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Abstract

The pesticide chlorpyrifos (CPF) poses significant environmental and health risks due to its
toxicity. Selenium nanoparticles (Se NPs) exhibit promising therapeutic properties. This study
evaluated the effects of Se NPs against CPF hepatotoxicity, focusing on oxidative and
inflammatory responses, and the SIRT1/FXR/Nrf2 pathway. Rats were exposed to CPF (5.4
mg/kg body weight), with or without Se NPs (0.5 mg/kg body weight), for 28 days, followed
by biochemical, histopathological, and molecular analyses. CPF administration significantly
increased serum ALT and AST, reduced albumin, and induced histopathological alterations. Se
NPs effectively ameliorated liver function biomarkers and mitigated histopathological changes.
CPF also elevated malondialdehyde and nitric oxide, and depleted enzymatic antioxidants and
GSH, which were mitigated by Se NPs. CPF upregulated NF-xB p65, TNF-a, IL-6, INOS, Bax
and caspase-3, and downregulated Bcl-2. Se NPs suppressed inflammation and apoptosis by
downregulating NF-xB p65, pro-inflammatory cytokines and pro-apoptosis markers. These
effects were linked to upregulation of SIRT1, FXR, Nrf2 and HO-1 and suppression of Keapl.
In conclusion, Se NPs protect against CPF-induced liver injury by attenuating OS,
inflammation, and apoptosis, and by upregulating SIRT1//FXR/Nrf2 signaling. These findings
highlight the therapeutic potential of Se NPs in mitigating hepatotoxicity induced by exposure

to CPF.

Keywords: Pesticides; Selenium; Hepatotoxicity; Inflammation; Oxidative stress.

1. Introduction

The global reliance on pesticides to enhance agricultural productivity has come at a significant
cost to human health and the environment [1]. Among these chemicals, chlorpyrifos (CPF), a
widely used organophosphate insecticide, has been particularly concerning due to its

persistence in ecosystems and its potential to cause harm to non-target organisms, including
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humans [2]. Chronic exposure to CPF is linked to a range of toxic effects, including
neurotoxicity, developmental disorders, and damage to liver, kidney, and other vital organs [3-
6]. These organs are especially vulnerable to pesticide-induced injury because of their central
roles in detoxification and metabolic regulation. CPF exerts its insecticidal effect through the
inhibition of acetylcholinesterase, which disrupts nervous system function [2]. However, its
toxicity is non-selective and extends beyond its primary mechanism of action. CPF toxicity
extends to non-target organisms, including fish, mammals, and aquatic invertebrates, thereby
posing ecological and human health risks [2]. Detectable residues of CPF above acute reference
thresholds have been found on vegetables, grains, and fruits and therefore human exposure to

CPF may occur through multiple routes [7, 8].

The induction of oxidative stress (OS) and inflammation has been suggested to mediate CPF
toxicity [1, 9]. OS, characterized by an overproduction of reactive oxygen species (ROS) and
a depletion of antioxidants, is a key driver of CPF-induced hepato-, nephro-, and neurotoxicity
[3-6]. Excessive ROS generation promotes lipid peroxidation (LPO), and protein and DNA
damage, ultimately compromising cellular integrity and function [10, 11]. Concurrently, CPF
exposure triggers inflammatory responses by upregulating pro-inflammatory cytokines, further
exacerbating tissue injury [10, 11]. The interplay between OS and inflammation provokes
organ damage [12], highlighting the need for therapeutic interventions that target these
interconnected pathways. Understanding the mechanisms underlying CPF-induced toxicity and

identifying effective protective strategies are critical for mitigating its adverse health impacts.

The Sirtuin 1 (SIRT1)/farnesoid X receptor (FXR)/nuclear factor erythroid 2-related factor 2
(Nrf2) signaling has emerged as a critical regulator of cell defensive mechanisms against OS
and inflammation [13-16]. SIRT1 is a NAD+-dependent deacetylase which is central in
modulating cellular metabolism, stress responses, and longevity [15]. It exerts anti-
inflammatory and antioxidant effects by deacetylating and activating transcription factors,

