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A B S T R A C T

An efficient very short-term load forecast (VSTLF) is essential for power plant unit scheduling because it reduces 
the planning uncertainty caused by variable renewable energy outputs, which in turn decreases the overall 
electricity production costs in a power production system. Even though this sector has seen a number of studies 
and applications in plant scheduling, improving projections with minimum errors is still necessary. In this paper, 
a novel machine learning framework for predicting very short-term electricity usage was developed. The data 
utilized in this study are publicly available and were accessed from Kaggle’s platform. The framework involved 
two pivotal stages in its development: robust feature engineering and electric load forecasting via a Prophet- 
XGBoost-CatBoost (Pr-XGB-CB) model. Feature engineering involves the use of multiple sets of historical elec
tricity consumption data with different time lags for analysis and enhancement. Prophet dissects forecasted data 
into understandable seasonal, trend, and holiday segments, whereas XGBoost stands out for its speed and 
effectiveness, especially when dealing with numerous features. To obtain the ensembled forecast, the CatBoost 
algorithm was utilized. The optimal hyperparameters for the model are evaluated by Optuna. The effectiveness of 
the suggested model was evaluated by contrasting its performance with that of five alternative machine learning 
(ML) and deep learning (DL) algorithms. In addition, a sensitivity analysis was conducted to assess the model’s 
robustness under scenarios of missing or limited data, demonstrating its resilience in real-world applications. The 
proposed framework outperformed the state-of-the-art (SOTA) models, with a Mean Absolute Error (MAE) of 
23.70, Root Mean Squared Error (RMSE) of 32.32, and an R2 of 0.97; hence, the proposed framework performs an 
efficient guiding role in electrical load prediction. This research offered practical significance by enhancing 
power plant scheduling efficiency and reducing overall electricity production costs through superior predictive 
accuracy.

1. Introduction

Ensuring a balance between power supply and demand is crucial for 
enhancing the stability and energy efficiency of a power supply system. 
Accurate load forecasting underpins effective power system manage
ment by enabling optimal generation scheduling, enhancing grid reli
ability, and supporting market operations [1]. It is critical in integrating 
renewable energy sources such as solar and wind by planning resources, 

meeting demand, keeping the grid stable, optimizing energy storage, 
and setting fair market prices [2]. Owing to the nature of intermittent 
power generation by renewable sources, precise forecasting must be 
aligned with demand to mitigate any supply variability. In 
industry-heavy regions, where manufacturing is the main source of high 
energy consumption [2], reliable load estimation is vital for balancing 
supply and demand. Moreover, robust forecasting shapes energy pol
icies, drives investments in renewable infrastructure, and strengthens 
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grid resilience. As power systems evolve to meet ambitious sustain
ability goals, high-precision load forecasting serves as a backbone for a 
balanced and decarbonized energy future.

The planning span of a power system operation is often divided into 
four time frames: very short-term, short-term, mid-term, and long-term 
[3]. Each of these time frames focuses on some particular measures to 
take [4]. The very short-term period spans from a few minutes to a single 
day. It responds rapidly to fluctuations in load and renewable output, 
minimizes imbalance penalties, and supports intra-day energy trading 
and demand-response programs [5]. Short-term load forecasting (STLF), 
spanning 24 h to two weeks with hourly granularity, underpins 
day-ahead markets, unit commitment, and maintenance scheduling. On 
the other hand, mid-term forecasting, covering two weeks to three years, 
focuses on managing generation assets and preventing energy shortfalls. 
However, in order to specify the construction of new power plants or 
modifications to the transmission network, the long-term timescale 
concentrates on a few years to decades.

VSTLF is essential for energy management, helping utilities and grid 
operators make informed decisions on electricity generation and dis
tribution over short time horizons. Achieving high accuracy in VSTLF is 
challenging because of the stochastic and dynamic nature of electricity 
demand, which is driven by multiple interdependent factors. Load pat
terns are influenced by weather variability, consumer behavior, eco
nomic conditions, and the growing integration of distributed energy 
resources such as rooftop solar and electric vehicles, which introduce 
bidirectional power flows and volatility [6]. These complexities require 
advanced modeling techniques, such as machine learning (ML) and 
hybrid statistical approaches, to handle non-linear relationships and 
high-dimensional data. Moreover, computational constraints and data 
quality issues further complicate real-time implementation. To address 
common time series forecasting challenges such as seasonality and 
trends, noise and irregular events, and missing data, various statistical 
approaches, such as autoregressive integrated moving average [6] and 
grey prediction [7], have been suggested. Nonetheless, these models 
often prove insufficient in capturing intricate patterns of power con
sumption, leading to inferior forecasting accuracy [8].

In recent years, several ML techniques, including artificial neural 
networks, fuzzy neural networks, and support vector regression (SVR), 
along with several hybrid models, such as region-based Convolutional 
Neural Networks (RCNNs) [9], Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH), Exponential Generalized Autoregressive 
Conditional Heteroskedasticity (EGARCH), and Asymmetric Power 
GARCH (APGARCH), have demonstrated successful applications in 
addressing the nonlinear aspects of load forecasting [10]. Jiang et al. 
[11] demonstrated superior forecasting accuracy and computational 
efficiency of SVR-based hybrid models. Cecati et al. [12] provided a 
comprehensive Artificial Neural Network (ANN) for electric power 
system load prediction and evaluated newly designed algorithms, 
particularly the ErrCor method, for training Radial Basis Function net
works in 24-h electric load forecasting.

A good number of approaches have also been reported with feature 
engineering to increase the feasibility of load forecasting. Tsalikidis 
et al. [13] developed a hybrid ensemble model combining multiple ML 
algorithms with a voting regressor, leveraging temporal features, lagged 
load values, and exogenous inputs such as temperature and PV gener
ation. Feature selection was guided by permutation importance to cap
ture key patterns, resulting in improved one-step-ahead energy load 
forecasts. Yamasaki et al. [14] employed feature engineering with 
weather, calendar, and lagged demand data alongside refined date 
features and proposed a hybrid ML framework that combines multiple 
regressors with signal decomposition and AutoML optimization for 
enhanced VSTLF.

However, traditional approaches often rely on a single forecasting 
model, which limits their ability to capture the complex, nonlinear re
lationships in electricity load time series. Additionally, although some 
studies introduce feature engineering techniques, they often fail to 

address the full complexity of temporal relationships, and the impact of 
these techniques is not adequately demonstrated or quantified, limiting 
their effectiveness in improving forecast accuracy. Finally, other studies 
lack real-world applicability, as they do not test models under conditions 
of data disruption or inadequate datasets.

The major novel contributions of this study are as follows. 

• This study introduces a novel hybrid Prophet (Pr), Extreme Gradient 
Boosting (XGB), and CatBoost (CB), Pr-XGB-CB specifically designed 
for hourly load forecasting. This hybrid approach combines the 
strengths of the Prophet, XGBoost, and CatBoost models, forming a 
powerful ensemble framework to predict very short-term electricity 
loads with enhanced accuracy and reliability.

• A robust statistical feature engineering methodology is presented, 
incorporating multilag features for various temporal dependencies. 
This method provides a more accurate and dynamic representation 
of historical data, enabling the model to effectively capture the 
complex patterns in electricity load forecasting, ultimately 
enhancing forecast precision.

• To assess the robustness and practical utility of the proposed 
framework, sensitivity analysis is conducted by simulating scenarios 
with missing or limited data. This analysis not only demonstrates the 
model’s ability to maintain high performance under challenging 
real-world conditions but also highlights its potential to ensure 
reliable load forecasting and operational decision-making in power 
systems where data quality and availability are often imperfect.

This paper begins with an introduction, followed by a literature re
view on VSTLF in Section 2. Section 3 details the materials and methods 
used. A discussion of the results and sensitivity analysis are presented in 
Section 4. Section 5 includes conclusions and recommendations for 
future research.

2. Literature review

VSTLF represents an active area of research, with a wealth of liter
ature exploring various forecasting approaches, which are typically 
categorized into four groups according to the employed learning algo
rithms: physical models, persistence methods, artificial intelligence (AI) 
techniques, and statistical approaches.

Bae et al. [15] proposed an XGBoost-based method to mitigate 
behind-the-meter (BTM) solar PV impact on load prediction. By 
analyzing demand deviation, estimating BTM capacity via grid search, 
and filtering data based on lighting loads and base temperature, the 
proposed method accurately restored distorted loads using projected 
solar PV power. Madrid et al. [16] suggested a group of models based on 
ML in order to precisely predict the hourly electric load for the next 168 
h, where the XGBoost approach demonstrated the optimal results of 
hourly load forecasts, outperforming the performances of neural net
works and five ML models constructed and evaluated in diverse load 
profile settings. Massaoudi et al. [17] proposed a tiered forecasting 
method combining LightGBM, XGBoost, and MLP in a stacked model, 
where meta-data from XGBoost and LightGBM were processed by MLP 
for load prediction. Their approach was validated on Malaysian and New 
England datasets, showing strong predictive performance.

