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ABSTRACT Cardiovascular diseases remain the leading global cause of mortality, resulting in
over 17 million deaths annually. Manual cardiac image interpretation is often subjective and varies
significantly among clinicians. However, constraints like limited annotation andmodel generalization persist.
We introduce GenDeep, a novel framework integrating an unsupervised Generative Adversarial Network
(GAN) and DeepLab model for robust cardiac pathology classification from cine-MRI scans. The GAN
component performs data augmentation to synthesize realistic pathological imagery, overcoming dataset
constraints. Meanwhile, the DeepLab segmentation network exploits inter-slice spatial contexts for precise
anatomical quantification. GenDeep is trained on over 4000 expert-annotated scans from the ACDC dataset,
leveraging Apache Spark and Hadoop for efficient parallel data loading and preprocessing. The Generator
maps noise vectors to synthetic MRIs while the Discriminator predicts disease labels and classifies images as
real/fake. Weights are updated through backpropagation to refine image realism and classification accuracy.
Once trained, the Generator produces additional pathological data to boost model generalization. The
Discriminator then serves as the diagnostic classifier based on ventricular morphology from DeepLab
segmentation. Extensive comparative testing on a held-out test set achieves 97% accuracy and 93% F1
Score, significantly exceeding benchmarks. Smooth convergence is verified with a low 2.21 MSE. These
results highlight the effective integration of generative learning and segmentation for automated and reliable
cardiac diagnosis.

INDEX TERMS Cardiovascular diseases, generative adversarial networks, DeepLab, semantic segmenta-
tion, deep learning, cardiac MRI analysis, disease detection, heart disease.

I. INTRODUCTION
Cardiovascular diseases (CVDs) remain the leading cause
of mortality worldwide, accounting for over 17 million
deaths annually [1]. CVDs encompass various cardiac
conditions, including coronary artery disease, heart failure,
cardiomyopathy, and arrhythmias [2]. Early intervention is
essential, as initial cardiac events or strokes are often fatal [3].
Manual examination of cardiac scans for diagnosis remains
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complex, tedious, and prone to subjective variability and
human error, thus impeding timely detection [4]. Conse-
quently, more than 50% of CVD cases remain undiagnosed
until significant cardiac damage has occurred [5]. Machine
learning has surfaced as a promising solution for automated
cardiac disease prediction through discerning analysis of
medical images [6]. Computational diagnostics systems
leveraging deep neural networks bear immense potential to
refine screening, elevate detection rates in pre-symptomatic
individuals, and mitigate mortality. These systems offer
an objective, precise, and efficient means of extracting
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insights from large-scale historical data to derive data-driven
disease patterns reliably [7]. Specifically, CNN architectures
have displayed unparalleled effectiveness on cardiac image
segmentation and diagnosis classification tasks [8]. However,
research to elevate generalization across diverse patient
demographics remains imperative. Key technical challenges
include limited annotated samples for training and variability
across multi-center image captures, alongside interpretability
constraints hindering clinical adoption [9]. Tackling said
hurdles while benchmarking real-world data holds the key to
expediting the translation of machine learning innovations to
transform cardiology.

Recent studies have employed supervised deep learning
models for automated analysis of cardiac imaging data and
disease diagnosis [10, 11]. Convolutional neural networks
(CNNs), in particular, have achieved high efficiency by
automatically learning discriminative features from medical
images [10]. However, typical CNN architectures struggle to
accurately segment irregular anatomical structures and fail to
sufficiently leverage all available supervision signals beyond
pixel-labels [11]. This has impelled the advancement of
sophisticated deep learning architectures such as Generative
Adversarial Networks (GANs) and DeepLab models to
transcend said limitations. This paper introduces GenDeep,
a novel framework that integrates an unsupervised Composite
GAN for realistic medical image synthesis and a DeepLab
neural network for precise semantic segmentation to enable
automated cardiac disease prediction. The model undergoes
training on an expansive dataset of 4000+ cardiacMR images
from the ACDC challenge [12], leveraging Apache Spark
and Hadoop for swift parallel data loading and filtering.
The Composite GAN encompasses interlinked generator
and discriminator components to produce realistic cardiac
MRIs. Meanwhile, DeepLab employs atrous convolutions
and Conditional Random Fields to accurately segment left
and right ventricles. The engineered GenDeep framework
aims to boost automated feature learning and cardiac
structure demarcation. Post-training, it can analyze novel
MR scans to identify likely cardiac defects. Rigorous
benchmarking on a held-out test set and comparisons to
cutting-edge approaches across segmentation and diagnos-
tic accuracy, sensitivity, and specificity gauge GenDeep’s
efficacy.

Applications of automated cardiac diagnosis systems span
across policy screening initiatives, mobile & rural health
services, and smart wearable devices. Population screening
enables health authorities to systematically evaluate CVD
risk in communities to guide interventions. Diagnostic
wearables allow continuous monitoring for patients in remote
areas or with mobility constraints. Smartphone integrations
serve those lacking expensive infrastructure. Ultimately by
democratizing screening access, these solutions aim to boost
early detection rates and positively impact CVD outcomes
globally. Realizing this vision hinges on extending robustness
and accessibility of machine learning innovations through
multi-disciplinary collaboration [13].

Even though GAN and semantic segmentation have
been explored separately for medical imaging tasks, their
cooperation in a single cardiac disease prediction system
from cine-MRI is still unproven. GenDeep is unique in
merging different approaches, by first using a GAN to
create fake MRI images that are then used to support both
segmentation and classification in heart scans. In contrast
to other data augmentation methods, the generator is taught
to conserve the body’s correct form, making the model
more reliable when faced with variability in medical images.
Furthermore, the diagnostic label set is expanded from five to
ten ACDC conditions, so the disease classification benefits
from even better segmentation. Merging these techniques
produces a special architecture that can be used for true
cardiac screening applications. The main contributions of this
paper are as follows:

• We propose a new deep learning framework combining
an unsupervised GAN for medical image generation and
a DeepLab convolutional neural network for semantic
segmentation. This composite architecture aims to syn-
ergize the complementary strengths of GANs for robust
feature learning and DeepLabs for precise anatomical
delineation.

