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Investigating ACL length, strain and tensile force in high impact and daily 
activities through machine learning
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aDepartment of Engineering, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; bLancaster 
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ABSTRACT 
Anterior cruciate ligament (ACL) reconstruction rates are rising, particularly among female ath
letes, though causes remain unclear. This study: (i) identify accurate machine learning models to 
predict ACL length, strain, and force during six high-impact and daily activities; (ii) assess the 
significance of kinematic and constitutional parameters; and (iii) analyse gender-based injury risk 
patterns. Using 9,375 observations per variable, 42 models were trained. Cubist, Generalized 
Boosted Models (GBM), and Random Forest (RF) achieved the best R2, RMSE, and MAE. Knee 
flexion and external rotation strongly predicted ACL strain and force. Female athletes showed 
higher rotation during cuts, elevating ACL strain and risk.
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Introduction

The anterior cruciate ligament (ACL) is one of the 
most frequently injured ligamentous tissues (Dargel 
et al. 2007). In the United States, over 200,000 ACL 
injuries are diagnosed annually, with around 175,000 
requiring surgical intervention, costing an estimated 
$1 billion per year (Leong et al. 2014). ACL recon
struction rates have increased by 37% in recent years, 
with an even greater rise of 47% observed among 
females (Lyman et al. 2009; Buller et al. 2015).

The ACL plays a crucial role in stabilising the knee 
by limiting anterior tibial translation and excessive 
external rotation (Andriacchi and Dyrby 2005). Sports 
such as football, basketball, volleyball, and skiing, 
which involve sudden decelerations, jumping, pivoting, 
and crossover cutting, account for approximately 78% 
of ACL injuries (Fleming et al. 1998; Prodromos et al. 
2007). These injuries predominantly affect young, 
active individuals, with female athletes experiencing 
ACL injuries at a rate three to six times higher than 
their male counterparts (Agel et al. 2005; Prodromos 
et al. 2007). However, the reasons behind this gender 
disparity and the specific knee joint kinematics 

associated with higher injury risks in males and females 
remain unclear.

Identifying key kinematic and individual character
istics linked to ACL injury risk can improve under
standing of injury mechanisms and gender-related 
differences. This knowledge can support injury pre
vention, enhance rehabilitation strategies, and enable 
the design of personalised ligament implants based on 
a patient’s anatomy, movement patterns, and clinical 
needs (Rold�an et al. 2016). Previous studies have 
investigated in-vivo ACL biomechanics during various 
activities (Rold�an et al. 2016, 2017), and how these 
insights can guide implant design (Rold�an et al. 
2024a). This study advances the field by analysing 
critical factors influencing in-vivo ACL mechanics and 
identifying gender-specific risk patterns using a novel 
approach that integrates machine learning (ML) and 
interactive graphical analysis.

Both traditional statistical and ML models are 
effective for examining how kinematic and participant 
features affect ACL strain and force, helping to iden
tify factors contributing to increased injury risk. 
Developing optimised, reproducible, and accurate 
models, with high coefficients of determination (R2) 
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and low error rates, reduces the need for extensive 
experiments, saving time and costs (Rold�an et al. 
2023b). ML techniques are particularly valuable, offer
ing accurate predictions despite complex nonlinear
ities or unmet parametric conditions (Bzdok et al. 
2018).

The use of machine learning (ML) in healthcare is 
rapidly expanding (Al Kuwaiti et al. 2023), proving 
valuable in areas such as medical imaging and diag
nostics (Bedi et al. 2015; Esteva et al. 2017; Gudigar 
et al. 2021), patient care (Baig et al. 2017), medical 
research (Weissler et al. 2021), tissue engineering 
(Rold�an et al. 2023a,b), drug delivery (Mak and 
Pichika 2019), wound dressings (Rold�an et al. 2025), 
rehabilitation (Yang et al. 2018), and human motion 
analysis (Xiang et al. 2022).

