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ABSTRACT

Anterior cruciate ligament (ACL) reconstruction rates are rising, particularly among female ath-
letes, though causes remain unclear. This study: (i) identify accurate machine learning models to
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predict ACL length, strain, and force during six high-impact and daily activities; (ii) assess the

significance of kinematic and constitutional parameters; and (iii) analyse gender-based injury risk
patterns. Using 9,375 observations per variable, 42 models were trained. Cubist, Generalized
Boosted Models (GBM), and Random Forest (RF) achieved the best R%, RMSE, and MAE. Knee
flexion and external rotation strongly predicted ACL strain and force. Female athletes showed

higher rotation during cuts, elevating ACL strain and risk.

Introduction

The anterior cruciate ligament (ACL) is one of the
most frequently injured ligamentous tissues (Dargel
et al. 2007). In the United States, over 200,000 ACL
injuries are diagnosed annually, with around 175,000
requiring surgical intervention, costing an estimated
$1 billion per year (Leong et al. 2014). ACL recon-
struction rates have increased by 37% in recent years,
with an even greater rise of 47% observed among
females (Lyman et al. 2009; Buller et al. 2015).

The ACL plays a crucial role in stabilising the knee
by limiting anterior tibial translation and excessive
external rotation (Andriacchi and Dyrby 2005). Sports
such as football, basketball, volleyball, and skiing,
which involve sudden decelerations, jumping, pivoting,
and crossover cutting, account for approximately 78%
of ACL injuries (Fleming et al. 1998; Prodromos et al.
2007). These injuries predominantly affect young,
active individuals, with female athletes experiencing
ACL injuries at a rate three to six times higher than
their male counterparts (Agel et al. 2005; Prodromos
et al. 2007). However, the reasons behind this gender
disparity and the specific knee joint kinematics
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associated with higher injury risks in males and females
remain unclear.

Identifying key kinematic and individual character-
istics linked to ACL injury risk can improve under-
standing of injury mechanisms and gender-related
differences. This knowledge can support injury pre-
vention, enhance rehabilitation strategies, and enable
the design of personalised ligament implants based on
a patient’s anatomy, movement patterns, and clinical
needs (Roldan et al. 2016). Previous studies have
investigated in-vivo ACL biomechanics during various
activities (Roldan et al. 2016, 2017), and how these
insights can guide implant design (Roldan et al.
2024a). This study advances the field by analysing
critical factors influencing in-vivo ACL mechanics and
identifying gender-specific risk patterns using a novel
approach that integrates machine learning (ML) and
interactive graphical analysis.

Both traditional statistical and ML models are
effective for examining how kinematic and participant
features affect ACL strain and force, helping to iden-
tify factors contributing to increased injury risk.
Developing optimised, reproducible, and accurate
models, with high coefficients of determination (R?)
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and low error rates, reduces the need for extensive
experiments, saving time and costs (Roldan et al.
2023b). ML techniques are particularly valuable, offer-
ing accurate predictions despite complex nonlinear-
ities or unmet parametric conditions (Bzdok et al.
2018).

The use of machine learning (ML) in healthcare is
rapidly expanding (Al Kuwaiti et al. 2023), proving
valuable in areas such as medical imaging and diag-
nostics (Bedi et al. 2015; Esteva et al. 2017; Gudigar
et al. 2021), patient care (Baig et al. 2017), medical
research (Weissler et al. 2021), tissue engineering
(Roldan et al. 2023a,b), drug delivery (Mak and
Pichika 2019), wound dressings (Rolddn et al. 2025),
rehabilitation (Yang et al. 2018), and human motion
analysis (Xiang et al. 2022).

A Scopus search for ‘anterior cruciate ligament’
AND ‘machine learning’ returned 76 articles. Most
focused on predicting ACL reconstruction revision
(Martin et al. 2022; Ye et al. 2022) or diagnosing ACL
injuries using imaging and deep learning (Bien et al.
2018; Chang et al. 2019; Germann et al. 2020; Fritz
et al. 2023). Only two studies addressed knee bio-
mechanics in healthy individuals. Tedesco et al. used
motion sensors with various ML algorithms—includ-
ing KNN, naive Bayes, SVM, gradient boosting, and
multilayer perceptrons—to analyse gait in healthy and
ACL-reconstructed rugby players (Tedesco et al.
2020). Chaaban et al. employed inertial sensors and
stepwise linear regression to predict ground reaction
forces and knee biomechanics during a double-limb
jump landing (Chaaban et al. 2021). However, none
of these studies aimed to accurately predict in-vivo
ACL length, strain, or force in healthy participants
across a wide range of daily and high-impact activ-
ities, nor did they investigate gender-based differences
in ACL kinematics and dynamics.