3
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including nuclear factor-kappaB (NF-kB), FXR and Nrf2 [17]. In macrophages, SIRT1
inhibited the activation of NF-kB signaling cascade and suppressed mitogen-activated protein
kinases, thereby promoting the reprogramming of cholesterol homeostasis and attenuating M1
polarization of macrophages [18]. Activation of SIRT1 resulted in protective effects in
experimental models of acute liver failure [19] and cholestatic liver injury [20]. Studies
revealed that SIRT1 regulates FXR which is a transcription factor (TF) that can mitigate OS
[21][22-24]. Nrf2, in turn, serves as a key regulator of the antioxidant response, promoting the
expression of genes encoding protective enzymes, including heme-oxygenase-1 (HO-1) [14].
Enhancement of Nrf2/HO-1 signaling mitigated inflammation and oxidative injury in different
liver disorders [25]. Therefore, the SIRT1/FXR/Nrf2 signaling represents a promising

therapeutic target for mitigating CPF hepatotoxicity.

Nanotechnology can offer novel approaches to combating OS and inflammation. In this
context, selenium nanoparticles (Se NPs) have gained significant attention due to their unique
physicochemical properties and potent biological activities, such as biocompatibility and
bioavailability [26]. Se is an essential micronutrient required by all living organisms and
ubiquitously present in various dietary sources, including grains, seafood, dairy products, and
vegetables [27]. As an essential component of selenoproteins, Se plays a critical role in the
cellular antioxidant defense mechanisms, contributing to the maintenance of redox homeostasis
[28]. Se demonstrated anti-inflammatory properties in lipopolysaccharide (LPS)-treated
macrophages [29], and mitigated LPS-induced inflammatory responses and regulate the
expression of the selenogenome in porcine and murine models [30, 31]. Despite Se is an
essential element and possesses several beneficial effects, its use in conventional form is
limited by its narrow therapeutic window and potential toxicity at high doses [26]. Se NPs have
been demonstrated to exhibit significantly reduced acute and sub-chronic toxicities compared

to other Se compounds, thereby offering a safer alternative for applications [32]. Given the
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growing body of evidence supporting the beneficial effects of Se NPs, this study investigated
their protective role on liver injury induced by CPF, with a focus on the involvement of the

SIRT1/FXR/Nrf2 signaling.

2. Materials and methods

2.1. Synthesis and characterization of Se NPs

Se NPs were synthesized via a high-energy ball-milling technique, adapted from established
protocols [33]. Briefly, Se powder was subjected to mechanical milling in a vertical planetary
ball mill, employing a ball-to-powder mass ratio of 10:1. The milling process was carried out
at a rotational speed of 200 rpm for a total duration of 20 h. Post-milling, the resultant powder
was dried at 80°C for 24 h to remove residual moisture. The structural and morphological
properties of the synthesized NPs were assessed using SEM (Fig. 1), XRD, and dynamic light

scattering (DLS) (Suppl. Fig. I).

2.2. Animals and treatments

Male Wistar rats weighing 180 £ 10 g were acclimatized under controlled temperature (23 £ 2
°C), relative humidity (50-60%), and a 12-h light/dark cycle. Animals were provided ad libitum
access to a standard rodent diet and water. A total of 24 rats were randomly allocated into four
experimental groups (n = 6 per group) to investigate the hepatoprotective efficacy of Se NPs
against CPF-induced toxicity. All animal experiments comply with the National Institutes of
Health guide for the care and use of Laboratory animals (NIH Publications No. 8523, revised
1996). The experimental protocol was approved by the Institutional Animal Ethics Committee

of Beni-Suef University (Egypt) (Approval no. 021-130).

Se NPs and CPF (Agro Chem, Egypt) were suspended in 0.5% carboxymethy| cellulose (CMC)
(Sigma, USA) and corn oil, respectively. Both compounds were administered orally once daily

for 28 consecutive days. The experimental groups were designed as follows:
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Group | (Control): received 0.5% CMC and corn oil.

Group Il (Se NPs): administered 0.5 mg/kg Se NPs [34].

Group 111 (CPF): received 5.4 mg/kg CPF (1/25 of the LDso) [35].

Group 1V (CPF + Se NPs): Co-administered 5.4 mg/kg CPF and 0.5 mg/kg Se NPs.