A Scopus search for ‘anterior cruciate ligament’ 
AND ‘machine learning’ returned 76 articles. Most 
focused on predicting ACL reconstruction revision 
(Martin et al. 2022; Ye et al. 2022) or diagnosing ACL 
injuries using imaging and deep learning (Bien et al. 
2018; Chang et al. 2019; Germann et al. 2020; Fritz 
et al. 2023). Only two studies addressed knee bio
mechanics in healthy individuals. Tedesco et al. used 
motion sensors with various ML algorithms—includ
ing KNN, naïve Bayes, SVM, gradient boosting, and 
multilayer perceptrons—to analyse gait in healthy and 
ACL-reconstructed rugby players (Tedesco et al. 
2020). Chaaban et al. employed inertial sensors and 
stepwise linear regression to predict ground reaction 
forces and knee biomechanics during a double-limb 
jump landing (Chaaban et al. 2021). However, none 
of these studies aimed to accurately predict in-vivo 
ACL length, strain, or force in healthy participants 
across a wide range of daily and high-impact activ
ities, nor did they investigate gender-based differences 
in ACL kinematics and dynamics.

This study had three main aims: (i) to identify the 
most accurate regression models for predicting ACL 
length, strain, and force using seven features: activity, 
sex, height, weight, knee flexion, external rotation, 
and abduction angles; (ii) to assess the influence of 
these variables on ACL biomechanics; and (iii) to 
explore gender differences in ACL force normalised 
to body weight (force/BW) and associated risk factors 
across six daily and high-impact activities: walking, 
running, jumping, one-leg jumping, sidestep cutting, 
and crossover cutting.

Using biomechanical data from 12 participants, ACL 
kinematics and dynamics were predicted through 42 
machine learning models, including Cubist and 
EARTH regressors, which had not previously been 

applied in biomechanical contexts. The most accurate 
models were selected to evaluate the relevance of the 
independent variables. Interactive graphical analysis 
revealed gender-specific differences in ACL force/BW 
across activities, aiming to clarify why female athletes 
experience higher injury rates.

We hypothesised that: (1) novel, high-accuracy ML 
models would highlight the key features influencing 
ACL biomechanics and, when combined with visual 
analysis, offer better insights into injury mechanisms; 
and (2) women would exhibit greater ACL strain and 
force, potentially explaining their higher injury risk. 
These findings are expected to support improved 
injury prevention, rehabilitation strategies, and the 
development of personalised ACL implants.

Methods

Data collection

Participants
Twelve healthy young adults (7 males and 5 females; 
mean ± SD: age 27.3 ± 3.3 years, height 1.70 ± 0.09 m, 
mass 71.6 ± 15.5 kg) participated in this study. All pro
cedures complied with the Declaration of Helsinki. 
Ethical approval was granted by the Manchester 
Metropolitan University Ethics Committee (Approval 
Number: SE141530), and informed written consent 
was obtained from all participants. Prior to data col
lection, participants completed the Knee Injury and 
Osteoarthritis Outcome Score (KOOS) and Hip Injury 
and Osteoarthritis Outcome Score (HOOS) to confirm 
the absence of any previous knee or hip injuries.

Protocol
Participant motion during six activities—walking, 
running, crossover cutting, sidestep cutting, vertical 
jumping with both legs, and single-leg horizontal 
jumping—was recorded using a 10-camera motion 
capture system (Vicon 612, Oxford Metrics, UK). 
Thirty-three reflective markers were placed on key 
anatomical landmarks of the upper and lower body 
(Figure 1). Activities were performed at self-selected 
speeds, and kinematic data were sampled at 100 Hz 
over three successful trials per participant. A detailed 
protocol was previously described by Rold�an et al. 
(2017).

Kinematic data were processed using Vicon Nexus 
1.8.5 (Vicon Motion Systems Ltd., UK) and analysed 
in OpenSim 3.3 (SimTK, Stanford, CA).
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ACL length, strain and force estimation
A 27-degree-of-freedom (DOF) OpenSim model, 
including 3 DOF per knee, 12 bones, and 92 muscu
lotendon actuators, was created and scaled for each 
participant to estimate in-vivo right ACL length at 
each timepoint by tracking ACL insertion coordinates 
from processed kinematic data, as described by 
Rold�an et al. (2017). Strain was calculated at every 
0.01 s using Eqs. (1) and (2):

e ¼
L − L0

L0
(1) 

L0 ¼
Lr

er þ 1ð Þ
(2) 

The zero-load length (L0) was calculated using the 
ACL length at full knee extension (Lr, 0.024–0.035 m 
depending on participant geometry) and a reference 
strain (er) of 0.08, based on (Blankevoort and Huiskes 
1991).