This study had three main aims: (i) to identify the
most accurate regression models for predicting ACL
length, strain, and force using seven features: activity,
sex, height, weight, knee flexion, external rotation,
and abduction angles; (ii) to assess the influence of
these variables on ACL biomechanics; and (iii) to
explore gender differences in ACL force normalised
to body weight (force/BW) and associated risk factors
across six daily and high-impact activities: walking,
running, jumping, one-leg jumping, sidestep cutting,
and crossover cutting.

Using biomechanical data from 12 participants, ACL
kinematics and dynamics were predicted through 42
machine learning models, including Cubist and
EARTH regressors, which had not previously been

applied in biomechanical contexts. The most accurate
models were selected to evaluate the relevance of the
independent variables. Interactive graphical analysis
revealed gender-specific differences in ACL force/BW
across activities, aiming to clarify why female athletes
experience higher injury rates.

We hypothesised that: (1) novel, high-accuracy ML
models would highlight the key features influencing
ACL biomechanics and, when combined with visual
analysis, offer better insights into injury mechanisms;
and (2) women would exhibit greater ACL strain and
force, potentially explaining their higher injury risk.
These findings are expected to support improved
injury prevention, rehabilitation strategies, and the
development of personalised ACL implants.

Methods
Data collection

Participants

Twelve healthy young adults (7 males and 5 females;
mean + SD: age 27.3 £3.3years, height 1.70+0.09 m,
mass 71.6 £ 15.5kg) participated in this study. All pro-
cedures complied with the Declaration of Helsinki.
Ethical approval was granted by the Manchester
Metropolitan University Ethics Committee (Approval
Number: SE141530), and informed written consent
was obtained from all participants. Prior to data col-
lection, participants completed the Knee Injury and
Osteoarthritis Outcome Score (KOOS) and Hip Injury
and Osteoarthritis Outcome Score (HOOS) to confirm
the absence of any previous knee or hip injuries.

Protocol
Participant motion during six activities—walking,
running, crossover cutting, sidestep cutting, vertical
jumping with both legs, and single-leg horizontal
jumping—was recorded using a 10-camera motion
capture system (Vicon 612, Oxford Metrics, UK).
Thirty-three reflective markers were placed on key
anatomical landmarks of the upper and lower body
(Figure 1). Activities were performed at self-selected
speeds, and kinematic data were sampled at 100 Hz
over three successful trials per participant. A detailed
protocol was previously described by Roldan et al.
(2017).

Kinematic data were processed using Vicon Nexus
1.8.5 (Vicon Motion Systems Ltd., UK) and analysed
in OpenSim 3.3 (SimTK, Stanford, CA).
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Figure 1. Reflective marker’s locations.
ACL length, strain and force estimation Data set

A 27-degree-of-freedom (DOF) OpenSim model,
including 3 DOF per knee, 12 bones, and 92 muscu-
lotendon actuators, was created and scaled for each
participant to estimate in-vivo right ACL length at
each timepoint by tracking ACL insertion coordinates
from processed kinematic data, as described by
Rolddn et al. (2017). Strain was calculated at every
0.01s using Egs. (1) and (2):

L-1L

€= I (1)
L

b= @

The zero-load length (L,) was calculated using the
ACL length at full knee extension (L,, 0.024-0.035 m
depending on participant geometry) and a reference
strain (g,) of 0.08, based on (Blankevoort and Huiskes
1991).

ACL tensile forces were estimated using their
established force-strain relationship, modelling the
ACL as a non-linear passive elastic tissue (Roldan
et al. 2016). To compare between individuals, forces
were normalised to body weight (BW) following
(Schmitt et al. 2015). Further details on participant-
specific scaling, and the estimation of ACL length,
strain, and force, are provided in Rolddn et al.
(2024a).