More recently, Wan et al. [18] proposed Gated Recurrent Unit (GRU) 
model for STLF incorporating feature selection and data balancing via 
sample extension after clustering. This method employed error-focused 
training and error correction modeling to improve the prediction ac
curacy. Wang et al. [19] proposed Sample Entropy Variational Mode 
Decomposition (SVMD), combining VMD and SampEn to separate load 
data into trend and fluctuation components. A linear regression model 
was used to predict trends, whereas Bayesian-optimized XGBoost 
models handled fluctuations. Upon application to industrial users in 
China and Ireland, the method improved prediction accuracy by ac
counting for diverse consumption factors. Jiang et al. [20] introduced 
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Neural-based Similar Days Auto Regression (NSDAR), a neural network 
for identifying analogous days beyond conventional meteorological 
methods. NSDAR enables explicable load forecasts by a linear frame
work based on these patterns and adds load clustering and regional load 
analysis. Mo et al. [21] employed a Temporal Convolutional Network 
(TCN) tailored for time data, surpassing CNN limitations. Using the 
Prophet model, they partitioned power load data into trend, seasonal, 
and holiday components. By separately forecasting with TCN and 
Prophet, the models were merged using the least squares method. Sho
han et al. [22] aimed to enhance electricity load prediction precision by 
developing a hybrid Long Short-Term Memory (LSTM)-Neural Prophet 
model, using historical data and statistical traits for forecasting both 
long and short-time spans.

A new method for STLF was devised, emphasizing data refinement 
and a complex R-CNN combined with the ML-LSTM architecture [9]. 
The approach involved preprocessing the IHEC dataset with cleansing 
and Box–Cox transformation, extracting key features via deep R-CNN, 
and leveraging ML-LSTM for sequential learning while being validated 
on the PJM benchmark. Bashir et al. [23] introduced a hybrid load 
forecasting method integrating Prophet for linear and non-linear trends 
with LSTM for residual non-linear patterns. Using a Back Propagation 
Neural Network to combine predictions, their approach significantly 
improved accuracy when validated on Elia Grid’s quarter-hourly load 
data from 2014 to 2021. Ran et al. [24] developed a Transformer model, 
Complete Ensemble Empirical Mode Decomposition with Adaptive 
Noise (CEEMDAN-SE-TR), which integrated sample entropy, and 
attention mechanisms to address long-term memory issues. The 
CEEMDAN-SE-TR model demonstrated significant superiority, particu
larly over conventional ML models, substantiating its advantages over 
Empirical Mode Decomposition (EMD) approaches.

The literature provides a various approaches to electricity load 
forecasting using ML and DL techniques but each method has its own 
limitations. For instance, the XGBoost approach [16] struggles with 
adaptability to dynamic load profiles, SVMD [19] faces limitations in 
scenarios with rapidly changing industrial electricity consumption pat
terns, and the advanced GRU model [18] is sensitive to the choice of 
clustering methods and feature selection. While Bae et al.’s [15] 
XGBoost method effectively addresses BTM solar PV interference, its 
accuracy decreases under varying solar PV conditions. The 
CEEMDAN-SE-TR Transformer model has computational complexities 
due to the integration of multiple techniques [24]. NSDAR relies on 
neural networks for identifying similar dayswhich is sensitive to the 
quality and representativeness of the training data [20]. The 
TCN-Prophet hybrid approach [21] struggles with capturing long-term 
dependencies and the hybrid LSTM-Neural Prophet model [22], while 
outperforming established methods, requires careful tuning of hyper
parameters for optimal performance. The R-CNN combined with the 
ML-LSTM architecture introduced for STLF is computationally intensive 
and sensitive to data preprocessing techniques [9], whereas the stacked 
XGB-LGBM-MLP models [17] face challenges in generalizing to diverse 
datasets. Finally, the hybrid method merging Prophet and LSTM models 
[23] is computationally demanding and requires careful consideration 
of the temporal dynamics of the electricity load data for optimal 
performance.

The existing load forecasting studies can benefit from incorporating a 
comprehensive feature engineering technique. Even in cases where 
some studies do account for feature engineering impact, it is uncommon 
to find a comprehensive assessment of feature importance and sensi
tivity analysis across the entire power system. To address these short
comings, the proposed study aims to enhance load forecasting by 
embracing a robust approach with feature engineering.

3. Data and methods

3.1. Overview of proposed architecture

The proposed forecasting framework starts with dataset splitting into 
training (8 January 2015–31 December 2018) and testing (1 January 
2019–27 June 2020) sets. Extensive feature engineering was incorpo
rated to create new features based on several statistical methods. Sta
tionarity and causal relationships were assessed using Augmented 
Dickey-Fuller (ADF) and Granger Causality tests, respectively. This 
study introduced a novel ML architecture (Pr-XGB-CB) (Fig. 1), which 
was designed to improve power system operations by enhancing the 
accuracy of electrical load predictions. Prophet and XGBoost were 
trained individually, and their outputs were combined in a CatBoost 
hybrid model. Prophet effectively addressed the inherent time series 
nature of the data by decomposing it into interpretable components such 
as seasonality, trend, and holiday effects, thereby enhancing model 
interpretability and incorporating temporal patterns for improved 
forecasting accuracy. XGBoost excels at efficiently handling high- 
dimensional data by constructing an ensemble of decision trees that 
progressively refine predictions, enabling the capture of complex, non- 
linear relationships. CatBoost played a dual role within the Pr-XGB-CB 
architecture, acting as both a meta-learner to exploit the individual 
strengths and weaknesses of Prophet and XGBoost for informed pre
dictions and utilizing its robust performance in handling categorical 
features and ensemble construction to combine the model outputs and 
generate the final load forecast.

Meticulous hyperparameter optimization using Optuna ensured that 
each model operated at peak capacity, contributing to the overall ac
curacy of the ensemble architecture. By integrating the hyperparameter 
optimization technique, Pr-XGB-CB could emerge as a promising 
approach for achieving accurate and interpretable VSTLF. Model per
formance is evaluated and compared with that of other state-of-the-art 
models, using various metrics such as RMSE, MAE, Mean Squared 
Error (MSE), Mean Absolute Percentage Error (MAPE), R-squared (R2), 
Explained Variance, Max Error, and deviance measures. These metrics 
are crucial in power systems for accurately assessing prediction errors 
and model reliability, ensuring stable operation, efficient load fore
casting, and effective risk management by quantifying both average and 
worst-case deviations.

3.2. Data collection and processing

This study utilizes a publicly available dataset from the National 
Dispatch Center, Panama, spanning from January 2015 to June 2020 
[25]. Covering national electricity demand, the dataset facilitates 
training and evaluating ML forecasting models, enabling comparisons 
with official forecasts. Detailed variable descriptions and units are 
provided in Table 1. Fig. 2 graphically presents each variable of the 
dataset across different periods in the whole dataset. The dataset 
comprised 48,048 readings with 17 different features and was complete, 
with no missing values. A limited number of instances of low load values 
were observed, which were attributed to hourly blackouts and power 
grid damage. The data clearly exhibited a noticeable pattern that sug
gested the presence of seasonal variations except for holiday, holiday id 
and school, which are categorical.

Fig. 3 shows the power usage for an individual day of a week for four 
different seasons. The power usages on Friday, Monday, Thursday, 
Tuesday, and Wednesday are similar for different seasons. A noticeable 
decline in power consumption was observed on Saturdays, with Sundays 
recording the lowest usage across all days. Feature stationarity, which is 
crucial for reliable time series forecasting models [26], was assessed 
using the ADF test to ensure statistically consistent characteristics over 
time. Table 2 confirms feature stationarity through consistently low P 
values.

Fig. 4 illustrates the outcomes of the Granger causality test [27], 
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highlighting both significant and non-significant temporal dependencies 
among features. While T2M_san showed a weaker association (p-value 
= 0.19), W2M_san displayed no statistically significant predictive power 

(p-value = 0.5524). Other features—such as T2M_toc, QV2M_toc, 
TQL_toc, W2M_toc, QV2M_san, TQL_san, T2M_dav, QV2M_dav, 
TQL_dav, W2M_dav, Holiday_ID, and holiday—exhibited strong 
Granger-causal relationships (p < 0.05). These results underscore the 
relevance of meteorological and calendar-based features, while sug
gesting that further analysis of the non-significant variables may help 
refining forecasting accuracy.