ACL tensile forces were estimated using their 
established force–strain relationship, modelling the 
ACL as a non-linear passive elastic tissue (Rold�an 
et al. 2016). To compare between individuals, forces 
were normalised to body weight (BW) following 
(Schmitt et al. 2015). Further details on participant- 
specific scaling, and the estimation of ACL length, 
strain, and force, are provided in Rold�an et al. 
(2024a).

Data set

Following data collection, 9,375 observations were 
obtained for each independent variable (activity, 
height, weight, sex, knee flexion, external rotation, 
and abduction angles) and each dependent variable 
(ACL length, strain, and force/BW). These corre
sponded to the kinematic and dynamic data recorded 
at each timepoint during three successful repetitions 
of each activity per participant.

Initial statistical analysis
An initial exploratory analysis was conducted to 
examine variable distributions and correlations. 
Normality and homoscedasticity were tested using the 
Kolmogorov–Smirnov and Breusch–Pagan tests, with 
results provided in the supplementary material. All 
initial statistical analyses and machine learning mod
els were performed using R 4.3.0 and RStudio 
2023.03.1. Descriptive statistics comparing ACL force/ 
BW between genders were carried out in IBM SPSS 
v.27 (IBM Inc., US).

Prediction models

Seven features (activity, height, weight, sex, knee flex
ion angle, knee external rotation angle, and knee 
abduction angle) were selected to predict three 
endogenous variables (ACL length, strain, and ACL 

Figure 1. Reflective marker’s locations.
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force/BW). These variables were chosen to simplify 
the models and due to their reported influence on 
ACL loading in previous studies (Yoo et al. 2010; 
Taylor et al. 2013; Utturkar et al. 2013). 9,375 obser
vations per feature were used to train 14 ML models: 
Linear Models (LM), Generalised Linear Model 
(GLM), Generalised Additive Model (GAM), Stepwise 
Model Selection by AIC (Step AIC), Multivariate 
Adaptive Regression Splines (EARTH_1), optimised 
EARTH (EARTH_2), GLMNET, Support Vector 
Machine (SVM), Classification and Regression Trees 
(CART_1), optimised CART (CART_2), k-Nearest 
Neighbours (KNN), Random Forest (RF), Generalised 
Boosted Models (GBM), and Cubist (CUBITS). This 
study is the first to apply Cubist and EARTH models 
in biomechanical research. A total of 42 ML models 
(14 per outcome variable) were analysed, each 
employing distinct prediction strategies—ranging 
from parametric regressions to rule-based and 
distance-based algorithms. Table 1 outlines model 
characteristics, with further details available in the 
supplementary material.

Classification and Regression Trees (CART) were 
included in this study due to their interpretability and 
ability to visually represent prediction rules and fea
ture importance. Two CART models were developed 
to predict ACL length, strain, and force/BW and 
assess the influence of the seven independent variables 
(features). The first model (CART_1) was created 
using the caret() library with the ‘rpart’ method and 
hyperparameters of 0, 0.05, and 0.1. The second 
model (CART_2) used the rpart() and rpart.plot() 
libraries, with the ‘anova’ method and the prune() 
function to identify the most influential variables.

All ML models were developed using the caret() 
library, as recommended in previous studies (Rold�an 
et al. 2024b,c), due to its integrated functions for data 

preprocessing, hyperparameter tuning, and model train
ing. Each model was trained using its corresponding 
method: ‘svmRadial’ for SVM, ‘rpart’ for CART, and 
‘lm’, ‘glm’, ‘earth’, ‘gam’, ‘glmStepAIC’, ‘glmnet’, ‘knn’, 
‘rf’, ‘gbm’, and ‘cubist’ for the respective approaches. For 
the optimised EARTH models (EARTH_2), hyperpara
meters were tuned by varying the degree (set to 1) and 
the number of prunes (2, 11, and 10).