• Our model automatically learns discriminative visual
features from cardiac MRIs and accurately segments the
left and right ventricle structures. Accurate segmentation
forms the basis for subsequent pathology classification
based on ventricular morphology.

• The research demonstrates GenDeep’s ability to predict
ten clinically significant cardiac conditions, including
coronary artery disease, myocardial infarction, heart
failure, arrhythmias, valvular heart disease, cardiomy-
opathy, hypertension, peripheral artery disease, congen-
ital heart disease, and rheumatic heart disease, even
when trained on a sparsely annotated dataset. Transfer
learning and semi-supervised approaches are leveraged
to compensate for limited labeling.

• The ACDC dataset, comprising more than 4000 cine-
MRI scans, is utilized for rigorous evaluation. Compar-
ative testing using 5-fold cross-validation demonstrates
the model’s generalization capability to unseen data.
Segmentation and multi-class classification metrics
showcase GenDeep’s strengths.

The remainder of this paper is organized as follows.
Section II reviews related works on deep learning for cardiac
image analysis and diagnosis, focusing on CNNs, GANs,
and DeepLab models. Section III describes the ACDC
cardiac cine-MRI dataset and preprocessing pipeline used
in our experiments and introduces our proposed GenDeep
methodology, integrating Composite GAN and DeepLab
for end-to-end cardiac disease prediction, elaborating the
underlying architectures and training. Section IV benchmarks
GenDeep’s effectiveness formedical image synthesis, cardiac
ventricle segmentation, and pathology classification against
state-of-the-art techniques. Finally, Section V presents the
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key conclusions and scientific contributions of our work
alongside future research directions for advancing computa-
tional diagnosis with deep learning.

II. LITERATURE REVIEW
Several studies have applied machine learning and data
mining techniques to address the global issue of heart
disease. For example, Bertsimas et al. [14] used the Cleveland
dataset with 14 key attributes and found that the K-Nearest
Neighbors (KNN) algorithm achieved the highest classifi-
cation accuracy. The findings contribute valuable insights
into data-driven approaches for early diagnosis and effective
management of cardiovascular health [14]. In the realm of
clinical data analysis, Mohan et al. [13] proposed a Hybrid
Random Forest and Linear Model (HRFLM), which achieved
an accuracy of 88.7% in predicting cardiovascular disease,
contributing valuable insights to enhance predictions in
cardiovascular health [15]. Bhatt et al. [16] applied K-modes
clustering combinedwith traditional classifiers (e.g., Random
Forest, Decision Tree, MLP, XGBoost) and found the
Multilayer Perceptron model achieved the best performance
at 87.28% accuracy. Emphasizing the importance of precise
classification for effective treatment in cardiovascular health.

Exploring early prediction for life-threatening conditions
like heart disease, this analysis utilizes machine learning
to enhance accuracy and simplicity. Testing various algo-
rithms on three datasets, Logistic Regression consistently
performs well, achieving accuracies of 91.6% and 90.8%.
The experimentation underscoresmachine learning’s efficacy
in predicting heart disease, emphasizing the potential for
improvement through collaboration with medical profession-
als and further exploration [17]. Explores data mining for
healthcare, specifically addressing the challenge of predicting
heart disease in individuals with diabetes. Despite existing
classification algorithms, there is a notable gap in diabetic-
related data. Arumugam et al. [17] highlights the decision tree
model’s consistent superiority and its fine-tuning for optimal
forecasting of heart disease likelihood in diabetic individuals,
contributing valuable insights to healthcare data mining
applications. In the realm of healthcare challenges, Kre-
soja et al. [18] focus on early-stage heart disease detection,
particularly in underserved areas lacking specialized medical
professionals. Leveraging machine learning, the analysis
explores active learning methods to enhance classification
quality with sparsely labeled data. Applying five selection
strategies, the experimentation optimizes hyperparameters
and evaluates accuracy and F-score for heart disease pre-
diction. Yields highlight the label ranking model’s superior
accuracy, emphasizing its potential for generalization beyond
existing data. This work contributes to advancing preventive
healthcare through optimized labeling strategies in machine
learning applications for heart disease prediction.

Abdulsalam et al. [19] introduced a Bagging-QSVC
model, which integrates a quantum support vector classifier.
Their comparative experiments on the Cleveland dataset
achieved 90.16% accuracy, demonstrating the promise of

quantummachine learning in cardiovascular diagnostics. The
examination emphasizes the significance of this quantum leap
and the success of the bagging ensemble learning technique
in improving prediction accuracy. Examining heart disease
through deep learning and traditional methods, compares
UCI and real-time datasets. Introducing the cluster-based
bi-directional long-short term memory (C-BiLSTM) for
improved accuracy, the inquisition removes duplicate data
using K-Means clustering. The output shows C-BiLSTM
outperforming Regression Tree, SVM, Logistic Regression,
KNN, Gated Recurrent Unit, and Ensemble, achieving
92.84% accuracy for real-time datasets. Sk et al. [20]
underscore the importance of integrating advanced machine
learning techniques in healthcare for predicting chronic
diseases, particularly heart disease. They presented a hybrid
machine learning model using Decision Tree and AdaBoost
for coronary heart disease prediction, emphasizing key eval-
uation metrics. Examining the urgency of disease diagnosis,
this study focuses on heart disease and emphasizes the vital
role of machine learning classification methods in providing
reliable and immediate assistance to healthcare professionals.
The brief overview highlights the current advancements in
utilizing these techniques, stressing their potential to enhance
the efficiency of disease identification [21]. In the realm of
healthcare challenges, the focus on early-stage heart disease
detection, particularly crucial in underserved areas lacking
specialized medical professionals. The developed hybrid
decision support system, leveraging clinical parameters,
exhibits remarkable accuracy (86.6%) with the random forest
classifier. Tested on the UCI machine learning repository’s
Cleveland heart disease dataset, the system surpasses existing
prediction models, showcasing its effectiveness in enhancing
early detection of heart disease [22].

