Please cite the Published Version

Lolli, Lorenzo (2024) Methodological Rigor in Reference Chart Development: A Comment on "Normative Reference Centiles for Sprint Performance in High-Level Youth Soccer Players: The Need to Consider Biological Maturity". Pediatric Exercise Science, 36 (3). pp. 170-171. ISSN 0899-8493

DOI: https://doi.org/10.1123/pes.2024-0057

Publisher: Human Kinetics **Version:** Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/641696/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an author accepted manuscript of an article published in Pediatric Exercise Science, by Human Kinetics. This version is deposited with a Creative Commons Attribution 4.0 licence [https://creativecommons.org/licenses/by/4.0/], in accordance with Man Met's Research Publications Policy. The version of record can be found on the publisher's website.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

1	LETTER TO THE EDITOR
2	
3	Methodological rigor in reference chart development: A comment on "Normative
4	Reference Centiles for Sprint Performance in High-Level Youth Soccer Players: The Need
5	to Consider Biological Maturity"
6	
7	Running head: Age-specific physical performance ranges
8	
9	Lorenzo Lolli ¹
10	
11	¹ Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan
12	University, Manchester, UK
13	
14	
15	Address for Correspondence:
16	Lorenzo Lolli
17	Department of Sport and Exercise Sciences,
18	Institute of Sport,
19	Manchester Metropolitan University,
20	99 Oxford Rd, Manchester M1 7EL,
21	United Kingdom
22	email: lollilorenzo0@gmail.com
23	
24	
25	

In a recent study in *Pediatric Exercise Science*, Ruf et al. (13) illustrated novel reference charts for sprint performance outcome measures by chronological age and ultrasound-based Tanner-Whitehouse (TW) II skeletal age. Notwithstanding the study conclusions (13) advocating the construction of alternative reference charts against proxy measures of skeletal maturation in mind, the design of these reference charts (13) requires consideration of methodological requirements for valid development and evaluation before any implementation (5, 12, 15).

Measurement accuracy is essential for constructing appropriate reference charts (6, 12). Data for dependent variables collected in less-standardized settings are prone to larger measurement error (14) that, if appreciably implausible, might lead to misclassifying an individual's *relative standing* on a reference chart (6). The integrity of sprint performance-on-skeletal age centiles (13) *also* depended on the independent variable measurement accuracy determined using ultrasound procedures (13). Monitoring measurement processes is important for reference chart development, and it involves, for example, application of the Bland-Altman method (12).

In this context, the width of the limits of agreement from a study in male and female adolescent athletes (7) revealed true differences for 95% of pairs of future manually-rated FELS (*criterion*) *versus* ultrasound-based (*alternative*) skeletal ages could be as high as ~2.55 y. Despite the study design (7), the lack of information relevant to the exact TW-II protocol (7), and considerations that methods provided skeletal ages that were comparable (13), the width of the limits of agreement (7), and *not* the mean bias, informs between-method comparison interpretations contingent on well-defined analytical goals (2). Accordingly, the width of these limits of agreement (7) was broad enough to suggest between-method *disagreement* and the potential for ultrasound assessments to produce also inaccurate TW-II skeletal ages for any sprint performance-on-skeletal age centile chart to be of practical value (2, 6, 12).

More evidence for instrumentation-related measurement unreliability comes from descriptive statistics for TW-II skeletal age in Table 1 (13). Specifically, the 95% prediction intervals for the TW-II skeletal age in the U16 and U17 age groups, calculated using the reported mean and standard deviation estimates (1, 4, 13), ranged from ~14.7 to 18.7 y and ~15.6 to 18.8 y, respectively. Note that the upper limits of these intervals exceeded the TW-II skeletal age at full maturity for boys of 18.2 y and indicated the measurement range included individual data points that do *not* exist on the original TW-II scale (3) despite the fitted range (13).

