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Abstract:

Diabetic nephropathy (DN) is a kidney complication associated with diabetes that can lead to
renal failure. The dipeptidyl peptidase IV inhibitor sitagliptin (SITA) has shown potential
therapeutic benefits for DN. This study investigated the effect of SITA on DN, focusing on its
modulation of the farnesoid X receptor (FXR) and nuclear factor erythroid 2-related factor 2
(Nrf2)/heme oxygenase 1 (HO-1) signaling and its suppressive efficacy on inflammation and
oxidative stress. Thirty-two male rats were divided into four groups: control, SITA-treated,
diabetic, and SITA-treated diabetic rats. SITA was administered orally for 8 weeks to diabetic
rats induced with streptozotocin, after which samples were collected for analysis. The results
indicate that SITA effectively reduced hyperglycemia, weight loss, and kidney injury and
fibrosis. SITA also decreased oxidative stress, inflammatory markers, and apoptosis, as
demonstrated by reductions in kidney malondialdehyde (MDA), myeloperoxidase, nitric oxide
(NO), nuclear factor-kappaB (NF-kB), interleukin (IL)-1B, inducible NO synthase (iNOS),
tumor necrosis factor (TNF)-a, Bcl-2-associated X protein (Bax), and caspase-3. These
protective effects were associated with Kelch-like ECH-associated protein (Keap)-1 inhibition,
increased levels of Nrf2 and FXR, and enhanced antioxidant activity as well as Bcl-2
upregulation. In silico analysis showed the binding of SITA with FXR, NF-«B p65, iNOS,
Keap-1, caspase-3, and HO-1. In conclusion, SITA mitigates DN by reducing hyperglycemia,
inflammation, and oxidative stress, while enhancing antioxidant defenses, FXR and Nrf2/HO-
1 signaling.

Keywords: Hyperglycemia; Dipeptidyl peptidase 1V inhibitor; Nephropathy; Inflammation;
Oxidative stress.

1. Introduction

Diabetic kidney disease (DKD), also known as diabetic nephropathy (DN), is a chronic kidney

disorder that emerges as a complication in diabetic patients [1]. Key risk factors for DKD
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include prolonged periods of poorly controlled blood glucose (BG) levels and hypertension.
Persistent hyperglycemia plays a central role in the onset and advancement of DN, despite the
multifactorial nature of the disease [2] . Hyperglycemia not only provokes structural alterations
in the kidney but also induces mechanical stress and hemodynamic changes in the glomeruli
by activating several transcription factors and signaling molecules [2]. Chronic hyperglycemia
can impact the glomerular basement membrane by causing non-enzymatic protein glycation,
leading to stiffening of the efferent arterioles [1]. This alteration elevates the glomerular
filtration rate and promotes ultrafiltration, consequently increasing intraglomerular pressure
and triggering progressive hypertrophy of the glomeruli, which culminates in
glomerulosclerosis [1]. The chronic microvascular effects of hyperglycemia involve
tubuloglomerular atrophy, mesangial matrix expansion, interstitial fibrosis, and thickening of
the basement membrane and arterioles. Approximately 40% of diabetic patients may eventually
develop DN, making it the leading cause of end-stage renal disease [3, 4]. DKD arises
approximately 10 years post-diagnosis in type 1 diabetes mellitus (T1DM) but can occur at
various stages in individuals with type 2 diabetes [1].

Oxidative stress (OS) and inflammation are implicated in the complications of diabetes,
including nephropathy and cardiomyopathy [5, 6]. Hyperglycemia-driven excess production of
reactive oxygen species (ROS) and the resulting OS are recognized as key contributors to the
pathophysiological mechanisms underlying diabetes-related vascular complications, including
DKD [2, 7]. Elevated ROS levels can detrimentally affect cellular components, and this
oxidative burden leads to lipid peroxidation (LPO), protein oxidation, DNA damage, and
nuclear factor kappaB (NF-xB) activation, alongside an increase in pro-inflammatory
mediators, all of which contribute to cellular injury [8]. OS and inflammation provoke cell
death via apoptosis and both processes are therefore fundamental drivers in DN pathogenesis.