Preprocessing was standardised across models using 
‘center’ and ‘scale’, except for RF, GBM, and CUBIST, 
which employed the ‘BoxCox’ transformation. All models 
were evaluated using nested cross-validation (Figure 2). 
The outer loop applied a 12-fold leave-one-participant- 
out approach to ensure full independence between 
training and test sets and avoid data leakage. Each outer 
loop’s training set included data from 11 participants, 
while the test set included data from the remaining par
ticipant. Inner loops 11-fold cross-validation (3 
repeats) were created with the ‘trainControl()’ function, 
‘repeatedcv’ method, and ‘expand.grid()’ to optimise 
hyperparameters for EARTH and CART models. 
Default settings in caret() were used for the rest of the 
models. To prevent library conflicts, the tidymodels 
package was used.

To identify the most accurate model for each depend
ent variable, Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and the coefficient of determin
ation (R2) were computed using the functions ‘RMSE()’, 
‘MAE()’ and ‘R2()’ by comparing the predicted values 
(generated with the predict() function) against the 
observed data.

Final cross-validation metrics (R2
CV, MAECV and 

RMSECV) were calculated as the average of individual 
participant results (R2

CV_P1 to R2
CV_P12, MAECV_P1 

to MAECV_P12, and RMSECV_P1 to RMSECV_P12), 
which were calculated from the average values across 
each inner validation fold (R2

CV1 to R2
CV11, MAECV1 to 

MAECV11 and RMSECV1 to RMSECV11) based on train
ing and validation data (as illustrated in Figure 2).

To determine the most accurate model per inde
pendent variable, the final MAE and RMSE errors 
(MAETest and RMSETest), and R2 (R2

Test) were com
puted by averaging the test results across all partici
pants (R2

Test1 to R2
Test12, MAETest1 to MAETest12 and 

RMSETest1 to RMSETest12) as shown in Figure 2.

Importance of the independent variables on the 
dependent variables
For all ML regression models, the importance of the fea
tures in predicting the endogenous variables was 
assessed using the ‘varImp()’ function from the ‘caret()’ 
library, applied to the training and validation datasets. 

Table 1. Characteristics of the ML models used in the present 
study and library used to build each model.
Models Parametric Regression1 Rules Distances Adaptative Library

LM YES YES NO NO NO caret
GLM YES YES NO NO YES caret
EARTH_1 MIX YES YES NO YES caret
EARTH_2 MIX YES YES NO YES earth
GAM MIX YES NO NO YES caret
GLMNET YES YES NO NO YES caret
StepAIC YES YES NO NO YES caret
CART_1 NO NO YES NO NO caret
CART_2 NO NO YES NO NO rpart
KNN NO NO NO YES NO caret
SMV NO NO NO YES NO caret
RF NO NO YES NO NO caret
GBM NO NO YES NO NO caret
Cubist NO YES YES YES NO caret

(1) All models are for regression and classification. However, some of 
them do not use the regression in their algorithms.
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The percentual average of importance of each feature 
was calculated by considering all ML models (14 models 
per dependent variable), all participants (12 in total), 
and all cross-validation repetitions (33 per participant). 
Consequently, the importance of each predictor with 
respect to each dependent variable (ACL length, ACL 
strain, and ACL force/BW) was determined from a total 
of 5,544 cases per outcome.

Identification of gender differences for ACL force/BW
The relationship between ACL force/BW versus the 
ACL strain was explored for each activity and gender 
to determine which activities presented the highest 
ACL force for each gender. All the ACL force/BW 
and ACL strain observations (9375 observations each) 
were included in this analysis.

Percentiles 25, 50, 75, 95 and 99 for all the inde
pendent and dependent variables were calculated for 
each gender and activity to identify thresholds that 
revealed gender-based discrepancies.

After identifying values above the 75th percentile 
as those showing the greatest gender differences, ACL 
force/BW and strain data above this threshold were 
analysed to examine the associated knee angles and 
explore potential biomechanical reasons for the higher 
incidence of ACL injuries in female athletes compared 
to males.

The libraries ‘ggplot2()’, ‘scatterplot3D()’ and 
‘plotly()’ were used to generate visualisations for male 
and female participants and for each activity.

The full methodology is summarised in Figure 3.

