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Very short-term load forecasting (VSTLF)

An efficient very short-term load forecast (VSTLF) is essential for power plant unit scheduling because it reduces
the planning uncertainty caused by variable renewable energy outputs, which in turn decreases the overall
electricity production costs in a power production system. Even though this sector has seen a number of studies
and applications in plant scheduling, improving projections with minimum errors is still necessary. In this paper,
a novel machine learning framework for predicting very short-term electricity usage was developed. The data
utilized in this study are publicly available and were accessed from Kaggle’s platform. The framework involved
two pivotal stages in its development: robust feature engineering and electric load forecasting via a Prophet-
XGBoost-CatBoost (Pr-XGB-CB) model. Feature engineering involves the use of multiple sets of historical elec-
tricity consumption data with different time lags for analysis and enhancement. Prophet dissects forecasted data
into understandable seasonal, trend, and holiday segments, whereas XGBoost stands out for its speed and
effectiveness, especially when dealing with numerous features. To obtain the ensembled forecast, the CatBoost
algorithm was utilized. The optimal hyperparameters for the model are evaluated by Optuna. The effectiveness of
the suggested model was evaluated by contrasting its performance with that of five alternative machine learning
(ML) and deep learning (DL) algorithms. In addition, a sensitivity analysis was conducted to assess the model’s
robustness under scenarios of missing or limited data, demonstrating its resilience in real-world applications. The
proposed framework outperformed the state-of-the-art (SOTA) models, with a Mean Absolute Error (MAE) of
23.70, Root Mean Squared Error (RMSE) of 32.32, and an R? of 0.97; hence, the proposed framework performs an
efficient guiding role in electrical load prediction. This research offered practical significance by enhancing
power plant scheduling efficiency and reducing overall electricity production costs through superior predictive
accuracy.

1. Introduction

Ensuring a balance between power supply and demand is crucial for
enhancing the stability and energy efficiency of a power supply system.
Accurate load forecasting underpins effective power system manage-
ment by enabling optimal generation scheduling, enhancing grid reli-
ability, and supporting market operations [1]. It is critical in integrating
renewable energy sources such as solar and wind by planning resources,
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meeting demand, keeping the grid stable, optimizing energy storage,
and setting fair market prices [2]. Owing to the nature of intermittent
power generation by renewable sources, precise forecasting must be
aligned with demand to mitigate any supply variability. In
industry-heavy regions, where manufacturing is the main source of high
energy consumption [2], reliable load estimation is vital for balancing
supply and demand. Moreover, robust forecasting shapes energy pol-
icies, drives investments in renewable infrastructure, and strengthens
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grid resilience. As power systems evolve to meet ambitious sustain-
ability goals, high-precision load forecasting serves as a backbone for a
balanced and decarbonized energy future.

The planning span of a power system operation is often divided into
four time frames: very short-term, short-term, mid-term, and long-term
[3]. Each of these time frames focuses on some particular measures to
take [4]. The very short-term period spans from a few minutes to a single
day. It responds rapidly to fluctuations in load and renewable output,
minimizes imbalance penalties, and supports intra-day energy trading
and demand-response programs [5]. Short-term load forecasting (STLF),
spanning 24 h to two weeks with hourly granularity, underpins
day-ahead markets, unit commitment, and maintenance scheduling. On
the other hand, mid-term forecasting, covering two weeks to three years,
focuses on managing generation assets and preventing energy shortfalls.
However, in order to specify the construction of new power plants or
modifications to the transmission network, the long-term timescale
concentrates on a few years to decades.

VSTLF is essential for energy management, helping utilities and grid
operators make informed decisions on electricity generation and dis-
tribution over short time horizons. Achieving high accuracy in VSTLF is
challenging because of the stochastic and dynamic nature of electricity
demand, which is driven by multiple interdependent factors. Load pat-
terns are influenced by weather variability, consumer behavior, eco-
nomic conditions, and the growing integration of distributed energy
resources such as rooftop solar and electric vehicles, which introduce
bidirectional power flows and volatility [6]. These complexities require
advanced modeling techniques, such as machine learning (ML) and
hybrid statistical approaches, to handle non-linear relationships and
high-dimensional data. Moreover, computational constraints and data
quality issues further complicate real-time implementation. To address
common time series forecasting challenges such as seasonality and
trends, noise and irregular events, and missing data, various statistical
approaches, such as autoregressive integrated moving average [6] and
grey prediction [7], have been suggested. Nonetheless, these models
often prove insufficient in capturing intricate patterns of power con-
sumption, leading to inferior forecasting accuracy [8].

In recent years, several ML techniques, including artificial neural
networks, fuzzy neural networks, and support vector regression (SVR),
along with several hybrid models, such as region-based Convolutional
Neural Networks (RCNNs) [9], Generalized Autoregressive Conditional
Heteroskedasticity (GARCH), Exponential Generalized Autoregressive
Conditional Heteroskedasticity (EGARCH), and Asymmetric Power
GARCH (APGARCH), have demonstrated successful applications in
addressing the nonlinear aspects of load forecasting [10]. Jiang et al.
[11] demonstrated superior forecasting accuracy and computational
efficiency of SVR-based hybrid models. Cecati et al. [12] provided a
comprehensive Artificial Neural Network (ANN) for electric power
system load prediction and evaluated newly designed algorithms,
particularly the ErrCor method, for training Radial Basis Function net-
works in 24-h electric load forecasting.

A good number of approaches have also been reported with feature
engineering to increase the feasibility of load forecasting. Tsalikidis
et al. [13] developed a hybrid ensemble model combining multiple ML
algorithms with a voting regressor, leveraging temporal features, lagged
load values, and exogenous inputs such as temperature and PV gener-
ation. Feature selection was guided by permutation importance to cap-
ture key patterns, resulting in improved one-step-ahead energy load
forecasts. Yamasaki et al. [14] employed feature engineering with
weather, calendar, and lagged demand data alongside refined date
features and proposed a hybrid ML framework that combines multiple
regressors with signal decomposition and AutoML optimization for
enhanced VSTLF.

However, traditional approaches often rely on a single forecasting
model, which limits their ability to capture the complex, nonlinear re-
lationships in electricity load time series. Additionally, although some
studies introduce feature engineering techniques, they often fail to
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address the full complexity of temporal relationships, and the impact of
these techniques is not adequately demonstrated or quantified, limiting
their effectiveness in improving forecast accuracy. Finally, other studies
lack real-world applicability, as they do not test models under conditions
of data disruption or inadequate datasets.

The major novel contributions of this study are as follows.

This study introduces a novel hybrid Prophet (Pr), Extreme Gradient
Boosting (XGB), and CatBoost (CB), Pr-XGB-CB specifically designed
for hourly load forecasting. This hybrid approach combines the
strengths of the Prophet, XGBoost, and CatBoost models, forming a
powerful ensemble framework to predict very short-term electricity
loads with enhanced accuracy and reliability.

e A robust statistical feature engineering methodology is presented,
incorporating multilag features for various temporal dependencies.
This method provides a more accurate and dynamic representation
of historical data, enabling the model to effectively capture the
complex patterns in electricity load forecasting, ultimately
enhancing forecast precision.

To assess the robustness and practical utility of the proposed
framework, sensitivity analysis is conducted by simulating scenarios
with missing or limited data. This analysis not only demonstrates the
model’s ability to maintain high performance under challenging
real-world conditions but also highlights its potential to ensure
reliable load forecasting and operational decision-making in power
systems where data quality and availability are often imperfect.

This paper begins with an introduction, followed by a literature re-
view on VSTLF in Section 2. Section 3 details the materials and methods
used. A discussion of the results and sensitivity analysis are presented in
Section 4. Section 5 includes conclusions and recommendations for
future research.

2. Literature review

VSTLF represents an active area of research, with a wealth of liter-
ature exploring various forecasting approaches, which are typically
categorized into four groups according to the employed learning algo-
rithms: physical models, persistence methods, artificial intelligence (AI)
techniques, and statistical approaches.

Bae et al. [15] proposed an XGBoost-based method to mitigate
behind-the-meter (BTM) solar PV impact on load prediction. By
analyzing demand deviation, estimating BTM capacity via grid search,
and filtering data based on lighting loads and base temperature, the
proposed method accurately restored distorted loads using projected
solar PV power. Madrid et al. [16] suggested a group of models based on
ML in order to precisely predict the hourly electric load for the next 168
h, where the XGBoost approach demonstrated the optimal results of
hourly load forecasts, outperforming the performances of neural net-
works and five ML models constructed and evaluated in diverse load
profile settings. Massaoudi et al. [17] proposed a tiered forecasting
method combining LightGBM, XGBoost, and MLP in a stacked model,
where meta-data from XGBoost and LightGBM were processed by MLP
for load prediction. Their approach was validated on Malaysian and New
England datasets, showing strong predictive performance.

