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Abstract—The growing complexity and volume of cyber attacks
to Cyber-Physical Systems (CPS) and Industrial Internet of
Things (IIoT) have outpaced traditional detection methods, re-
quiring more intelligent and explainable security solutions. While
Artificial Intelligence (AI)-based anomaly detection solutions have
been proposed in the literature, they either focus on a single
type of attack, or their decisions are restricted based on a single
dataset, or they lack transparency. To address these challenges,
this paper presents an explainable attack detection framework for
IIoT, combining advanced machine learning (ML) models and Al-
driven interpretability. The framework employs mid-level and late
data fusion techniques on two IIoT datasets, using Autoencoders
(AE) and Manifold Alignment (MA) techniques to generate a
unified feature space. A Random Forest (RF) classifier is trained
on the fused dataset to detect four attack types, achieving a
97% accuracy. The model’s decision-making is made transparent
through Explainable AI (XAI) tools, providing both global and
local interpretability. Furthermore, a Large Language Model
(LLM)-powered Al assistant is developed to provide automated,
context-aware mitigation strategies based on MITRE D3FEND
framework. This integrated approach enhances the detection,
interpretability, and response to threats in IIoT environments,
promoting greater trust and operational resilience.

Index Terms—Explainable AI, Cyber-Physical Systems, Indus-
trial IoT, Cyber Attack Detection

I. INTRODUCTION

Cyber-physical systems (CPS) are central to industrial in-
ternet of things (IIoT) deployments, linking sensors, actuators,
and control processes to enable automated industrial opera-
tions. Such systems often underlie critical sectors, where any
disruption can have serious consequences. The interconnected
IIoT devices increase the attack surface and render conven-
tional defences inadequate [1]. As IloT adoption expands,
threats such as malware, unauthorised access, and denial-of-
service attacks have become more prevalent, often overwhelm-
ing traditional defence [2]. The UK’s National Cyber Security
Centre managed 430 cyber incidents between September 2023
and August 2024, 89 of which were deemed nationally sig-
nificant. These incidents impacted various sectors, including
healthcare and public services [3]. Therefore, effective attack
detection systems are essential for the timely identification
and mitigation of anomalies in IIoT networks [1], [2]. Arti-
ficial intelligence (AI), particularly machine learning (ML),
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has emerged as a promising solution for attack detection in
CPS, since the conventional defence against these threats are
inadequate [4]. Al-based solutions provide data-driven anomaly
detection and adaptability to novel threats. For example, ML-
based frameworks demonstrate enhanced detection accuracy in
heterogeneous IoT environments [4]. However, IIoT generates
diverse multidomain datasets, including network traffic, sensor
signals, and system logs, necessitating fusion and alignment
techniques to improve attack detection. Manifold alignment
methods align data distributions across domains by preserv-
ing intrinsic structures, enabling effective comparison and
combination of datasets [5]. Researchers suggest that models
trained on a combined dataset provide better generalisation to
enhance detection accuracy and resilience [6]. Babayigit and
Abubaker [5] fused three IIoT datasets and used a hybrid deep
learning model with multiple-domain and transfer learning.
However, including the Edge-IloTSet adds complexity and
imbalanced data challenges, reducing accuracy due to diverse
attack types and complicating latent space interpretation. To
address this complexity, in this paper, we propose a framework
which employs an Autoencoder (AE) and Locally Linear
Embedding (LLE) methods for manifold alignment to detect
four attack categories including Distributed Denial of Service
(DDoS)/DoS, code injection, malware and reconnaissance,
achieving a 97% accuracy. The main contributions of the paper
include:

o We created a fused dataset for investigating attack patterns
in IIoT using two IIoT datsets in the literature (i.e.
X-IIoTID and WUSTL-IIoT-2021). The new combined
dataset has a latent space of 30 dimensions, which
preserves more nuanced and comprehensive information
compared to the smaller latent dimension (around 10
dimensions) utilised in [5].

o The proposed framework uses Explainable Al (XAI) tech-
niques, including local and global explaination techniques,
to interpret and justify the decisions that our Al models
have made to identify the four types of attacks.

o« We have integrated a Large Language Model (LLM)-
powered Al assistant within our approach to provide
automated, context-aware mitigation recommendations for
each of the identified attack types, based on the MITRE
D3FEND [7] guidelines.