Following data collection, 9,375 observations were
obtained for each independent variable (activity,
height, weight, sex, knee flexion, external rotation,
and abduction angles) and each dependent variable
(ACL length, strain, and force/BW). These corre-
sponded to the kinematic and dynamic data recorded
at each timepoint during three successful repetitions
of each activity per participant.

Initial statistical analysis

An initial exploratory analysis was conducted to
examine variable distributions and
Normality and homoscedasticity were tested using the
Kolmogorov-Smirnov and Breusch-Pagan tests, with
results provided in the supplementary material. All

correlations.

initial statistical analyses and machine learning mod-
els were performed using R 4.3.0 and RStudio
2023.03.1. Descriptive statistics comparing ACL force/
BW between genders were carried out in IBM SPSS
v.27 (IBM Inc., US).

Prediction models

Seven features (activity, height, weight, sex, knee flex-
ion angle, knee external rotation angle, and knee
abduction angle) were selected to predict three
endogenous variables (ACL length, strain, and ACL
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force/BW). These variables were chosen to simplify
the models and due to their reported influence on
ACL loading in previous studies (Yoo et al. 2010;
Taylor et al. 2013; Utturkar et al. 2013). 9,375 obser-
vations per feature were used to train 14 ML models:
Linear Models (LM), Generalised Linear Model
(GLM), Generalised Additive Model (GAM), Stepwise
Model Selection by AIC (Step AIC), Multivariate
Adaptive Regression Splines (EARTH_1), optimised
EARTH (EARTH_2), GLMNET, Support Vector
Machine (SVM), Classification and Regression Trees
(CART_1), optimised CART (CART_2), k-Nearest
Neighbours (KNN), Random Forest (RF), Generalised
Boosted Models (GBM), and Cubist (CUBITS). This
study is the first to apply Cubist and EARTH models
in biomechanical research. A total of 42 ML models
(14 per outcome variable) were analysed, each
employing distinct prediction strategies—ranging
from parametric regressions to rule-based and
distance-based algorithms. Table 1 outlines model
characteristics, with further details available in the
supplementary material.

Classification and Regression Trees (CART) were
included in this study due to their interpretability and
ability to visually represent prediction rules and fea-
ture importance. Two CART models were developed
to predict ACL length, strain, and force/BW and
assess the influence of the seven independent variables
(features). The first model (CART_1) was created
using the caret() library with the ‘rpart’ method and
hyperparameters of 0, 0.05, and 0.1. The second
model (CART_2) used the rpart() and rpart.plot()
libraries, with the ‘anova’ method and the prune()
function to identify the most influential variables.

All ML models were developed using the caret()
library, as recommended in previous studies (Roldan
et al. 2024b,c), due to its integrated functions for data

Table 1. Characteristics of the ML models used in the present
study and library used to build each model.

Models  Parametric Regression’ Rules Distances Adaptative Library
LM YES YES NO NO NO caret
GLM YES YES NO NO YES caret
EARTH_1 MIX YES YES NO YES caret
EARTH_2 MIX YES YES NO YES earth
GAM MIX YES NO NO YES caret
GLMNET YES YES NO NO YES caret
StepAIC  YES YES NO NO YES caret
CART_1 NO NO YES NO NO caret
CART_2 NO NO YES NO NO rpart
KNN NO NO NO  YES NO caret
SMV NO NO NO  YES NO caret
RF NO NO YES NO NO caret
GBM NO NO YES NO NO caret
Cubist NO YES YES  YES NO caret

(") All models are for regression and classification. However, some of
them do not use the regression in their algorithms.

preprocessing, hyperparameter tuning, and model train-
ing. Each model was trained using its corresponding
method: ‘svmRadial’ for SVM, ‘rpart’ for CART, and
Im’, ‘glm’, ‘earth’, ‘gam’, ‘glmStepAIC’, ‘glmnet’, ‘knn’,
‘rf, ‘gbm’, and ‘cubist’ for the respective approaches. For
the optimised EARTH models (EARTH_2), hyperpara-
meters were tuned by varying the degree (set to 1) and
the number of prunes (2, 11, and 10).