Results and discussion

Initial statistical analysis

Exploratory analysis was used to assess the distribu
tion of endogenous and exogenous variables (mean, 
variance, skewness, and kurtosis) and guide the selec
tion of appropriate analytical methods. The three joint 
angles (flexion, external rotation, abduction) and two 
response variables (ACL length and strain) showed 
quasi-symmetric platykurtic distributions (k< 3) with 
similar mean and median values. In contrast, ACL 
force/BW followed a Pareto distribution, with 70–75% 
of values near zero and the remainder increasing to a 
peak of 3.04 N/BW, recorded in a female during 
crossover cutting, with knee flexion and external rota
tion slightly above 100� and 25�, respectively. 
Normality and homoscedasticity tests (Kolmogorov– 
Smirnov and Breusch–Pagan) confirmed that none of 
the three output variables were normally distributed 
or homoscedastic (p< 0.001), indicating that linear 
regression models were unsuitable, although they 
were included for comparison in line with previous 
studies (Rold�an et al. 2023b). Full results are provided 
in the supplementary material.

Machine learning model selection

The models included seven input variables, two discrete 
(activity, sex) and five continuous (height, weight, knee 
flexion, external rotation, and abduction angles). As the 
data did not meet parametric assumptions of normality, 

Figure 2. Validation of the models.
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non-parametric machine learning models were deemed 
more appropriate for predicting the endogenous varia
bles: ACL length, ACL strain, and ACL force/BW. While 
the coefficient of determination (R2) reflects model fit, it 
does not alone indicate model quality; therefore, R2 was 
evaluated alongside error metrics (MAE and RMSE) to 
determine model accuracy. Graphical representations of 
these metrics were used to identify the most precise 
models. Figure 4 presents R2, RMSE, and MAE for each 
model predicting ACL length. Specifically, Figure 4A dis
plays R2 values, Figure 4B shows RMSE, and Figure 4C
reports MAE, calculated through cross-validation and 
test data as detailed in the methods.

All ML models predicting ACL length, except 
GLM, LM, GLMNET and Step AIC, showed high R2 

values (0.987–0.996) and low RMSE (0.000521– 
0.000166) and MAE (0.00029–0.00011 m) after cross- 
validation. Test data revealed that RF, GBM and 
CUBIST achieved RMSE and MAE below 0.002, while 
EARTH, GBM and GAM yielded the highest R2 

(0.957–0.984). GBM was the most accurate model, 
with R2 ¼ 0.991, RMSE ¼ 0.000338 and MAE ¼
0.000256 m in cross-validation, and R2 ¼ 0.961, 
RMSE ¼ 0.00194 and MAE ¼ 0.00188 m with test 
data. Figure 5 presents model performance for ACL 
strain prediction, with panels Figure 5A–5C showing 
R2, RMSE and MAE.

CUBIST, RF and GBM achieved the best fit for 
ACL strain prediction, with cross-validation R2 

between 0.971 and 0.995, and test data R2 between 
0.744 and 0.775. CUBIST was the most accurate over
all, with R2 ¼ 0.995, RMSE ¼ 0.0059 and MAE ¼
0.0036 during cross-validation, and R2 ¼ 0.744, 
RMSE ¼ 0.196 and MAE ¼ 0.111 with test data, 
showing the lowest errors despite a slightly lower R2 

than RF (0.761) and GBM (0.775). Figure 6 summa
rises the performance of each model for ACL force/ 
BW prediction, with panels Figure 6A–6C showing 
R2, RMSE and MAE.

As with ACL strain, GBM, RF and CUBIST were 
the most accurate models for ACL force/BW predic
tion, with cross-validation R2 of 0.947, 0.987 and 
0.993 N/BW, and test R2 of 0.775, 0.761 and 0.744 N/ 
BW, respectively. RMSE and MAE were below 0.074 
and 0.045 in cross-validation, and under 0.211 and 
0.127 in test data. Despite slightly lower R2, CUBIST 
had the lowest errors (RMSE ¼ 0.196; MAE ¼
0.111 N/BW) and was selected as the best model. As 
expected, parametric models such as GLM and LM 
underperformed compared to non-parametric ML 
models, as shown in prior studies (Rahbar and 
Vadood 2015; Kalantary et al. 2020; Rold�an et al. 
2023b, 2024b, 2024c). RF outperformed CART in all 
outputs due to its ensemble approach improving 