In the remainder of this paper, Section II reviews the
related work. Data pre-processing methodology is discussed in



Section III. The proposed framework and experimental analysis
are presented in Section IV, while Section V presents the
LLM-based attack mitigation recommender system. Section VI
summarises the findings and outlines future research directions.

II. LITERATURE REVIEW

Recent research studies on IIoT attack detection have fo-
cused on data pre-processing to boost model accuracy. In [8],
the authors utilise the synthetic minority over-sampling tech-
nique (SMOTE) to address class imbalance. They trained
multiple centralised ML models for binary and multi-class clas-
sification, achieving high accuracy in binary tasks. However,
while synthetic oversampling methods like SMOTE-ENN help
balance class distributions, they risk adding artificial or redun-
dant samples that may not reflect real-world attack patterns.
Authors in [8], [10] compare Centralised Deep Learning (CDL)
with Federated Deep Learning (FDL) for IIoT context. They
train separate DL models on each dataset for both binary and
multi-class classification without merging the datasets. Their
findings show that FDL consistently outperforms CDL in terms
of accuracy, while maintaining data privacy. Bahadoripour
et al. [9] propose a deep federated multi-modal framework
for cyber-attack detection in ICS, integrating representation
learning, domain adaptation, and FL. However, the model’s
reliance on a well-suited public dataset for domain adaptation
presents limitations, if the dataset fails to represent diverse
client distributions, model accuracy and generalisability suffer.

To improve generalisability of these models, researchers
propose combining several datasets using fusion methods to
enhance detection accuracy of the models. In [5], the authors
train CNN-GRU, a hybrid DL model with a Convolutional
Neural Network (CNN) and Gated Recurrent Unit (GRU),
CNN-GRU classification model on an IIoT combined dataset.
Both a binary model and a multi-classification model (6 attack
types) are proposed. Combining datasets improves attack de-
tection rate, however, the developed intrusion detection systems
(IDS) often function as ambiguous “black boxes” limiting
their effectiveness in critical infrastructure, including IIoT,
where transparency and interpretability are crucial. Therefore,
very recently, researchers have proposed the integration of

XAI into IDS [11]. Authors propose xIIRS framework that
employs explainable deep learning for intrusion response in
industrial settings. By calculating feature importance scores,
it aids in understanding AI decisions, thereby supporting
trustworthiness and compliance. XAI has been used in other
CPS scenarios, such as industrial sensor networks and au-
tonomous traffic sign recognition [12], as well as resource-
constraint environments [13]. The reviewed literature typically
focus on enhancing a single aspect, such as pre-processing
improvements, dataset integration, detection of a single attack.
There are also a limited number of papers on XAI adoption in
CPS applications. Instead, our proposed approach consolidates
all these aspects into a unified framework that enhances threat
detection, interpretability, and response capabilities within I[IoT
context. Our proposed framework prioritises Al explainability
and develops a multi-classification RF model to detect several
attack categories. Explainability is critical in practical deploy-
ments, especially in IIoT environments, where understanding
model predictions is crucial for decision-making and security
management. Table I presents a comparative analysis of our
proposed approach with the literature that we covered in this
section.

III. DATA PRE-PROCESSING METHODOLOGY

The following subsections explain the data pre-processing
and Exploratory Data Analysis (EDA) on each dataset that are
performed before feeding them into the model for training.

A. Dataset Features

1) X-IloT Dataset: The X-IIoTID dataset is created by
researchers at the University of New South Wales. The dataset
is designed to be connectivity and device-agnostic, which
makes it suitable for the heterogeneous nature of IIoT systems.
It includes normal and malicious records (roughly 421,417 nor-
mal and 399,417 malicious) with 66 features, covering network
traffic, device resources, and logs. It supports several protocols
and includes diverse attack scenarios such as reconnaissance,
ransomware, and DDoS.