3.3. Feature engineering

The feature engineering method proposed in Fig. 5 involves the use 
of ten different statistical measurements, including (i) Lag Feature 
(LAG), (ii) Rolling Mean (MEAN), (iii) Rolling Standard Deviation 
(STD), (iv) Exponentially Weighted Moving Mean (EWM MA), (v) 
Exponentially Weighted Moving Standard deviation (EWM STD), (vi) 
Min-max normalized features (MIN MAX), (vii) Median (MEDIAN), (viii) 
Skewness (SKEW), (ix) Kurtosis (KURT), and (x) 50th percentile (P50). 
These statistical components are computed within 12, 24, and 128 
rolling windows to capture short-term, medium-term, and long-term 
dependencies in the data, allowing for the extraction of temporal pat
terns at multiple time scales and the recognition of both transient and 

Fig. 1. Comprehensive flowchart illustrating the stages of the proposed forecasting methodology.

Table 1 
Variables, description and units of measure from the electricity consumption 
dataset.

Variable Description of variables Unit of 
Measurement

datetime Date with time Hour
nat_demand National electricity load MWh
T2M_c Temperature at 2 m ◦C
QV2M_c Relative humidity at 2 m %
TQL_c Liquid precipitation l/m^2
W2M_c Wind speed at 2 m m/s
holiday Holiday binary indicator (1 = holiday, 0 =

regular day)
–

Holiday_ID Unique identification number for holiday –
school School period binary indicator (1 = school, 0 

= vacations)
–

Subindex c stands for different cities (David, Santiago and Tocumen, Panama 
City) such as T2M_dav represents Temperature at 2 m in David City.
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sustained trends. This process expands the dataset from its initial 17 
features to a comprehensive set of 390 features.

The first five statistical techniques, LAG, MEAN, STD, EWM MA, and 
EWM STD, were chosen for the target feature (nat_demand) and envi
ronmental features, namely, temperature (T2M), humidity (QV2M), 
rainfall (TQL), and wind speed (W2M) (across David, Santiago and 
Tocumen city), based on the specific characteristics of demand data and 
the forecasting requirements. Since these raw features are time- 
dependent, lag features and moving averages were used to capture 
temporal dependencies and trends where past demand and weather 
conditions can significantly impact present demand. Rolling mean and 

exponentially weighted moving mean helped smooth out short-term 
fluctuations and emphasize long-term patterns. To address the 
inherent volatility in demand, the rolling standard deviation and expo
nentially weighted moving standard deviation were applied to capture 
recent changes over older data, ensuring that the model adapts quickly 
to fresh patterns such as abrupt temperature spikes or sudden humidity 
changes.

For temperature at 2 m (T2M), specific humidity at 2 m (QV2M), 
total cloud liquid water (TQL), and wind at 2 m (W2M)—across the 
Tocumen (toc), San Jose (san), and David (dav) stations—five additional 
techniques were applied to enhance their predictive power. Min-max 

Fig. 2. Variables in the electricity consumption dataset across the time period.
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normalization was necessary to bring different units (temperature, hu
midity, and wind speed) onto a comparable scale, especially for the ML 
models sensitive to feature magnitude. The median, skewness, kurtosis, 
and 50th percentile metrics were extracted to capture the distributional 
shape, asymmetry, presence of outliers, and central tendency of each 
feature, making the model more robust against extreme environmental 
events.

Additional feature engineering techniques such as min–max 
normalization, skewness, kurtosis, and percentile-based metrics were 
not applied to the nat_demand feature, as it is the target variable. 
Applying such transformations risks data leakage by requiring future 
data access, which is inappropriate for time series targets that are 
dependent on past values. Moreover, altering the target’s scale may 
distort its structure and impair model performance. Similarly, 

Holiday_ID, holiday, and school were excluded from these trans
formations as categorical features not suited to time-based processing.

The naming convention for the newly created features follows a 
defined specification: Original Name_Statistical Operation_Window 
Size. For instance, QV2M_san_ewm_mean128 represents a new feature 
where QV2M_san is the original feature, ewm_mean denotes the statis
tical operation, and 128 is the window size.

To check the stationarity after feature engineering, an ADF test was 
conducted, and the top 40 resulting p values are presented in Fig. 6. A 
lower p value, usually below 0.05, indicates stronger evidence against 
the null hypothesis of non-stationarity, suggesting the presence of sta
tionarity within the time series. It was obvious that among the 390 
features analyzed, 26 exhibited p-values exceeding 0.05, suggesting 
non-stationarity. T2M_san_ewm_std_128 emerged as the most non- 
stationary feature with a P-value of 0.74. The top 10 non-stationary 
features include various temperature and humidity-based engineered 
variables. However, most features after the 26th feature have P values 
less than 0.05, indicating stationarity post-feature engineering.

3.4. Machine learning models

This section provides a brief overview of the principles underlying 
the different models chosen for developing the hybrid model and 
comparison.

3.4.1. LSTM
LSTM models, a subset of recurrent neural networks (RNNs), have 

emerged as formidable tools for time series forecasting [28]. The 
mathematical expressions for the LSTM model demonstrated in Fig. 7 (a)
are shown in equations (1)–(5) [5]: 
⎡

⎢
⎢
⎣

Ft
It
C̃t
Ot

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

σ
σ

tanh
σ

⎤

⎥
⎥
⎦(W. [Xt , ht− 1] + b) (1) 

Ct = ft*Ct− 1 + It ⊙ C̃t (2) 

ht =Ot*tanh(Ct) (3) 

sigmoid (x)=
1

1 + e− x (4) 

tanh(x)=
ex − e− x

ex + e− x (5) 

where Xt is the input sequential,; b denotes the bias weights; the input 
weights are W is the latest time step; t− 1 is the previous time step; Ht 
denotes the output; Ct signifies the cell state; and ft, It and ot are the 

Fig. 3. Power use in MW every day for a week.

Table 2 
Result of Augmented Dickey-Fuller (ADF) test for time 
series stationarity analysis.

Feature Name P Value

nat_demand 0.0
T2M_toc 8.56 × 10− 24

QV2M_toc 1.53 × 10− 12

TQL_toc 1.01 × 10− 26

W2M_toc 3.27 × 10− 20

T2M_san 9.01 × 10− 15

QV2M_san 1.64 × 10− 11

TQL_san 3.85 × 10− 25

W2M_san 4.29 × 10− 26

T2M_dav 5.41 × 10− 18

QV2M_dav 4.05 × 10− 15

TQL_dav 9.7 × 10− 27

W2M_dav 4.06 × 10− 30

Holiday_ID 0.0
holiday 0.0
school 9.15 × 10− 09

Fig. 4. Visualization of Granger causality test results for variable relationships.
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forget, input, and output gates, respectively.

3.4.2. GRU
GRU (Gated Recurrent Unit) models, a variant of RNNs, are valuable 

tools for time series forecasting, including electric load prediction. The 
simplified architecture of GRUs demonstrated in Fig. 7 (b) is well known 
for enabling effective training and quicker convergence. The 

mathematical expressions for the GRU model [29] are expressed in 
equations (6) and (7): 
⎡

⎣
zt
rt
h̃t

⎤

⎦=

⎡

⎣
σ
σ

tanh

⎤

⎦(W. [Xt ,Ht− 1] + b) (6) 

ht =(1 − ht)*ht− 1 + zt*h̃t (7) 

where Xt represents the input at time step t, ht is the output at time step t, 
zt is the update gate, rt is the reset gate, and h̃(t) is the new candidate 
activation.

3.4.3. LightGBM
LightGBM, a gradient boosting framework, stands out for its effi

ciency in handling large datasets through histogram-based binning and 
leaf-wise tree growth [30]. The objective function optimizes the model 
by minimizing the prediction error over n training samples—where yᵢ is 
the true label and ŷᵢ is the predicted output—while incorporating a 
regularization term Ω(fk) to penalize the complexity of each of the K 
trees fk in the model. The basic architecture of the LightGBM is 
demonstrated in Fig. 8. The LightGBM model’s loss function is defined 
by Eq. (8) [30]: 

Objective=
∑n

i=1
Loss

(
yi, ŷi

)
+

∑n

k=1

Ω(fk) (8) 

Fig. 5. Detailed flowchart of proposed feature engineering process.

Fig. 6. Visualization of Augmented Dickey Fuller (ADF) test P-values and the 
0.05 stationarity threshold after feature engineering.
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3.4.4. XGBoost
Extreme Gradient Boosting (XGBoost), is a popular ML method that 

integrates results from various decision trees to produce precise pre
dictions for regression and classification issues (Fig. 9). The unique ar
chitecture of XGBoost can handle complex datasets and operates with 
extreme efficiency. The gradient boosting framework continuously im
proves the model by correcting errors generated in previous rounds 
[31].

Owing to the high dimensionality of the features involved in this 
research, handling them efficiently becomes a complex task. XGBoost 
presents itself as an optimal solution. The XGBoost model in the 

proposed Pr-XGB-CB framework uses a carefully crafted objective 
function that balances prediction accuracy and model complexity via 
regularization. Equation (9)–11 [32] present the detailed formulation of 
both the objective and prediction functions employed by XGBoost.