More recently, Wan et al. [18] proposed Gated Recurrent Unit (GRU)
model for STLF incorporating feature selection and data balancing via
sample extension after clustering. This method employed error-focused
training and error correction modeling to improve the prediction ac-
curacy. Wang et al. [19] proposed Sample Entropy Variational Mode
Decomposition (SVMD), combining VMD and SampEn to separate load
data into trend and fluctuation components. A linear regression model
was used to predict trends, whereas Bayesian-optimized XGBoost
models handled fluctuations. Upon application to industrial users in
China and Ireland, the method improved prediction accuracy by ac-
counting for diverse consumption factors. Jiang et al. [20] introduced
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Neural-based Similar Days Auto Regression (NSDAR), a neural network
for identifying analogous days beyond conventional meteorological
methods. NSDAR enables explicable load forecasts by a linear frame-
work based on these patterns and adds load clustering and regional load
analysis. Mo et al. [21] employed a Temporal Convolutional Network
(TCN) tailored for time data, surpassing CNN limitations. Using the
Prophet model, they partitioned power load data into trend, seasonal,
and holiday components. By separately forecasting with TCN and
Prophet, the models were merged using the least squares method. Sho-
han et al. [22] aimed to enhance electricity load prediction precision by
developing a hybrid Long Short-Term Memory (LSTM)-Neural Prophet
model, using historical data and statistical traits for forecasting both
long and short-time spans.

A new method for STLF was devised, emphasizing data refinement
and a complex R-CNN combined with the ML-LSTM architecture [9].
The approach involved preprocessing the IHEC dataset with cleansing
and Box-Cox transformation, extracting key features via deep R-CNN,
and leveraging ML-LSTM for sequential learning while being validated
on the PJM benchmark. Bashir et al. [23] introduced a hybrid load
forecasting method integrating Prophet for linear and non-linear trends
with LSTM for residual non-linear patterns. Using a Back Propagation
Neural Network to combine predictions, their approach significantly
improved accuracy when validated on Elia Grid’s quarter-hourly load
data from 2014 to 2021. Ran et al. [24] developed a Transformer model,
Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN-SE-TR), which integrated sample entropy, and
attention mechanisms to address long-term memory issues. The
CEEMDAN-SE-TR model demonstrated significant superiority, particu-
larly over conventional ML models, substantiating its advantages over
Empirical Mode Decomposition (EMD) approaches.

The literature provides a various approaches to electricity load
forecasting using ML and DL techniques but each method has its own
limitations. For instance, the XGBoost approach [16] struggles with
adaptability to dynamic load profiles, SVMD [19] faces limitations in
scenarios with rapidly changing industrial electricity consumption pat-
terns, and the advanced GRU model [18] is sensitive to the choice of
clustering methods and feature selection. While Bae et al.’s [15]
XGBoost method effectively addresses BTM solar PV interference, its
accuracy decreases under varying solar PV conditions. The
CEEMDAN-SE-TR Transformer model has computational complexities
due to the integration of multiple techniques [24]. NSDAR relies on
neural networks for identifying similar dayswhich is sensitive to the
quality and representativeness of the training data [20]. The
TCN-Prophet hybrid approach [21] struggles with capturing long-term
dependencies and the hybrid LSTM-Neural Prophet model [22], while
outperforming established methods, requires careful tuning of hyper-
parameters for optimal performance. The R-CNN combined with the
ML-LSTM architecture introduced for STLF is computationally intensive
and sensitive to data preprocessing techniques [9], whereas the stacked
XGB-LGBM-MLP models [17] face challenges in generalizing to diverse
datasets. Finally, the hybrid method merging Prophet and LSTM models
[23] is computationally demanding and requires careful consideration
of the temporal dynamics of the electricity load data for optimal
performance.

The existing load forecasting studies can benefit from incorporating a
comprehensive feature engineering technique. Even in cases where
some studies do account for feature engineering impact, it is uncommon
to find a comprehensive assessment of feature importance and sensi-
tivity analysis across the entire power system. To address these short-
comings, the proposed study aims to enhance load forecasting by
embracing a robust approach with feature engineering.

Energy 335 (2025) 137981

3. Data and methods
3.1. Overview of proposed architecture

The proposed forecasting framework starts with dataset splitting into
training (8 January 2015-31 December 2018) and testing (1 January
2019-27 June 2020) sets. Extensive feature engineering was incorpo-
rated to create new features based on several statistical methods. Sta-
tionarity and causal relationships were assessed using Augmented
Dickey-Fuller (ADF) and Granger Causality tests, respectively. This
study introduced a novel ML architecture (Pr-XGB-CB) (Fig. 1), which
was designed to improve power system operations by enhancing the
accuracy of electrical load predictions. Prophet and XGBoost were
trained individually, and their outputs were combined in a CatBoost
hybrid model. Prophet effectively addressed the inherent time series
nature of the data by decomposing it into interpretable components such
as seasonality, trend, and holiday effects, thereby enhancing model
interpretability and incorporating temporal patterns for improved
forecasting accuracy. XGBoost excels at efficiently handling high-
dimensional data by constructing an ensemble of decision trees that
progressively refine predictions, enabling the capture of complex, non-
linear relationships. CatBoost played a dual role within the Pr-XGB-CB
architecture, acting as both a meta-learner to exploit the individual
strengths and weaknesses of Prophet and XGBoost for informed pre-
dictions and utilizing its robust performance in handling categorical
features and ensemble construction to combine the model outputs and
generate the final load forecast.

Meticulous hyperparameter optimization using Optuna ensured that
each model operated at peak capacity, contributing to the overall ac-
curacy of the ensemble architecture. By integrating the hyperparameter
optimization technique, Pr-XGB-CB could emerge as a promising
approach for achieving accurate and interpretable VSTLF. Model per-
formance is evaluated and compared with that of other state-of-the-art
models, using various metrics such as RMSE, MAE, Mean Squared
Error (MSE), Mean Absolute Percentage Error (MAPE), R-squared (Rz),
Explained Variance, Max Error, and deviance measures. These metrics
are crucial in power systems for accurately assessing prediction errors
and model reliability, ensuring stable operation, efficient load fore-
casting, and effective risk management by quantifying both average and
worst-case deviations.

3.2. Data collection and processing

This study utilizes a publicly available dataset from the National
Dispatch Center, Panama, spanning from January 2015 to June 2020
[25]. Covering national electricity demand, the dataset facilitates
training and evaluating ML forecasting models, enabling comparisons
with official forecasts. Detailed variable descriptions and units are
provided in Table 1. Fig. 2 graphically presents each variable of the
dataset across different periods in the whole dataset. The dataset
comprised 48,048 readings with 17 different features and was complete,
with no missing values. A limited number of instances of low load values
were observed, which were attributed to hourly blackouts and power
grid damage. The data clearly exhibited a noticeable pattern that sug-
gested the presence of seasonal variations except for holiday, holiday id
and school, which are categorical.

Fig. 3 shows the power usage for an individual day of a week for four
different seasons. The power usages on Friday, Monday, Thursday,
Tuesday, and Wednesday are similar for different seasons. A noticeable
decline in power consumption was observed on Saturdays, with Sundays
recording the lowest usage across all days. Feature stationarity, which is
crucial for reliable time series forecasting models [26], was assessed
using the ADF test to ensure statistically consistent characteristics over
time. Table 2 confirms feature stationarity through consistently low P
values.

Fig. 4 illustrates the outcomes of the Granger causality test [27],
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Fig. 1. Comprehensive flowchart illustrating the stages of the proposed forecasting methodology.

Table 1
Variables, description and units of measure from the electricity consumption
dataset.

Variable Description of variables Unit of
Measurement
datetime Date with time Hour
nat demand  National electricity load MWh
T2M_c Temperature at 2 m °C
QV2M._c Relative humidity at 2 m %
TQLc Liquid precipitation I/m"2
W2M_c Wind speed at 2 m m/s
holiday Holiday binary indicator (1 = holiday, 0 = -
regular day)
Holiday_ID Unique identification number for holiday -
school School period binary indicator (1 = school, 0 -

= vacations)

Subindex c stands for different cities (David, Santiago and Tocumen, Panama
City) such as T2M_dav represents Temperature at 2 m in David City.

highlighting both significant and non-significant temporal dependencies
among features. While T2M_san showed a weaker association (p-value
=0.19), W2M san displayed no statistically significant predictive power

(p-value = 0.5524). Other features—such as T2M toc, QV2M._toc,
TQL_toc, W2M_toc, QV2M san, TQL_san, T2M_dav, QV2M_dav,
TQL dav, W2M_dav, Holiday ID, and holiday—exhibited strong
Granger-causal relationships (p < 0.05). These results underscore the
relevance of meteorological and calendar-based features, while sug-
gesting that further analysis of the non-significant variables may help
refining forecasting accuracy.