Our target variable in the dataset is Attack_Type. The
columns Date, Timestamp, Scr_IP, Scr_port, Des_IP, Des_port,

TABLE 1
REVIEW OF THE RELATED WORK
Ref Dataset Models Combined | XAI LLM
Datasets

[5] Edge-lIloTSet, WUSTL-1I0T-2021, X-I[IOTID CNN-GRU Yes No No
[6] Real time PLC data aquisition Decision Fusion (Rule based, DT, SVM, LSTM, XG- | No No No

Boots)
[9] Water treatment and gas pipeline Deep Federated multi-modal model Yes Global SHAP No
[10] X-1IoTID, Edge- IloTset, and WUSTL-I0T-202 Centralised and Federated Deep Learning No No No
[11] ON-IoT and Gas Pipeline Long short-term memory (LSTM), AE No Global SHAP, LIME, | No

LEMNA

[12] CPS system simulations CNN+XAI No Global SHAP No
[13] Edge-IloTset, UKM-IDS20, CTU-13, and NSL-KDD | Lightweight XAI Network Security framework(LENS- | No Variable attribution-based No

XAI)
Our Ap- | WUSTL-II0T-2021, X-IIOTID Random Forest (RF) Yes Global SHAP, Local SHAP, | Yes
proach LIME, Feature Importance




class1, and class3 are dropped prior to EDA, resulting in a final
dataset with 820,834 rows and 60 columns. Figure 1 shows the
distribution of the attack types in this dataset (where “normal”
means benign).

400000
350000
300000
o 250000
[
]
3 200000
150000
100000
50000
0
=
&“63

Fig. 1. Distribution of Attack_Type in the X-IIoT dataset.
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2) WUSTL-110T-2021 Dataset: The Wustl_iiot_2021 dataset
is developed by Washington University in St. Louis for cyber
security research in IIoT environments. It includes network
traffic data collected from a testbed emulating real-world in-
dustrial systems, featuring both normal operations and various
cyber attacks. The target variable in this dataset is Attack_Type.
The columns StartTime, LastTime, SrcAddr, DstAddr, Sport,
Dport, and Target are dropped prior to EDA, resulting in a final
dataset with 1,194,464 rows and 49 columns.

B. Dataset Labels

A key challenge in multi-source data integration is the
inconsistency in data labelling, as each dataset originally
defines attack types with different granularity. To address
this, we restructure the original attack/benign labels into five
consolidated categories to improves generalisability, enhances
model performance, and simplifies interpretation.

« DoS/DDoS (e.g., RDoS, DoS),

« Reconnaissance (e.g., reconnaissance, Reconn),

o Malware (e.g., crypto-ransomware, weaponisation, exfil-

tration, command & control, backdoor, tampering),

« Injection (e.g., command injection, exploitation),
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IV. PROPOSED FRAMEWORK AND ANALYSIS

The first steps in our framework include data pre-processing,
feature transformation, and fusion techniques on the two IIoT
datasets. We then selected RF technique due to its superior
explainability compared to the other ML models, and trained
an RF multi-classification model to predict the four attack types
in Section III-B. Then XAI techniques are applied to the model
to provide explainability and increase the trustworthiness of the
proposed approach. Finally, an Al-assistant has been trained to
provide automated, context-aware response recommendations
for high-priority alerts. Figure 2 presents each component of
the proposed framework, as explained below.

1) Data Pre-processing: Before feeding the data into a
model, it is crucial to clean and normalise it. This ensures
that all features are on a comparable scale, which is essential
for effective learning.

2) Mid Fusion via Feature Transformation: This step identi-
fies the 12 common features shared across both datasets. These
features provide a consistent basis for aligning the data.

3) AE Training: An Autoencoder (AE) is trained on the
mapped and pre-processed features to create a compressed,
yet meaningful representation of the data. This latent space
helps reduce noise and dimensionality, retaining only the most
informative characteristics.

4) Manifold Alignment: After transforming both datasets
using the AE, a technique called Modified Locally Linear
Embedding (M-LLE) is used to align them. M-LLE seeks
a lower-dimensional projection of the data which preserves
distances within local neighbourhoods. This preserves the
internal structure of each dataset while projecting them into
a shared feature space.

5) Combined Dataset Output: The latent space representa-
tion from the encoder is extracted and used as the transformed
feature set for downstream tasks. By combining AE-based
feature learning with MA, mid fusion is effectively achieved,
allowing for robust cross-dataset analysis while preserving
the integrity of both datasets. During the late fusion stage,
decision-level fusion is utilised by training separate models on
the two datasets and integrating their outputs at the decision
stage. After applying the data fusion process, the combined

XAl Techniques

LLM Recomm. and
\ Mitigation Model

Fig. 2. The proposed attack detection and recommendation framework.



dataset is transformed into a latent space representation with
32 features, effectively capturing the most informative charac-
teristics from both datasets.