Objective Function: The core objective function for XGBoost is a 
combination of the loss function (commonly the mean squared error for 
regression tasks) and the regularization term: 

L(θ) =
∑N

i=1
[ l(yi, ŷi) ]+Ω(f) (9) 

Fig. 7. Basic architecture of (a) Long Short-Term Memory (LSTM) and (b) Gated Recurrent Unit (GRU).

Fig. 8. Basic architecture of LightGBM model.

Fig. 9. Illustration of the XGBoost model architecture: from input features to optimized boosted trees.
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where l
(
yi, ŷi

)
is the loss function and where Ω(f) is the regularization 

term for the tree parameters f to avoid loss.
Regularization Term: The regularization term penalizes model 

complexity by controlling the number of leaves (T) and the magnitude of 
the leaf weights, wj. 

Ω(f)= γT +
1
2

λ
∑T

j=1
w2

j (10) 

where γ is the regularization on the number of leaves and where λ is the 
regularization on the leaf weights.

Prediction: The output of the XGBoost model is the sum of the outputs 
from all the trees. The prediction of the kth tree: 

yXGB =
∑K

k=1
fk(x) (11) 

where fk(x) is the prediction of the kth decision tree and where k is the 
total number of trees in the model.

3.4.5. Prophet
The Prophet model is a forecasting tool designed to address time 

series challenges in business, finance, and weather forecasting. This 
model has gained popularity for its ease of use and ability to capture 
complex patterns. Key features include automatic seasonality detection, 
holiday effects, flexible trend modeling, uncertainty estimation, and 
customizable parameters. A graphical representation of the model is 
shown in Fig. 10.

The Prophet model is selected for this research because of its 
robustness in handling complex, high-dimensional time series data. Its 
ability to automatically detect seasonality, model trends flexibly, and 
incorporate external factors which make it well suited for capturing 
dynamic and periodic patterns. Additionally, Prophet’s uncertainty 
estimation ensures reliable forecasting, which is essential for optimizing 
power grid operations. The general equation for the Prophet model [21] 
can be written as: 

yt = g(t) + s(t) + h(t) + et (12) 

where yt is the observed value at time t, g(t) = growth/trend component 
(logistic or linear growth), s(t) is the seasonal component, h(t) is the 
holiday/event component, and et is the error term.

Trend component: The trend component g(t) in the Prophet model can 
be modeled in two ways: as a linear function capturing gradual changes 
in the growth rate with changepoints or as a logistic growth function 
accounting for saturation effects where growth slows near a carrying 
capacity. Both approaches enable flexible modeling of long-term tem
poral trends. 

or, g(t)= linear(t) = kt + m (13) 

g(t)= logistic(k, t)=
C

(1 + exp( − k(t − t0)))
(14) 

where C is the carrying capacity, k is the growth rate, t0 is the time when 
the growth rate changes, k is the trend growth rate, and m is the starting 
value.

Seasonal component: To represent the daily, weekly and yearly sea
sonality of the electric load data, the seasonality component s(t) is 
typically modeled using Fourier series expansions to capture periodic 
effects: 

s(t)=
∑M

i=1

[

ai cos
(

2πit
p

)

+ bi sin
(

2πit
p

) ]

(15) 

where M is the number of Fourier terms, P is the period (365 for yearly 
seasonality, 7 for weekly seasonality), and ai and bi represents the co
efficients for the sine and cosine terms.

Holiday component: The holiday component, h(t), models the effect of 
holidays on the time series by summing the individual holiday effects δj 

weighted by the indicator function I
(
t; hj

)
, which determines whether a 

particular holiday hj occurs at time t for holiday j. 

h(t)=
∑J

j=i

[
I
(
t; hj

)
δj
]

(16) 

Prediction: Combining the growth, seasonality and holiday compo
nents, the prophet model predicts the final demand represented by Eq. 
(17). 

yProphet = ŷt = g(t) + s(t) + h(t) (17) 

3.4.6. CatBoost
CatBoost is a high-performance gradient boosting ML tool designed 

specifically to handle category features. It is well known for its ability to 
automatically handle categorical data, eliminating the need for labo
rious preparation. CatBoost offers exceptional prediction accuracy while 
minimizing overfitting through the use of an innovative ordered 
boosting algorithm [33].

The detailed formula of the CatBoost model is as follows: 

ymeta =CatBoost
(

yProphet , yXGB

)
(18) 

where ymeta is the final prediction from the meta-model.
The Cat Boost Regressor tries to learn a function ŷmeta that minimizes 

the loss function l: 

ŷmeta =CatBoost
(

yProphet, yXGB

)
= arg min

∑N

i=1
l (yi, ŷi) (19) 

where l
(
yi, ŷi

)
is the loss function (RMSE).

3.4.7. Proposed hybrid model
In this study, CatBoost is employed as an ensemble method to inte

grate the predictions from individual models, Prophet and XGBoost,. 
The ensemble model is a simple method to combine the predictions from 
the Prophet and XGBoost models. The predictions from both models are 

Fig. 10. Schematic overview of the Prophet model architecture.
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combined using a weighted sum: 

yensemble =α yProphet + β yXGB (20) 

where yensemble is the combined prediction from the ensemble model and 
where α and β are the weights assigned to the predictions of Prophet and 
XGBoost, respectively.

The ensemble combines Prophet and XGBoost predictions with 
weights of 0.7 and 0.3, respectively, based on their validation perfor
mance. Prophet, showing lower error and better handling of seasonal 
patterns, is given greater emphasis. XGBoost complements it by 
capturing nonlinear relationships. This weighted approach balances 
temporal trends and feature interactions, enhancing overall forecast 
accuracy. The performance is measured using the RMSE on the test set.

3.5. Hyperparameter tuning

To address the high dimensionality of the dataset and ensure optimal 
model performance, a multifaceted approach to hyperparameter tuning 
was undertaken. Optuna [34] was used for efficient automated tuning of 
gradient boosting models (XGBoost, LightGBM, and CatBoost), with 100 
trials minimizing the RMSE on the validation set. The best configura
tions were then used for final training and testing. For the DL models 
(LSTM, GRU) and Prophet, manual tuning was applied. The LSTM and 
GRU were trained with various hyperparameter sets, and those with the 
lowest validation RMSEs were selected. The selected hyperparameters 
for all the models are detailed in Table 3.

3.6. Evaluation criteria

In addition to common regression metrics such as the MSE, MAE, 
MAPE, and R-squared, this study employs advanced statistical metrics 
tailored to the unique challenges of power system operations. Mean 
Poisson Deviance (MPD) captures count-based events, Mean Gamma 
Deviance (MGD) addresses skewed peak demands, and Mean Tweedie 
Deviance (MTD) handles zero or low load periods common in power 
grids. Explained Variance (EV) reflects the model’s ability to capture 
load variability, while Max Error (ME) highlights extreme forecasting 
errors critical for system reliability. These metrics collectively ensure 
robust and reliable forecasting performance across the complex and 
variable conditions inherent in power systems. Mathematical equations 
[3] for these metrics are provided below: 

MAE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒
yi − ŷi

⃒
⃒
⃒
⃒
⃒

(21) 

MAE=
1
n
∑n

i=1

|yi − ŷi|

yi
x 100% (22) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(|yi − ŷi|)

2

√

(23) 

R2 =1 −

∑n

i=1
(|yi − ŷi|)

2

∑n

i=1
(|yi − ŷi|)

2
(24) 

MPD=
1
n
∑n

i=1

[

2.
(

yi.log
yi

λ̂i
− (yi − λ̂ i)

)]

(25) 

MGD=
1
n
∑n

i=1

[

2.
(

yi

α̂ i
− log

yi

α̂ i
− 1

)]

(26) 

MTD=
1
n
∑n

i=1

[

2ωi

(
(p̂i − μ̂i ).yi

ϕ
− b(p̂i, ϕ̂ )

)]

(27) 

Table 3 
Key hyperparameter configurations for the LSTM, GRU, LightGBM, Prophet, 
XGBoost, and CatBoost models.

Model 
Name

Hyper Parameter 
Name

Range Selected 
Value

Reasons for selection

LSTM & 
GRU

Epochs 10–100 60 Controls training 
iterations.

Batch Size 16–512 64 Impacts memory and 
computation.

Learning Rate 0.001–0.1 0.01 Affects convergence 
speed.

Number of 
LSTM/GRU 
Layers

1–5 3 Affects model depth.

Input Shape – 13031, 1, 
390

Defines dataset 
dimensions.

Number of 
LSTM/GRU Units

50–512 112 Larger units capture 
more complexity, 
but may overfit.

LightGBM Number of 
Leaves

20–1000 61 Controls tree 
complexity.