Preprocessing was standardised across models using
‘center’ and ‘scale’, except for RF, GBM, and CUBIST,
which employed the ‘BoxCox’ transformation. All models
were evaluated using nested cross-validation (Figure 2).
The outer loop applied a 12-fold leave-one-participant-
out approach to ensure full independence between
training and test sets and avoid data leakage. Each outer
loop’s training set included data from 11 participants,
while the test set included data from the remaining par-
ticipant. Inner loops 11-fold cross-validation (3
repeats) were created with the ‘trainControl()’ function,
‘repeatedcv’ method, and ‘expand.grid()’ to optimise
hyperparameters for EARTH and CART models.
Default settings in caret() were used for the rest of the
models. To prevent library conflicts, the tidymodels
package was used.

To identify the most accurate model for each depend-
ent variable, Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and the coefficient of determin-
ation (R*) were computed using the functions ‘RMSE()’,
‘MAE()’ and ‘R2()" by comparing the predicted values
(generated with the predict() function) against the
observed data.

Final cross-validation metrics (R°cy, MAEcy and
RMSEcy) were calculated as the average of individual
participant results (R’cy_P1 to R’cy_P12, MAEcy_Pl1
to MAEcy_P12, and RMSEcy_P1 to RMSEcy_P12),
which were calculated from the average values across
each inner validation fold (R*cy; to R%cyy;, MAEGy, to
MAEcy; and RMSE.y; to RMSEy;;) based on train-
ing and validation data (as illustrated in Figure 2).

To determine the most accurate model per inde-
pendent variable, the final MAE and RMSE errors
(MAEre and RMSEr.), and R* (R*res) were com-
puted by averaging the test results across all partici-
PantS (RzTestl to RZTestlZ’ MAETestl to MAETestlZ and
RMSErest; t0 RMSEreg12) as shown in Figure 2.

Importance of the independent variables on the
dependent variables

For all ML regression models, the importance of the fea-
tures in predicting the endogenous variables was
assessed using the ‘varImp()’ function from the ‘caret()’
library, applied to the training and validation datasets.
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Flgure 2. Validation of the models.

The percentual average of importance of each feature
was calculated by considering all ML models (14 models
per dependent variable), all participants (12 in total),
and all cross-validation repetitions (33 per participant).
Consequently, the importance of each predictor with
respect to each dependent variable (ACL length, ACL
strain, and ACL force/BW) was determined from a total
of 5,544 cases per outcome.

Identification of gender differences for ACL force/BW
The relationship between ACL force/BW versus the
ACL strain was explored for each activity and gender
to determine which activities presented the highest
ACL force for each gender. All the ACL force/BW
and ACL strain observations (9375 observations each)
were included in this analysis.

Percentiles 25, 50, 75, 95 and 99 for all the inde-
pendent and dependent variables were calculated for
each gender and activity to identify thresholds that
revealed gender-based discrepancies.

After identifying values above the 75th percentile
as those showing the greatest gender differences, ACL
force/BW and strain data above this threshold were
analysed to examine the associated knee angles and
explore potential biomechanical reasons for the higher
incidence of ACL injuries in female athletes compared
to males.

The libraries ‘ggplot2()’, ‘scatterplot3D()’ and
‘plotly()” were used to generate visualisations for male
and female participants and for each activity.

The full methodology is summarised in Figure 3.
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Results and discussion
Initial statistical analysis

Exploratory analysis was used to assess the distribu-
tion of endogenous and exogenous variables (mean,
variance, skewness, and kurtosis) and guide the selec-
tion of appropriate analytical methods. The three joint
angles (flexion, external rotation, abduction) and two
response variables (ACL length and strain) showed
quasi-symmetric platykurtic distributions (k < 3) with
similar mean and median values. In contrast, ACL
force/BW followed a Pareto distribution, with 70-75%
of values near zero and the remainder increasing to a
peak of 3.04N/BW, recorded in a female during
crossover cutting, with knee flexion and external rota-
tion slightly above 100° and 25°, respectively.
Normality and homoscedasticity tests (Kolmogorov-
Smirnov and Breusch-Pagan) confirmed that none of
the three output variables were normally distributed
or homoscedastic (p<0.001), indicating that linear
regression models were unsuitable, although they
were included for comparison in line with previous
studies (Roldan et al. 2023b). Full results are provided
in the supplementary material.

