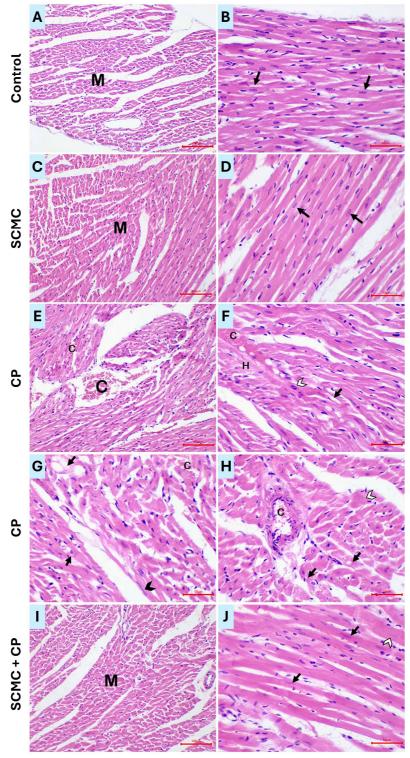


Fig. 2. SCMC prevented myocardial injury in CP-administered rats. Photomicrographs of H&E-stained sections from the control (A-B) and SCMC-supplemented rats (C-D) showing normal intact thin elongated branched cardiac muscle fibers with oval central nuclei (M and arrows); (E-H) CP-treated rats showing congested and dilated myocardial blood vessels (C). Furthermore, the cardiac muscle fibers displayed vacuolation (arrows), hyalinization (H), myocyte hypertrophy, enlarged nuclei (white arrowheads), and elongated nuclei (black arrowheads); and CP-administered rats treated with SCMC showing notable improvements in blood vessels and cardiac muscle fibers (M and blue arrows) , but some myocytes showed hypertrophy (arrowhead).

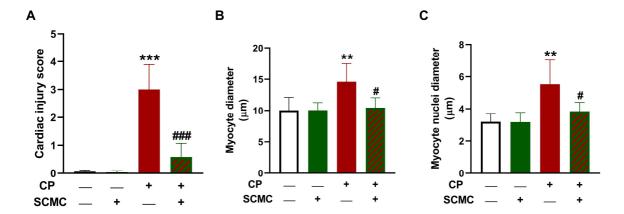


Fig. 3. SCMC mitigated CP-induced tissue injury (A) and alleviated the diameter of cardiomyocytes (B) and their nuclei (C). Data are mean \pm SD, (n=6). **P<0.01 and ***P<0.001 versus Control. *P<0.05 and ***P<0.001 versus CP.

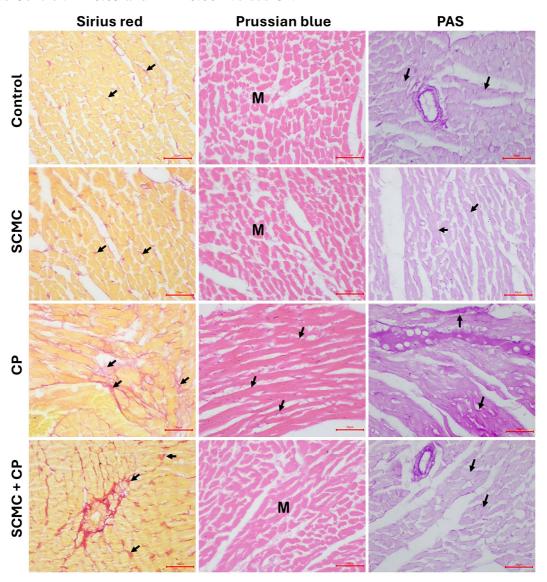


Fig. 4. Photomicrographs of heart sections stained with Sirius red, Prussian blue, and PAS. Sirius red staining shows a little amount of collagen fibers (arrows) in control and SCMC-treated rats, increased collagen fibers (arrows) in CP-administered rats and normal collagen

fiber (arrows) content in CP-administered rats treated with SCMC. Control and SCMC-administered rats show negative Prussian blue staining affinity, CP-administered rats show hemosiderin deposits (arrows), and CP-administered rats treated with SCMC show no deposits. Control and SCMC-treated rats show normal PAS stain intensity and distribution (arrows), whereas CP-administered rats show increased and uneven distribution of PAS with some muscle fibers displaying a highly intense reaction to the stain (arrows). SCMC alleviated PAS staining in CP-administered rats and the sections appear normal.

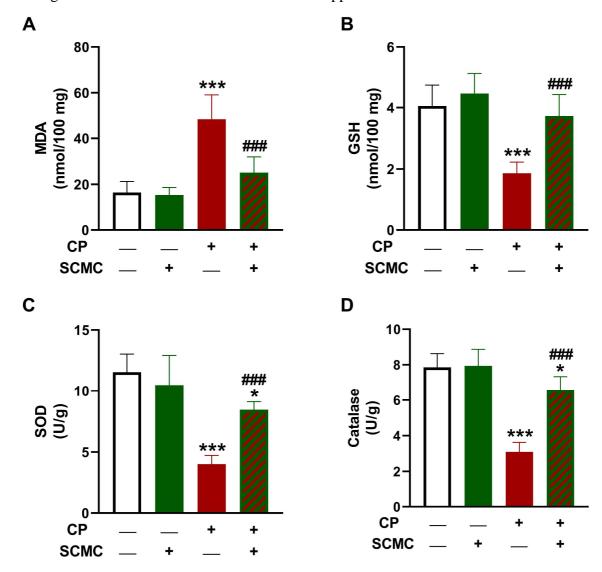


Fig. 5. SCMC attenuated CP-induced oxidative stress. SCMC decreased MDA (A), and increased GSH (B), SOD (C), and catalase (D) in the heart of CP-administered rats. Data are mean \pm SD, (n=6). *P<0.05 and ****P<0.001 versus Control. ###P<0.001 versus CP.