3.3. Feature engineering

The feature engineering method proposed in Fig. 5 involves the use
of ten different statistical measurements, including (i) Lag Feature
(LAG), (ii) Rolling Mean (MEAN), (iii) Rolling Standard Deviation
(STD), (iv) Exponentially Weighted Moving Mean (EWM MA), (v)
Exponentially Weighted Moving Standard deviation (EWM STD), (vi)
Min-max normalized features (MIN MAX), (vii) Median (MEDIAN), (viii)
Skewness (SKEW), (ix) Kurtosis (KURT), and (x) 50th percentile (P50).
These statistical components are computed within 12, 24, and 128
rolling windows to capture short-term, medium-term, and long-term
dependencies in the data, allowing for the extraction of temporal pat-
terns at multiple time scales and the recognition of both transient and
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Fig. 2. Variables in the electricity consumption dataset across the time period.

sustained trends. This process expands the dataset from its initial 17
features to a comprehensive set of 390 features.

The first five statistical techniques, LAG, MEAN, STD, EWM MA, and
EWM STD, were chosen for the target feature (nat_demand) and envi-
ronmental features, namely, temperature (T2M), humidity (QV2M),
rainfall (TQL), and wind speed (W2M) (across David, Santiago and
Tocumen city), based on the specific characteristics of demand data and
the forecasting requirements. Since these raw features are time-
dependent, lag features and moving averages were used to capture
temporal dependencies and trends where past demand and weather
conditions can significantly impact present demand. Rolling mean and

exponentially weighted moving mean helped smooth out short-term
fluctuations and emphasize long-term patterns. To address the
inherent volatility in demand, the rolling standard deviation and expo-
nentially weighted moving standard deviation were applied to capture
recent changes over older data, ensuring that the model adapts quickly
to fresh patterns such as abrupt temperature spikes or sudden humidity
changes.

For temperature at 2 m (T2M), specific humidity at 2 m (QV2M),
total cloud liquid water (TQL), and wind at 2 m (W2M)—across the
Tocumen (toc), San Jose (san), and David (dav) stations—five additional
techniques were applied to enhance their predictive power. Min-max
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Table 2
Result of Augmented Dickey-Fuller (ADF) test for time
series stationarity analysis.

Feature Name P Value
nat_demand 0.0

T2M_toc 8.56 x 10724
QV2M _toc 1.53 x 10712
TQL_toc 1.01 x 10°2¢
W2M_toc 3.27 x 1072
T2M _san 9.01 x 1071°
QV2M_san 1.64 x 107!
TQL_san 3.85 x 1072°
W2M _san 4.29 x 1072°
T2M_dav 5.41 x 10718
QV2M_dav 4,05 x 1071°
TQL_dav 9.7 x 107%
W2M_dav 4.06 x 107
Holiday_ID 0.0

holiday 0.0

school 9.15 x 107
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Fig. 4. Visualization of Granger causality test results for variable relationships.

normalization was necessary to bring different units (temperature, hu-
midity, and wind speed) onto a comparable scale, especially for the ML
models sensitive to feature magnitude. The median, skewness, kurtosis,
and 50th percentile metrics were extracted to capture the distributional
shape, asymmetry, presence of outliers, and central tendency of each
feature, making the model more robust against extreme environmental
events.

Additional feature engineering techniques such as min-max
normalization, skewness, kurtosis, and percentile-based metrics were
not applied to the nat demand feature, as it is the target variable.
Applying such transformations risks data leakage by requiring future
data access, which is inappropriate for time series targets that are
dependent on past values. Moreover, altering the target’s scale may
distort its structure and impair model performance. Similarly,

Holiday_ID, holiday, and school were excluded from these trans-
formations as categorical features not suited to time-based processing.

The naming convention for the newly created features follows a
defined specification: Original Name Statistical Operation_Window
Size. For instance, QV2M _san_ewm_mean128 represents a new feature
where QV2M san is the original feature, ewm_mean denotes the statis-
tical operation, and 128 is the window size.

To check the stationarity after feature engineering, an ADF test was
conducted, and the top 40 resulting p values are presented in Fig. 6. A
lower p value, usually below 0.05, indicates stronger evidence against
the null hypothesis of non-stationarity, suggesting the presence of sta-
tionarity within the time series. It was obvious that among the 390
features analyzed, 26 exhibited p-values exceeding 0.05, suggesting
non-stationarity. T2M_san_ewm_std_128 emerged as the most non-
stationary feature with a P-value of 0.74. The top 10 non-stationary
features include various temperature and humidity-based engineered
variables. However, most features after the 26th feature have P values
less than 0.05, indicating stationarity post-feature engineering.

3.4. Machine learning models

This section provides a brief overview of the principles underlying
the different models chosen for developing the hybrid model and
comparison.

3.4.1. LSTM

LSTM models, a subset of recurrent neural networks (RNNs), have
emerged as formidable tools for time series forecasting [28]. The
mathematical expressions for the LSTM model demonstrated in Fig. 7 (a)
are shown in equations (1)-(5) [5]:

F, o
L _ c
&= | | W Kheal +8) )
O, o
C=f*C1+LOGC @
h, = O,*tanh(C,) 3)
sigmoid (x) —# 4)
& T 1l4e
e —e ™
tanh(x) = o rer 5)

where X; is the input sequential,; b denotes the bias weights; the input
weights are W is the latest time step; t—1 is the previous time step; H
denotes the output; C; signifies the cell state; and f;, I and o are the
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' @
Features without feature engineering = 15 (without datetime and nat_demand)
nat_demand: 5 new features * 3 windows = 15
Other 12 feature: 12 * 10 new features * 3 windows = 360
Total- 390
Fig. 5. Detailed flowchart of proposed feature engineering process.
mathematical expressions for the GRU model [29] are expressed in
0.8 1 — PV o ] equations (6) and (7):
alues P Value to be stationary
0.7 4 2 -
0.6 1 |:£t:| = |: o :|(W [Xi,H; 1] +b) (6)
05 h, tanh
g _
T; 0.4 1 he=(1— he)*he1 + 2%he )
B 034 where X; represents the input at time step t, h is the output at time step t,
0.2 1 z; is the update gate, r; is the reset gate, and h{t) is the new candidate
0.1 4 activation.
0 +—— :
y T T y 3.4.3. LightGBM
0 100 200 300 400

Number of features

Fig. 6. Visualization of Augmented Dickey Fuller (ADF) test P-values and the
0.05 stationarity threshold after feature engineering.

forget, input, and output gates, respectively.

3.4.2. GRU

GRU (Gated Recurrent Unit) models, a variant of RNNs, are valuable
tools for time series forecasting, including electric load prediction. The
simplified architecture of GRUs demonstrated in Fig. 7 (b) is well known
for enabling effective training and quicker convergence. The

LightGBM, a gradient boosting framework, stands out for its effi-
ciency in handling large datasets through histogram-based binning and
leaf-wise tree growth [30]. The objective function optimizes the model
by minimizing the prediction error over n training samples—where yi is
the true label and yi is the predicted output—while incorporating a
regularization term Q(fy) to penalize the complexity of each of the K
trees fx in the model. The basic architecture of the LightGBM is
demonstrated in Fig. 8. The LightGBM model’s loss function is defined
by Eq. (8) [30]:

Objective = zn: Loss (y,—_yi) + z": Q(fi) ®)
i1 k=1
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Fig. 7. Basic architecture of (a) Long Short-Term Memory (LSTM) and (b) Gated Recurrent Unit (GRU).
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Fig. 8. Basic architecture of LightGBM model.

3.4.4. XGBoost

Extreme Gradient Boosting (XGBoost), is a popular ML method that
integrates results from various decision trees to produce precise pre-
dictions for regression and classification issues (Fig. 9). The unique ar-
chitecture of XGBoost can handle complex datasets and operates with
extreme efficiency. The gradient boosting framework continuously im-
proves the model by correcting errors generated in previous rounds
[31].

Owing to the high dimensionality of the features involved in this
research, handling them efficiently becomes a complex task. XGBoost
presents itself as an optimal solution. The XGBoost model in the

: Tree-1
Residual..(:
=T D2 2
Tree-2 1

S

) Residual =.¢ :

LN —.__
Construction of
Decision Trees

proposed Pr-XGB-CB framework uses a carefully crafted objective
function that balances prediction accuracy and model complexity via
regularization. Equation (9)-11 [32] present the detailed formulation of
both the objective and prediction functions employed by XGBoost.