Evidence from experimental models of DN reveals elevated OS markers, decreased antioxidant
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defenses, activation of NF-«B, and upregulated inflammatory and apoptotic factors [5, 9].
Clinically, hyperglycemia in diabetic patients has been correlated with an inflammatory
response marked by enhanced macrophage infiltration [10]. Therefore, agents with combined
antioxidant and anti-inflammatory properties hold promise for mitigating DN progression and
its associated pathologies. In this context, the activation of nuclear factor erythroid 2-related
factor 2 (Nrf2) and farnesoid X receptor (FXR) has recently been shown to effectively attenuate
OS and inflammation in the kidney of diabetic and chlorpyrifos (CPF)-intoxicated rats [9, 11].
In another recent study, the dual activation of FXR and Nrf2 prevented cholestatic liver injury
[12]. Activation of Nrf2 represents a key approach to reducing OS and inflammation associated
with various metabolic disorders [13]. Nrf2 is a transcription factor (TF) that controls the
expression of antioxidant genes, such as heme oxygenase-1 (HO-1) under conditions of
elevated ROS [14]. Nrf2 if found sequestered by Kelch-like ECH-associated protein 1 (Keap-
1) in the cytoplasm, a binding that is dissociated in response to increased ROS [14]. The
protective role of Nrf2 signaling in mitigating redox imbalance and inflammation in diabetes-
related complications is well-documented [5, 14, 15]. FXR is expressed abundantly in the
kidneys and in several tissues, and provides protective effects against metabolic dysregulation,
and redox imbalance [16]. Studies indicate that FXR deficiency is associated with insulin
resistance, hyperglycemia, and other metabolic abnormalities and accelerates the progression
of DN. In contrast, its activation improves metabolic alterations and attenuates kidney injury
by reducing inflammation, OS, and fibrosis [17-19].

Sitagliptin (SITA) is a dipeptidyl peptidase IV inhibitor and an oral anti-hyperglycemic drug.
SITA enhances insulin secretion in a glucose-dependent manner and prolongs the half-life time
of glucagon-like peptide-1 and other incretin hormones [20]. Its safety and efficacy both in
mono- and combination therapies in adult diabetic patients have been suggested and it has also

been shown to lower glycated hemoglobin levels [21, 22]. Besides its antidiabetic efficacy,
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SITA has shown beneficial effects against diabetes complications and other disorders. Very
recently, Li et al [23] reported the potential of SITA to prevent Parkinson's disease and other
neurodegenerative disorders. Owing to its antiapoptotic and antifibrotic properties, the
beneficial effects of SITA against COVID-19 has been suggested [24]. We have previously
reported the protective efficacy of SITA against diabetic cardiomyopathy and investigated the
involvement of JAK/STAT signaling [6]. The protective efficacy of SITA against kidney injury
induced by chemotherapy [25, 26], and its antifibrosis effects in diabetic rats [27, 28] have also
been reported. The role of FXR and Nrf2/HO-1 signaling in mediating the efficacy of SITAon
DKD hasn’t been explored yet.

This study aimed to investigate whether the attenuation of oxidative stress, inflammation, and
renal damage by SITA in a diabetic rat model is linked to the upregulation of Nrf2/HO-1
signaling and FXR. Utilizing a combined in vivo experimental approach and in silico molecular
docking analysis, we evaluated the hypothesis that SITA confers protection against DN by
modulating Nrf2/HO-1 signaling and FXR and attenuating oxidative and inflammatory
responses. By defining the involvement of Nrf2/HO-1 signaling and FXR, this research may
offer an insight into the mechanism of action of SITA, potentially strengthening the rationale
for its use in mitigating DN progression beyond glycemic control.