Machine learning model selection

The models included seven input variables, two discrete
(activity, sex) and five continuous (height, weight, knee
flexion, external rotation, and abduction angles). As the
data did not meet parametric assumptions of normality,


https://doi.org/10.1080/10255842.2025.2551846

6 E. ROLDAN CIUDAD ET AL.

1. Kinematics and kinetics collection for 6
activities: walking, jumping, running, sidestep
and crossover cutting and jumping with 1 leg
2. Data Processing

1. Ethics approval
2. Recruitment of participants
3. Consent form and KOOS and

HOOS questionaries VICON Nexus

ACL LENGTH
Total 9375 observations
7 Independent variables: Activity, height,
weight, sex, knee flexion angle, knee external
rotation angle and knee abduction angle

Total 9375 observations

e ————
: DESCRIPTIVE
| STATISTICS

Generalised
Linear
Model
(GLM)

Generalised
Additive
Model
(GAM)

Gradient

Boosting

Machine
(GBM)

Linear
Models
(Lm)

Stepwise
Model
(Step AIC)

Classification
and Regression
Trees
(CART_1)

Multivariate
Adaptive
Regression Splines

Multivariate
Adaptive
Regression Splines
(EARTH_1)

Support
Vector
Machine
(svm)

Cubist
regression
model

(CUBIST)

K-Nearest
Neighbours
(KNN)

ACL STRAIN

7 Independent variables: Activity, height, weight,
sex, knee flexion angle, knee external rotation
angle and knee abduction angle

EXPLORATORY ANALYSIS: Correlation,

distribution and dispersion. Treatment
of aberrant data.

Classification
and Regression

1. Scale model
2. Inverse kinematics
3. ACL length calculation
OpenSim model

ACL FORCE
Total 9375 observations
7 Independent variables: Activity, height, weight,
sex, knee flexion angle, knee external rotation
angle and knee abduction angle

NORMALITY : Kolmogorov Smirnov
HOMOSCEDASTICITY TEST: Breusch-Pagan

Lasso and Elastic-Net
Regularized
Generalized Linear
Models (GLMNET)

IMPORTANCE
OF THE
INDEPENDANT
VARIABLES

REGRESSION
MODELS
SELECTION

GENDER
DIFFERENCES
FOR ACL FORCE

Figure 3. Outline of the followed methodology from human biomechanical data collection through to application of machine

learning algorithms.

non-parametric machine learning models were deemed
more appropriate for predicting the endogenous varia-
bles: ACL length, ACL strain, and ACL force/BW. While
the coefficient of determination (R?) reflects model fit, it
does not alone indicate model quality; therefore, R? was
evaluated alongside error metrics (MAE and RMSE) to
determine model accuracy. Graphical representations of
these metrics were used to identify the most precise
models. Figure 4 presents R%, RMSE, and MAE for each
model predicting ACL length. Specifically, Figure 4A dis-
plays R* values, Figure 4B shows RMSE, and Figure 4C
reports MAE, calculated through cross-validation and
test data as detailed in the methods.

All ML models predicting ACL length, except
GLM, LM, GLMNET and Step AIC, showed high R
values (0.987-0.996) and low RMSE (0.000521-
0.000166) and MAE (0.00029-0.00011 m) after cross-
validation. Test data revealed that RF, GBM and
CUBIST achieved RMSE and MAE below 0.002, while
EARTH, GBM and GAM yielded the highest R
(0.957-0.984). GBM was the most accurate model,
with R* = 0.991, RMSE = 0.000338 and MAE =
0.000256m in cross-validation, and R®> = 0.961,
RMSE = 0.00194 and MAE = 0.00188 m with test
data. Figure 5 presents model performance for ACL
strain prediction, with panels Figure 5A-5C showing
R?, RMSE and MAE.

CUBIST, RF and GBM achieved the best fit for
ACL strain prediction, with cross-validation R*
between 0.971 and 0.995, and test data R® between
0.744 and 0.775. CUBIST was the most accurate over-
all, with R* = 0.995, RMSE = 0.0059 and MAE =
0.0036 during cross-validation, and R* = 0.744,
RMSE = 0.196 and MAE = 0.111 with test data,
showing the lowest errors despite a slightly lower R
than RF (0.761) and GBM (0.775). Figure 6 summa-
rises the performance of each model for ACL force/
BW prediction, with panels Figure 6A-6C showing
R?, RMSE and MAE.