Learning Rate 0.001–0.1 0.00665 Determines step size.
Feature Fraction 0.3–1 0.5134 Limits feature 

exposure to reduce 
overfitting.

Bagging Fraction 0.5–1 0.6470 Reduces overfitting 
by subsampling 
data.

Bagging 
Frequence

1–100 9 Increases model 
diversity to reduce 
overfitting.

Prophet Change point 
prior scale

0.01–0.1 0.05 Controls model 
flexibility to adapt to 
changes.

Seasonality prior 
scale

1–20 10.0 Adjusts seasonal 
influence,

Holidays prior 
scale

1–20 10.0 Determines holiday.

Interval width 0.5–1 0.8 Sets uncertainty 
interval width.

Uncertainty 
Samples

0–1000 0 Affects uncertainty 
estimation accuracy.

XGBoost Learning Rate 0.001–0.1 0.068 Controls learning 
speed.

Max Depth 3–10 6 Affects tree depth.
Minimum Child 
Weight

1–100 3.92 Reduces overfitting 
by controlling child 
node weight.

Sub sample 0.5–1 0.945 Reduces overfitting 
by using a subset of 
data.

Col sample by 
tree

0.3–1 0.612 Limits feature usage 
to prevent 
overfitting.

Gamma 0–10 3.14 Regularization to 
prevent overly 
complex models.

L2 
Regularization 
(Lamda)

0–10 1.207 Penalizes large 
weights to avoid 
overfitting.

L1 
Regularization 
(Alpha)

0–10 0.98 Encourages sparsity 
to reduce overfitting.

CatBoost Iterations 10–1000 100 Controls number of 
trees.

Depth 4–10 6 Affects tree 
complexity.

Learning Rate 0.001–0.3 0.1 Step size for 
training.

Loss Function MAE, 
RMSE

RMSE RMSE for regression 
tasks.
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EV =1 −

∑n

i− 1
(yi − ŷi)

2

∑n

i− 1
(yi − yi)

2
(28) 

ME=MAXi=1
n|yi − ŷi| (29) 

where n is the number of samples or observations, yi represents the 
actual values, ŷi represents the predicted values, λ̂i represents the pre
dicted values from the Poisson regression model, α̂i represents the pre
dicted shape parameter from the gamma regression model, p̂ represents 
the predicted mean from the tweedie regression model, μ̂i represents the 
predicted variance function from the tweedie regression model, ϕ̂i rep
resents the estimated dispersion parameter and ωi represents a weight 
associated with each observation.

4. Results and analysis

4.1. Experimental setup and plan

The experiments used a cloud infrastructure from the Kaggle plat
form, providing access to necessary GPUs and storage for efficient sim
ulations. An NVIDIA Tesla P100 GPU with 16 GB GDDR5 memory and 
3584 CUDA parallel processing cores was chosen. The CPU model was 
Intel(R) Xeon(R) @ 2.30 GHz with 2 physical cores clocked at 2.3 GHz. 
The total system RAM amount was 12 GB. All simulations were imple
mented using Python 3.10 for the ML workflow, with Pandas 2.1 NumPy 
1.26 and Scikit-Learn 1.3.2 serving as the core data science libraries. The 
public Panama electricity demand dataset was loaded into this frame
work directly from Kaggle repositories [25]. The performance of the 
models was evaluated by training without feature engineering and with 
feature engineering.

4.2. Case-I: without feature engineering

The first case evaluates the models’ performance using only the 16 
(including the target feature) specified features, without any additional 
feature transformations. This approach allows us to assess how the in
clusion of engineered features improves model accuracy and predictive 
power at later stages. As shown in Table 4, the Pr-XGB-CB, LSTM, GRU, 
and Prophet models outperformed the LightGBM and XGBoost models 
across all the evaluation metrics without integrating feature engineer
ing. Specifically, the Pr-XGB-CB model demonstrated the best perfor
mance, with an RMSE of 110.20, an R2 of 0.66, and an MPD of 9.77, 
underscoring its effectiveness and robustness. Significant gaps across 
these evaluation metrics between Pr-XGB-CB and other models suggest 
the superiority of the proposed model.

Fig. 11(a) shows the actual vs. predicted load in the whole test 
dataset. It is clear that the predicted graph cannot cover the actual load 
demand curve. In this particular case, the suggested framework lacks the 
ability to forecast seasonal patterns. It captures the daily pattern but not 
to an effective extent, consistently produces a nearly uniform output and 
fails to identify a sudden drop in the electricity load demand. This 
suggested that the proposed model demonstrated unsatisfactory per
formance for the entire dataset. Fig. 11(b) compares the actual load 

demand (in MWh) with the predicted demand over the worst 24-h 
period.

The actual demand fluctuates between approximately 900 MWh and 
1400 MWh, showing peaks in the early morning and evening hours. The 
gap between the actual demand and the predicted demand varies 
significantly throughout the day, with the minimum gap occurring at 
approximately 21:00 h and the maximum gap occurring between 00:00 
and 02:00 h. Throughout the entire 24-h period, the predicted demand 
consistently exceeds the actual demand by a large margin. Fig. 11 (c) 
represents the best 24-h prediction, where both the actual and predicted 
demands follow a similar trend with close tracking throughout the 24-h 
period. The model prediction captures the peaks and dips in the actual 
demand, such as the rise in demand in the early morning and evening. 
Compared with the worst 24 h, there is a notable improvement, but 
there is still a discrepancy, particularly after midday and in the evening 
hours, where the predicted demand overestimates or underestimates the 
actual demand. The predicted curve is somewhat smoother than the 
actual demand curve, suggesting that the model oversmooths or does not 
capture the finer variations in the actual demand. According to the best 
scenario, predictions still need refinement, especially in accounting for 
midday dips and ensuring finer adjustments to capture demand varia
tions more accurately.

The feature importance without feature engineering analysis shows a 
hierarchy of significant factors, as illustrated in Fig. 12. Metrics related 
to the atmospheric moisture content, such as QV2M_san (9.48 %), 
appeared essential in predicting the target variable. This was closely 
followed by TQL_san (9.16 %) and W2M_san (9.06 %), which high
lighted the profound impact of temperature and wind speed at a height 
of 2 m above the surface. Additionally, variables capturing temperature 
and wind at different vertical levels, such as TQL_dav (8.20 %) and 
W2M_dav (8.71 %), present considerable importance. In contrast, fea
tures such as school (1.04 %) and holiday (0.12 %) exhibited marginal 
significance and had a weaker impact on the prediction.

Despite the fairly uniform importance of the primary meteorological 
predictors, the model’s reliance on raw features can mask complex in
teractions, non-linear effects, and temporal dependencies inherent in the 
data. By applying feature engineering—such as generating lagged var
iables, rolling-window statistics, and interaction terms between tem
perature, humidity, and wind speed—we can expose latent patterns, 
reduce multicollinearity, and better capture seasonal and trend com
ponents. The derived features can improve the forecasting accuracy of 
the model, as evidenced by the performance gaps in Table 4 and the 
residual patterns in Fig. 11, which indicate the need for further 
enhancement.

4.3. Case II: with feature engineering

Considering the unsatisfactory performance of the proposed model 
without feature engineering across the entire test dataset, it became 
clear that advanced techniques were required to enhance its predictive 
capability. As a result, feature engineering was applied to improve the 
model’s performance. Table 5 presents the evaluation metrics of various 
models after feature engineering. Among them, the proposed Pr-XGB-CB 
model consistently outperforms the other models across key metrics. It 
achieves the lowest MAPE (0.0203), indicating only a 2.03 % average 

Table 4 
Evaluation metrics of different models without feature engineering.

Model RMSE MAE MAPE R2 EV ME MPD MGD MTD

LSTM 125.16 96.57 0.081 0.56 0.57 1376.2 12.56 0.01 15666.58
GRU 123.38 87.55 0.075 0.57 0.57 1410.2 11.98 0.0097 15222.09
Prophet 123.47 87.67 0.0757 0.57 0.59 530.98 12.08 0.0098 15142.56
XGBoost 143.64 114.845 0.0948 0.42 0.46 1209.94 16.75 0.01398 20634.41
LightGBM 156.96 126.36 0.102 0.30 0.36 1169.59 19.75 0.016 24636.41
Pr-XGB-CB 110.20 81.32 0.069 0.66 0.66 1153.76 9.77 0.00818 12145.60
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prediction error, along with the lowest ME (223.83), suggesting minimal 
bias. It also records the highest R2 and EV (0.9704), demonstrating its 
strong ability to capture data variance. Its RMSE (32.32) and MAE 
(23.70) are also the lowest, reflecting higher accuracy than the other 
models do. Compared with Prophet, Pr-XGB-CB reduces the RMSE by 
22.6 %, the MAE by 18.9 %, and the MAPE by 21.9 %, with a 2.8 % 
increase in R2. Compared with XGBoost, XGBoost improves the RMSE by 
36.4 %, the MAE by 26.2 %, the MAPE by 27.7 %, and the R2 and EV by 
4.7 % each. These results highlight the superior accuracy, consistency, 
and predictive performance of the Pr-XGB-CB model, making it the most 
effective for load forecasting.