2. Materials and methods

2.1. Animals and experimental design

Thirty-two 10 week-old male Sprague-Dawley rats were housed at a standard temperature and
humidity on a 12-h light/dark cycle in polypropylene cages (42.5 cm x 26.6 cm x 18.5 cm)
enriched with corn cob. The rats (3 per cage) were given access to food and water ad libitum.
The study was approved by the ethics committee of King Saud University (IRB: SE-19-155).
Streptozotocin (STZ; Sigma, USA,; Cat. no.: S0130) (55 mg/kg body weight) dissolved in cold

citrate buffer (0.1 M, pH 4.5) was injected intraperitoneally (i.p.) to overnight fasted rats to
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induce T1DM, while citrate buffer was given to the control rats. A commercial kit (Spinreact,
Spain; Cat. no. 1001190) was used to measure BG after 72 h and animals with fasting BG
values of at least 250 mg/dl were selected. Normal rats were allocated into Group | (Control)
and Group Il (SITA) that received 0.9% saline and 10 mg/kg SITA (Sigma, USA; Cat. no.
SML3205) dissolved in 0.9% saline, respectively. Diabetic rats were allocated into Group 11
(STZ) and Group IV (STZ + SITA) that received 0.9% saline and 10 mg/kg SITA, respectively.
Each group included 6 rats and SITA and 0.9% saline were supplemented daily for 8 weeks
via oral gavage. For 24-h urine collection, rats were temporarily housed in individual metabolic
cages equipped with wire-mesh floors and urine collection funnels.

Following treatment, rats were fasted overnight, and blood was collected via cardiac puncture
under ketamine/xylazine anesthesia. After immediate dissection, the kidneys were removed
and weighed. Samples from the kidney were collected on RNALater (ThermoFisher, USA, Cat.
no. AM7020) while others on 10% neutral-buffered formalin (NBF). Other samples were
processed via homogenization (10% w/v) in Tris—HCI buffer (10 mM; pH 7.4), centrifuged,
and the supernatant was stored at -80°C.

2.2. Biochemical assays

Levels of creatinine and blood urea nitrogen (BUN) in serum and microalbumin in urine were
assayed using Biodiagnostic (Egypt; Cat. no. CR 1250 and UR 2110) and Spinreact (Spain;
Cat. no. 1107170) kits, respectively. Levels of reduced glutathione (GSH), malondialdehyde
(MDA), and nitric oxide (NO) and activities of superoxide dismutase (SOD) and catalase were
determined in the kidney homogenate supernatant using Biodiagnostic kits (Egypt; Cat. no.
TA2511, MD2528, NO2533, SD2521, and CA2517, respectively). The activities of kidney
HO-1 and myeloperoxidase (MPO) were measured according to Abraham et al. [29] and
Krawisz et al. [30], respectively. NF-xB p65, TNF-o and IL-1p (ELabscience, China; Cat. no.

E-EL-R0674, E-EL-R2856 and E-EL-R0012, respectively), and caspase-3 (Cusabio, China;
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Cat. no. CSB-E08857r) were measured in the kidney homogenate supernatant. All assays were
conducted strictly following the manufacturers’ instructions.

2.3. Histopathology and immunohistochemistry (IHC):

Following fixation in 10% NBF for 24 h, the kidney samples were processed for embedding in
paraffin. 5-um thick-sections were cut, stained with hematoxylin and eosin (H&E) and
Masson’s trichrome and examined using a light microscope (Olympus BX40, Olympus Corp.,
Japan). Other sections were processed for IHC staining to determine changes in Nrf2 and FXR.
Briefly, the sections were dewaxed, rehydrated, and then treated with 0.05 M citrate buffer (pH
6.8) and 0.3% hydrogen peroxide (H20z). After blocking, primary antibodies (Biospes, China;
Cat. no. YPA1865 and YPA1581 for Nrf2 and FXR, respectively) were added overnight at
4°C, and the sections were washed and the secondary antibody (Biospes, China; Cat. no.
BSA1031) was added. 3,3'-diaminobenzidine (Sigma, USA; Cat. no. D12384) in H,O, was
used for color development and counterstaining was carried out using hematoxylin. ImageJ
(NIH, USA) was used to measure intensity of the developed color (6/rat).

2.4. qRT-PCR

Changes in kidney Bax, Bcl-2, caspase-3, INOS, Nrf2, FXR, NF-kB p65, and Keap-1 mRNA
were assayed using gRT-PCR. RNA was isolated using Trizol (Invitrogen, ThermoFisher
Scientific, Waltham, MA, USA, Cat. no. 15596026) and RNA samples with A260/A280 value
> 1.8 after purification were processed for cDNA synthesis via reverse transcription. CDNA
was amplified using SYBR Green (ThermoFisher Scientific, USA; Cat. no. 4309155) and
primer pairs in Suppl. Table I. The 224 method [31] was employed for analysis using B-actin

as a control.