Objective Function: The core objective function for XGBoost is a
combination of the loss function (commonly the mean squared error for
regression tasks) and the regularization term:

L) = Z [0, Y1) 1+ 2(f) )

> D A

Fig. 9. Illustration of the XGBoost model architecture: from input features to optimized boosted trees.
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where I(y;, 3;) is the loss function and where Q(f) is the regularization
term for the tree parameters f to avoid loss.

Regularization Term: The regularization term penalizes model
complexity by controlling the number of leaves (T) and the magnitude of
the leaf weights, wj.

1 T
Qf)=1T+54)_w; (10)
j=1

where y is the regularization on the number of leaves and where 4 is the
regularization on the leaf weights.

Prediction: The output of the XGBoost model is the sum of the outputs
from all the trees. The prediction of the k™ tree:

K
Yo=Y _fi(%) an
k=1

where fi (x) is the prediction of the k* decision tree and where k is the
total number of trees in the model.

3.4.5. Prophet

The Prophet model is a forecasting tool designed to address time
series challenges in business, finance, and weather forecasting. This
model has gained popularity for its ease of use and ability to capture
complex patterns. Key features include automatic seasonality detection,
holiday effects, flexible trend modeling, uncertainty estimation, and
customizable parameters. A graphical representation of the model is
shown in Fig. 10.

The Prophet model is selected for this research because of its
robustness in handling complex, high-dimensional time series data. Its
ability to automatically detect seasonality, model trends flexibly, and
incorporate external factors which make it well suited for capturing
dynamic and periodic patterns. Additionally, Prophet’s uncertainty
estimation ensures reliable forecasting, which is essential for optimizing
power grid operations. The general equation for the Prophet model [21]
can be written as:

Ye=8(t) +s(t) + h(t) + e a2
where y, is the observed value at time t, g(t) = growth/trend component
(logistic or linear growth), s(t) is the seasonal component, h(t) is the
holiday/event component, and e; is the error term.

Trend component: The trend component g(t) in the Prophet model can
be modeled in two ways: as a linear function capturing gradual changes
in the growth rate with changepoints or as a logistic growth function
accounting for saturation effects where growth slows near a carrying
capacity. Both approaches enable flexible modeling of long-term tem-
poral trends.

or, g(t) =linear(t) = kt + m 13

Cc
1+exp(—k(t—t)))

g(t) =logistic(k,t) = ( (14)
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where C is the carrying capacity, k is the growth rate, t is the time when
the growth rate changes, k is the trend growth rate, and m is the starting
value.

Seasonal component: To represent the daily, weekly and yearly sea-
sonality of the electric load data, the seasonality component s(t) is
typically modeled using Fourier series expansions to capture periodic
effects:

s(t)= i {ai cos( %) +b; sin(?) ]

i=1

(15)

where M is the number of Fourier terms, P is the period (365 for yearly
seasonality, 7 for weekly seasonality), and q; and b; represents the co-
efficients for the sine and cosine terms.

Holiday component: The holiday component, h(t), models the effect of
holidays on the time series by summing the individual holiday effects §;
weighted by the indicator function I(t; h;), which determines whether a
particular holiday h; occurs at time t for holiday j.

(16

J
h(t) =3 [1(t k) &]
j=i
Prediction: Combining the growth, seasonality and holiday compo-
nents, the prophet model predicts the final demand represented by Eq.
an.

Yprophet :yt = g(t) + S(t) + h(t) a7)
3.4.6. CatBoost

CatBoost is a high-performance gradient boosting ML tool designed
specifically to handle category features. It is well known for its ability to
automatically handle categorical data, eliminating the need for labo-
rious preparation. CatBoost offers exceptional prediction accuracy while
minimizing overfitting through the use of an innovative ordered
boosting algorithm [33].

The detailed formula of the CatBoost model is as follows:
Ymeta = CatBoost (.yProphet y _YXGB> (1 8)
where Ymerq is the final prediction from the meta-model.

The Cat Boost Regressor tries to learn a function Y e, that minimizes
the loss function I:

N
Ymeta = CatBoost (}'Prophen}’XGB) =arg min Z /i, Vi) 19
i—1

where #(y;, ;) is the loss function (RMSE).

3.4.7. Proposed hybrid model

In this study, CatBoost is employed as an ensemble method to inte-
grate the predictions from individual models, Prophet and XGBoost,.
The ensemble model is a simple method to combine the predictions from
the Prophet and XGBoost models. The predictions from both models are

Signal

1
Growth/ Trend — g(?) :
1
1
1

Prediction by

Data Set (x)

Noise — e(?)

Prophet
(yProphet)

Holiday — h(?)

Fig. 10. Schematic overview of the Prophet model architecture.
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combined using a weighted sum:

Yensemble = Q Y Prophet + ﬂyXGB (20)

where Yensembie i the combined prediction from the ensemble model and
where a and f are the weights assigned to the predictions of Prophet and
XGBoost, respectively.

The ensemble combines Prophet and XGBoost predictions with
weights of 0.7 and 0.3, respectively, based on their validation perfor-
mance. Prophet, showing lower error and better handling of seasonal
patterns, is given greater emphasis. XGBoost complements it by
capturing nonlinear relationships. This weighted approach balances
temporal trends and feature interactions, enhancing overall forecast
accuracy. The performance is measured using the RMSE on the test set.

3.5. Hyperparameter tuning

To address the high dimensionality of the dataset and ensure optimal
model performance, a multifaceted approach to hyperparameter tuning
was undertaken. Optuna [34] was used for efficient automated tuning of
gradient boosting models (XGBoost, LightGBM, and CatBoost), with 100
trials minimizing the RMSE on the validation set. The best configura-
tions were then used for final training and testing. For the DL models
(LSTM, GRU) and Prophet, manual tuning was applied. The LSTM and
GRU were trained with various hyperparameter sets, and those with the
lowest validation RMSEs were selected. The selected hyperparameters
for all the models are detailed in Table 3.

3.6. Evaluation criteria

In addition to common regression metrics such as the MSE, MAE,
MAPE, and R-squared, this study employs advanced statistical metrics
tailored to the unique challenges of power system operations. Mean
Poisson Deviance (MPD) captures count-based events, Mean Gamma
Deviance (MGD) addresses skewed peak demands, and Mean Tweedie
Deviance (MTD) handles zero or low load periods common in power
grids. Explained Variance (EV) reflects the model’s ability to capture
load variability, while Max Error (ME) highlights extreme forecasting
errors critical for system reliability. These metrics collectively ensure
robust and reliable forecasting performance across the complex and
variable conditions inherent in power systems. Mathematical equations
[3] for these metrics are provided below:

1¢ ~
MAE=~ ; yi—Ji e
1 -y — il
MAE==) 1 _Z5x100% (22)
1¢ ~
RMSE=, | > (i = il)? (23)
i=1
Z(b’i -yi)?
RZ =1— ljl (24)
. (i — i)
i=1
MPD _1L zn: [2. (y-.log}ﬁf i 72-))} (25)
n £ i ﬂ,i i i
IS o (Y geei
MGD =~ ; [2. (ai logai )} (26)

mrp—1 Z {2@ <W*b@i:$ )ﬂ @27
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Table 3
Key hyperparameter configurations for the LSTM, GRU, LightGBM, Prophet,
XGBoost, and CatBoost models.

Model Hyper Parameter ~ Range Selected Reasons for selection

Name Name Value

LSTM & Epochs 10-100 60 Controls training
GRU iterations.

Batch Size 16-512 64 Impacts memory and
computation.

Learning Rate 0.001-0.1 0.01 Affects convergence
speed.

Number of 1-5 3 Affects model depth.

LSTM/GRU

Layers

Input Shape - 13031,1, Defines dataset

390 dimensions.

Number of 50-512 112 Larger units capture

LSTM/GRU Units more complexity,
but may overfit.

LightGBM Number of 20-1000 61 Controls tree

Leaves complexity.

Learning Rate 0.001-0.1 0.00665 Determines step size.

Feature Fraction 0.3-1 0.5134 Limits feature
exposure to reduce
overfitting.

Bagging Fraction 0.5-1 0.6470 Reduces overfitting
by subsampling
data.

Bagging 1-100 9 Increases model

Frequence diversity to reduce
overfitting.

Prophet Change point 0.01-0.1 0.05 Controls model
prior scale flexibility to adapt to
changes.