6) Model Development: An RF classifier model is trained
on the fused dataset. It is selected to ensure reliable detection
and ease of understanding in real-world deployment scenarios.

7) Explainable Al (XAI): Explainability refers to the de-
gree to which the model’s decisions can be understood [14].
Complex models also known as black-box models, such as
deep neural networks (DNNs) and RF, are often criticised for
their lack of transparency [14]. Hence, XAl techniques aim to
overcome these limitations. Local explanations, such as local
SHapley Additive explanation (SHAP) and Local Interpretable
Model-agnostic Explanations (LIME), offer insight into indi-
vidual predictions and interpret models locally around each
prediction [15]. This helps users understand specific outcomes
while using complex models, which are otherwise unclear.
Global explanations, such as feature importance and global
SHAP, are other approaches to explainability. Global expla-
nations provide insight into how individual features impact
the model behaviour on the historical data (training datasets).
SHAP values, originating from cooperative game theory, offer a
unified approach to explain the predictions of the models [16].

A. Experimental Performance Analysis

The developed RF model is evaluated considering the fol-
lowing performance metrics: accuracy, precision, recall, and
Fl-score metrics. It performs exceptionally well, achieving
97% accuracy in multiple types of attacks, as shown in Table II.

TABLE II
RF MULTI-CLASS MODEL PERFORMANCE METRICS.
Class Accuracy | Precision Recall F1-Score

DoS/DDoS 0.97 0.98 0.99 0.99
Injection 0.97 0.99 0.78 0.55
Malware 0.97 0.90 0.88 0.88
Reconnaissance 0.97 0.98 0.99 0.99
Normal 0.97 0.97 0.87 0.87

Table III highlights the key differences between our ap-
proach and the baseline [5]. We avoid synthetic oversampling
to reduce the risk of introducing unrealistic data that may
impair model generalisation to real attack scenarios. We only
select homogeneous datasets. Retaining a higher latent space
dimension preserves nuanced information, enables the model
to capture diverse and subtle attack patterns more effectively.
We prioritise interpretability and data authenticity to support
more reliable and explainable threat detection outcomes.

Figure 3 presents the feature importance plot, showing a few
top-ranking features, ‘Service’, ‘read_write_physical.process’,
and ‘Av_num_cswch/s’, highlighting their critical roles in iden-
tifying anomalous or operational states in industrial systems.
These features reflect service-level characteristics, low-level
physical process interactions, and CPU context-switching be-
haviour, which are all essential indicators of system health and
potential security threats. Other highly ranked features, such
as ‘Duration’ further highlights the importance of temporal

TABLE III
COMPARISON OF OUR APPROACH WITH THE BASELINE APPROACH [5]

Aspect Baseline Approach [5] Our Approach
Datasets Edge-IloTSet, WUSTL- | X-IIoTID, WUSTL-IIoT-2021
10T-2021, X-IIOTID
Dataset Combined datasets with Selected more homogeneous
similarity significant heterogeneity datasets
(Edge-IToTSet)
Class Used SMOTE-ENN Avoided synthetic data
imbalance
handling
Latent  space Reduced to 10 dimen- Retained higher latent space
dimensions sions of 30 dimensions
Focus Generalisation across di- Interpretability and coherence
verse datasets within similar datasets
Accuracy, Re- 0.97, 0.97, 0.97 (CNN- 0.97, 0.90, 0.96 (RF model)
call, Precision GRU model)

and traffic-related metrics. The long-tail feature importance
pattern indicates that a few key features drive most of the
model’s predictive power, while many others add only minor
improvements, which aids efficient feature selection and im-
proves model interpretability in real-world IIoT applications

Top 15 Most Important Features
Service
read_write_physical.process
Avg_num_cswch/s
Duration
Scr_bytes
Scr_ip_bytes |
Avg_system_time [
paket_rate [
Avg_user_time |G
Avg_ideal_time [N
Avg_nice_time
is_with_payload /RN
FIN or RST
total_bytes N
byte_rate RN —mportance

0 2 4 6 8 10
Feature Importance

Features

Fig. 3. Feature importance for IIoT dataset, revealing how each feature
contributes to the model’s prediction.