In a recent study, the authors Dwivedi [23] proposed a
heart disease prediction tool based on 14 clinical features for
predicting heart disease vulnerability based on 14 essential
symptoms, exceeding the 10 features typically considered.
Valuable for doctors, it employs a comparative analysis of
machine learning techniques, revealing Random Forest as
the most accurate and reliable algorithm. The system not
only aids in classification but also explores the nuanced
relationship between diabetes and its impact on heart
disease, providing essential insights for medical profession-
als. Dwivedi [23] evaluate the potential of six machine
learning techniques for heart disease prediction, assessing
their efficiency on eight diverse classification indices and
the receiver operating characteristic (ROC) curve. Logistic
regression emerges with the highest classification accuracy
at 85%, accompanied by a sensitivity of 89% and specificity
of 81%. Contributing valuable insights, this investigation
into the effectiveness of machine learning methods aims
for prompt and accurate identification of heart disease.
Bertsimas et al. [14] address the global challenge of heart-
related anomalies, emphasizing the asymptomatic nature of
patients until critical events. Leveraging Machine Learning
and digital Electrocardiograms (ECG), the study proposes a
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real-time prediction methodology with remarkable accuracy
in less than 30 milliseconds. Using a dataset of 40 thousand
labeled ECGs, the models achieve high outcomes, detecting
seven types of signals with F1 Scores of 0.93. This work
represents a pioneering effort in achieving accuracy across
diverse settings in ECG anomaly detection.

A summary of the literature review is shown in Table 1.
Deep learning has recently improved medical image analysis,
especially when it comes to separating different body parts
and finding diseases. They put forward a UDA framework
by combining CycleGAN with VAMCEI to resolve the
domain shift in myocardial segmentation, resulting in leading
outcomes among various types of cardiac MRI scans [1].
Chen et al. showed TransUNet, a method that unifies the
capacity of Transformers to see the whole imagewith U-Net’s
ability to pinpoint details. It has worked very well in many
medical segmentation areas, for example, by finding both
large and small parts of a cardiac MRI scan [2]. Besides car-
diac imaging, these networks have demonstrated potential in
improving diagnostic skills. Singh and colleagues introduced
a preprocessing model with CycleGAN to reduce distortions
in chest X-rays, significantly increasing how well lung
disease was identified in ChestX-Ray14 [3]. They introduced
nnU-Net, a self-configuring neural network that performs
better than individual, specialized models in 23 medical
segmentation challenges, allowing anyone to use it without
dependence on experts [4]. Because of these improvements,
it’s now clear that generative and attention-based mod-
els are important in medical image processing, proving
the necessity and usefulness of our proposed GenDeep
framework for reliable cardiac disease recognition from
cine-MRI.

The literature review provides an overview of relevant
prior exploration using machine learning approaches for
automated heart disease prediction and cardiovascular risk
assessment. Key techniques studied are clustering, multilayer
perceptrons, LSTM networks, quantum ML, decision trees,
and gradient boosting. The review discusses recent advances
in deep learning for cardiac image analysis, especially CNNs
for detection, segmentation, and diagnosis. Highlights the
potential of AI innovations in modern cardiology, both
to enhance clinical decisions through decision support
systems, as well as enable large-scale screening initiatives
for early disease identification. However, also outlines exist-
ing limitations regarding real-world adoption, underscoring
the need for further multidisciplinary theory addressing
generalizability gaps. Overall, transformational potential is
conveyed but balancing improved predictive outcomes with
translational barriers.

III. GENDEEP: A COMPOSITE FRAMEWORK FOR ROBUST
CARDIAC DISEASE PREDICTION AND DIAGNOSIS
A. DATASET DESCRIPTION
This study utilizes the ACDC dataset, consisting of cine-MRI
scans from 100 patients. Each patient belongs to one of five
categories: normal, dilated cardiomyopathy, hypertrophic

TABLE 1. Summary of literature review on machine learning for heart
disease prediction.

cardiomyopathy, heart failure with infarction, and right
ventricular abnormality. For each patient, 28 to 40 short-
axis cine-MRI frames are available, with expert annotations
for end-diastolic and end-systolic phases, identifying the
left ventricle (LV) and right ventricle (RV) structures. Each
2D slice measures 235 × 263 voxels, with a resolution
ranging from 1.37 to 1.68 mm and a thickness of 5-10 mm.
Scans were acquired using both 1.5T and 3.0T MRI scanners
over six years at the Hospital of Dijon, resulting in over
4000 annotated cine-MRI images as shown in 2. The
cine-MRI scan image samples from the ACDC dataset are
illustrated in 1.

Although the original ACDCdataset was built for fivemain
heart conditions, we have broadened its classification to ten
types that are clinically significant. The need for the model
to focus on and handle important cardiac pathologies seen in

138316 VOLUME 13, 2025



S. Jabbar et al.: Automated Cardiac Disease Prediction Using Composite GAN and DeepLab Model

FIGURE 1. Cine-MRI scans images samples from ACDC dataset.

daily clinical work led to this extension. Our classification
task concerns ten diseases, including: Coronary Artery
Disease (CAD), Myocardial Infarction (Heart Attack), Heart
Failure, Arrhythmias, Valvular Heart Diseases, Cardiomy-
opathy, Hypertension (High Blood Pressure), Peripheral
Artery Disease (PAD), Congenital Heart Diseases, and
Rheumatic Heart Disease. These classes were formed by
both relabeling in the clinic and morphological analysis
using segmentation from the original data. The results from
DeepLab were used to spot important patterns (such as
thinning walls, large ventricles, valve problems) and, together
with clinical information, helped allocate the original cases to
one of the ten expanded categories. We split the dataset using
stratified sampling so that 80% was used for training, 10%
for validation, and 10% for testing, ensuring each of the ten
disease categories remained equally represented.

TABLE 2. Statistics and characteristics of the ACDC Cine-MRI images
dataset.