As with ACL strain, GBM, RF and CUBIST were
the most accurate models for ACL force/BW predic-
tion, with cross-validation R* of 0.947, 0.987 and
0.993 N/BW, and test R* of 0.775, 0.761 and 0.744 N/
BW, respectively. RMSE and MAE were below 0.074
and 0.045 in cross-validation, and under 0.211 and
0.127 in test data. Despite slightly lower R?, CUBIST
had the lowest errors (RMSE = 0.196; MAE =
0.111 N/BW) and was selected as the best model. As
expected, parametric models such as GLM and LM
underperformed compared to non-parametric ML
models, as shown in prior studies (Rahbar and
Vadood 2015; Kalantary et al. 2020; Rolddn et al.
2023b, 2024b, 2024c). RF outperformed CART in all
outputs due to its ensemble approach improving
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Figure 4. Evaluation of ML models to predict ACL length A) R? calculated from test data and with cross-validation, B) RMSE calcu-
lated from test data and with cross-validation, C) MAE (m) calculated from test data and with cross-validation.

prediction stability (Mugqeet et al. 2023). Models built
with specific libraries (‘earth’, ‘rpart’) yielded slightly bet-
ter performance than those from the ‘caret()’ package,
which automates fitting but reduces control.
Nonetheless, ‘caret()” was favoured for efficiency, ease of
use, and computational speed. Figures 4-6 show that
rule-based models (GBM, RF, CUBIST) achieved the
highest R®> and lowest errors, as they effectively
handle non-linearity, ensemble learning, and overfitting.

In contrast, regression-based models (GAM, StepAIC,
LM, GLM, GLMNET, EARTH) yielded poorer perform-
ance, consistent with the non-linear nature of ACL bio-
mechanics (see Figure 8C-D). The high predictive
accuracy, especially of CUBIST with test data, confirms
model reproducibility, validates variable contributions,
and enhances understanding of ACL biomechanics.
Further details are available in the supplementary
material.
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Figure 5. Evaluation of ML models to predict ACL strain A) R calculated from test data and with cross-validation, B) RMSE calcu-
lated from test data and with cross-validation, C) MAE calculated from test data and with cross-validation.

Importance of the independent variables on the
dependent variables

The influence of each independent variable on the
three dependent variables was analysed across all ML
models using 5544 cases per variable. Average per-
centage contributions are shown in Table 2.

As expected, ACL length was primarily influ-
enced by participant constitution, especially height,
taller individuals had longer unloaded and in-vivo
ACLs throughout activity. Knee flexion angle had
the highest impact on ACL length, consistent with
previous studies (Yoo et al. 2010; Taylor et al
2013; Roldan et al. 2017; Kono et al. 2020), and
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Figure 6. Evaluation of ML models to predict ACL force/BW A) R* calculated from test data and with cross-validation, B) RMSE cal-
culated from test data and with cross-validation, C) MAE (N/BW) calculated from test data and with cross-validation.

knee external rotation was also significant (11.99%),
confirming prior findings (Rolddn et al. 2017). For
ACL strain, knee flexion (34.69%) and external
rotation (18.44%) were the most influential, fol-
lowed by activity (11.09%), aligning with (Roldén
et al. 2017), who identified two-leg jumps at max-
imum effort as inducing the greatest strain. As
strain is a normalised measure, participant height
had minimal influence. Similarly, ACL force/BW

was most affected by knee flexion (33.16%) and
external rotation (16.14%), followed by activity
(13.98%). The two-leg jump produced the highest
average ACL force/BW (1.076+0.113N/BW), as in
Roldan et al. (2017), however the peak value
(3.04N/BW) occurred during crossover cutting in
females. ACL force/BW was normalised following
(Schmitt et al. 2015), thus height and weight had
limited impact on its prediction.
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CART models are effective for assessing the statis-
tical contribution of independent variables to depend-
ent outcomes due to their simplicity, support for both
parametric and non-parametric data, robustness to
outliers, and ability to handle skewed data without
transformation (Song and Lu 2015; Roldan et al.
2023b).