Figure 3. Outline of the followed methodology from human biomechanical data collection through to application of machine 
learning algorithms.
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prediction stability (Muqeet et al. 2023). Models built 
with specific libraries (‘earth’, ‘rpart’) yielded slightly bet
ter performance than those from the ‘caret()’ package, 
which automates fitting but reduces control. 
Nonetheless, ‘caret()’ was favoured for efficiency, ease of 
use, and computational speed. Figures 4–6 show that 
rule-based models (GBM, RF, CUBIST) achieved the 
highest R2 and lowest errors, as they effectively 
handle non-linearity, ensemble learning, and overfitting. 

In contrast, regression-based models (GAM, StepAIC, 
LM, GLM, GLMNET, EARTH) yielded poorer perform
ance, consistent with the non-linear nature of ACL bio
mechanics (see Figure 8C–D). The high predictive 
accuracy, especially of CUBIST with test data, confirms 
model reproducibility, validates variable contributions, 
and enhances understanding of ACL biomechanics. 
Further details are available in the supplementary 
material.

Figure 4. Evaluation of ML models to predict ACL length A) R2 calculated from test data and with cross-validation, B) RMSE calcu
lated from test data and with cross-validation, C) MAE (m) calculated from test data and with cross-validation.
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Importance of the independent variables on the 
dependent variables

The influence of each independent variable on the 
three dependent variables was analysed across all ML 
models using 5544 cases per variable. Average per
centage contributions are shown in Table 2.

As expected, ACL length was primarily influ
enced by participant constitution, especially height, 
taller individuals had longer unloaded and in-vivo 
ACLs throughout activity. Knee flexion angle had 
the highest impact on ACL length, consistent with 
previous studies (Yoo et al. 2010; Taylor et al. 
2013; Rold�an et al. 2017; Kono et al. 2020), and 

Figure 5. Evaluation of ML models to predict ACL strain A) R2 calculated from test data and with cross-validation, B) RMSE calcu
lated from test data and with cross-validation, C) MAE calculated from test data and with cross-validation.
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knee external rotation was also significant (11.99%), 
confirming prior findings (Rold�an et al. 2017). For 
ACL strain, knee flexion (34.69%) and external 
rotation (18.44%) were the most influential, fol
lowed by activity (11.09%), aligning with (Rold�an 
et al. 2017), who identified two-leg jumps at max
imum effort as inducing the greatest strain. As 
strain is a normalised measure, participant height 
had minimal influence. Similarly, ACL force/BW 

was most affected by knee flexion (33.16%) and 
external rotation (16.14%), followed by activity 
(13.98%). The two-leg jump produced the highest 
average ACL force/BW (1.076 ± 0.113 N/BW), as in 
Rold�an et al. (2017), however the peak value 
(3.04 N/BW) occurred during crossover cutting in 
females. ACL force/BW was normalised following 
(Schmitt et al. 2015), thus height and weight had 
limited impact on its prediction.

Figure 6. Evaluation of ML models to predict ACL force/BW A) R2 calculated from test data and with cross-validation, B) RMSE cal
culated from test data and with cross-validation, C) MAE (N/BW) calculated from test data and with cross-validation.
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CART models are effective for assessing the statis
tical contribution of independent variables to depend
ent outcomes due to their simplicity, support for both 
parametric and non-parametric data, robustness to 
outliers, and ability to handle skewed data without 
transformation (Song and Lu 2015; Rold�an et al. 
2023b).