Twenty-four h after the final treatment, blood samples were collected under ketamine/xylazine-
induced anesthesia. Serum was isolated for subsequent biochemical analyses. Liver was rapidly
excised post-euthanasia. Portions of the tissue were fixed in 10% neutral buffered formalin
(NBF), while others were preserved in RNALater at -80°C for molecular studies. Additional
tissue samples were homogenized in Tris-HCI buffer (pH 7.4), and the resulting homogenates

were centrifuged to obtain supernatants for biochemical assays.

2.3. Biochemical assays

Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin were
quantified using commercially available Kkits (Spinreact, Spain). ELISA were employed to
measure tumor necrosis factor (TNF)-a, interleukin (IL)-6 (Elabscience, China; Cat. no. E-EL-
R2856 and E-EL-R0015, respectively), and caspase-3 (Cusabio, China; Cat. no. CSB-
E08857r). Malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), reduced
glutathione (GSH), and catalase were assessed in liver homogenate using Biodiagnostic
(Egypt) kits. HO-1 activity was determined according to the method described by Abraham et

al. [36].

2.4. Histopathological and immunohistochemical (IHC) evaluations

Liver tissues fixed in 10% NBF were processed for paraffin embedding. Tissue sections (5-pum
thick) were stained with hematoxylin and eosin (H&E) for histopathological examination. IHC

analysis was performed to evaluate the expression of SIRT1, Nrf2, HO-1, and NF-«xB p65 [24].
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Briefly, paraffin-embedded sections were dewaxed, rehydrated, and subjected to antigen
retrieval using citrate buffer (50 mM, pH 6.8). Endogenous peroxidase was inhibited with 0.3%
hydrogen peroxide (H20.), followed by blocking with a protein-blocking solution. Sections
were incubated overnight at 4 °C with primary antibodies against SIRT1, Nrf2, HO-1, and NF-
kB p65 (Biospes, China), washed, and then treated with secondary antibodies (Biospes, China).
Color development was achieved using 3,3’-diaminobenzidine in H2O2, and sections were
counterstained with Mayer’s hematoxylin. Quantitative analysis of staining intensity was

performed using ImageJ software (NIH, USA).
2.5. gRT-PCR

Total RNA was extracted from liver using an RNA purification kit (Thermo Scientific, USA).
RNA purity was confirmed by assessing the A260/A280 ratio (> 1.8). cDNA was synthesized
using a reverse transcription kit. Quantitative PCR amplification was performed using SYBR
Green master mix and primers (Table 1). The mRNA expression levels of KEAP1, NRF2,
SIRT1, FXR, NOS2, BAX, BCL2, and CASP3 were normalized to p-actin (ACTB), and relative

quantification was performed using the 224t method [37].
2.6. Statistical Analysis

All data are expressed as mean + standard error of the mean (SEM). Intergroup comparisons
were conducted using one-way ANOVA followed by Tukey’s post hoc test in GraphPad Prism

(version 8). Significance was considered at a P-value of < 0.05.
3. Results
3.1. Se NPs attenuate CPF-induced liver injury

The hepatoprotective effect of Se NPs against CPF-induced toxicity was evaluated using

biochemical markers and histopathological analysis (Fig. 2). CPF provoked significant
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elevations in serum ALT (Fig. 2A) and AST (Fig. 2B), alongside a marked reduction in albumin
levels (Fig. 2C) compared to the control group (P<0.001). Se NPs significantly attenuated these
alterations in hepatic biomarkers (P<0.001). Notably, no significant differences in body weight

were observed among the experimental groups.

Histopathological examination of liver tissue revealed normal hepatic architecture, including
intact hepatocytes, sinusoids, and central veins, in both the control and Se NPs-treated groups
(Fig. 2D). In contrast, CPF administration induced severe hepatic damage, characterized by
dilated congested portal vein, degenerative changes, and scattered apoptotic hepatocytes.
Treatment with Se NPs markedly ameliorated these pathological alterations, with only mild

degenerative changes observed in hepatocytes (Fig. 2D).

3.2. Se NPs attenuate liver OS in CPF-exposed rats

CPF exposure significantly increased liver MDA (Fig. 3A) and NO (Fig. 3B) (P<0.001).
Concurrently, CPF administration led to a significant depletion of GSH, SOD, and catalase in
the liver (Fig. 3C-E). Se NPs significantly reduced MDA and NO while restoring GSH and

antioxidant enzymes (P<0.001).