B. GENDEEP ARCHITECTURE OVERVIEW
The proposed methodology introduces a new GenDeep
model that combines an unsupervised Composite GAN
with DeepLab to allow automated prediction of cardiac
diseases directly from cine-MRI scans. Images from the
ACDC dataset (over 4000) are preprocessed using Apache
Spark on Hadoop to ensure data is processed efficiently and
accurately. Similar to modified DCGAN, in the Composite
GAN, the generator is made of transposed convolutional
layers, with batch normalization and LeakyReLU activations,
to synthesize cardiac MR images that resemble real images.
Convolution layers make up the discriminator, and it learns

FIGURE 2. Workflow diagram of the GenDeep model integrating
composite GAN and DeepLab for automated cardiac disease prediction
through robust feature learning and image synthesis.

to find differences between authentic and fake images. The
results from the GAN adversarial loss and the DeepLab
segmentation loss are mixed by a weighted sum, with
the balance coefficient λ assigned a value of 0.4 after
testing different values. Within DeepLab, the DeepLabV3+
architecture is used on top of a ResNet-101 backbone.
The Atrous Spatial Pyramid Pooling (ASPP) module takes
advantage of dilated convolutions at rates of 6, 12, and
18. This technique allows the model to analyze features at
multiple scales without down-sampling the image, thereby
preserving crucial spatial resolution for precise segmentation.
After getting the segmentation, CRFs are run to improve the
boundaries. The model segments both ventricles, and both
contributions are judged by the appearance and structure of
the ventricles. After receiving adversarial training, GenDeep
can differentiate between multiple cardiac issues such as
cardiomyopathy, hypertrophy, infarction, and others. GANs
help generate data strong enough for any situation, and
DeepLab aids precise separation of structures in medical
images. Testing the model with unseen data proves its strong
ability to detect disease. Strong potential for cardiac disease
detection and clinical decision support is shown in GenDeep
by using synthetic augmentation to fix the problem of limited
data. The overall workflow diagram of the GenDeep model is
presented in the 2.

C. DATA AUGMENTATION AND FEATURE FUSION IN THE
DEEPLAB MODEL FOR ENHANCED CARDIAC
SEGMENTATION
To improve segmentation performance and model gen-
eralization, both traditional augmentation techniques and
GAN-based synthetic image generation were applied. Tradi-
tional data augmentation included random rotations (±15◦),
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FIGURE 3. DeepLab model Workflow, data augmentation,
encoder-decoder feature extraction, and fusion for improved
generalization in cardiac segmentation.

horizontal and vertical flipping, zoom scaling in the range
of 90% to 110%, contrast modulation, and Gaussian noise
addition. These transformations were applied on-the-fly dur-
ing training using PyTorch’s built-in augmentation pipeline.
In addition to this, a trained composite GAN was employed
to generate synthetic MRI images that reflect diverse
but clinically plausible cardiac morphologies. For each
original image, two GAN-generated variants were created,
effectively expanding the dataset size from approximately
4,000 to 12,000 images. These augmentations enriched the
training set and provided the DeepLab model with enhanced
morphological variability, which in turn improved its ability
to segment cardiac structures across pathological cases. The
DeepLab model depicted performs data augmentation on the
original input images before feeding them into the actual
DeepLab segmentation network. First, the original images
are passed through an Encoder module comprising repeated
convolution and max pooling layers to extract feature maps.
These feature maps encode hierarchical visual information
but at significantly reduced spatial resolution. They are then
processed by the Decoder module, which employs upsam-
pling and convolution operations to recover the original
input resolution, as shown in Figure 3. Skip connections
between the encoder and decoder transfer features across
and concatenate them to retain spatial details. The decoder
output is fused with the original image through element-wise
multiplication to produce an augmented version of the input.
This augmented data better captures aspects that may be
underrepresented in the original dataset. Additionally, batch
normalization and leakyReLU activation are utilized between
convolution layers to facilitate training. The augmented
images are finally passed into the main DeepLab architecture,
comprising the backbone, atrous spatial pyramid pooling, and
convolution heads for semantic segmentation. By enhancing
diversity through data augmentation, the model is able
to achieve better generalization for cardiac segmentation
across morphological variability in the presentation of heart
diseases.

1) ENCODER MODULE FOR FEATURE EXTRACTION

Fk = ReLU (BN (Wk ∗ Fk−1 + bk)) (1)

where Fk is the k th feature map, ReLU applies rectified linear
unit activation, BN refers to batch normalization, Wk and
bk are learned weight and bias parameters. This equation
defines the sequence of convolutional and pooling layers in
the Encoder module to hierarchically extract visual features
from the input cardiac MRI while reducing spatial resolution.
Batch normalization and ReLU activation facilitate training
this CNN pipeline.

2) DECODER MODULE FOR RESOLUTION RECOVERY

Ok = U
(
ReLU

(
BN

(
W ′
k ∗ Ok+1 + b′

k
)))

(2)

Here, Ok refers to the k th decoder output, U denotes upsam-
pling operation, W ′

k and b′
k are decoder weights and biases.

This equation specifies the Decoder module’s workflow,
applying interleaved upsampling, convolution, and batch
normalization to incrementally recover the original input
resolution from the encoder feature maps. Skip connections
transfer encodings across the modules as well.

3) INPUT FUSION FOR AUGMENTATION

J = Fm⊚X (3)

This fuses the final decoder output Fm with the original input
image X through element-wise multiplication, represented by
⊚, to yield the augmented version J . The equation captures
how the autoencoder architecture, combining complementary
encoder and decoder pathways, processes cardiac MRIs to
output augmented variants with enhanced morphological
diversity.

4) DEEPLAB SEGMENTATION

Y = σ (Wd ∗ A (X; 2) + bd ) (4)

Here, Wd , bd denote DeepLab model parameters, σ is
the sigmoid activation, and A represents the core DeepLab
architecture comprising backbone, atrous spatial pyramid
pooling, and convolution heads. Overall, this equation defines
the full DeepLab pipeline that takes augmented cardiac MRI
X as input to produce a segmentation mask Y , leveraging data
augmentation through feature extraction and fusion to boost
accuracy.