2.5. In silico molecular docking
The affinity of SITA towards FXR (PDB ID: 7D42), NF-kB p65 (PDB ID: 5U01), iNOS

(PDB ID: 3EAI), caspase-3 (PDB ID: INME), HO-1 (PDB ID: 1DVE), and Keap-1 (PDB ID:
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5CGJ) was investigated using PyRx virtual screening software (version 0.8) [32]. The target
protein were prepared using Autodock Tools (ADT; v1.5.6) and PyMOL (v2.3.2) and LigPlot
(v2.2.8) [33] were used for visualization of binding mode and protein-ligand interactions,
respectively.

2.6. Statistical analysis

All the data were expressed as the mean £ SEM. Statistics was performed using GraphPad
Prism 8 software. The comparisons between the different groups were performed by one-way
ANOVA, following with the post hoc Tukey's test. P values less than 0.05 were considered
statistically significant.

3. Results

3.1. SITA ameliorates hyperglycemia and kidney damage in diabetic rats

Initial and final BG levels were markedly elevated in diabetic rats (Fig. 1A; P<0.001). The
same animals exhibited significant decrease in body weight (BW) (Fig. 1B,C) and increased
kidney weight (KW)/BW ratio (Fig. 1D) (P<0.001). Biochemical findings represented in
Figures 2A-C revealed significant increase in creatinine, BUN, and microalbumin in diabetic
animals (P<0.001). The findings in Fig. 3 showed degeneration of the epithelial lining of renal
tubules, atrophied irregular renal corpuscle, and deposition of fibers in the interstitium in
diabetic rats which also showed fiber deposition surrounding blood vessels. SITA effectively
alleviated hyperglycemia, BW, KW/BW ratio (Fig. 1), kidney function markers (Fig. 2), and
prevented kidney tissue damage (Fig. 3).

3.2. SITA mitigates kidney OS in diabetic rats

Diabetic rat kidney showed remarkable elevation in MDA (Fig. 4A) and MPO (Fig. 4B) along
with declined GSH (Fig. 4C), SOD (Fig. 4D), and CAT (Fig. 4E) as compared to the control
(P<0.001). SITA ameliorated MDA levels, MPO activity and antioxidants when supplemented

to diabetic rats whereas had no effect on normal animals.
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3.3. SITA attenuates kidney inflammation in diabetic rats

The effect of SITA on the inflammatory response in the kidney of diabetic rats was evaluated
via assessment of changes in NF-kB p65 and pro-inflammatory mediators. Diabetes was
associated with elevated NF-xB p65 levels (Fig. 5A,B) along with increased kidney TNF-a
(Fig. 4C) and IL-1B (Fig. 4D). INOS mRNA (Fig. 4E) and NO levels (Fig. 4F) were remarkably
increased in the diabetic kidney when compared with the control group (P<0.001). Treatment
with SITA effectively decreased NF-kB p65 and pro-inflammatory mediators (TNF-a, IL-1P
and iINOS), and NO in dibetic rats (P<0.001).

In silico investigations revealed the affinity of SITA to bind NF-kB p65 and iNOS with binding
energies -7.5 and -8.2 kcal/mol, respectively (Fig. 6 and Table 1). The complexes of SITA with
NF-xB p65 and iNOS showed polar bonding with two amino acid residues of both proteins and
hydrophobic interactions with five and three residues, respectively.

3.4. SITA prevents kidney apoptosis in diabetic rats

Kidney Bcl-2 mRNA was decreased in diabetic rats whereas Bax and caspase-3 were
upregulated significantly as compared to control rats (Fig. 7A-D). SITA upregulated Bcl-2 and
decreased Bax and caspase-3 in the diabetic rat kidney (P<0.001). Investigation of the binding
of SITA with caspase-3 revealed 8 hydrophobic interactions and -5.3 kcal/mol binding energy
(Fig. 7E and Table 1).