3.3. Anti-inflammatory and anti-apoptotic effects of Se NPs

CPF significantly upregulated NF-«xB p65 in the liver of rats (Fig. 4A-B) (P<0.001). Similarly,
CPF exposure increased hepatic TNF-a (Fig. 6C) and IL-6 (Fig 4D), and iNOS mRNA levels
(Fig. 4E) (P<0.001). Supplementation with Se NPs effectively suppressed hepatic NF-kB p65,
TNF-a, IL-6 and iNOS levels in CPF-administered rats. In addition to inflammation, CPF
exposure triggered apoptotic pathways, as shown by significant downregulation of Bcl-2 (Fig.
5A) and upregulation of Bax (Fig. 5B) and caspase-3 mRNA (Fig. 5C) and protein (Fig. 5D)
in the liver (P<0.001). Se NPs co-administration significantly mitigated apoptosis, as indicated

by increased Bcl-2 expression and reduced Bax and caspase-3 (P<0.001).
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3.4. Modulation of SIRT1/FXR/Nrf2/HO-1 signaling by Se NPs

CPF exposure resulted in a significant downregulation of SIRT1 at both the mRNA (Fig. 6A)
and protein levels (Fig. 6B-C), along with a marked reduction in FXR mRNA expression (Fig.
6D). CPF also disrupted the antioxidant defense pathway, evidenced by an increase in Keapl
MRNA expression (Fig. 7A), and a decrease in both Nrf2 mRNA (Fig. 7B) and protein levels
(Fig. 7C-D), as well as a decline in HO-1 expression (Fig. 7C and 7E) in the liver (P<0.001).
Treatment with Se NPs significantly reversed these alterations, restoring SIRT1, FXR, Nrf2,
and HO-1 expression, while reducing Keapl expression (P<0.001), indicating a protective role

of Se NPs in preserving the integrity of this signaling axis.

4. Discussion

The extensive use of CPF to enhance crop yields by controlling pests has raised significant
concerns due to its detrimental effects on human health and the environment [1, 2]. OS and
inflammatory responses have been suggested to mediate CPF organ toxicity, including
hepatotoxicity [5, 38]. Therefore, there is a need for therapeutic strategies that target these
mechanisms to mitigate CPF-induced liver damage. Se NPs have emerged as a promising
candidate due to their beneficial properties against OS and inflammation in different disorders
[39]. This study demonstrates the protective effects of Se NPs against CPF-induced hepatic
injury, highlighting the involvement of the SIRT1/FXR/Nrf2 signaling pathway in mediating

these effects.

The liver is a vital organ that serves as the primary site for drug metabolism, plays a central
role in a wide array of metabolic processes, and is integral to the detoxification of xenobiotics.
Liver damage can significantly compromise its detoxification capacity, leading to the
accumulation of harmful metabolites and systemic toxicity [40]. Such impairment can disrupt

hepatic functions and maintaining liver health is therefore critical for ensuring efficient
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metabolic and detoxification processes [40]. In this study, CPF administration induced
significant hepatotoxicity, as evidenced by elevated serum markers of liver dysfunction,
alongside reduced serum albumin and histopathological alterations. These findings are
consistent with previous reports demonstrating the hepatotoxic role of CPF and its impact on
cellular integrity and function [5, 38, 41-43]. Hepatocyte injury could be attributed to the
lipophilic nature of CPF as an organic molecule, enabling its accumulation in the liver and
subsequent penetration of cellular membranes [38]. High residual levels of CPF can alter
membrane permeability [38], resulting in hepatocyte injury and leakage of aminotransferases
to the circulation. In rats exposed to CPF, ALT and AST were elevated and hepatocyte
degeneration, necrosis, blood vessel congestion, and dilation of the sinusoids were observed in
the liver tissue [5]. More recently, the study of Fu et al [38] revealed altered liver function and
tissue architecture following exposure of rats to CPF. The same study demonstrated a positive
correlation between the administered CPF concentrations and the residual levels in rat liver,
pinpointing the hepatic metabolism and accumulation of CPF following oral ingestion in rats
[38]. In the present study, Se NPs effectively attenuated these toxic effects, restoring
biochemical markers and preserving liver tissue architecture. The ability of Se NPs to maintain
hepatocyte integrity suggests their potential as a therapeutic agent against CPF-induced
hepatotoxicity. The hepatoprotective role of Se NPs has been investigated in previous studies.
In a WRL68 fatty liver cell model, Se NPs attenuated lipid accumulation in hepatocytes in vitro
[44]. In rats intoxicated with acetaminophen (APAP) overdose, intraperitoneal administration
of Se NPs resulted in ameliorated circulating transaminases and histopathological alterations.
In addition, Se NPs exerted protective effects against CCls-induced liver damage in mice [45]
and toxicity induced by the toxic fungal metabolite patulin [46]. Our findings added support to
the hepatoprotective efficacy of Se NPs by showing their ability to attenuate CPF