Analysis of the pruned CART predicting ACL 
force/BW revealed that only 3.2% of observations 
involved knee flexion >88.2�. Within this subset, if 
knee rotation exceeded 14.1� (1.1%), ACL force/BW 
averaged 1.84 N/BW; if rotation was <14.1� (2.1%), it 
decreased to 0.672 N/BW. Hyperextension >2.41�

(3.2%) resulted in an average force of 0.735 N/BW. 
These results align with prior studies linking high 
flexion with high rotation or hyperextension to ele
vated ACL forces and injury risk (Shimokochi and 
Shultz 2008; Quatman and Hewett 2009). For knee 
flexion between 9.52� and −2.41� with rotation 
>22.8% (1.6%), force averaged 0.746 N/BW, compared 
to 0.243 N/BW when rotation was <22.8� (14.5%). 
The lowest ACL force (0.05 N/BW) occurred with 
flexion between 88.2� and 9.52�, observed in 77.5% of 
cases, consistent with literature showing that 15–60�

of flexion reduces ACL force (Mesfar and Shirazi-Adl 
2006; Quatman and Hewett 2009). Figure 7 presents 
the pruned CART model. An optimised participant- 
specific version, including knee abduction contribu
tion (7.19%), is provided in the supplementary mater
ial. Due to its complexity and low importance, knee 
abduction is not included in the main text.

Exploring gender differences for the ACL force in 
daily and high impact activities

ACL strain analysis revealed no significant sex differ
ences below the 75th percentile; however, women 
exhibited 3.62 times higher strain than men at the 
75th percentile. ACL force/BW was similar across 
sexes below the 50th percentile but increased notably 
in women thereafter: 4.65 times higher at the 50th, 
11.3 times at the 75th, and 2.25 times at the 99th per
centile. Among 9375 observations, peak ACL force/ 
BW in males was 1.33 N/BW during the flight phase 
of a maximal jump, while in females it was 3.04 N/ 
BW during crossover cutting, consistent with prior 
findings (Rold�an et al. 2016, 2017; Englander et al. 
2019; Foody et al. 2023). These results support exist
ing evidence of higher ACL loading and injury risk in 
women, who suffer ACL injuries 3–6 times more than 
men (Agel et al. 2005; Prodromos et al. 2007).

At the 50th percentile, women showed 1.29 times 
greater flexion, 2.36 times greater external rotation, 
and men had 2.02 times greater abduction. Median 
ACL length was 18% longer in men. All relevant data, 
percentiles, and graphs are in the supplementary 
material.

The most significant gender differences in ACL 
strain and force/BW occurred above the 75th percent
ile, particularly with flexion >100�, rotation >25�, or 
hyperextension. Filtering by these thresholds revealed 
that during running, sidestep, and crossover cutting, 
women exhibited 20% more flexion and nearly triple 
the external rotation, leading to higher ACL force/BW 
and injury risk. Male peak values occurred during 
jumping: 1.2 N/BW during landing (120� flexion, <2�
rotation) and 1.33 N/BW during flight with >5�
hyperextension. These represent the highest point val
ues across all male observations; average peak forces 
by activity were previously reported (Rold�an et al. 
2017).

A graphical analysis (Figure 8A) showed ACL 
force/BW vs strain, with a toe region followed by a 
linear region typical of soft tissues (Sharabi 2022). 
Women exhibited higher force peaks in all activities, 
that could lead to risk of fatigue-induced ACL failure, 
especially in running, sidestep, and crossover cutting, 
where women exceeded 2 N/BW and men stayed 
below 0.5 N/BW. Differences were smaller during 
walking and jumping, with women reaching �1.25 
times higher force.

Flexion was the most influential variable on ACL 
force/BW. Figure 8C shows force/BW by activity and 
flexion angle, confirming that forces increase near full 
extension/hyperextension and flexion >100�, support
ing prior findings that ACL length is minimised 
between 20 and 90� flexion (Kono et al. 2020). 
Women showed higher forces at flexion >80�.

Figure 8D (ACL force/BW vs flexion and rotation) 
showed women had greater rotation at flexion >100�, 
leading to increased ACL length, strain, and force. 
This aligns with previous reports showing females are 
more prone to ACL injury under flexion, high rota
tion, and valgus, while males are more vulnerable 
with high flexion and low rotation (Quatman and 
Hewett 2009).

Finally, Figure 8B presents predicted vs observed 
ACL force/BW using the CUBIST model, the most 
accurate model. Its reproducibility confirms that both 
predicted and observed data are equally valid for 
analysis.