The results presented in Tables 4 and 5 highlight the significant 
impact of the feature engineering technique on improving the perfor
mance of the proposed model. Specifically, for the proposed Pr-XGB-CB 
framework, feature engineering led to a remarkable reduction in the 
RMSE by approximately 70.67 % (from 110.20 to 32.32) and the MAE 

by 70.85 % (from 81.32 to 23.70), along with a 46.97 % increase in the 
R2 score (from 0.66 to 0.97). These improvements clearly demonstrate 
the effectiveness of the feature engineering strategy in enhancing the 
model’s predictive accuracy and robustness, reinforcing the suitability 
of the hybrid Pr-XGB-CB architecture for high-performance VSTLF.

Fig. 13 (a) shows a comparison between the actual and predicted 
loads across the entire test dataset. The graph shows a strong alignment 
between the predicted load and the actual load demand. Notably, the 
proposed framework effectively captures seasonal patterns, consistently 
producing predictions that closely match actual demand, even during 
sudden drops. At the beginning of the graph, a notable drop in demand 
occurred, which was precisely captured by the proposed model. Simi
larly, in the latter part of the graph, the model accurately tracked the 
overall decrease in energy demand. Fig. 13(b), (c), and 13(d) compare 
the actual and predicted demand across three distinct segments, i.e., 
worst, average, and best, as derived from Table A1 (see the appendix). 

Fig. 11. Actual vs. prediction results of the proposed model without feature engineering: (a) full test dataset; (b) worst 24 h; and (c) best 24 h (worst and best are 
selected based on evaluation metrics).
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The least favorable performance, observed in the first week of June 
2020, presented an RMSE of 48.69, an MAE of 35.08, a MAPE of 0.03, 
and an R2 of 0.74. This worst-case scenario reveals a slight discrepancy, 
where the predicted graph marginally fails to capture key change points. 
Fig. 13(b) highlights the model’s average performance, recorded in 
December 2019, with an RMSE of 30.24, an MAE of 23.13, a MAPE of 
0.017, and an R2 of 0.97. While there is some misalignment between the 
predicted and actual curves, the performance remains commendable. 
Fig. 13(c) shows the exceptional performance of the model during the 
first week of February 2019, with an RMSE of 17.9, an MAE of 14.31, a 
MAPE of 0.012, and an R2 of 0.99. This ideal scenario demonstrates a 
near-perfect alignment of the predicted graph with the actual demand 
curve across the majority of data points. The proposed model effectively 
captures both seasonal trends and sudden fluctuations in demand, as 
evidenced by its strong alignment with the actual load across various 
segments. Notably, Fig. 13 shows a significant improvement in predic
tion performance after applying feature engineering not only for the best 
case but also for both the whole test dataset and the worst case.

To further validate the reliability and generalizability of the pro
posed model, short-term load forecasting was performed on unseen data 
across different time frames. Following model training, predictions for 
load forecasting 1 h ahead were conducted at various time points 
spanning from January 2019 to June 2020. The training and testing 
processes were conducted within a consistent environment. Fig. 14
shows that the proposed Pr-XGB-CB model outperforms all the other 
models in terms of load prediction for Panama City during the initial 
100 h of January 2019. The forecast values closely followed the actual 
load values, showing very minimal deviations and outperforming the 
individual models.

To understand the role of individual features and the importance of 
derived features in model predictions, Table 6 presents the percentage of 
feature importance across distinct features utilized in this study from 
multiple models. The feature importance analysis revealed several 
interesting patterns. LSTM and GRU exhibited balanced importance 
across features, relying more on temporal demand indicators such as 
nat_demand_ma_mean24 and nat_demand_ewm_mean12, which reflect 
historical trends and smoothing. In contrast, XGBoost and LightGBM 

emphasized features such as nat_demand_lag_24 and T2M_san_min_
max24, indicating reliance on past demand and temperature extremes.

Features such as nat_demand_lag_12, T2M_san_skew12, and 
T2M_toc_skew12 appeared to have relatively low importance across all 
the models, indicating that they contributed to a lesser extent to the 
predictive performance, possibly due to weaker relationships with the 
target variable. The XGBoost model showed near-constant and consis
tent importance across a variety of features (ranging from 2.46 % to 
0.12 %), indicating that it was predicted based on a comprehensive set of 
inputs rather than relying heavily on a few key variables, resulting in 
more robust predictions.

Since the Prophet model does not directly provide feature impor
tance, the Mean Absolute Effect was used to assess the regressor impact. 
This is valuable because it quantifies the average magnitude of a fea
ture’s effect on the forecast, offering an interpretable measure of feature 
influence regardless of direction. The equation for the Mean Absolute 
Effect of each regressor feature in a Prophet forecast is as follows: 

Effectj =
1
n

∑n

i=1

⃒
⃒
⃒yi,j| (30) 

where , j refers to the jth is the regressor feature, n is the number of 
forecasted time points, yi,j is the predicted effect (or contribution) of the 
jth regressor at the ith time point, which is taken from the prophet fore

cast data frame, and 
⃒
⃒
⃒yi,j

⃒
⃒
⃒ is the absolute value of the predicted effect for 

each time point i.
Fig. 15 shows the top 10 influential features, with nat_de

mand_ewm_mean12 (1093.4) having the greatest effect. This feature 
influences the predicted electricity demand by ±1093.4 MW on average. 
Other key contributors include nat_demand_ewm_mean24 (539.31) and 
nat_demand_ma_mean12 (351.00), reflecting the importance of recent 
12–24-h load demand trends in capturing short-term fluctuations. 
Environmental features such as QV2M_san_ewm_mean12 (130.60), 
QV2M_toc_ewm_mean12 (70.06), and T2M_san_ewm_mean12 (65.25) 
also contribute meaningfully. These derived features enable the model 
to adapt to recent changes in demand and weather, enhancing predic
tion accuracy. Additionally, Fig. A1 (Appendix) shows the decomposi
tion of the time series isolating trend, weekly, yearly, and hourly 
seasonality, and noise. The stable trend (1160–1180) and pronounced 
seasonal peaks—weekly (+20 on Wednesday, − 20 on Sunday), yearly 
(0–5 in March, June, September), and hourly (up to 100 at 18:00)— 
highlight the temporal features most influential to the model. Noise 
(− 500 to +500) captures randomness with limited predictive value. This 
decomposition reveals the driving features for the model’s predictions, 
guiding refinement by emphasizing impactful components and reducing 
overfitting. For both XGBoost and Prophet, all the top features are 
derived features from the proposed feature engineering, which demon
strates the effectiveness of the feature transformation process in 
capturing important patterns and relationships within the data.

To assess the robustness of the proposed model, the test set was 
divided into three parts, where each part consisted of data from six 
consecutive months. As depicted in Table 7, although the proposed 
model performed identically in terms of the measured metrics in the first 
two parts, the performance declined in the last six months due to a 
sudden drop in electric load, as shown in Fig. 13(a), leading to slight 

Fig. 12. Feature importance analysis without feature engineering.

Table 5 
Evaluation metrics by different models with feature engineering for whole test dataset.

Model RMSE MAE MAPE R2 EV ME MPD MGD MTD

LSTM 44.53 32.26 0.027 0.94 0.95 788.27 1.74 0.002 1983.23
GRU 79.21 63.26 0.053 0.82 0.86 924.1 5.23 0.004 6273.79
LightGBM 52.42 34.197 0.0303 0.922 0.92 1237.43 2.42 0.002 2748.25
XGBoost 50.74 32.18 0.028 0.927 0.93 1208.75 2.28 0.002 2574.66
Prophet 41.72 29.99 0.026 0.95 0.95 622.23 1.61 0.0017 1746.91
Pr-XGB-CB 32.32 23.70 0.0203 0.97 0.97 223.83 0.905 0.00084 1044.99
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Fig. 13. Actual vs. predicted outputs of the proposed model after feature engineering — showcasing the enhanced accuracy and alignment achieved through the 
derived features. (a) Full test dataset, (b) Worst 48 h (6 June 2020 to 7 June 2020) (c) Average 48 h (4 December 2019 to 5 December 2019) and (d) Best 48 h (3 
February 2019 to 4 February 2019).
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Fig. 14. Comparison of actual vs. predicted demand curves from January 6, 2019, 08:00 to January 10, 2019, at 11:00 (100 h) using six models: (a) GRU, (b) LSTM, 
(c) LightGBM, (d) XGBoost, (e) Prophet, and (f) the proposed Pr-XGB-CB model—highlighting enhanced accuracy and trend capture by the proposed approach.
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deterioration during this period. The average error metrics for these 
periods closely align with the values for the entire dataset (Table 5), 
with the RMSE showing a change of 0.28 %, the MAE showing a change 
of − 0.59 %, the MAPE showing a change of 1.48 %, and the R2 

remaining unchanged, which supported the robustness of the proposed 
model.