hepatotoxicity.
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Owing to the growing evidence of the role of OS and inflammation in mediating the toxic
effects of CPF and numerous environmental pollutants [3-6, 47], the protective effects of Se
NPs against CPF-induced toxicity are likely mediated through their antioxidant and anti-
inflammatory properties. CPF exposure significantly increased hepatic OS markers, including
MDA and NO, while depleting key antioxidants, GSH, SOD, and catalase. These data align
with the well-established role of CPF in generating ROS and disrupting antioxidant defense
systems [38, 41, 48]. Excessive production of ROS induces oxidative damage to key cell lipids,
proteins, and DNA. This manifests as LPO, protein oxidation, and DNA strand breaks or
modifications, which collectively disrupt cellular integrity and function. Such oxidative
damage can overwhelm cellular antioxidant and repair mechanisms, leading to irreversible cell
injury and ultimately culminating in cell death [10, 11]. Exposure to CPF has been consistently
linked to the induction of OS through the excessive generation of ROS in a variety of
experimental systems. This phenomenon has been documented in Neuro-2a cells, where CPF
exposure disrupts redox balance and promotes oxidative damage [49], as well as in in vitro
models utilizing microglial cells, which exhibit heightened ROS production and subsequent
inflammatory responses [50]. Additionally, studies in rat renal tissues have demonstrated that
CPF exposure leads to the accumulation of ROS, resulting in oxidative injury and impaired
renal function [6]. Similar results were recently reported in rats subjected to different
concentrations of CPF where a positive correlation was observed between the concentrations
and OS parameters [38]. These findings along with results of the present study collectively
underscore the role of CPF as a potent inducer of OS, highlighting its potential to disrupt
cellular redox homeostasis and contribute to tissue damage. Additionally, CPF-induced ROS
activate NF-«B, a central regulator of inflammation. In this study, CPF administration
upregulated NF-xB p65, iINOS, IL-6, and TNF-a in the liver, indicating a pro-inflammatory

response. The activation of NF-xB promotes pro-inflammatory mediators, including TNF-a,
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IL-6, and iNOS, which exacerbate tissue injury [51]. Recent findings have demonstrated liver
inflammatory response following exposure of rats to CPF. This included the activation of NF-
kB and increased iNOS, IL-6, TNF-a, and other proteins involved in inflammation [38]. In
conjunction with ROS, pro-inflammatory mediators exacerbates cellular dysfunction and
injury by inducing mitochondrial dysfunction and triggering apoptotic pathways [12]. This
process involves the disruption of the mitochondrial membrane potential, leading to the release
of cytochrome c into the cytoplasm and subsequent activation of caspase-3 which initiates the
execution phase of the apoptotic cascade, culminating in programmed cell death [52]. CPF-
induced mitochondrial dysfunction and caspase-3 activation were evidenced by increased
expression of pro-apoptotic markers (Bax and caspase-3) and decreased levels of the anti-

apoptotic protein Bcl-2.

Se NPs effectively mitigated these effects by suppressing MDA, NO, NF-kB p65, iNOS, IL-6,
and TNF-a, enhancement of GSH and antioxidant enzymes, and prevention of apoptosis. These
findings highlight the dual antioxidant and anti-inflammatory roles of Se NPs in protecting
against CPF-induced liver damage. Accordingly, Se NPs suppressed LPO and enhanced
catalase, SOD and GPx in a murine model of carbon tetrachloride-induced liver damage [45].
These effects were associated with amelioration of liver dysfunction and injury [45]. In rats
challenged with high APAP doses, Se NPs mitigated OS as shown by decreased liver MDA and
enhanced antioxidant enzymes [53]. In cells exposed to patulin toxicity, Se NPs were effective
in suppressing ROS and MDA and enhance antioxidant defenses [46]. Additionally, probiotics
enriched with Se NPs showed anti-inflammatory, anti-apoptotic, and antioxidant properties
mediated via suppression of NF-xkB and Bax, and enhancement of Bcl-2 and catalase in
cadmium-administered rats [54]. To further elucidate the mechanisms underlying the protective
effects of Se NPs, we investigated the SIRT1/FXR/Nrf2 signaling. CPF exposure significantly