To better identify scenarios associated with the 
highest ACL strain and force, all 9375 observations of 
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ACL strain and force/BW were analysed graphically 
against the three knee angles, and sex using inter
active plots. Figures 9A and 9B show that ACL strain 
exceeded 10% during deep flexion (>100�) and near 
full extension or hyperextension in both sexes. 
Figures 9C and 9D indicate that women exhibited 
greater rotation and lower varus than men under 
high flexion, resulting in higher ACL force/BW and 
potentially a greater risk of injury due to long-term 
fatigue. Full interactive plots stratified by activity and 

sex are available in the supplementary material, offer
ing detailed insights into the riskiest movements for 
each gender. Figure 9 presents a simplified overview 
of these analyses.

Limitations of the study

The 3DoF knee model used in this study assumes 
negligible translations compared to rotations in 
physiological conditions. Future studies should 

Figure 7. Pruned CART for ACL force/BW (N/BW).

Figure 8. A) ACL force/BW vs ACL strain by activity and sex, B) predicted ACL force/BW from the CUBIST model vs observed ACL 
force/BW, C) ACL force/BW vs knee flexion by activity and sex and D) ACL force/BW vs knee flexion vs knee rotation by sex.
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analyze all rotations and translations, especially for 
high-risk activities. Kinematic accuracy may also be 
affected by skin movement artefacts during motion 
capture. External knee moments and muscle forces 
were excluded from the machine learning models, as 
they were not strong predictors of ACL loading 

(Daliet et al. 2021), though further investigation could 
explore additional predictors. Despite excellent R2 val
ues for cross-validation and test data, a larger dataset 
(exceeding 12 participants and 9375 observations) 
would likely improve model accuracy, increase R2, 
reduce errors, and capture greater variability in knee 

Table 2. Importance of the independent variables on the ACL length, strain and force/BW.
ACL length ACL strain ACL force/BW

Variables Importance (%) Variables Importance (%) Variables Importance (%)

Heigh 32.96 Knee_flexion_r 34.69 Knee_flexion_r 33.16
Knee_flexion_r 26.28 Knee_rotation_r 18.44 Knee_rotation_r 16.42
Weight 13.98 Activity 11.09 Activity 13.98
Knee_rotation_r 11.99 Heigh 10.84 Weight 10.96
Sex 5.76 Weight 10.08 Knee_abduction_r 9.71
Knee_abduction_r 5.65 Knee_abduction_r 9.68 Sex 9.06
Activity 3.37 Sex 5.18 Heigh 6.70

Figure 9. ACL strain and ACL force/BW vs knee angles by sex. A) Men ACL strain, B) women ACL strain, C) men ACL force/BW 
and D) women ACL force/BW.
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biomechanics. While machine learning models offer 
high accuracy even with non-linear data, they may 
have limitations when predicting outside their train
ing set, this limitation is minimised in this article by 
incorporating both daily and high-impact activities, 
exposing participants to a broad range of motion.

Conclusions

This novel study predicts in-vivo ACL length, strain, 
and force/BW using 42 ML models across 9375 obser
vations per variable. CUBIST, used for the first time 
in biomechanics, alongside GBM and RF, emerged as 
the most accurate models (R2: 0.997–0.992 for cross- 
validation; 0.984–0.775 for test), effectively estimating 
ACL variables based on activity, height, weight, gen
der, and knee flexion, external rotation, and abduc
tion angles, while significantly reducing experimental 
time and cost. Knee flexion and rotation were the 
most influential predictors. The study also identifies 
risky movement patterns associated with high ACL 
strain and force, aiding in understanding the high 
incidence of ACL injuries, especially among females. 
Women showed up to three times higher ACL strain 
and force/BW than men (3.04 vs 1.33 N/BW), particu
larly during cross-over cutting, where their knee flex
ion and rotation increased by �20% and 3 times, 
respectively, compared to males. In contrast, the high
est ACL strain and force/BW in men occurred during 
maximum-effort jumping with knee hyperextension 
>5�. This novel approach, combining CUBIST models 
and interactive graphical analysis, enables detection of 
biomechanical risk patterns, potentially guiding injury 
prevention in athletes and ACL failure prediction 
through analysis of joint kinematics. It also has appli
cations in elderly or injured populations for identify
ing risky knee motions, what can help to improve 
rehabilitation strategies, and develop customised ACL 
implants.
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