Seasonality prior 1-20 10.0 Adjusts seasonal

scale influence,

Holidays prior 1-20 10.0 Determines holiday.

scale

Interval width 0.5-1 0.8 Sets uncertainty
interval width.

Uncertainty 0-1000 0 Affects uncertainty

Samples estimation accuracy.

XGBoost Learning Rate 0.001-0.1 0.068 Controls learning
speed.

Max Depth 3-10 6 Affects tree depth.

Minimum Child 1-100 3.92 Reduces overfitting

Weight by controlling child
node weight.

Sub sample 0.5-1 0.945 Reduces overfitting
by using a subset of
data.

Col sample by 0.3-1 0.612 Limits feature usage

tree to prevent
overfitting.

Gamma 0-10 3.14 Regularization to
prevent overly
complex models.

L2 0-10 1.207 Penalizes large

Regularization weights to avoid

(Lamda) overfitting.

L1 0-10 0.98 Encourages sparsity

Regularization to reduce overfitting.

(Alpha)

CatBoost Iterations 10-1000 100 Controls number of
trees.

Depth 4-10 6 Affects tree
complexity.

Learning Rate 0.001-0.3 0.1 Step size for
training.

Loss Function MAE, RMSE RMSE for regression

RMSE tasks.
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S 0 - 70
Ev=1-t! (28)
i 7.)_/1')2
i-1
ME:MAXizln‘yi — yll (29)

where n is the number of samples or observations, y; represents the

actual values, J; represents the predicted values, 7; represents the pre-
dicted values from the Poisson regression model, @; represents the pre-
dicted shape parameter from the gamma regression model, p represents
the predicted mean from the tweedie regression model, j; represents the

predicted variance function from the tweedie regression model, $: rep-
resents the estimated dispersion parameter and w; represents a weight
associated with each observation.

4. Results and analysis
4.1. Experimental setup and plan

The experiments used a cloud infrastructure from the Kaggle plat-
form, providing access to necessary GPUs and storage for efficient sim-
ulations. An NVIDIA Tesla P100 GPU with 16 GB GDDR5 memory and
3584 CUDA parallel processing cores was chosen. The CPU model was
Intel(R) Xeon(R) @ 2.30 GHz with 2 physical cores clocked at 2.3 GHz.
The total system RAM amount was 12 GB. All simulations were imple-
mented using Python 3.10 for the ML workflow, with Pandas 2.1 NumPy
1.26 and Scikit-Learn 1.3.2 serving as the core data science libraries. The
public Panama electricity demand dataset was loaded into this frame-
work directly from Kaggle repositories [25]. The performance of the
models was evaluated by training without feature engineering and with
feature engineering.

4.2. Case-I: without feature engineering

The first case evaluates the models’ performance using only the 16
(including the target feature) specified features, without any additional
feature transformations. This approach allows us to assess how the in-
clusion of engineered features improves model accuracy and predictive
power at later stages. As shown in Table 4, the Pr-XGB-CB, LSTM, GRU,
and Prophet models outperformed the LightGBM and XGBoost models
across all the evaluation metrics without integrating feature engineer-
ing. Specifically, the Pr-XGB-CB model demonstrated the best perfor-
mance, with an RMSE of 110.20, an R? of 0.66, and an MPD of 9.77,
underscoring its effectiveness and robustness. Significant gaps across
these evaluation metrics between Pr-XGB-CB and other models suggest
the superiority of the proposed model.

Fig. 11(a) shows the actual vs. predicted load in the whole test
dataset. It is clear that the predicted graph cannot cover the actual load
demand curve. In this particular case, the suggested framework lacks the
ability to forecast seasonal patterns. It captures the daily pattern but not
to an effective extent, consistently produces a nearly uniform output and
fails to identify a sudden drop in the electricity load demand. This
suggested that the proposed model demonstrated unsatisfactory per-
formance for the entire dataset. Fig. 11(b) compares the actual load
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demand (in MWh) with the predicted demand over the worst 24-h
period.

The actual demand fluctuates between approximately 900 MWh and
1400 MWh, showing peaks in the early morning and evening hours. The
gap between the actual demand and the predicted demand varies
significantly throughout the day, with the minimum gap occurring at
approximately 21:00 h and the maximum gap occurring between 00:00
and 02:00 h. Throughout the entire 24-h period, the predicted demand
consistently exceeds the actual demand by a large margin. Fig. 11 (c)
represents the best 24-h prediction, where both the actual and predicted
demands follow a similar trend with close tracking throughout the 24-h
period. The model prediction captures the peaks and dips in the actual
demand, such as the rise in demand in the early morning and evening.
Compared with the worst 24 h, there is a notable improvement, but
there is still a discrepancy, particularly after midday and in the evening
hours, where the predicted demand overestimates or underestimates the
actual demand. The predicted curve is somewhat smoother than the
actual demand curve, suggesting that the model oversmooths or does not
capture the finer variations in the actual demand. According to the best
scenario, predictions still need refinement, especially in accounting for
midday dips and ensuring finer adjustments to capture demand varia-
tions more accurately.

The feature importance without feature engineering analysis shows a
hierarchy of significant factors, as illustrated in Fig. 12. Metrics related
to the atmospheric moisture content, such as QV2M san (9.48 %),
appeared essential in predicting the target variable. This was closely
followed by TQL_san (9.16 %) and W2M san (9.06 %), which high-
lighted the profound impact of temperature and wind speed at a height
of 2 m above the surface. Additionally, variables capturing temperature
and wind at different vertical levels, such as TQL dav (8.20 %) and
W2M_dav (8.71 %), present considerable importance. In contrast, fea-
tures such as school (1.04 %) and holiday (0.12 %) exhibited marginal
significance and had a weaker impact on the prediction.

Despite the fairly uniform importance of the primary meteorological
predictors, the model’s reliance on raw features can mask complex in-
teractions, non-linear effects, and temporal dependencies inherent in the
data. By applying feature engineering—such as generating lagged var-
iables, rolling-window statistics, and interaction terms between tem-
perature, humidity, and wind speed—we can expose latent patterns,
reduce multicollinearity, and better capture seasonal and trend com-
ponents. The derived features can improve the forecasting accuracy of
the model, as evidenced by the performance gaps in Table 4 and the
residual patterns in Fig. 11, which indicate the need for further
enhancement.

4.3. Case II: with feature engineering

Considering the unsatisfactory performance of the proposed model
without feature engineering across the entire test dataset, it became
clear that advanced techniques were required to enhance its predictive
capability. As a result, feature engineering was applied to improve the
model’s performance. Table 5 presents the evaluation metrics of various
models after feature engineering. Among them, the proposed Pr-XGB-CB
model consistently outperforms the other models across key metrics. It
achieves the lowest MAPE (0.0203), indicating only a 2.03 % average

Table 4

Evaluation metrics of different models without feature engineering.
Model RMSE MAE MAPE R? EV ME MPD MGD MTD
LSTM 125.16 96.57 0.081 0.56 0.57 1376.2 12.56 0.01 15666.58
GRU 123.38 87.55 0.075 0.57 0.57 1410.2 11.98 0.0097 15222.09
Prophet 123.47 87.67 0.0757 0.57 0.59 530.98 12.08 0.0098 15142.56
XGBoost 143.64 114.845 0.0948 0.42 0.46 1209.94 16.75 0.01398 20634.41
LightGBM 156.96 126.36 0.102 0.30 0.36 1169.59 19.75 0.016 24636.41
Pr-XGB-CB 110.20 81.32 0.069 0.66 0.66 1153.76 9.77 0.00818 12145.60

11
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Fig. 11. Actual vs. prediction results of the proposed model without feature engineering: (a) full test dataset; (b) worst 24 h; and (c) best 24 h (worst and best are

selected based on evaluation metrics).

prediction error, along with the lowest ME (223.83), suggesting minimal
bias. It also records the highest R? and EV (0.9704), demonstrating its
strong ability to capture data variance. Its RMSE (32.32) and MAE
(23.70) are also the lowest, reflecting higher accuracy than the other
models do. Compared with Prophet, Pr-XGB-CB reduces the RMSE by
22.6 %, the MAE by 18.9 %, and the MAPE by 21.9 %, with a 2.8 %
increase in R%. Compared with XGBoost, XGBoost improves the RMSE by
36.4 %, the MAE by 26.2 %, the MAPE by 27.7 %, and the R? and EV by
4.7 % each. These results highlight the superior accuracy, consistency,
and predictive performance of the Pr-XGB-CB model, making it the most
effective for load forecasting.