downregulated liver SIRT1, FXR, Nrf2, and HO-1 and upregulated Keapl. SIRT1 plays a
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critical role in regulating cellular stress responses by deacetylating NF-kB and Nrf2, thereby
exerting anti-inflammatory and antioxidant effects [17]. The TF FXR dimerizes with retinoid
X receptor (RXR) to modulate numerous genes critical for metabolic homeostasis.
Dysregulation of FXR has been linked to inflammatory conditions and various pathologies,
such as diabetes and cholestasis [24, 55, 56]. Recent studies indicate that FXR activation
markedly decreases LPO by enhancing the expression of key ferroptosis inhibitors, such as
GPX4 and PPARa [57]. Nrf2 and its downstream HO-1 are essential for mitigating oxidative
and inflammatory damage [14]. Under normal conditions, Nrf2 is sequestered in the cytosol by
Keapl and this binding is disrupted upon exposure to ROS followed by nuclear translocation
of Nrf2 and promotion of cytodefensive and antioxidant enzymes [14]. Therefore, the
suppression of SIRT1/FXR/Nrf2 signaling by CPF exacerbates cellular vulnerability to
oxidative and inflammatory injury. Previous studies have demonstrated downregulation of
these signaling molecules under conditions of prolonged ROS generation [58-61]. Consistent
effects of CPF on Nrf2 have been observed across diverse experimental models, including
human neuroblastoma cells, fruit flies, and rodent liver [48, 62, 63]. Se NPs enhanced SIRT1,
Nrf2, and HO-1, and suppressed Keapl in CPF-exposed rats, suggesting that their protective
effects are mediated, at least in part, through the activation of this pathway. The upregulation
of HO-1 is particularly noteworthy, as it catalyzes the degradation of heme into biliverdin and
carbon monoxide, both of which possess antioxidant and anti-inflammatory properties [64].
These findings are consistent with previous reports demonstrating that Se NPs enhance Nrf2
expression and HO-1 activity in broilers exposed to heat stress-induced oxidative damage to
organs [65]. Our study introduced new information on the hepatoprotective efficacy of Se NPs
and the involvement of SIRT1/FXR/Nrf2 signaling (Fig. 8). However, the use of a single dose
and duration for both CPF and Se NPs, the lack of investigation into additional pathways and

molecular targets beyond the SIRT1/FXR/Nrf2 signaling, and the absence of complementary
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in vitro models or mechanistic inhibitors represent limitations of the current study. Nonetheless,
these limitations do not detract from the validity of the core findings, as the observed
hepatoprotective effects of Se NPs were consistently supported by multiple lines of

biochemical, histological, and molecular evidence.5. Conclusion

This study demonstrates that Se NPs effectively counteract CPF-induced hepatotoxicity by
targeting multiple pathological pathways. Se NPs attenuated CPF-induced OS by mitigating
LPO while restoring the activity of key antioxidants. Se NPs exhibited potent cytoprotective
properties, as evidenced by the downregulation of NF-«kB. pro-inflammatory mediators, Bax
and caspase-3, with significant upregulation of Bcl-2. A key finding of this study is the ability
of Se NPs to enhance the SIRT1/FXR/Nrf2 signaling pathway, which plays a pivotal role in
cellular defense mechanisms against oxidative damage and inflammation. By upregulating this
pathway, Se NPs enhanced the endogenous antioxidant response and mitigated CPF-induced
tissue injury. These results underscore the multifaceted therapeutic potential of Se NPs with
the ability to modulate critical cellular signaling pathways. Further studies are warranted to