4.4. Sensitivity analysis

In practical power system operations, missing data and inaccuracies 
frequently occur due to sensor faults, communication errors, or mea
surement delays, and these issues can critically affect the reliability of 
forecasting. Thus, the accuracy of forecasting is expected to be influ
enced by the reliability and accuracy of the input data [35]. To prevent 
unexpected or unintentional outcomes, a simulation was conducted 
repeatedly by removing 0 %, 10 %, 20 %, 30 %, 40 %, and 50 % of the 
dataset. All the comparative forecasting models were employed to 
generate predictions, allowing for a comparison of the prediction errors. 
As indicated in Table 8, the proposed model consistently demonstrated 

the smallest RMSE and the narrowest range of variation (only 0.38 
standard deviation), regardless of the dataset’s completeness. Therefore, 
the proposed model exhibited great robustness, and its forecasting ac
curacy was not significantly affected by variations in data quality. These 
results affirmed that the proposed model not only achieved superior 
accuracy but also maintained consistent performance under challenging 
data conditions, making it a reliable choice for deployment in real-life 
operational environments.

4.5. Discussion

4.5.1. Comparison with literature
A comparison of the proposed Pr-XGB-CB model with SOTA models 

on the same dataset is presented in Table 9. An existing XGBoost model 
by Madrid et al. [16] reported an RMSE of 44.52 and a MAPE of 3.66. In 
contrast, the proposed model attained an RMSE of 32.32 and a MAPE of 
0.0203, indicating improvements of 27 % and 99.44 %, respectively. 
Although they employed feature engineering, the multi-lag feature 
approach and extensive statistical analysis in the current study 
contributed significantly to its superior performance. The proposed 
Pr-XGB-CB model also demonstrated substantial performance improve
ments, such as a reduction in the RMSE by 27.59 % compared with the 
feature extraction-based secondary VMD model [36] and by 27.61 % 
compared with the EMD hybrid model [37]. Furthermore, it achieved 
the lowest MAE (23.70), outperforming the 1D-CNN-GRU (82.44) [38] 
and DIFM (43.12) models by 71.26 % and 45.02 %, respectively. In 
terms of the MAPE, the current model significantly lowered the error to 
0.0203, compared with 2.88 for VMD and 3.84 for DIFM [39]. Addi
tionally, the proposed model achieved a high R2 score of 0.97, matching 

Table 6 
Feature importance of different models after feature engineering: highlighting 
the impact of derived features.

Feature Name LSTM GRU XGBoost LightGBM

T2M_dav_min_max24 0.56 % 0.2 % 0.56 % 28.02 %
nat_demand_std_std12 2.78 % 2.17 % 2.63 % 20.74 %
nat_demand_lag_24 0.28 % 0.37 % 1.34 % 12.62 %
T2M_san_min_max24 0.42 % 0.17 % 0.43 % 11.27 %
T2M_toc_min_max24 0.42 % 0.2 % 0.48 % 9.35 %
nat_demand_ma_mean24 3.28 % 2.46 % 1.1 % 3.77 %
nat_demand_ewm_mean12 1.28 % 1.28 % 0.53 % 3.28 %
nat_demand_ma_mean12 3.03 % 2.16 % 1.93 % 2.81 %
nat_demand_lag_12 0.56 % 0.21 % 1.73 % 1.26 %
nat_demand_ewm_std12 0.62 % 0.27 % 1.31 % 1.08 %
T2M_dav_min_max12 1.2 % 0.19 % 0.37 % 1.32 %
nat_demand_std_std24 1.1 % 0.56 % 1.33 % 0.39 %
T2M_toc_skew12 0.31 % 0.45 % 0.6 % 0.65 %
T2M_san_skew12 0.46 % 0.39 % 0.55 % 0.43 %
nat_demand_ma_mean128 1.01 % 1.18 % 0.79 % 0.174 %

Fig. 15. Top 10 effective regressors of prophet model using Mean Abso
lute Effect.

Table 7 
Evaluation metrics by the proposed model for each testing specific timestamp.

Time RMSE MAE R2 EV ME MPD MGD MTD

01/01/2019 - 30/06/2019 28.17 20.78 0.98 0.978 210.65 0.682 0.00078 793.46
01/07/2019 - 31/12/2019 29.52 22.47 0.98 0.976 193.49 0.714 0.0005 871.39
01/01/2020 - 27/06/2020 38.99 28.26 0.95 0.953 189.75 1.366 0.0012 1520.88
Average 32.23 23.84 0.97 0.969 197.96 0.92067 0.000827 1061.91

Table 8 
Model performance under data removal: RMSE score analysis.

Data Removal 
(%)

RMSE score for different models

GRU LSTM LightGBM XGBoost Prophet Pr-XGB- 
CB

10 67.87 90.51 53.42 49.44 42.11 32.19
20 65.70 82.34 52.90 50.89 40.74 32.33
30 85.33 96.48 53.90 51.51 41.02 32.89
40 81.78 86.54 53.81 48.55 43.48 32.92
50 86.69 92.24 49.15 55.35 40.33 33.06
0 79.21 44.53 52.42 50.74 41.72 32.32
Standard 

deviation
8.93 19.03 1.78 2.35 1.14 0.38

Table 9 
Comparison of the proposed Pr-XGB-CB model with SOTA forecasting methods.

Models Evaluation Metrics Reference

RMSE MAE MAPE R2

XGB (2021) 44.52 – 3.66 – [16]
1D-CNN-GRU (2024) 177.88 82.44 – – [38]
EMD hybrid model (2024) 39.22 32.742 – 0.96 [37]
Diffusion-based Inpainting 

Forecasting Method 
(DIFM) (2025)

– 43.12 3.84 – [39]

Feature extraction based 
Secondary VMD (2025)

59.39 32.29 2.88 – [36]

Proposed Pr-XGB-CB 32.32 23.70 0.0203 0.97 –
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or exceeding the best-performing models, highlighting its superior pre
dictive capability [36,37].

In addition to standard evaluation metrics such as the MAE, MSE, 
and R2, this study introduces additional practical statistical indicators— 
Mean Poisson Deviance, Mean Gamma Deviance, and Mean Tweedie 
Deviance, Explained Variance, and Max Error as practical and useful tool 
for power system monitoring and decision-making.

4.5.2. Strength of the proposed approach
This research overcomes the key limitations of prior VSTLF models 

by introducing a hybrid Pr-XGB-CB framework that integrates multi-lag 
features to improve adaptability beyond XGBoost’s constraints [11]. It 
employs robust statistical feature engineering to better manage tempo
ral dependencies, addressing the sensitivities seen in the GRU [12] and 
R-CNN-ML-LSTM [22]. Additionally, its advanced feature selection 
surpasses the TCN-Prophet model’s challenges in capturing long-term 
dependencies [21], whereas sensitivity analysis confirms resilience to 
missing data, mitigating computational issues faced by the 
CEEMDAN-SE-TR transformer [15].

The key strength of the Pr-XGB-CB model lies in its hybrid structure, 
which effectively leverages the complementary capabilities of Prophet, 
XGBoost, and CatBoost. Prophet efficiently captures seasonal and trend 
patterns, XGBoost excels in identifying complex nonlinear relationships, 
and CatBoost strategically integrates these diverse predictions to opti
mize overall accuracy.

The comprehensive feature engineering strategy significantly en
hances the model’s predictive capability by employing various statistical 
methods, including rolling averages, exponential moving statistics, 
normalization, and skewness calculations across different temporal 
windows. This robust feature engineering not only improves accuracy 
but also increases the model’s adaptability to temporal fluctuations and 
sudden changes in electricity consumption patterns.

Additionally, the proposed model also exhibits impressive resilience 
in scenarios involving incomplete or disrupted data, as validated by 
comprehensive sensitivity analyses. These features position the Pr-XGB- 
CB model as an innovative, efficient, adaptable, accurate and practical 
VSTLF solution for real-world power system forecasting applications.

4.5.3. Practical significance in power system operations
The proposed forecasting framework enhances power system oper

ations by delivering accurate, adaptive, and efficient load predictions. 
By employing lightweight, modular models, the proposed approach 
enables real-time scalability. Validated on public datasets, the frame
work offered a practical and resilient solution for modern smart grids.