read_write_physical.process | ———
service |
scr_bytes |
ouration |GG
Finor rsT I
is_syn_only |
Avg_num_cswehvs IR
protocol |
Des_ip_bytes | NN
scr_ip_bytes | NN
Scr_bytes_ratio NN
Des_bytes_ratio | NI
total_bytes |
Des_bytes | NN
]
Avg_system_time [N
is_syn_ack | INEEN
is_with_payload | NI
Conn_state IR
byte_rate |INNENN

0000 0025 0050 0075 0100 0125 0150 0175
mean(|SHAP value|) (average impact on model output magnitude)

= Normal
mmm Reconnaissance
- Malware

=== D0S/DD0S
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Fig. 4. Global SHAP-based model interpretability for IIoT dataset, revealing
how each feature changes the model’s prediction to classify cyber threats.

Figure 4 displays a global SHAP summary highlight-
ing the top features influencing the model’s network be-
haviour classifications across attack types. The feature



‘read_write_physical.process’ shows the highest overall contri-
bution across nearly all classes, particularly in distinguishing
malware and reconnaissance attacks. Other significant features
include ‘Service’, ‘Scr_bytes’, and ‘Duration’, which play
varying roles depending on the attack type. This visualisation
demonstrates not only which features are most important
overall but also how their influence differs across specific cyber
threat categories in the IIoT context.

fx)

Des_bytes
Duration [ o |
Service [ o |
is_pure_ack n
read_write_physical.process [ o |
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Fig. 5. Local SHAP explanation for a malware attack instance in the IIoT
dataset.

Figure 5 shows how feature SHAP values led the model to
predict a Malware Attack. Most features in this case, such as
‘Service’, ‘Duration’, ‘FIN” or ‘RST’, and ‘Scr_bytes_ratio’,
have negative SHAP values (blue bars), meaning they pull the
prediction away from “non-attack” and help confirm the Mal-
ware classification. One feature, ‘read_write_physical.process’,
had a slight positive impact (red bar), temporarily increasing
the likelihood of a non-attack classification, but not enough to
change the outcome. Overall, the prediction is shifted from a
base value of 0.18 to 0, strongly confirming the presence of
Malware activity. This plot provides insight into which sensor-
level indicators were most influential in detecting the threat.

Figure 6 presents the local SHAP explanation for a Normal
instance. The plot shows how each feature’s SHAP value
supports the model’s normal classification. Most features, such
as ‘Service’, ‘FIN or RST’, ‘is_syn_only’, ‘Protocol’, and
‘Duration’, have positive SHAP values (red bars), meaning they
push the prediction toward the “normal” class. One feature,
‘read_write_physical.process’, had a negative SHAP value,
slightly pulling the model toward an attack prediction, but
not enough to outweigh the strong normal indicators. The
prediction starts at a base value of 0.579 and is confidently
shifts to 1.0, confirming that the model strongly recognises this
behaviour as benign. This plot demonstrates how the model
uses a combination of subtle traffic and protocol features to
confidently detect non-malicious activity.

Figure 7 presents the LIME analysis for a specific instance
classified as a DoS/DDoS attack. The bar chart highlights
the most influential features that contribute to the predic-
tion. Among the top contributors to the DoS/DDoS deci-
sion were ‘Scr_bytes_ratio’ 0.67, Avg_user_time 0.22, and
Avg_num_cswch/s, each providing positive support for the
classification. The feature values on the right show the actual
observed inputs for the instance, such as a high Scr_bytes_ratio

flx)

Service
read_write_physical.process [ —o.06 |
FIN or RST
is_syn_only
Protocol | Rxe
Duration ' +0.03
byte_rate ' +0.03
paket_rate ' +0.03
Avg_num_cswch/s . +0.02

0.7 0.8 0.9 1.0

0.6
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Fig. 6. Local SHAP explanation for a normal (non-attack) instance in the IIoT
dataset.

1.00, elevates ‘Avg_user_time’ 0.69, and a high ‘Service’ 0.89,
all of which align with typical behaviours of DoS/DDoS activ-
ity, such as high source byte ratios and CPU load. Conversely,
features like ‘Des_bytes_ratio’ 0.33 and FIN or RST 0.00
contribute marginally but still play a role in the local decision.