The results presented in Tables 4 and 5 highlight the significant
impact of the feature engineering technique on improving the perfor-
mance of the proposed model. Specifically, for the proposed Pr-XGB-CB
framework, feature engineering led to a remarkable reduction in the
RMSE by approximately 70.67 % (from 110.20 to 32.32) and the MAE

12

by 70.85 % (from 81.32 to 23.70), along with a 46.97 % increase in the
R? score (from 0.66 to 0.97). These improvements clearly demonstrate
the effectiveness of the feature engineering strategy in enhancing the
model’s predictive accuracy and robustness, reinforcing the suitability
of the hybrid Pr-XGB-CB architecture for high-performance VSTLF.

Fig. 13 (a) shows a comparison between the actual and predicted
loads across the entire test dataset. The graph shows a strong alignment
between the predicted load and the actual load demand. Notably, the
proposed framework effectively captures seasonal patterns, consistently
producing predictions that closely match actual demand, even during
sudden drops. At the beginning of the graph, a notable drop in demand
occurred, which was precisely captured by the proposed model. Simi-
larly, in the latter part of the graph, the model accurately tracked the
overall decrease in energy demand. Fig. 13(b), (c), and 13(d) compare
the actual and predicted demand across three distinct segments, i.e.,
worst, average, and best, as derived from Table A1 (see the appendix).
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Fig. 12. Feature importance analysis without feature engineering.

The least favorable performance, observed in the first week of June
2020, presented an RMSE of 48.69, an MAE of 35.08, a MAPE of 0.03,
and an R? of 0.74. This worst-case scenario reveals a slight discrepancy,
where the predicted graph marginally fails to capture key change points.
Fig. 13(b) highlights the model’s average performance, recorded in
December 2019, with an RMSE of 30.24, an MAE of 23.13, a MAPE of
0.017, and an R? of 0.97. While there is some misalignment between the
predicted and actual curves, the performance remains commendable.
Fig. 13(c) shows the exceptional performance of the model during the
first week of February 2019, with an RMSE of 17.9, an MAE of 14.31, a
MAPE of 0.012, and an R? of 0.99. This ideal scenario demonstrates a
near-perfect alignment of the predicted graph with the actual demand
curve across the majority of data points. The proposed model effectively
captures both seasonal trends and sudden fluctuations in demand, as
evidenced by its strong alignment with the actual load across various
segments. Notably, Fig. 13 shows a significant improvement in predic-
tion performance after applying feature engineering not only for the best
case but also for both the whole test dataset and the worst case.

To further validate the reliability and generalizability of the pro-
posed model, short-term load forecasting was performed on unseen data
across different time frames. Following model training, predictions for
load forecasting 1 h ahead were conducted at various time points
spanning from January 2019 to June 2020. The training and testing
processes were conducted within a consistent environment. Fig. 14
shows that the proposed Pr-XGB-CB model outperforms all the other
models in terms of load prediction for Panama City during the initial
100 h of January 2019. The forecast values closely followed the actual
load values, showing very minimal deviations and outperforming the
individual models.

To understand the role of individual features and the importance of
derived features in model predictions, Table 6 presents the percentage of
feature importance across distinct features utilized in this study from
multiple models. The feature importance analysis revealed several
interesting patterns. LSTM and GRU exhibited balanced importance
across features, relying more on temporal demand indicators such as
nat_demand_ma_mean24 and nat demand_ewm_mean12, which reflect
historical trends and smoothing. In contrast, XGBoost and LightGBM
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emphasized features such as nat demand_lag 24 and T2M san_min -
max24, indicating reliance on past demand and temperature extremes.

Features such as nat demandlag 12, T2M san_skewl2, and
T2M_toc_skew12 appeared to have relatively low importance across all
the models, indicating that they contributed to a lesser extent to the
predictive performance, possibly due to weaker relationships with the
target variable. The XGBoost model showed near-constant and consis-
tent importance across a variety of features (ranging from 2.46 % to
0.12 %), indicating that it was predicted based on a comprehensive set of
inputs rather than relying heavily on a few key variables, resulting in
more robust predictions.

Since the Prophet model does not directly provide feature impor-
tance, the Mean Absolute Effect was used to assess the regressor impact.
This is valuable because it quantifies the average magnitude of a fea-
ture’s effect on the forecast, offering an interpretable measure of feature
influence regardless of direction. The equation for the Mean Absolute
Effect of each regressor feature in a Prophet forecast is as follows:

(30
n

1 n
Effecti=— ‘)’u‘l
=1
where |, j refers to the j is the regressor feature, n is the number of
forecasted time points, y;; is the predicted effect (or contribution) of the
j™ regressor at the i time point, which is taken from the prophet fore-
Yij

cast data frame, and is the absolute value of the predicted effect for

each time point i.

Fig. 15 shows the top 10 influential features, with nat_de-
mand_ewm _meanl2 (1093.4) having the greatest effect. This feature
influences the predicted electricity demand by +1093.4 MW on average.
Other key contributors include nat demand_ewm_mean24 (539.31) and
nat_demand_ma_mean12 (351.00), reflecting the importance of recent
12-24-h load demand trends in capturing short-term fluctuations.
Environmental features such as QV2M san_ewm_meanl2 (130.60),
QV2M_toc_ewm_meanl2 (70.06), and T2M_san_ewm_meanl2 (65.25)
also contribute meaningfully. These derived features enable the model
to adapt to recent changes in demand and weather, enhancing predic-
tion accuracy. Additionally, Fig. A1 (Appendix) shows the decomposi-
tion of the time series isolating trend, weekly, yearly, and hourly
seasonality, and noise. The stable trend (1160-1180) and pronounced
seasonal peaks—weekly (+20 on Wednesday, —20 on Sunday), yearly
(0-5 in March, June, September), and hourly (up to 100 at 18:00)—
highlight the temporal features most influential to the model. Noise
(—500 to +500) captures randomness with limited predictive value. This
decomposition reveals the driving features for the model’s predictions,
guiding refinement by emphasizing impactful components and reducing
overfitting. For both XGBoost and Prophet, all the top features are
derived features from the proposed feature engineering, which demon-
strates the effectiveness of the feature transformation process in
capturing important patterns and relationships within the data.

To assess the robustness of the proposed model, the test set was
divided into three parts, where each part consisted of data from six
consecutive months. As depicted in Table 7, although the proposed
model performed identically in terms of the measured metrics in the first
two parts, the performance declined in the last six months due to a
sudden drop in electric load, as shown in Fig. 13(a), leading to slight

Table 5

Evaluation metrics by different models with feature engineering for whole test dataset.
Model RMSE MAE MAPE R? EV ME MPD MGD MTD
LSTM 44.53 32.26 0.027 0.94 0.95 788.27 1.74 0.002 1983.23
GRU 79.21 63.26 0.053 0.82 0.86 924.1 5.23 0.004 6273.79
LightGBM 52.42 34.197 0.0303 0.922 0.92 1237.43 2.42 0.002 2748.25
XGBoost 50.74 32.18 0.028 0.927 0.93 1208.75 2.28 0.002 2574.66
Prophet 41.72 29.99 0.026 0.95 0.95 622.23 1.61 0.0017 1746.91
Pr-XGB-CB 32.32 23.70 0.0203 0.97 0.97 223.83 0.905 0.00084 1044.99
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Fig. 13. Actual vs. predicted outputs of the proposed model after feature engineering — showcasing the enhanced accuracy and alignment achieved through the
derived features. (a) Full test dataset, (b) Worst 48 h (6 June 2020 to 7 June 2020) (c) Average 48 h (4 December 2019 to 5 December 2019) and (d) Best 48 h (3

February 2019 to 4 February 2019).
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Fig. 14. Comparison of actual vs. predicted demand curves from January 6, 2019, 08:00 to January 10, 2019, at 11:00 (100 h) using six models: (a) GRU, (b) LSTM,
(c) LightGBM, (d) XGBoost, (e) Prophet, and (f) the proposed Pr-XGB-CB model—highlighting enhanced accuracy and trend capture by the proposed approach.
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Table 6
Feature importance of different models after feature engineering: highlighting
the impact of derived features.