Analysis of the pruned CART predicting ACL
force/BW revealed that only 3.2% of observations
involved knee flexion >88.2°. Within this subset, if
knee rotation exceeded 14.1° (1.1%), ACL force/BW
averaged 1.84 N/BW; if rotation was <14.1° (2.1%), it
decreased to 0.672N/BW. Hyperextension >2.41°
(3.2%) resulted in an average force of 0.735N/BW.
These results align with prior studies linking high
flexion with high rotation or hyperextension to ele-
vated ACL forces and injury risk (Shimokochi and
Shultz 2008; Quatman and Hewett 2009). For knee
flexion between 9.52° and -2.41° with rotation
>22.8% (1.6%), force averaged 0.746 N/BW, compared
to 0.243N/BW when rotation was <22.8° (14.5%).
The lowest ACL force (0.05N/BW) occurred with
flexion between 88.2° and 9.52°, observed in 77.5% of
cases, consistent with literature showing that 15-60°
of flexion reduces ACL force (Mesfar and Shirazi-Adl
2006; Quatman and Hewett 2009). Figure 7 presents
the pruned CART model. An optimised participant-
specific version, including knee abduction contribu-
tion (7.19%), is provided in the supplementary mater-
ial. Due to its complexity and low importance, knee
abduction is not included in the main text.

Exploring gender differences for the ACL force in
daily and high impact activities

ACL strain analysis revealed no significant sex differ-
ences below the 75th percentile; however, women
exhibited 3.62 times higher strain than men at the
75th percentile. ACL force/BW was similar across
sexes below the 50th percentile but increased notably
in women thereafter: 4.65 times higher at the 50th,
11.3 times at the 75th, and 2.25 times at the 99th per-
centile. Among 9375 observations, peak ACL force/
BW in males was 1.33N/BW during the flight phase
of a maximal jump, while in females it was 3.04 N/
BW during crossover cutting, consistent with prior
findings (Roldan et al. 2016, 2017; Englander et al.
2019; Foody et al. 2023). These results support exist-
ing evidence of higher ACL loading and injury risk in
women, who suffer ACL injuries 3-6 times more than
men (Agel et al. 2005; Prodromos et al. 2007).

At the 50th percentile, women showed 1.29 times
greater flexion, 2.36 times greater external rotation,
and men had 2.02 times greater abduction. Median
ACL length was 18% longer in men. All relevant data,
percentiles, and graphs are in the supplementary
material.

The most significant gender differences in ACL
strain and force/BW occurred above the 75th percent-
ile, particularly with flexion >100°, rotation >25°, or
hyperextension. Filtering by these thresholds revealed
that during running, sidestep, and crossover cutting,
women exhibited 20% more flexion and nearly triple
the external rotation, leading to higher ACL force/BW
and injury risk. Male peak values occurred during
jumping: 1.2 N/BW during landing (120° flexion, <2°
rotation) and 1.33N/BW during flight with >5°
hyperextension. These represent the highest point val-
ues across all male observations; average peak forces
by activity were previously reported (Roldan et al.
2017).

A graphical analysis (Figure 8A) showed ACL
force/BW vs strain, with a toe region followed by a
linear region typical of soft tissues (Sharabi 2022).
Women exhibited higher force peaks in all activities,
that could lead to risk of fatigue-induced ACL failure,
especially in running, sidestep, and crossover cutting,
where women exceeded 2N/BW and men stayed
below 0.5N/BW. Differences were smaller during
walking and jumping, with women reaching ~1.25
times higher force.

Flexion was the most influential variable on ACL
force/BW. Figure 8C shows force/BW by activity and
flexion angle, confirming that forces increase near full
extension/hyperextension and flexion >100°, support-
ing prior findings that ACL length is minimised
between 20 and 90° flexion (Kono et al. 2020).
Women showed higher forces at flexion >80°.

Figure 8D (ACL force/BW vs flexion and rotation)
showed women had greater rotation at flexion >100°,
leading to increased ACL length, strain, and force.
This aligns with previous reports showing females are
more prone to ACL injury under flexion, high rota-
tion, and valgus, while males are more vulnerable
with high flexion and low rotation (Quatman and
Hewett 2009).