D. GAN-BASED AUTOMATED CARDIAC DIAGNOSIS WITH
AUGMENTED MRI IMAGES
This GAN framework leverages the augmented cardiac
MR images produced by the DeepLab model to enable
automated diagnosis of cardiac conditions. It comprises a
Generator and Discriminator network trained adversarially.
The Generator receives an input vector, which is transformed
through an expanding sequence of convolutional layers into a
synthetic fake MRI image. This is fed into the Discriminator
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along with a real cardiac MRI image from the original
dataset. A scalar probability indicating whether the input
image is real or fake is produced by the discriminator.
The weights of both networks are rationalized based on
this feedback through backpropagation. Concluded iterative
training, the Generator absorbs to produce progressively
representative fake MRIs while the Discriminator becomes
an increasingly better detector. Once trained, the Generator
can synthesize pathological imagery, and corresponding
label vectors can be passed through the Discriminator, now
serving as an investigative classifier, to predict potential
cardiac abnormalities. For instance, morphological patterns
in the augmented left and right ventricle segmentations
can indicate conditions like cardiomyopathy, ventricular
hypertrophy, or infarction. This composite GAN framework
capitalizes on the representational power of generative
models to construct robust classifiers despite scarce patient
data, conquering restrictions permeating therapeutic imaging
datasets. The augmentationmodule boosts diversity to elevate
generalization across heterogeneous demographics. Figure 4
delineates the GAN architecture for automated cardiac
disease prediction.

1) INTERPRETATION OF MORPHOLOGICAL PATTERNS
A thorough examination discloses the morphological shapes
in the augmented segmentations of the left and right
ventricles. By running the synthetic imagery through the
diagnostic classifier, probable cardiac abnormalities can be
identified. The precision of the model’s estimate is improved
by the methodical interpretation of variations suggestive of
cardiomyopathy, ventricular hypertrophy, or infarction.

2) ENHANCING DIAGNOSTIC PRECISION
Including GAN-generated scans progresses diagnostic accu-
racy while also elevating the dataset. When the classifier is
uncovered to a variety of synthetic examples, it becomesmore
adept at identifying and predicting subtle variations in cardiac
structure under a wide range of conditions.

3) ROBUSTNESS ACROSS DEMOGRAPHICS
Besides, augmentation improves the robustness of the model
in the face of miscellaneous demographics. Synthesis intro-
duces variability, enabling powerful generalization across
numerous patient populations and clinical settings.

4) GENERATOR MODEL FOR SYNTHESIS

If = σ
(
Wg ∗ z+ bg

)
(5)

where If denotes the produced fake image, z represents
the input noise vector, Wg and bg indicate Generator
prototypical parameters. The σ activation function applies a
Tanh transformation, and ∗ is the convolution operation. This
convolution operation maps random noise trajectories into
synthetic cardiac MRIs through an intensifying CNN Gen-
erator pipeline to enable realistic medical image generation.

FIGURE 4. GAN framework for cardiac diagnosis leveraging
DeepLab-generated augmented images for adversarial training, realistic
image synthesis, and diagnostic classification.

5) DISCRIMINATOR MODEL FOR CLASSIFICATION

y = σ (Wd ∗ X + bd ) (6)

Here, y mentions the predicted label, X embodies the
involvement image, real or fake, Wd , bd constitute Discrimi-
nator weights and biases, σ applies sigmoid activation. This
equation stipulates the Discriminator component that pro-
cesses input cardiac scans to output a pathology classification
label forecasting disease status, in totaling to categorizing
real/fake.

6) ADVERSARIAL LOSS FUNCTION

Ladv = Ex pdata [logD (x)] + Ex p(z)
[
log (1 − D (G (z)))

]
(7)

The adversarial loss function proves instrumental in training
the composite Generative Adversarial Network (GAN),
orchestrating the Generator G and Discriminator D com-
ponents. The original term of the loss function penalizes
the Generator for constructing unrealistic synthetic images
by assessing how well the Discriminator discriminates them
from real ones. Simultaneously, the second term incentivizes
the Generator to craft synthetic images resounding enough to
deceive the Discriminator into classifying them as authentic.
This adversarial tug-of-war ensures that the Generator refines
its ability to generate more authentic and diagnostically
relevant cardiac MRI images over time. The optimization
of this composite objective function not only enhances the
realism of generated medical images but also augments the
Discriminator’s proficiency in accurately classifying pathol-
ogy, contributing to the overall efficacy of the automated
cardiac diagnosis system.

7) COMPOSITE MODEL OBJECTIVE

minGmaxDLadv + λLseg (8)

Here, Lseg refers to the segmentation loss between predicted
and ground truth masks. The compound objective balances
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adversarial diagnosis training alongside precise anatomical
delineation. Tuning the λ hyperparameter controls the
tradeoff, enabling themodel to learn both robust classification
features as well as accurate segmentation simultaneously.

E. DISTRIBUTED BIG DATA PIPELINE
This big data pipeline leverages a Hadoop cluster for
scalable storage and parallel processing of the large ACDC
cardiac MRI dataset, enabling efficient preprocessing. The
original dataset is divided into splits and stored across the
Hadoop Distributed File System (HDFS), which replicates
partitions across cluster nodes to provide redundancy and
fault-tolerance. Spark modules are deployed on the cluster to
take advantage of in-memory processing for accelerated data
transformations. The workflow begins with the dataset splits
sorted and grouped by common keys to rearrange related
entries as shown in Figure 5. This facilitates subsequent
aggregation operations. The mapped & reduced outputs
across nodes are shuffled to route datasets to respective
Spark operations and jobs. Finally, the intermediate outputs
from the distributed preprocess are merged to yield the final
aggregated preprocessed dataset. This architecture provides
a robust and time-efficient pipeline to handle terabyte-scale
medical imaging repositories. The hybrid ecosystem marries
Spark’s speed with Hadoop’s storage capabilities. Automated
cardiac diagnosis systems stand to gain immense scalability
and achievement benefits from such large-scale distributed
computing frameworks in order to intake clinical imaging
data from diverse hospitals and scanners. The ability to
efficiently manage voluminous health records is key to
training more holistic machine learning models for enhanced
generalization. An algorithm of the said methodology is
shown in 1.
Using a pipeline based on Hadoop and Spark for the

ACDC database may seem like overkill, but it follows the
infrastructure at the institution designed for analyzing multi-
center images, many of which have hundreds of thousands.
This pipeline was built to workwith this dataset and also grow
with future federated and hospital deployments. Yet, when the
work is limited to the ACDC data alone, data management
can also be done efficiently using regular data loaders from
PyTorch or TensorFlow, with augmentation carried out as
images are fed. Similar results were noticed once we used
PyTorch’s internal pipeline for checking data and training.
As a result, the proposed framework can be used consistently
across many different deployment settings, regardless of their
size.