The construction of reference charts also deserves conceptual and contextual considerations (5, 6, 12). First, it was unclear whether this study (13) aimed to pursue a *prescriptive* or *descriptive* approach (12). These centiles seem reconcilable with a *descriptive* approach given the study *Methods* (13), yet probably inconsistent even to define *local* references as unlikely representative of the broader German population of youth football players (6). Second, any advantage for selecting skeletal age, in place of chronological age, as a measure of time requires concrete evidence for justification (16) given the shape of the reference curves differed *between*-performance outcomes only (13). *Prescriptive* skeletal age centiles development may be difficult and can also limit a consistent tracking of the individual player over different career stages (8) considering biological maturation assessment seems unnecessary towards and beyond youth-to-senior transition phases. Despite also alternative illustrations of 95% prediction intervals for performance test outcomes by manually-rated TW-II skeletal age (10), chronological age centiles remain informative *if* contextualized against population-based growth velocity events (9, 11).

Reference charts necessitate formal scrutiny before implementation and can be misleading if inconsistent with fundamental measurement requirements for valid development (5, 6, 12, 15).

References

76

- 77 1. Altman DG, Bland JM. Standard deviations and standard errors. BMJ. 2005;331(7521):903.
- 78 2. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables
- relevant to sports medicine. Sports Med. 1998;26(4):217-38.
- 3. Cameron N. Measuring maturity. In: Molinari L, Cameron N, Hauspie RC, editors. Methods in Human
- 81 Growth Research. Cambridge Studies in Biological and Evolutionary Anthropology. Cambridge: Cambridge
- 82 University Press; 2004. p. 108-40.
- 83 4. Chinn S. Statistics in respiratory medicine. 1. Ranges, confidence intervals, and related quantities: what
- they are and when to use them. Thorax. 1991;46(5):391-3.
- 85 5. Cole TJ. Commentary: Methods for calculating growth trajectories and constructing growth centiles. Stat
- 86 Med. 2019;38(19):3571-9.
- 87 6. Cole TJ. The use and construction of anthropometric growth reference standards. Nutr Res Rev.
- 88 1993;6(1):19-50.
- 89 7. Cumming SP, Pi-Rusiñol R, Rodas G, Drobnic F, Rogol AD. The validity of automatic methods for
- 90 estimating skeletal age in young athletes: a comparison of the BAUSport ultrasound system and BoneXpert with
- 91 the radiographic method of Fels. Biol Sport. 2024;41(1):61-7.
- 92 8. Datson N, Weston M, Drust B, Atkinson G, Lolli L, Gregson W. Reference values for performance test
- outcomes relevant to English female soccer players. Sci Med Footb. 2022;6(5):589-96.
- 9. Lolli L, Gregson W, Bonanno D, Kuitunen S, Di Salvo V. Age-related reference intervals for physical
- 95 performance test outcomes relevant to male youth Middle Eastern football players. Int J Sports Physiol Perform.
- 96 2023;18(11):1283-95.
- 97 10. Lolli L, Johnson A, Monaco M, Di Salvo V, Gregson W. Relative skeletal maturity and performance test
- outcomes in elite youth Middle Eastern soccer players. Med Sci Sports Exerc. 2022;54(8):1326-34.
- 99 11. Lolli L, Johnson A, Monaco M, Di Salvo V, Gregson W. Skeletal maturation in male elite youth athletes
- 100 from the Middle East. Am J Hum Biol. 2023;35(8):e23906.
- 101 12. Ohuma EO, Altman DG. Design and other methodological considerations for the construction of human
- fetal and neonatal size and growth charts. Stat Med. 2019;38(19):3527-39.
- 103 13. Ruf L, Altmann S, Kloss C, Härtel S. Normative reference centiles for sprint performance in high-level
- youth soccer players: the need to consider biological maturity. Pediatr Exerc Sci. 2024:1-9.
- 105 14. Wright CM, Haig C, Harjunmaa U, Sivakanthan H, Cole TJ. Assessing the optimal time interval between
- growth measurements using a combined data set of weights and heights from 5948 infants. Arch Dis Child.
- **107** 2022;107(4):341-5.
- 108 15. Wright CM, Williams AF, Cole TJ. Advances in growth chart design and use: the UK experience. World
- 109 Rev Nutr Diet. 2013;106:66-74.
- 110 16. Zemel BS. From growth charts to growth status: how concepts of optimal growth and tempo influence
- the interpretation of growth measurements. Ann Hum Biol. 2023;50(1):236-46.