optimize dosing regimens and evaluate the long-term safety of Se NPs in clinical applications.
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554  Tables:
555  Table 1. Primers used for gRT-PCR.
Gene Forward primer (5'-3") Reverse primer (5'-3")
BCL-2 ACTCTTCAGGGATGGGGTGA TGACATCTCCCTGTTGACGC
BAX AGGACGCATCCACCAAGAAG CAGTTGAAGTTGCCGTCTGC
CASP3 GGAGCTTGGAACGCGAAGAA ACACAAGCCCATTTCAGGGT
KEAP1 TCAGCTAGAGGCGTACTGGA TTCGGTTACCATCCTGCGAG
NRF2 TTGTAGATGACCATGAGTCGC TGTCCTGCTGTATGCTGCTT
FXR CATTAACAACGCGCTCACCTG TTCCTTAGCCGGCAATCCTG
NOS2 ATTCCCAGCCCAACAACACA GCAGCTTGTCCAGGGATTCT
SIRT1 TCTCCCAGATCCTCAAGCCAT TTCCACTGCACAGGCACATA
ACTB AGGAGTACGATGAGTCCGGC CGCAGCTCAGTAACAGTCCG
556
557
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Figure 1. SEM of Se NPs.
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Figure 2. Se NPs mitigated CPF-induced liver injury. Se NPs ameliorated serum ALT (A), AST
(B), and albumin (C) in CPF-administered rats. Data are mean + SEM, (n = 6). **P<0.01 and
***p<0.001 vs Control, and ###P<0.001 vs CPF. (D) Photomicrographs of sections in liver of
control and Se NPs-supplemented rats showing average portal tract with average portal vein
(PV), average bile ducts (black arrow), and average hepatocytes in peri-portal area (red arrow),
CPF-administered rats showing portal tract with mildly dilated congested portal vein (PV),
average bile ducts (blue arrow) and scattered apoptotic hepatocytes in peri-portal area(red
arrow), and CPF-induced rats treated with Se NPs showing showing average portal tract (black
arrow) with mildly dilated congested portal vein (PV), and scattered apoptotic hepatocytes in
peri-portal area (blue arrow). (H&E — X400 — Scale bar = 50 pum).
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Figure 3. Se NPs mitigated hepatic OS in CPF-intoxicated rats. Se NPs decreased liver MDA
(A) and NO (B), and increased GSH (C), SOD (D) and catalase (E) in CPF-administered rats.
Data are mean + SEM, (n = 6). ***P<0.001 vs Control, and ###P<0.001 vs CPF.
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Figure 4. Se NPs attenuated hepatic inflammation in CPF-intoxicated rats. Se NPs decreased
liver NF-kB p65 (A-B) and TNF-a (C), IL-6 (D) and iNOS (E) in CPF-administered rats. Data
are mean £ SEM, (n = 6). *P<0.05, **P<0.01, and ***P<0.001 vs Control, and ###P<0.001 vs
CPF.
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Figure 5. Se NPs prevented apoptosis in CPF-intoxicated rats. Se NPs upregulated liver Bcl-2
MRNA (A) and decreased Bax (B), and caspase-3 mRNA (C), and caspase-3 protein (D) in
CPF-administered rats. Data are mean + SEM, (n = 6). *P<0.05, **P<0.01 and ***P<0.001 vs

Control, and ###P<0.001 vs CPF.
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Figure 6. Se NPs upregulated SIRT1 mRNA (A) and protein (B-C), and FXR mRNA (D) in
liver of CPF-intoxicated rats. Data are mean + SEM, (n = 6). ***P<0.001 vs Control, and

###P<0.001 vs CPF.
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Figure 7. Se NPs enhanced Nrf2/HO-1 signaling in liver of CPF-intoxicated rats. Se NPs
downregulated Keapl mRNA (A), upregulated Nrf2 mRNA (B) and protein (C-D) and HO-1
protein expression (C,E) in CPF-administered rats Data are mean £ SEM, (n = 6). *P<0.05,
**P<0.01 and ***P<0.001 vs Control, and ###P<0.001 vs CPF.
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Figure 8. Mechanistic illustration of the protective effects of Se NPs against CPF-induced liver
injury. CPF exposure increases ROS, provokes, oxidative stress, inflammation, and apoptosis,
and suppresses SIRT1, FXR, and Nrf2/HO-1 signaling. Se NPs counteract CPF toxicity by
enhancing SIRT1, which upregulates FXR and Nrf2 signaling, inhibits NF-«xB, reduces ROS,
suppresses inflammation and apoptosis, and restores antioxidant enzymes, collectively

mitigating hepatocellular damage.
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