Feature Name LSTM GRU XGBoost LightGBM
T2M_dav_min_max24 0.56 % 0.2 % 0.56 % 28.02 %
nat_demand_std_std12 2.78 % 2.17 % 2.63 % 20.74 %
nat_demand_lag_24 0.28 % 0.37 % 1.34 % 12.62 %
T2M_san_min_max24 0.42 % 0.17 % 0.43 % 11.27 %
T2M_toc_min_max24 0.42 % 0.2 % 0.48 % 9.35 %
nat_demand_ma_mean24 3.28 % 2.46 % 1.1% 3.77 %
nat_demand_ewm_mean12 1.28 % 1.28 % 0.53 % 3.28%
nat_.demand_ma_mean12 3.03 % 2.16 % 1.93 % 2.81 %
nat_demand_lag 12 0.56 % 0.21 % 1.73 % 1.26 %
nat_demand_ewm _std12 0.62 % 0.27 % 1.31 % 1.08 %
T2M_dav_min_max12 1.2% 0.19 % 0.37 % 1.32%
nat_demand_std_std24 1.1% 0.56 % 1.33% 0.39 %
T2M_toc_skew12 0.31 % 0.45 % 0.6 % 0.65 %
T2M _san_skew12 0.46 % 0.39 % 0.55 % 0.43 %
nat_.demand_ma_mean128 1.01 % 1.18% 0.79 % 0.174 %

nat_demand ewm_mean12
nat_demand ewm_mean24
nat_ demand ma meanl2
nat demand ma mean24
QV2M_san_ewm_meanl2

QV2M_toc_ewm_meanl2

Top feaatures

W2M_toc_ewm_meanl2

T2M_san_ewm_mean12

nat_demand _ma_mean128
QV2M san_ewm_mean24

0 200 400 600 800 1000 1200
Mean Absolute Effect (MW)

Fig. 15. Top 10 effective regressors of prophet model using Mean Abso-
lute Effect.

deterioration during this period. The average error metrics for these
periods closely align with the values for the entire dataset (Table 5),
with the RMSE showing a change of 0.28 %, the MAE showing a change
of —0.59 %, the MAPE showing a change of 1.48 %, and the R?
remaining unchanged, which supported the robustness of the proposed
model.
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Table 8
Model performance under data removal: RMSE score analysis.

Data Removal RMSE score for different models

(%)

GRU LSTM  LightGBM  XGBoost  Prophet  Pr-XGB-
CB
10 67.87  90.51  53.42 49.44 42.11 32.19
20 65.70  82.34  52.90 50.89 40.74 32.33
30 85.33 96.48 53.90 51.51 41.02 32.89
40 81.78 86.54 53.81 48.55 43.48 32.92
50 86.69 92.24  49.15 55.35 40.33 33.06
0 79.21 44.53 52.42 50.74 41.72 32.32
Standard 893 19.03 1.78 2.35 1.14 0.38

deviation

the smallest RMSE and the narrowest range of variation (only 0.38
standard deviation), regardless of the dataset’s completeness. Therefore,
the proposed model exhibited great robustness, and its forecasting ac-
curacy was not significantly affected by variations in data quality. These
results affirmed that the proposed model not only achieved superior
accuracy but also maintained consistent performance under challenging
data conditions, making it a reliable choice for deployment in real-life
operational environments.

4.5. Discussion

4.5.1. Comparison with literature

A comparison of the proposed Pr-XGB-CB model with SOTA models
on the same dataset is presented in Table 9. An existing XGBoost model
by Madrid et al. [16] reported an RMSE of 44.52 and a MAPE of 3.66. In
contrast, the proposed model attained an RMSE of 32.32 and a MAPE of
0.0203, indicating improvements of 27 % and 99.44 %, respectively.
Although they employed feature engineering, the multi-lag feature
approach and extensive statistical analysis in the current study
contributed significantly to its superior performance. The proposed
Pr-XGB-CB model also demonstrated substantial performance improve-
ments, such as a reduction in the RMSE by 27.59 % compared with the
feature extraction-based secondary VMD model [36] and by 27.61 %
compared with the EMD hybrid model [37]. Furthermore, it achieved
the lowest MAE (23.70), outperforming the 1D-CNN-GRU (82.44) [38]
and DIFM (43.12) models by 71.26 % and 45.02 %, respectively. In
terms of the MAPE, the current model significantly lowered the error to
0.0203, compared with 2.88 for VMD and 3.84 for DIFM [39]. Addi-
tionally, the proposed model achieved a high R? score of 0.97, matching

Table 9
4.4. Sensitivity analysis Comparison of the proposed Pr-XGB-CB model with SOTA forecasting methods.
Models Evaluation Metrics Reference
In practical power system operations, missing data and inaccuracies RMSE  MAE MAPE  R®
frequently occur due to sensor faults, communication errors, or mea-
del d these i itically affect the reliability of XGB (2021) 4452 - 3.66 - [16]
suremegt elays, and these issues can cr1t1(fa ya ect the reliabi %ty o 1D-CNN-GRU (2024) 177.88  82.44 - _ [38]
forecasting. Thus, the accuracy of forecasting is expected to be influ- EMD hybrid model (2024) 39.22 32742 - 0.96  [37]
enced by the reliability and accuracy of the input data [35]. To prevent Diffusion-based Inpainting - 4312 3.84 - [39]
unexpected or unintentional outcomes, a simulation was conducted f;;;cMa)St(l;‘g;;I)eth"d
i 0, 0, 0, 0, 0, 0,
repeatedly by removing 0 /.o, 10 %, 20 ./0, 30 %, 40 %, and 50 % of the Feature extraction based 5039 32.99 2.88 B [36]
dataset. All the comparative forecasting models were employed to Secondary VMD (2025)
generate predictions, allowing for a comparison of the prediction errors. Proposed Pr-XGB-CB 32.32  23.70  0.0203 0.97 -
As indicated in Table 8, the proposed model consistently demonstrated
Table 7
Evaluation metrics by the proposed model for each testing specific timestamp.
Time RMSE MAE R? EV ME MPD MGD MTD
01/01/2019 - 30/06/2019 28.17 20.78 0.98 0.978 210.65 0.682 0.00078 793.46
01/07/2019 - 31/12/2019 29.52 22.47 0.98 0.976 193.49 0.714 0.0005 871.39
01/01/2020 - 27/06/2020 38.99 28.26 0.95 0.953 189.75 1.366 0.0012 1520.88
Average 32.23 23.84 0.97 0.969 197.96 0.92067 0.000827 1061.91
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or exceeding the best-performing models, highlighting its superior pre-
dictive capability [36,37].

In addition to standard evaluation metrics such as the MAE, MSE,
and R?, this study introduces additional practical statistical indicators—
Mean Poisson Deviance, Mean Gamma Deviance, and Mean Tweedie
Deviance, Explained Variance, and Max Error as practical and useful tool
for power system monitoring and decision-making.

4.5.2. Strength of the proposed approach

This research overcomes the key limitations of prior VSTLF models
by introducing a hybrid Pr-XGB-CB framework that integrates multi-lag
features to improve adaptability beyond XGBoost’s constraints [11]. It
employs robust statistical feature engineering to better manage tempo-
ral dependencies, addressing the sensitivities seen in the GRU [12] and
R-CNN-ML-LSTM [22]. Additionally, its advanced feature selection
surpasses the TCN-Prophet model’s challenges in capturing long-term
dependencies [21], whereas sensitivity analysis confirms resilience to
missing data, mitigating computational issues faced by the
CEEMDAN-SE-TR transformer [15].

The key strength of the Pr-XGB-CB model lies in its hybrid structure,
which effectively leverages the complementary capabilities of Prophet,
XGBoost, and CatBoost. Prophet efficiently captures seasonal and trend
patterns, XGBoost excels in identifying complex nonlinear relationships,
and CatBoost strategically integrates these diverse predictions to opti-
mize overall accuracy.

The comprehensive feature engineering strategy significantly en-
hances the model’s predictive capability by employing various statistical
methods, including rolling averages, exponential moving statistics,
normalization, and skewness calculations across different temporal
windows. This robust feature engineering not only improves accuracy
but also increases the model’s adaptability to temporal fluctuations and
sudden changes in electricity consumption patterns.

Additionally, the proposed model also exhibits impressive resilience
in scenarios involving incomplete or disrupted data, as validated by
comprehensive sensitivity analyses. These features position the Pr-XGB-
CB model as an innovative, efficient, adaptable, accurate and practical
VSTLF solution for real-world power system forecasting applications.

4.5.3. Practical significance in power system operations

The proposed forecasting framework enhances power system oper-
ations by delivering accurate, adaptive, and efficient load predictions.
By employing lightweight, modular models, the proposed approach
enables real-time scalability. Validated on public datasets, the frame-
work offered a practical and resilient solution for modern smart grids.