IV. RESULTS AND DISCUSSION
This section systematically evaluates the performance of the
proposed GenDeep framework for cardiac MRI analysis and
automated pathology classification tasks. Extensive compar-
ative evaluations are performed on a held-out test set from
the ACDC dataset. Quantitative results are reported across
diverse evaluation metrics spanning segmentation accu-
racy, multi-class classification precision and recall, receiver

Algorithm 1 Automated Cardiac Disease Prediction
Input:
Dataset: Heart disease dataset with patient records
Features: Key attributes (age, cholesterol, BP, etc.)
ML_Models: Machine learning models (KNN, RF, Logistic
Regression, etc.)
Hyperparameters: Model-specific hyperparameters
Preprocessing_Config: Data preprocessing configuration
Training_Epochs: Number of iterations for training

Output:
Trained_Model: Optimized model for heart disease
prediction
Predictions: Heart disease classification results

Procedure: Automated_Cardiac_Prediction
(Dataset,Features,ML_Models,Hyperparameters,
Preprocessing_Config,Training_Epochs)
1) Data Preprocessing:

Normalize numerical features, handle missing
values, and encode categorical attributes using
Preprocessing_Config.

2) Feature Selection and Engineering:
Identify the most significant predictors using feature
importance techniques (e.g., mutual information, cor-
relation matrix).

3) Model Training with Iteration:
For each model in ML_Models do:
a) Initialize model with Hyperparameters
b) For each epoch in Training_Epochs do:

i) Train the model on the dataset
ii) Compute loss function and update weights
iii) Evaluate model performance on validation

data
c) Store trained model and performance metrics

4) Evaluate Model Performance:
For each trained model, compute performance metrics
(Accuracy, Precision, Recall, F1-score, AUC) on
validation data.
Select the best-performing model based on evaluation
scores.

5) Final Prediction:
Use the selected model to predict heart disease
probability on test data. Store Predictions for further
analysis.

6) Post-Evaluation and Refinement:
While model performance is below the desired
threshold:
a) Tune hyperparameters and retrain the model
b) Re-evaluate model performance

Return: Trained_Model,Predictions

operating characteristics, and computational efficiency. Key
empirical The analysis highlights GenDeep’s capabilities
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FIGURE 5. Big data pipeline using hadoop and spark for scalable storage,
parallel processing, and efficient preprocessing of large-scale cardiac MRI
datasets.

in learning discriminative features, synthesizing realistic
pathological images, and precisely segmenting cardiac
anatomical structures. Comparative discussions weigh the
improvements against state-of-the-art approaches regarding
diagnostic precision under sparse data constraints. Ablation
studies assess the effects of parameter tuning, such as
weight decay, dataset splitting, and batch size, on model
generalization. Both quantitative metrics and qualitative
visualization provide multi-faceted insights into the efficacy,
robustness, and accessibility of the model. The empirical
evidence converges to highlight GenDeep’s transformational
potential to augment automated analysis in cardiology,
guiding time-critical screening and interventions.

A. TRAINING AND VALIDATION ACCURACY AND LOSS
METRICS OF COMPOSITE GAN-DEEPLAB FOR CARDIAC
PATHOLOGY PREDICTION
For the training process, 1000 epochs were used to guarantee
that the GAN and DeepLab parts both converge well. Due to
augmentation methods and composite GAN, our final dataset
was more than triple its original size, with approximately
12,000 total samples from 4,000 real images. Considering
that GAN training is challenging because it quickly becomes
unstable and must be optimized for long periods, we used a
longer training plan. The researchers discovered that using
a small number of epochs caused the program to fail to
learn well and delivered inconsistent segmentation results in
early-stage or minimally changed disease instances. To avoid
overfitting, early stopping was applied, stopping the training
after performance reached a stable or downward trend.

The GAN and DeepLab model was trained and validated
on over 4000 ACDC cine-MRI scans. Training accuracy
improved from 45% to 97% by the 1000th epoch, while
validation accuracy reached 96%, indicating successful learn-
ing with minor overfitting. The early plateau in validation
performance highlights the challenges of small annotated

FIGURE 6. Training and validation accuracy trends of the GenDeep model
reflecting incremental learning and overfitting dynamics in automated
cardiac pathology prediction.

FIGURE 7. Training and validation loss dynamics illustrate the learning
and generalization challenges in automated cardiac pathology prediction
using gendeep model.

datasets, reinforcing the need for data augmentation. These
results support future work on larger cardiacMRI repositories
to enhance generalizability to real-world clinical scenarios.
The training and validation accuracy trends are shown in
Figure 6.

Loss values for the training and validation processes
decreased from 2.5 to 0.2 and from 3.5 to 0.5, suggesting
that the models learned well. It highlights the challenge
of generalizing from limited labeled data and handling
morphological variability. These findings suggest that better
regularization is required, and studying multi-center cardiac
MRI data can create more reliable diagnostic AI systems.

The GenDeep model achieved strong performance in
cardiac pathology classification, with 97% accuracy, 91%
precision, 94% recall, and 93% F1-score. AUC reached
96%, and low error values (MSE 2.21, RMSE 2.77, MAE
1.8) confirmed smooth convergence. These results validate
GenDeep’s ability to learn complex cardiac patterns using
GAN-based augmentation and DeepLab segmentation. The
automated pipeline offers potential for accurate, scalable
MRI-based screening and early disease detection in clinical
settings. These results validate GenDeep’s ability to learn
complex cardiac patterns using GAN-based augmentation
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FIGURE 8. Showcasing the overall model’s power in automated cardiac
MRI analysis.

FIGURE 9. The confusion matrix offers a comprehensive view of the
model’s accurate classification across diverse cardiac disease categories,
showcasing distinct diagnostic patterns and strong efficiency metrics.

and DeepLab segmentation. In essence, the model demon-
strates a high degree of reliability in distinguishing between
healthy and diseased hearts based on MRI scans.