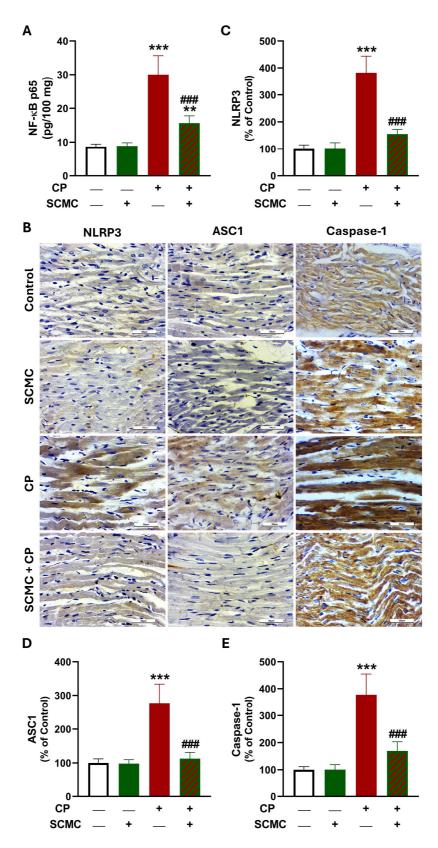


Fig. 6. SCMC suppressed NF- κ B/NLRP3 inflammasome axis in CP-treated rats. SCMC decreased NF- κ B p65 (A), NLRP3 (B-C), ASC1 (B,D), and caspase-1 (B,E) in CP-administered rats. Data are mean \pm SD, (n=6). **P<0.01 and ***P<0.001 versus Control. ###P<0.001 versus CP.

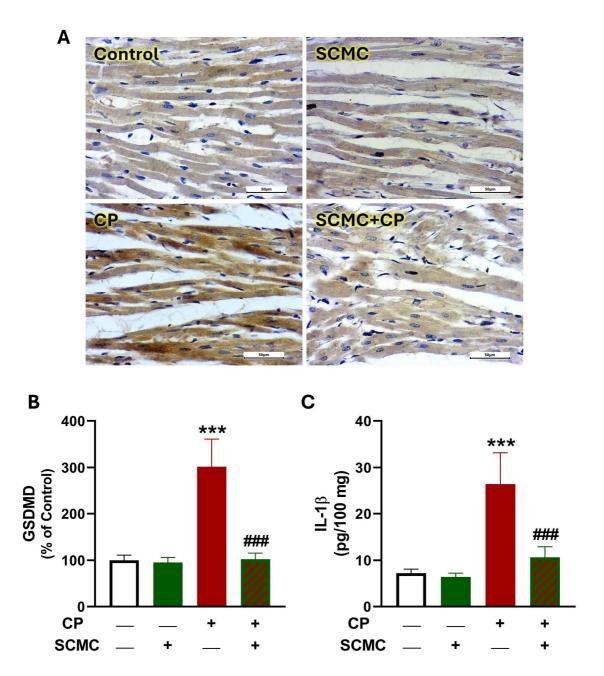


Fig. 7. SCMC decreased GSDMD (A,B), and IL-1 β (C) in CP-administered rats. Data are mean \pm SD, (n=6). ***P<0.001 versus Control and *##P<0.001 versus CP.

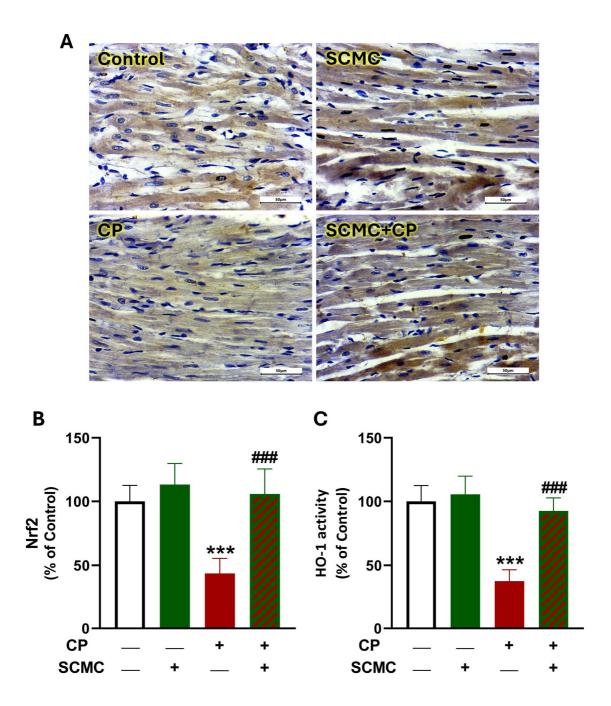


Fig. 8. SCMC increased Nrf2 expression (A-B) and HO-1 activity (C) in CP-administered rats. Data are mean \pm SD, (n=6). ****P<0.001 versus Control and *##*P<0.001 versus CP.