NOT DoS/DDoS Feature Value

DoS/DDoS
\vg_num_cswe

Prediction probabilities

Dos/oDos N 1.00
Injection [0.00 ]

Malware [0.00

Normal [0.00

.00

[

Fig. 7. LIME for a Dos/DDoS attack instance in the IIoT dataset.

Figure 8 presents the LIME interpretability analysis for a
correctly classified Normal instance. The features contributing
most to the classification are visualised, with all top contrib-
utors supporting the "Normal” label. Notably, features such
as Is_SYN_ACK, dTtl, DstLoss, Scr_pkts, and Scr_bytes, all
with values equal to O or low thresholds, strongly reinforce
the model’s decision. These conditions typically reflect the
absence of abnormal traffic patterns, packet loss, or suspicious
payload behaviour. Additionally, attributes like TotAppByte,
SrcLoad, and total_bytes being 0.00 further indicate minimal
network activity, characteristic of a benign IloT environment.
Only sTos had a minimal neutral or slightly contrary influence.
This explanation confirms that the model bases its decision on
a coherent and logical combination of low-activity indicators,
which aligns with expected behaviour for non-malicious traffic
in IIoT systems.

V. AI-ASSISTED ATTACK MITIGATION RECOMMENDATION

This section introduces an Al-assistant powered by LLM
that delivers automated, tailored recommendations for specific
cyber attacks in IIoT environments. The LLM is trained on
a structured PDF file compiled from best-practice mitigation
strategies based on the MITRE D3FEND framework, cover-
ing topics such as Remote Denial of Service (RDOS), Fake
Notifications, Brute Force Attacks, Man-in-the-Middle (MitM)
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Fig. 8. LIME explanation for a normal instance in the IIoT dataset.

Attacks, Data Exfiltration, Ransomware and Intrusion Detec-
tion and Prevention Systems (IDS/IPS) [7]. The system uses
LangChain, ChromaDB, and the Flan-T5 model. The PDF file
is processed into overlapping text chunks, embedded using all-
MiniLM-L6-v2, and stored in ChromaDB for retrieval. When
queried, the system retrieves relevant chunks through similarity
search, which Flan-T5 uses to generate structured, context-
aware answers. Figure 9 presents an excerpt of a question and
answer from the developed LLM-based Al-assistant. A sam-
ple interaction shows actionable guidance against DoS/DDoS
attacks, like SYN cookies and disaster recovery planning. The
assistant can also be retrained on other documents, including
internal security policies or standards such as ISO 27001 and
NIST.

A qualitative human evaluation confirmed the chatbot’s
responses were accurate, relevant, and fluent, demonstrating
the approach’s effectiveness in supporting on-demand cyberse-
curity recommendations.

Q1: How can we mitigate RDOS (Remote Denial of Service)?

Al
« Implement rate limiting, traffic filtering, and load balancing.
+ Use DDoS protection services (e.g., Cloudflare, AWS Shield).
« Monitor network traffic for sudden surges to detect attacks.

« Deploy intrusion detection/prevention systems (IDS/IPS).

Q2: How can we mitig Vul_Scan (Vul bilit ing)?
A2:
« Obscure system details using ity-through urity techniques and fi

* Consider using honeypots to detect and analyze scanning behavior

* Employ IDS and Firewalls to detect and block unusual scanning behavior.

Fig. 9. Example questions & answers from the Al-Assistant Chatbot.

VI. CONCLUSION

In an attempt to improve attack classification and detection
accuracy in industrial IoT context, this paper presented a
framework that enhances the detection, explainability, and
response strategies to cyber attacks. In particular, we selectively
combined two datasets using fusion techniques and created a
fused data with larger latent dimension for investigating attack
detection in IIoT. The fused dataset is then fed into an RF
model that achieved an accuracy of 97%, to detect four attack
categories. An XAI module is integrated into the framework
to provide both global and local interpretability to the decision

making of the AI model. We further introduced an LLM-
powered Al assistant that delivers automated, context-aware
mitigation strategies based on the MITRE D3FEND guidelines.
This research reinforces the importance of data fusion in
cyber security, demonstrating that integrating multiple datasets
through feature transformation and decision aggregation can
significantly improve classification accuracy and robustness in
IIoT intrusion classification and detection. Future work should
focus on class balancing and feature optimisation to enhance
recall for under-represented attack types. A comprehensive
evaluation of the LLLM-based assistant, including user studies
has been left as a future work as well.
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