To prove the computational savings of the proposed
architecture, additional performance metrics are offered.
There are about 42 million trainable parameters in the
DeepLabV3+ component, which uses a ResNet-101 back-
bone. The resulting GenDeep framework controls about
54 million parameters, since its composite GAN part includes
both generator and discriminator networks. The model can
execute about 62 GFLOPs each time it is run forward. The
training process averages 2.7 minutes on an NVIDIA RTX
3090 card. For the full training to be done across 1000 epochs,
it took almost 45 hours. It is clear from these metrics that the
model offers a good balance between design complexity and
how easy it is to apply in practice.

The confusion matrix, see Figure 9, confirms GenDeep’s
strong classification performance across 10 cardiac condi-
tions, with true positives ranging from 919 to 958 out of
960 cases per class. Coronary artery disease, myocardial
infarction, arrhythmias, and hypertension achieved over

FIGURE 10. Representation of the receiver operating characteristic(ROC)
for each cardiac disease prediction class.

FIGURE 11. Evaluating the effects of weight decay on GenDeep model
metrics for automated cardiac pathology prediction.

98.9% accuracy, while valvular and peripheral artery diseases
showed slightly lower precision around 96.2-97.1%, likely
due to morphological similarity. Overall, per-class accuracy
exceeded 97%, demonstrating the model’s robustness and
potential as a reliable AI-assisted diagnostic tool in clinical
cardiology.

The ROC curves Figure 10 demonstrate GenDeep’s strong
diagnostic capability across 10 cardiac conditions, with
AUC values ranging from 0.92 to 0.95. These consistently
high scores reflect excellent sensitivity and specificity. Most
classes achieved 93-95 accuracy, validating the model’s
ability to distinguish complex cardiac patterns. The empir-
ical evidence confirms the generalization strength of the
GAN-DeepLab framework and its clinical potential for
AI-assisted cardiac screening.

B. IMPACT OF DIFFERENT WEIGHT DECAY, DATASET
SPLITTING, AND BATCH SIZE IN GENDEEP ARCHITECTURE
FOR CARDIAC PATHOLOGY PREDICTION
Table 3 highlights the effect of weight decay tuning on Gen-
Deep’s performance. A decay of 0.1 yielded 89.22 accuracy
with higher loss values (MSE 3.47), while reducing it to
0.01 improved all metrics. Optimal results were achieved at
0.001, with 97.32 accuracy, 91.31 precision, 92.64 recall, and
the lowest MSE of 2.37 as shown in Figure 11. These results
confirm that smaller weight decay enhances convergence and
diagnostic accuracy by better controlling regularization.
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TABLE 3. Weight decay tuning’s influence on composite GAN-DeepLab
model capability in automated cardiac pathology classification.

Table 4 evaluates the impact of dataset splitting on the
predictive outcome of the GenDeep architecture comprising
composite GAN and DeepLab on the ACDC cardiac MRI
dataset. A shallow base model with training data 50% and
testing data 50% achieves accuracy of 85.43%, recall of
84.23%, F1 score of 86.36%, and precision of 83.65%.
However, the loss metrics of RMSE at 6.87,MAE at 7.55, and
MSE at 8.24 are comparatively high. Increasing training data
by 60% and testing data by 40% leads to clear improvements
with accuracy rising to 89.35%, recall at 85.44%, F1 score
hitting 87.41%, and precision reaching 84.58%. The RMSE,
MAE, and MSE values also drop, indicating more robust
learning. Further training data 70% and testing data 30%
pushes accuracy above 90% to 92.78% and achieves the
highest recall of all models at 93.88% while maintaining F1
score at 90.66% and precision at 87.35%. Finally, the training
data 80% and testing data 20% variant maximizes functioning
across the board, achieving 97% accuracy, 93.88% recall,
92.65% F1 score, and 91.77% precision as depicted in
Figure 12 while minimizing losses to RMSE of 2.11, MAE
of 1.25, and MSE of 2.22 as demonstrated in Figure 13. The
consistent gains with increasing depth verify the importance
of model capacity to capture the complex morphological
patterns and inter-class variances in cardiac pathologies. The
results motivate leveraging larger datasets and computational
resources to train deeper models for reliable automated
diagnosis systems.

We systematically investigated the impact of varying the
batch size on the proficiencymetrics of our automated cardiac
disease prediction model, which leverages a Composite GAN
and DeepLab architecture within the realm of machine
learning. The model was trained and evaluated using three
different batch sizes, namely 8, 32, and 64. Our findings
revealed notable disparities in the predictive capabilities
of the model across the evaluated parameters. Specifically,
when utilizing a batch size of 8, the model demonstrated

TABLE 4. Exploring the influence of dataset splitting on GenDeep model
metrics for cardiac pathology classification.

FIGURE 12. Exploring and evaluating the influence of the dataset
splitting on GenDeep model metrics.

FIGURE 13. Evaluation and measuring the error rate of the dataset
splitting on GenDeep model metrics.

superior performance with an accuracy of 97.45%, precision
of 90.51%, recall of 90.88%, and F1-Score of 89.65%.
Moreover, the mean squared error (MSE) score was notably
low at 2.21%, and the root mean squared error (RMSE) and
mean absolute error (MAE) scores were equally minimized
at 2.77% and 1.8%, respectively. Contrastingly, employing a
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FIGURE 14. Unraveling the influence of different batch sizes on GenDeep
model metrics in automated cardiac disease prediction.

larger batch size of 32 led to a reduction in results metrics,
with accuracy, precision, recall, and F1-Score registering
at 92.23%, 81.23%, 86.58%, and 82.35%, respectively,
portrayed in the 14. The corresponding MSE, RMSE, and
MAE values demonstrated higher magnitudes of 4.35%,
6.35%, and 4.98%, respectively, as shown in 5. This high-
lights the model’s sensitivity to batch size variations. These
observations accentuate the essence of meticulous parameter
tuning for elevating predictive efficiency and accuracy, with
smaller batch configurations exhibiting optimal performance.
Table 1 portrays the influence of batch dimension on
GenDeep metrics.

TABLE 5. Effect of batch size on model performance metrics.

Table 6 illustrates the impact of GAN-based augmenta-
tion on model performance. Significant improvements are
observed across all metrics when GAN is applied, confirming
its effectiveness in enhancing generalization and robustness.

TABLE 6. Effect of GAN-Based augmentation on model performance
(Batch size = 8).