By enabling more accurate and timely forecasts of load and genera-
tion patterns, the feature engineering approach facilitates optimized
resource scheduling and reduces reliance on expensive reserve capacity,
thereby lowering operational costs and improving overall economic
efficiency in the power system [40]. The sensitivity analysis validated
the framework’s robustness against data sparsity and quality degrada-
tion, conditions frequently encountered in practical power system de-
ployments such as sensor failures or communication outages. This
resilience ensures sustained forecasting accuracy for critical applications
such as real-time load balancing and contingency management, thereby
enhancing system stability and operational reliability under real-world
uncertainties [41]. Collectively, these attributes contributed to
improved grid stability, efficient economic dispatch, and effective
integration of variable renewable energy sources, aligning closely with
the operational and economic challenges faced by contemporary power
systems.
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4.5.4. Limitations and future work

The proposed framework performed well in the VSTLF scenario but
still has room for further improvement. Although it performs strongly on
the Panama-specific dataset, its representativeness is limited by
geographic, climatic, and demographic factors, potentially affecting its
generalizability to other regions. Future work should focus on validating
and retraining the model via diverse datasets from various regions and
conditions, along with exploring transfer learning to increase its appli-
cability. Additionally, expanding evaluations beyond very short-term
horizons to capture seasonal and long-term patterns will provide a
more comprehensive understanding of the model’s capabilities. Beyond
traditional approaches, delving into the potential of advanced archi-
tectures such as transformers or large language models could unlock
further accuracy gains and potentially capture intricate temporal de-
pendencies within the data. Prioritizing real-time deployment through
cloud-based implementations and explainable Al techniques such as
SHAP and LIME is crucial for practical application.

By addressing these limitations and integrating advanced tech-
niques, future work can enhance the reliability, interpretability, and
operational efficiency of VSTLF systems. The current framework has
established a strong foundation, positioning it as a promising step to-
ward smarter, more efficient, and sustainable energy management
solutions.

5. Conclusions

This paper introduces a novel Pr-XGB-CB model that combines the
Prophet, XGBoost and CatBoost models to predict very short-term
electricity load consumption. This approach utilizes the strengths of
each model, incorporating robust feature engineering to increase the
forecasting accuracy. The model’s effectiveness is tested by applying it
to historical electricity load data from Panama City, validating its per-
formance in load forecasting. According to the findings of this study, the
following conclusions can be drawn.

1. The number of input features was expanded from 17 to 390 by
employing multi-lagged statistical feature engineering for perfor-
mance enhancement in electricity load forecasting, which results in
superior model performance.

2. The proposed hybrid model produced minimum error metric values
with RMSE = 32.32, MAE = 23.70, MAPE = 0.0203, and R?=0.97.
In addition, various statistical measurements, including Explained
Variance = 0.9704, Max Error = 223.83, Mean Poisson Deviance =
0.905, Mean Gamma Deviance = 0.00084, and Mean Tweedie
Deviance = 1044.99 were performed. The model showed 26.85 %
and 99.44 % better performance in terms of the RMSE and MAE,
respectively, with respect to the state-of-the-art model with the same
dataset.

3. A thorough analysis was conducted on the hourly forecasting results,
the initial week of each testing month, and the 6-month data to in-
crease the robustness of the model. RMSE values of 32.32, 30.03, and
32.23 were found for the hourly, weekly and semiannual load pre-
dictions, respectively. The small fluctuations in the RMSE value
denoted the robustness of the proposed model.

4. An evaluation of the sensitivity analysis was conducted by randomly
including or excluding test data. The highest percentage change from
the original RMSE value of 32.32 was 2.281 % (corresponding to
33.06), and the lowest percentage change was —0.402 % (corre-
sponding to 32.19).
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Future research will aim to broaden the applicability of the frame-
work by incorporating adaptive learning strategies and scalable model
architectures. Emphasis will be placed on enhancing system robustness,
fostering interpretability, and aligning model development with prac-
tical deployment requirements in dynamic energy environments.
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Fig. Al. Decomposition of the dataset into different components with the Prophet model
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Table Al
Evaluation metrics of different models for every testing week
Model Year 2019 2020 Average
Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May  June
LSTM RMSE 41.83 28.44 28.39 3498 68.01 34.6 27.67 39.63 31.36 27.06 26.94 53.71 31.74 3299 53.76 51.29 51.37 3835 39.01
MAE 27.19 21.26 21.62 26.5 55.14 26.42 21.83 30.11 22.79 20.65 20.33 42.1 22.46 25.5 4237 37.83 3874 29.81 29.59
MAPE 0.022 0.018 0.019 0.2 0.04 0.021 0.017 0.023 0.018 0.017 0.017 0.032 0.019 0.02 0.033 0.036 0.037 0.027 0.034
R? 094 097 097 097 087 096 098 095 097 098 098 091 097 097 0.93 0.68 0.71 0.86 0.92
GRU RMSE 61.19 46.89 55.0 75.42 106.6 81.07 71.01 83.37 78.41 58.98 86.17 8098 61.77 66.57 85.53 100.9 96.98 65.39 75.68
MAE 52.16 3456 46.11 67.27 96.2 689 59.05 70.95 65.65 452 6695 65.17 49.08 55.81 71.71 76.42 76.76 51.28 62.18
MAPE 0.04 0.03 0.04 0.05 0.07 0.05 0.04 005 005 004 0.05 0.05 0.04 0.04 0.05 0.72 0.072 0.04 0.08
R? 087 093 0.89 0.85 0.69 0.81 085 079 0.81 0.91 077 079 0.88 087 081 -0.24 -0.01 0.59 0.71
Light GBM RMSE 253 20.8 36.4 285 89.6 337 375 323 255 338 326 59.04 3441 28.44 6271 56.89 69.87 5848 4255
MAE 19.8 1535 27.89 2232 69.59 27.46 26.83 24.37 20.31 24.63 25.03 46.18 25.68 22.51 43.52 38.77 46.9 44.22 31.74
MAPE 0.01 0.01 0.02 0.02 0.05 0.02 0.02 0.02 0.016 0.02 0.02 0.03 0.022 0.018 0.034 0.037 0.04 0.04 0.02
R? 097 098 095 097 077 096 095 097 098 097 09 089 09 098 0.89 0.61 0.47 067 0.88
XGBoost RMSE 19.46 18.60 3592 24.66 84.56 31.25 29.73 31.33 25.08 29.03 38.87 59.94 31.68 25.01 58.18 54.47 69.64 57.67 40.28
MAE 16.52 13.86 26.93 19.92 66.77 24.69 2218 228 19.06 21.40 25.36 47.02 23.42 20.17 39.51 36.51 45.32 43.18 29.70
MAPE 0.014 0.012 0.02 0.015 0.048 0.019 0.018 0.018 0.015 0.018 0.021 0.034 0.02 0.016 0.03 0.035 0.043 0.039 0.024
R2 098 099 095 0.98 080 097 097 097 098 097 095 088 097 098 0091 0.64 0.48 0.68 0.892
Prophet RMSE 24.08 22.39 36.73 24.41 41.15 28.07 37.96 29.4 27.75 2819 39.19 26.7 40.48 25.73 34.62 679 73.53 53.76 36.78
MAE 19.55 16.97 27.10 1892 34.32 2228 30.32 23.32 21.46 23.65 30.33 20.83 3291 19.29 2599 53.6 61.04 45.14 29.28
MAPE 0.016 0.014 0.024 0.015 0.026 0.019 0.025 0.018 0.018 0.02 0.027 0.016 0.029 0.016 0.02 0.05 0.057 0.04 0.025
R? 098 098 095 0.98 095 098 095 097 097 098 095 097 095 098 0.97 0.43 0.42 0.72 0.89
Pr- XGB-CB RMSE 22.47 17.9 28.22 20.05 4279 23.65 28.41 2598 24.0 2495 27.73 30.24 31.59 20.55 40.94 43.35 48.69 39.02 30.03
MAE 1891 14.31 2221 1595 3438 1862 21.99 19.86 19.2 20.13 21.38 23.13 24.29 15.44 2822 30.69 35.08 30.81 23.03
MAPE 0.016 0.012 0.019 0.012 0.026 0.015 0.018 0.016 0.015 0.017 0.019 0.017 0.021 0.012 0.02 0.03 0.03 0.03 0.019
R? 098 099 097 0.99 095 098 097 098 098 098 097 097 097 099 0.96 0.77 0.74 0.85 0.94
Data availability [13] Tsalikidis N, Mystakidis A, Tjortjis C, Koukaras P, Ioannidis D. Energy load
forecasting: one-step ahead hybrid model utilizing ensembling. Computing Jan.
2024;106(1):241-73. https://doi.org/10.1007/s00607-023-01217-2.

Data will be made available on request. [14] Yamasaki M, Freire RZ, Seman LO, Stefenon SF, Mariani VC, dos Santos Coelho L.
Optimized hybrid ensemble learning approaches applied to very short-term load
forecasting. Int J Electr Power Energy Syst Jan. 2024;155. https://doi.org/
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