3.5. SITA upregulates Nrf2/HO-1 signaling and FXR in diabetic rats

Keap-1 (Fig. 8A) and Nrf2 (Fig. 8B) mRNA levels were significantly increased and decreased,
respectively in the kidney of diabetic rats as compared to control rats (P<0.001). IHC staining
of Nrf2 (Fig. 8C-D) and HO-1 activity (Fig. 8E) determination showed significant
downregulation in diabetic rats as compared to control rats. SITA downregulated Keap-1 and
boosted Nrf2 and HO-1 in the kidney of diabetic rats while had no effect on normal rats. The

effect of SITA on Keap-1 and HO-1 was further investigated using in silico molecular docking
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(Fig. 9 and Table 1). SITA exhibited -10.2 and -9.4 kcal/mol binding energies with Keap-1 and
HO-1, respectively. SITA (Fig. 9A) and the Nrf2 activator RA839 (Fig. 9B, Suppl. Table II)
showed 7 and 17 hydrophobic interactions and 5 and 3 polar bonding, respectively, with Keap-
1. The complex of SITA with HO-1 showed polar bonding and hydrophobic interactions with
one and ten residues, respectively (Fig. 9C and Table 1).

Data represented in Fig 10 A-C showed significant downregulation of FXR mRNA and protein
in the kidney of diabetic rats as compared to control rats (P<0.001). SITA upregulated FXR
remarkably in diabetic rats whereas showed no effect on normal rats. Twelve and two
hydrophobic and polar interactions, respectively, between SITA and FXR were shown in silico
and the binding energy is -9.2 kcal/mol (Fig. 10D and Table 1). Twelve of the residues in
SITA/FXR complex were noticed in the complex formed by the FXR activator tropifexor
(Suppl. Fig. I, Suppl. Table I1).

4. Discussion

Nephropathy is one of the serious complications of diabetes characterized by functional and
structural changes in the Kkidney [1]. Despite the progression in understanding the
pathophysiology of DN, the condition is still undertreated due to the lack of effective
sustainable treatments. The implication of OS and inflammation in DKD has been
acknowledged and agents that attenuate these processes showed beneficial effects against the
disease progression [9]. This study revealed that SITA protects the kidney against diabetes-
induced injury by ameliorating hyperglycemia, OS, inflammation, and apoptosis, an effect that
is associated with upregulation of FXR and Nrf2/HO-1 signaling.

Diabetic rats in this study exhibited hyperglycemia and abnormal renal function markers,
including creatinine, BUN, and microalbumin. Hyperglycemia is a result of B-cells destruction
and impaired insulin secretion because STZ is particularly toxic to these cells and promotes

oxidative DNA damage [34]. Hyperglycemia was associated with a decrease in BW and
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increase in KW/BW ratio. These findings align with previous studies showing BW loss and
increased KW/BW ratio along with hyperglycemia and altered levels of kidney function
markers in diabetic rodents [5, 9, 35]. Additionally, examination of the stained tissue revealed
glomerular atrophy, irregular corpuscles, tubular epithelium degeneration and interstitial
fibrosis as previously reported [9]. The progression of DN involves distinctive changes such
as interstitial fibrosis, atrophic changes and renal dysfunction [3, 36], all have been observed
in this study. BW loss observed in the diabetic rats is directly ascribed to the surplus utilization
of lipids and proteins to provide energy in the lack of ability to use glucose [37]. The structural
abnormalities, such as collagen deposition, could explain the changes in KW which could also
be attributed to the upregulation of fibronectin, collagen, and growth factors [38]. SITA
effectively ameliorated hyperglycemia, kidney hypertrophy and injury along with amelioration
of creatinine, BUN and microalbumin. These findings highlight the nephroprotective efficacy
of SITA which has been previously demonstrated in animals challenged with chemotherapy
[25, 26]. In uninephrectomized rats challenged with doxorubicin, SITA administration for 6
weeks ameliorated tubulointerstitial injury and fibrosis [25], and its administration for 14 days
prevented cyclosporine-induced kidney injury and ameliorated serum urea and creatinine [26].
In addition to its antidiabetic efficacy, the nephroprotective mechanism of SITA could be linked
to its role in attenuating OS and inflammation as reported in animal models of chemotherapy-
induced nephrotoxicity [25, 26]. In this study, markers of OS were evident through increased
MDA, NO, and MPO activity, accompanied by reduced GSH and antioxidant enzyme
activities. Inflammation in diabetic kidneys was characterized by elevated levels of NF-xB p65,
INOS, TNF-a, and IL-1B. The pathogenesis of DN is heavily influenced by OS and
inflammatory mechanisms [2, 7, 39]. Persistent hyperglycemia leads to excessive production
of ROS, driving LPO and NF-kB activation, which collectively contribute to cellular injury