By enabling more accurate and timely forecasts of load and genera
tion patterns, the feature engineering approach facilitates optimized 
resource scheduling and reduces reliance on expensive reserve capacity, 
thereby lowering operational costs and improving overall economic 
efficiency in the power system [40]. The sensitivity analysis validated 
the framework’s robustness against data sparsity and quality degrada
tion, conditions frequently encountered in practical power system de
ployments such as sensor failures or communication outages. This 
resilience ensures sustained forecasting accuracy for critical applications 
such as real-time load balancing and contingency management, thereby 
enhancing system stability and operational reliability under real-world 
uncertainties [41]. Collectively, these attributes contributed to 
improved grid stability, efficient economic dispatch, and effective 
integration of variable renewable energy sources, aligning closely with 
the operational and economic challenges faced by contemporary power 
systems.

4.5.4. Limitations and future work
The proposed framework performed well in the VSTLF scenario but 

still has room for further improvement. Although it performs strongly on 
the Panama-specific dataset, its representativeness is limited by 
geographic, climatic, and demographic factors, potentially affecting its 
generalizability to other regions. Future work should focus on validating 
and retraining the model via diverse datasets from various regions and 
conditions, along with exploring transfer learning to increase its appli
cability. Additionally, expanding evaluations beyond very short-term 
horizons to capture seasonal and long-term patterns will provide a 
more comprehensive understanding of the model’s capabilities. Beyond 
traditional approaches, delving into the potential of advanced archi
tectures such as transformers or large language models could unlock 
further accuracy gains and potentially capture intricate temporal de
pendencies within the data. Prioritizing real-time deployment through 
cloud-based implementations and explainable AI techniques such as 
SHAP and LIME is crucial for practical application.

By addressing these limitations and integrating advanced tech
niques, future work can enhance the reliability, interpretability, and 
operational efficiency of VSTLF systems. The current framework has 
established a strong foundation, positioning it as a promising step to
ward smarter, more efficient, and sustainable energy management 
solutions.

5. Conclusions

This paper introduces a novel Pr-XGB-CB model that combines the 
Prophet, XGBoost and CatBoost models to predict very short-term 
electricity load consumption. This approach utilizes the strengths of 
each model, incorporating robust feature engineering to increase the 
forecasting accuracy. The model’s effectiveness is tested by applying it 
to historical electricity load data from Panama City, validating its per
formance in load forecasting. According to the findings of this study, the 
following conclusions can be drawn. 

1. The number of input features was expanded from 17 to 390 by 
employing multi-lagged statistical feature engineering for perfor
mance enhancement in electricity load forecasting, which results in 
superior model performance.

2. The proposed hybrid model produced minimum error metric values 
with RMSE = 32.32, MAE = 23.70, MAPE = 0.0203, and R2 = 0.97. 
In addition, various statistical measurements, including Explained 
Variance = 0.9704, Max Error = 223.83, Mean Poisson Deviance =
0.905, Mean Gamma Deviance = 0.00084, and Mean Tweedie 
Deviance = 1044.99 were performed. The model showed 26.85 % 
and 99.44 % better performance in terms of the RMSE and MAE, 
respectively, with respect to the state-of-the-art model with the same 
dataset.

3. A thorough analysis was conducted on the hourly forecasting results, 
the initial week of each testing month, and the 6-month data to in
crease the robustness of the model. RMSE values of 32.32, 30.03, and 
32.23 were found for the hourly, weekly and semiannual load pre
dictions, respectively. The small fluctuations in the RMSE value 
denoted the robustness of the proposed model.

4. An evaluation of the sensitivity analysis was conducted by randomly 
including or excluding test data. The highest percentage change from 
the original RMSE value of 32.32 was 2.281 % (corresponding to 
33.06), and the lowest percentage change was − 0.402 % (corre
sponding to 32.19).
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Future research will aim to broaden the applicability of the frame
work by incorporating adaptive learning strategies and scalable model 
architectures. Emphasis will be placed on enhancing system robustness, 
fostering interpretability, and aligning model development with prac
tical deployment requirements in dynamic energy environments.
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Fig. A1. Decomposition of the dataset into different components with the Prophet model

M. Shafiuzzaman et al.                                                                                                                                                                                                                        Energy 335 (2025) 137981 

18 



Table A1 
Evaluation metrics of different models for every testing week

Model Year 2019 2020 Average

Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June

LSTM RMSE 41.83 28.44 28.39 34.98 68.01 34.6 27.67 39.63 31.36 27.06 26.94 53.71 31.74 32.99 53.76 51.29 51.37 38.35 39.01
MAE 27.19 21.26 21.62 26.5 55.14 26.42 21.83 30.11 22.79 20.65 20.33 42.1 22.46 25.5 42.37 37.83 38.74 29.81 29.59
MAPE 0.022 0.018 0.019 0.2 0.04 0.021 0.017 0.023 0.018 0.017 0.017 0.032 0.019 0.02 0.033 0.036 0.037 0.027 0.034
R2 0.94 0.97 0.97 0.97 0.87 0.96 0.98 0.95 0.97 0.98 0.98 0.91 0.97 0.97 0.93 0.68 0.71 0.86 0.92

GRU RMSE 61.19 46.89 55.0 75.42 106.6 81.07 71.01 83.37 78.41 58.98 86.17 80.98 61.77 66.57 85.53 100.9 96.98 65.39 75.68
MAE 52.16 34.56 46.11 67.27 96.2 68.9 59.05 70.95 65.65 45.2 66.95 65.17 49.08 55.81 71.71 76.42 76.76 51.28 62.18
MAPE 0.04 0.03 0.04 0.05 0.07 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.05 0.72 0.072 0.04 0.08
R2 0.87 0.93 0.89 0.85 0.69 0.81 0.85 0.79 0.81 0.91 0.77 0.79 0.88 0.87 0.81 − 0.24 − 0.01 0.59 0.71

Light GBM RMSE 25.3 20.8 36.4 28.5 89.6 33.7 37.5 32.3 25.5 33.8 32.6 59.04 34.41 28.44 62.71 56.89 69.87 58.48 42.55
MAE 19.8 15.35 27.89 22.32 69.59 27.46 26.83 24.37 20.31 24.63 25.03 46.18 25.68 22.51 43.52 38.77 46.9 44.22 31.74
MAPE 0.01 0.01 0.02 0.02 0.05 0.02 0.02 0.02 0.016 0.02 0.02 0.03 0.022 0.018 0.034 0.037 0.04 0.04 0.02
R2 0.97 0.98 0.95 0.97 0.77 0.96 0.95 0.97 0.98 0.97 0.96 0.89 0.96 0.98 0.89 0.61 0.47 0.67 0.88

XGBoost RMSE 19.46 18.60 35.92 24.66 84.56 31.25 29.73 31.33 25.08 29.03 38.87 59.94 31.68 25.01 58.18 54.47 69.64 57.67 40.28
MAE 16.52 13.86 26.93 19.92 66.77 24.69 22.18 22.8 19.06 21.40 25.36 47.02 23.42 20.17 39.51 36.51 45.32 43.18 29.70
MAPE 0.014 0.012 0.02 0.015 0.048 0.019 0.018 0.018 0.015 0.018 0.021 0.034 0.02 0.016 0.03 0.035 0.043 0.039 0.024
R2 0.98 0.99 0.95 0.98 0.80 0.97 0.97 0.97 0.98 0.97 0.95 0.88 0.97 0.98 0.91 0.64 0.48 0.68 0.892

Prophet RMSE 24.08 22.39 36.73 24.41 41.15 28.07 37.96 29.4 27.75 28.19 39.19 26.7 40.48 25.73 34.62 67.9 73.53 53.76 36.78
MAE 19.55 16.97 27.10 18.92 34.32 22.28 30.32 23.32 21.46 23.65 30.33 20.83 32.91 19.29 25.99 53.6 61.04 45.14 29.28
MAPE 0.016 0.014 0.024 0.015 0.026 0.019 0.025 0.018 0.018 0.02 0.027 0.016 0.029 0.016 0.02 0.05 0.057 0.04 0.025
R2 0.98 0.98 0.95 0.98 0.95 0.98 0.95 0.97 0.97 0.98 0.95 0.97 0.95 0.98 0.97 0.43 0.42 0.72 0.89

Pr- XGB-CB RMSE 22.47 17.9 28.22 20.05 42.79 23.65 28.41 25.98 24.0 24.95 27.73 30.24 31.59 20.55 40.94 43.35 48.69 39.02 30.03
MAE 18.91 14.31 22.21 15.95 34.38 18.62 21.99 19.86 19.2 20.13 21.38 23.13 24.29 15.44 28.22 30.69 35.08 30.81 23.03
MAPE 0.016 0.012 0.019 0.012 0.026 0.015 0.018 0.016 0.015 0.017 0.019 0.017 0.021 0.012 0.02 0.03 0.03 0.03 0.019
R2 0.98 0.99 0.97 0.99 0.95 0.98 0.97 0.98 0.98 0.98 0.97 0.97 0.97 0.99 0.96 0.77 0.74 0.85 0.94
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Data will be made available on request.
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