Finally, Figure 8B presents predicted vs observed
ACL force/BW using the CUBIST model, the most
accurate model. Its reproducibility confirms that both
predicted and observed data are equally valid for
analysis.

To better identify scenarios associated with the
highest ACL strain and force, all 9375 observations of
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ACL strain and force/BW were analysed graphically
against the three knee angles, and sex using inter-
active plots. Figures 9A and 9B show that ACL strain
exceeded 10% during deep flexion (>100°) and near
full extension or hyperextension in both sexes.
Figures 9C and 9D indicate that women exhibited
greater rotation and lower varus than men under
high flexion, resulting in higher ACL force/BW and
potentially a greater risk of injury due to long-term
fatigue. Full interactive plots stratified by activity and

sex are available in the supplementary material, offer-
ing detailed insights into the riskiest movements for
each gender. Figure 9 presents a simplified overview
of these analyses.

Limitations of the study

The 3DoF knee model used in this study assumes
negligible translations compared to rotations in

physiological conditions. Future studies should


https://doi.org/10.1080/10255842.2025.2551846

12 (&) E. ROLDAN CIUDAD ET AL.

Table 2. Importance of the independent variables on the ACL length, strain and force/BW.

ACL length ACL strain ACL force/BW
Variables Importance (%) Variables Importance (%) Variables Importance (%)
Heigh 32.96 Knee_flexion_r 34.69 Knee_flexion_r 33.16
Knee_flexion_r 26.28 Knee_rotation_r 18.44 Knee_rotation_r 16.42
Weight 13.98 Activity 11.09 Activity 13.98
Knee_rotation_r 11.99 Heigh 10.84 Weight 10.96
Sex 5.76 Weight 10.08 Knee_abduction_r 9.71
Knee_abduction_r 5.65 Knee_abduction_r 9.68 Sex 9.06
Activity 337 Sex 5.18 Heigh 6.70
A B
ACL Strain > 0.1
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Figure 9. ACL strain and ACL force/BW vs knee angles by sex. A) Men ACL strain, B) women ACL strain, C) men ACL force/BW

and D) women ACL force/BW.

analyze all rotations and translations, especially for
high-risk activities. Kinematic accuracy may also be
affected by skin movement artefacts during motion
capture. External knee moments and muscle forces
were excluded from the machine learning models, as
they were not strong predictors of ACL loading

(Daliet et al. 2021), though further investigation could
explore additional predictors. Despite excellent R* val-
ues for cross-validation and test data, a larger dataset
(exceeding 12 participants and 9375 observations)
would likely improve model accuracy, increase RZ,
reduce errors, and capture greater variability in knee
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biomechanics. While machine learning models offer
high accuracy even with non-linear data, they may
have limitations when predicting outside their train-
ing set, this limitation is minimised in this article by
incorporating both daily and high-impact activities,
exposing participants to a broad range of motion.

Conclusions

This novel study predicts in-vivo ACL length, strain,
and force/BW using 42 ML models across 9375 obser-
vations per variable. CUBIST, used for the first time
in biomechanics, alongside GBM and RF, emerged as
the most accurate models (R* 0.997-0.992 for cross-
validation; 0.984-0.775 for test), effectively estimating
ACL variables based on activity, height, weight, gen-
der, and knee flexion, external rotation, and abduc-
tion angles, while significantly reducing experimental
time and cost. Knee flexion and rotation were the
most influential predictors. The study also identifies
risky movement patterns associated with high ACL
strain and force, aiding in understanding the high
incidence of ACL injuries, especially among females.
Women showed up to three times higher ACL strain
and force/BW than men (3.04 vs 1.33 N/BW), particu-
larly during cross-over cutting, where their knee flex-
ion and rotation increased by ~20% and 3 times,
respectively, compared to males. In contrast, the high-
est ACL strain and force/BW in men occurred during
maximum-effort jumping with knee hyperextension
>5°. This novel approach, combining CUBIST models
and interactive graphical analysis, enables detection of
biomechanical risk patterns, potentially guiding injury
prevention in athletes and ACL failure prediction
through analysis of joint kinematics. It also has appli-
cations in elderly or injured populations for identify-
ing risky knee motions, what can help to improve
rehabilitation strategies, and develop customised ACL
implants.
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