[8]. Upon activation by ROS, NF-«xB leads to increased secretion of IL-1 and TNF-a, and
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promotes iINOS, thereby explaining the rise in NO production. In our recent study [9], we have
provided further evidence of inflammation in DN manifested by upregulation of CD68 which
is an indicator of macrophage infiltration and has been demonstrated in renal autopsy samples
from diabetic patients [40]. This interaction between OS and inflammation fosters apoptotic
pathways. For instance, superoxide, a prominent ROS, can combine with NO to form the highly
reactive oxidant peroxynitrite that damages DNA and induces cell death [41]. In this study,
diabetic rats showed declined Bcl-2 and increased Bax and caspase-3 expression in the kidney.
Inflammatory mediators and ROS stimulate pro-apoptotic Bax expression and disrupt
mitochondrial membrane potential [42] and together with the impairment of mitochondrial
respiratory function, Bax results in DNA damage and increases mitochondrial membrane
permeability and cytochrome c release into the cytosol and subsequent activation of caspase-3
[43]. Activated caspase-3 promotes DNA fragmentation and cytoskeleton breakdown,
culminating in apoptosis.

SITA demonstrated significant protective effects against OS, inflammation, and kidney injury.
These protective actions were reflected by reduced levels of markers associated with oxidative
and inflammatory stresses, including MDA, NO, MPO, NF-kB p65, pro-inflammatory
mediators, Bax, and caspase-3, alongside an increase in antioxidant levels and Bcl-2
expression. Previous pre-clinical studies have pointed to the efficacy of SITA in mitigating OS
and inflammation in the kidney and other tissues [6, 25, 26]. SITA afforded a protective role
against myocardial oxidative damage in diabetic animals [6]. SITA mitigated LPO, IL-6 and
IL-1B, suppressed JAK/STAT signaling and enhanced antioxidants in the heart of diabetic rats
[6]. In a rat model of cyclosporine nephrotoxicity, SITA ameliorated MDA, GSH, SOD, CAT,
Bax and TNF-a [26]. In a doxorubicin nephropathy model, SITA mitigated inflammation and
ROS generation as shown by decreased IL-1p and the mRNA levels of NADPH oxidase

subunits [25]. In a rat model of high-fat diet-induced T2DM, SITA ameliorated renal function
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and prevented TGF-B1/Smad-mediated kidney fibrosis [27]. Similarly, SITA has been shown
to attenuate inflammation and fibrosis by suppressing TGF-p, collagen deposition, and TNF-a
in diabetic rats [28]. In silico findings added further support to the anti-inflammatory and anti-
apoptosis efficacy of SITA. The results pinpointed the affinity of SITA to bind NF-xB p65
which can lead to suppression of its transcriptional activity. Moreover, SITA exhibited affinity
towards numerous amino acid residues in iNOS and caspase-3.

To investigate the nephroprotective mechanism of SITA, its influence on the Nrf2 and FXR
was evaluated in the kidney of rats and an in silico investigation was also conducted. The
diabetic rat kidneys exhibited upregulation of Keap-1 and a concurrent decrease in Nrf2. Nrf2,
HO-1, and FXR, indicating suppression of the Nrf2/HO-1 pathway and FXR expression. The
suppression of Nrf2 was observed in rats with DN as previously demonstrated [5, 9, 44]. These
findings are also consistent with previous research demonstrating that hyperglycemia and other
metabolic disturbances in diabetes and obesity correlate with reduced FXR levels, which in
turn contribute to the progression of DN [9, 18, 19, 45, 46].