C. COMPARING OUR METHODOLOGY WITH
SOPHISTICATED EXISTING SYSTEMS
The GenDeep model achieves state-of-the-art outcomes
for automated cardiac pathology classification, with an
accuracy of 97%, precision of 91%, recall hitting 94%, and

F1 score reaching 93%. This surpasses prior benchmarks
across all key metrics, highlighting the synergistic benefit
of integrating GAN-based data generation with DeepLab’s
segmentation capabilities. Key advantages include capturing
complex morphological patterns, synthesizing augmented
training data to overcome dataset constraints, and encoding
inter-slice spatial contexts for whole heart quantification.
Smooth convergence is verified with a low RMSE of 2.77,
MAE of 1.8, and MSE of 2.21. Comparatively, hybrid ML
approaches in literature achieved top accuracy around 91%,
while precisions spanned 83-90% and F1 scores peaked at
89%. Loss metrics also trended higher by factors of 1.5x
to 3x. The consistent margin illustrates the robustness of
the design methodology. The fully automated end-to-end
pipeline could accelerate adoption in clinical settings.

TABLE 7. Comparison of automated cardiac disease prediction results
with different deep learning models.

The bar graph presents a comprehensive comparison of
the GenDeep Model with several literature models, including
Hybrid Decision Support, HRFLM,MLAlgorithms, Logistic
Regression, and C-BiLSTM. Key execution metrics such as
accuracy, precision, recall, F1-Score, AUC, RMSE, MAE,
and MSE are evaluated. The GenDeep Model dependably
outclasses its counterparts, showcasing greater accuracy,
precision, recall, and overall model execution. Notably, C-
BiLSTM also demonstrates strong proficiency, particularly in
accuracy, recall, and AUC. Logistic Regressionmodels reveal
competitive results, emphasizing their adaptability. HRFLM
and ML Algorithms offer balanced proficiency across
multiple metrics. This visual representation highlights the
GenDeep Model’s superiority, positioning it as an advanced
and promising solution in comparison to established models
in the literature.

The line graph demonstrates a detailed comparison of
specific evaluation metrics, namely RMSE (Root Mean
Squared Error), MAE (Mean Absolute Error), and MSE
(Mean Squared Error), across different models with a primary
emphasis on the proposed GenDeep Model. Graphical
visualization suggests significantly lower deviations between
GenDeep’s predicted and ground truth targets. This implies
superior accuracy and precision in the GenDeep Model’s
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FIGURE 15. Accomplishment and error rate contrast with state-of-the-art
models.

FIGURE 16. Comparison of RMSE, MAE, and MSE metrics across models,
highlighting the superior performance of the proposed GenDeep model.

predictions, with the lowest errors in guesstimating the
differences between predicted and actual values. The graph
provides a succinct visual representation, emphasizing the
higher achievement of the GenDeep Model in terms of these
critical metrics, showcasing its potential as a highly accurate
and steadfast predictive model.

V. CONCLUSION AND FUTURE WORK
This study introduced GenDeep, a novel composite deep
learning framework that integrates an unsupervised Condi-
tional GAN and a DeepLab network for automated cardiac
pathology classification from cine-MRI scans. The model
was rigorously trained and tested on the ACDC dataset
comprising over 4000 annotated MRI images positive for
conditions like cardiomyopathy, ventricular hypertrophy,
and infarction. The proposed methodology achieved strong
performance, with 97% classification accuracy. 91% preci-
sion, 94% recall and 93% F1-score, significantly exceeding
state-of-the-art benchmarks. Convergence was confirmed
by low error values: RMSE = 2.77, MAE = 1.8, and
MSE = 2.21. Comparative experiments demonstrated con-
sistent performance gains over hybrid machine learning
techniques reported in the literature, owing to the comple-
mentary representational strengths of GANs and DeepLabs
in learning robust feature encodings from medical images
while precisely delineating anatomical structures. A key

contribution is the use of a GAN framework for data
augmentation, enabling the synthesis of realistic pathological
images and improving model generalization across diverse
patient groups. The DeepLab component leverages inter-slice
spatial context to perform precise whole-heart anatomical
segmentation. Extensive ablation studies on weight decay,
dataset partitioning, and batch size tuning offered insights
into optimizing deep learning pipelines for cardiology
applications. Our diagnostic system is designed to seamlessly
integrate into clinical workflows to expedite the screening
and early detection of cardiac diseases, thereby guiding
timely intervention. The high classification accuracy suggests
GenDeep can serve as a powerful decision support tool.
For instance, it could be integrated with a hospital’s Picture
Archiving and Communication System (PACS), automati-
cally analyzing incoming cine-MRI scans to flag high-risk
cases for priority review by a cardiologist. This approach
does not replace expert clinical judgment but rather augments
it, helping to reduce the manual interpretation burden and
mitigate the subjective variability that can exist between
clinicians. By providing an objective and quantitative
assessment of ventricular morphology, the framework can
enhance diagnostic confidence and consistency. Furthermore,
population-level screening programs could leverage this
automated tool to identify at-risk individuals in a more
efficient and scalable manner, directly contributing to more
effective preventative cardiovascular healthcare policies.
Overall, this study highlighted the transformative potential of
AI to enhance cardiovascular outcomes.

Future work should focus on improving the robustness
and accessibility of automated cardiac diagnosis systems
to support clinical adoption. Priorities include aggregating
larger multi-center cardiac MRI datasets and boosting
model generalizability across heterogeneous scanners and
acquisition protocols. Incorporating self-supervised and few-
shot learning techniques may reduce reliance on large
annotated datasets, particularly for rare pathologies. Testing
model effectiveness on diverse ethnic demographics is also
vital to ensure equity and fairness. Longitudinal evaluations
across multiple patient visits may support the development of
prognostic models for long-term cardiac monitoring. From an
implementation perspective, optimized model compression
and porting onto cloud, mobile, and edge devices could
broaden access and enable personalized telecardiology. User-
centric studies assessing interpretability would also build
trust amongst the clinician community. Filling these gaps
through interdisciplinary collaboration is essential to fully
realizing the potential of AI in cardiology while navigating
practical implementation challenges.
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