SITA downregulated Keap-1 and enhanced the expression of Nrf2, HO-1, and FXR, results
directly associated with the alleviation of metabolic disturbances, OS and inflammation. Nrf2
induces the transcription of antioxidant and cytoprotective enzymes, thereby reducing ROS
and mitigating oxidative damage, and directly inhibits NF-xB [14, 47]. In this study, the
increased expression of FXR was linked to improved BG levels and mitigation of inflammatory
and oxidative stresses. FXR modulates BG regulation by influencing insulin release and
sensitivity and gluconeogenesis [48-50]. Conversely, FXR deficiency leads to hyperglycemia,
which is associated with decreased insulin release [49], with research on B-cells indicating that
FXR modulates insulin secretion [51]. Activation of FXR has been shown to protect against
mitochondrial damage and excess ROS associated with ischemia/reperfusion in murine kidney

[52]. Nrf2 mediates the beneficial role of FXR against OS, with the silencing of Nrf2 nullifying
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the beneficial consequences of FXR activation [52]. FXR activation also confers protection to
the kidney in diabetes by reducing oxidative damage, fibrosis, and glomerulosclerosis [17].
Recently, Nrf2 and FXR have been shown to jointly mitigate liver injury caused by cholestasis
[12]. Therefore, the combined action of Nrf2 and FXR likely contributes, at least in part, to the
nephroprotective effects of SITA.

A key finding of this study is the demonstration that the protective role of SITA against DN
involves the concerted upregulation of both Nrf2/HO-1 signaling and FXR. The integrated
approach, combining in vivo experimental validation with in silico molecular docking to
predict the interactions of SITA with key targets, including NF-kB p65, iNOS, caspase-3, Keap-
1, HO-1, and FXR, provides insights into its mechanism of renoprotection. However, certain
limitations should be acknowledged. The study utilized a single dose and duration of SITA
treatment; exploring dose-response relationships and longer-term effects would provide further
insights. While the STZ-induced diabetic rat model is well-established for studying DN

pathogenesis and drug effects, the obtained findings should be investigated in clinical settings.

5. Conclusion

This study provides new insights into the protective mechanisms of SITA against DKD. SITA
alleviated hyperglycemia and kidney damage, fibrosis, OS, inflammation, and cell death. These
protective effects were linked to the activation of FXR and Nrf2/HO-1 signaling, which led to
increased antioxidant defenses and a reduced inflammatory response. Molecular docking
studies suggested that SITA interacts with FXR, HO-1, Keapl, NF-kB, iNOS, and caspase-3,
further supporting its therapeutic potential. In summary, SITA shows promise in mitigating DN
by activating Nrf2/HO-1 signaling, enhancing FXR, and reducing OS, inflammation, and
apoptosis. Future studies are recommended to further investigate other underlying mechanisms.
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520 Tables:

521  Table 1. Binding affinities and interaction of sitagliptin with different protein targets.

Lowest binding

Target Polar bonds Hydrophobic interactions
energy (kcal/mol)
NF-kB p65 -7.5 Hisb8, Ser45 Lys56, Pro47, GIn220, Glu222, Thr52
iINOS -8.2 Tyr293, GIn265 Pro291, 11285, GIn282
Argl64, Glul24, Pro201, Tyr1975,
Caspase-3 -5.3
Gly125, Cys264, Tyr195, Val266
Leu365, Val465,
Ala556, Gly462, Leu557, Gly 509, Val604,
Keap-1 -10.2 Cysb13, Val418,
Gly364, Gly603
Arg4l5
Phe214, Gly143, Ser142, Ala28, Asn210,
HO-1 -9.4 Gly139

Leul38, His25, Arg136, Phe207, Tyrl34
11e352, His447, Phe329, Phe443, Arg331,

FXR -9.2 Tyr369, Ser332  Met265, 11e335, Gly343, Met328, Val325,
Met290, Leu348

522  NF-xB p65: nuclear factor-kappaB p65; iNOS: inducible nitric oxide synthase; Keap-1: Kelch-
523  like ECH-associated protein 1; HO-1: heme oxygenase 1.
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525
526  Fig. 1. Sitagliptin ameliorated blood glucose (BG) (A), body weight (BW) (B-C) and kidney

527  weight (KW)/BW ratio (D) in diabetic rats. Data are mean + SEM, (n=8). "P<0.05, ""P<0.01
528 and "P<0.001 versus Control, and ##P<0.001 versus Diabetic.
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529
530  Fig. 2. Sitagliptin alleviated creatinine (A), blood urea nitrogen (BUN) (B) and microalbumin

531  (C) in diabetic rats. Data are mean * SEM, (n=8). "P<0.05, “'P<0.01 and ***P<0.001 versus
532  Control, and ##P<0.001 versus Diabetic.

21



533
534

535
536
537
538
539
540
541
542
543

STZ SITA Control

STZ + SITA

RO ANy . Ry e oR 3w
Fig. 3. Sitagliptin attenuated kidney injury in diabetic rats. H&E-stained sections from the
control and SITA-supplemented rats showing normal renal corpuscle and glomeruli
(arrowhead) and normal different types of tubules (arrow), diabetic rats showing irregular
atrophied renal corpuscle (arrowhead), and degenerated tubular epithelium (arrows), and
diabetic rats treated with SITA showing remarkable amelioration of the renal corpuscles
degeneration (arrowhead) and normal tubules (arrow). (Scale bar = 50 pm). Masson’s
trichrome-stained sections from the control and SITA-supplemented animals showing normal
distribution and amount of interstitial fibers (arrow), diabetic rats showing marked increase in
fibrous tissue in the interstitium (arrow), and around blood vessels (arrowhead), and diabetic

rats treated with SITA showing marked decrease in fibrotic deposition. (Scale bar = 100 um).
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Fig. 4. Sitagliptin prevented oxidative stress in diabetic rats. SITA ameliorated renal
malondialdehyde (MDA) (A), and myeloperoxidase (MPO) (B), and increased reduced
glutathione (GSH) (C), superoxide dismutase (SOD) (D) and catalase (E) in diabetic rats. Data
are mean = SEM, (n=8). "P<0.05, “P<0.01 and ""P<0.001 versus Control, and **P<0.001
versus Diabetic.
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Fig. 5. Sitagliptin downregulated kidney nuclear factor-kappaB (NF-kB) p65 mRNA (A) and
protein (B), tumor necrosis factor (TNF)-a (C) and interleukin (IL)-1f (D), inducible nitric
oxide synthase (iNOS) mRNA (E), and nitric oxide (NO) levels (F) in diabetic rats. Data are
mean = SEM, (n=8). "P<0.05, “P<0.01 and “"P<0.001 versus Control, and #*P<0.001 versus

Diabetic.
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556
557  Fig. 6. Molecular docking shows the interaction between sitagliptin and nuclear factor-kappaB

558  (NF-xB) p65 (A) and inducible nitric oxide synthase (iNOS) (B).
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Fig. 7. Sitagliptin upregulated kidney B-cell lymphoma 2 (Bcl-2) (A) and suppressed Bcl-2-
associated X protein (Bax) (B) and caspase-3 (C) mRNA, and caspase-3 protein levels (D) in
diabetic rats. Data are mean + SEM, (n=8). “P<0.05, “P<0.01 and ““P<0.001 versus Control,
and *¥P<0.001 versus Diabetic. (E) Molecular docking shows the interaction between
sitagliptin and caspase-3.
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Fig. 8. Sitagliptin enhanced nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase
1 (HO-1) signaling in diabetic rat. Sitagliptin decreased kidney Keap-1 mRNA (A) and
upregulated Nrf2 mRNA (B), Nrf2 protein (C-D) and HO-1 activity (E). Data are mean = SEM,
(n=8). “P<0.05, “P<0.01 and ““P<0.001 versus Control. *#P<0.01 and *#P<0.001 versus
Diabetic.
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571
572  Fig. 9. Molecular docking shows the binding modes of sitagliptin (A) and RA839 (B) with

573  Kelch-like ECH-associated protein 1 (Keap-1) and sitagliptin with heme oxygenase 1 (HO-1)
574 (C).
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576  Fig. 10. Sitagliptin upregulated kidney farnesoid X receptor (FXR) in diabetic rat. Sitagliptin
577 increased FXR mRNA (A) and protein (B) in the diabetic kidney. Data are mean + SEM, (n=8).

578 P<0.001 versus Control, and *#P<0.001 versus Diabetic. (D) Molecular docking showing
579 the binding of sitagliptin with FXR.
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