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Secure and Scalable Trust Management in IoT:
A Hierarchical Blockchain-based Approach

Abstract—The diverse and resource-constrained nature of
Internet of Things (IoT) devices make them vulnerable against
various security attacks. Effective trust management within the
IoT ecosystem is crucial for reliable data collection and sharing,
as well as the detection of malicious nodes. Centralized trust
management methods are inefficient due to several challenges, in-
cluding single point of attack/failure, unauthorized manipulation
of trust data, resource limitations of smart devices, and scalability
issues. Blockchain technology provides a suitable solution for
trust management due to its decentralization, transparency, and
immutability features. However, deploying blockchain for IoT
devices is not simple due to the low performance and high compu-
tational costs of consensus algorithms, limited resources of smart
devices, and the large volume of transactions created by nodes.
In this paper, a hierarchical trust management approach based
on blockchain is proposed. The proposed approach evaluates
each node’s reputation and organizational trust at both intra-
organizational and inter-organizational levels. At the internal
level, a lightweight blockchain is used to evaluate and store the
trust score of the nodes. At the inter-organizational level, interac-
tions between organizations and their trust level are recorded in
the public blockchain. Two methods are proposed, i.e. probing-
based and evidence-based, for evaluating the reputation of each
node and the trust level of each organization. The evaluation
results show that with a maximum of 35 % malicious nodes within
an organization, the proposed method can correctly identify the
malicious and honest nodes. The recall and specificity measures
obtained are both greater than 0.9. Additionally, organizations
with more than 35% of malicious nodes are blacklisted and
suspended.

Index Terms—Hierarchical Trust Management, Blockchain,
Internet of Things

I. INTRODUCTION

In recent years, the rapid growth of Internet of Things (IoT)
technology had significant impact in our daily lives. Smart
devices in the IoT ecosystem collect data from the environ-
ment, process it, and analyze it to extract valuable information,
enabling the provision of various services [1]. These connected
devices usually have specific characteristics, such as low com-
puting power, limited storage space, and heterogeneity [2], [3].
They have the ability to communicate and share information,
playing an important role in various applications, such as smart
healthcare [4], smart transportation [5], smart homes [6], and
smart cities [7]. Researcher have shown that IoT devices are
prone to numerous security challenges, such as the need for
secure mechanisms to authenticate nodes during onboarding,
robust access control mechanisms to manage authorization,
and effective privacy mechanisms [8], [9], [10]. While authen-
tication and access control mechanisms can mitigate external
threats, they may fall short in ensuring the trustworthiness of
authorized nodes, as authenticated nodes can potentially turn
malicious post-authentication, posing challenges in detecting
internal attacks. Therefore, trust management and continuously

evaluating the trustworthiness of each node in IoT is an
important challenge [11], [12].

The motivation for implementing a trust management mech-
anism is to safeguard IoT nodes against malicious and compro-
mised nodes. Malicious nodes have the capability to execute
various attacks and disseminate false recommendations. There-
fore, trust evaluation mechanisms are introduced to alleviate
security concerns. Through trust management, each node as-
sesses its level of trust towards other nodes before engaging in
a communication. If the trust level meets the specified thresh-
old, the node proceeds with the communication; otherwise, it
disregards those nodes with lower trust levels [13].

Trust management mechanisms are categorized into two
main types: centralized and distributed [2]. In centralized trust
management systems, trust evaluation and data storage are
handled by a central entity, typically a cloud server. Awan et
al. [12] proposed a multi-level central authority-based inter-
domain trust management model called HoliTrust, tailored
for interactions among Internet of Things (IoT) nodes. This
model incorporates various central authorities, such as com-
munity servers, domain servers, and trust servers, to ensure
correctness, efficiency, and reduced computational load on IoT
nodes. However, due to the large number of nodes, the limited
computational capabilities of smart objects, and the dynamic
network environment, Chen et al. [14] introduced IoTrust, an
architecture integrating Software Defined Networking (SDN)
with ToT. IoTrust comprises five layers, including the object
layer, node layer, SDN control layer, organization layer, and
reputation management layer. The reputation management
layer serves as the central node responsible for calculating and
storing trust data, albeit this centralized approach may lead to
a single point of failure and hinder scalability.

In distributed trust management systems, nodes are tasked
with computing and maintaining trust information locally.
Zheng et al. [15] proposed a network security mechanism
based on distributed trust management to address threats in
wireless sensor networks. This model employs a distributed
network structure to compute the local trust degree of nodes
based on their interaction behavior, subsequently deriving a
global trust degree that reflects overall trust levels and aids
in identifying malicious nodes. Recognizing the significance
of healthcare-related information and the constraints of IoT,
Ebrahimi et al. [16] proposed a decentralized and secure trust
management model based on the Dempster-Shafer evidence
theory and social relationships among object owners. This
model aims to establish a trust framework while considering
factors such as reliability and privacy. Alghofaili et al. [17]
proposed a trust management model to secure IoT devices and
services. Their model leverages two techniques: the Simple
Multi-Attribute Rating Technique (SMART) and Long Short-
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Term Memory (LSTM). SMART calculates trust scores based
on delay, data loss, and throughput, while LSTM, a deep
learning technique, identifies malicious behavior by analyzing
data patterns. Awan et al. [13] introduced RobustTrust, a robust
cross-domain distributed trust management system designed to
address challenges across different domains. This mechanism
divides trust into three components: knowledge, reputation,
and experience, each with subcomponents for evaluating trust
relative to other nodes. However, in distributed trust manage-
ment systems, nodes face various challenges, such as the po-
tential for local trust manipulation, and resource limitations of
each node for calculating and storing trust values. Researchers
suggest that Blockchain technology can help overcome these
challenges [18].

Blockchain technology is a distributed ledger system where
verified transactions are stored in tamper-proof blocks and
are transmitted across a decentralized, transparent peer-to-
peer network, which could be helpful in overcoming trust
evaluation issues in IoT [19]. Blockchain can protect the
system against unauthorized data manipulation and improve
scalability by removing central authorities. However, its high
computational demands, bandwidth usage, and latency make
it unsuitable for many IoT applications [20]. A key challenge
lies in scaling data collection and storage, as IoT devices
have limited resources. Additionally, blockchain alone cannot
guarantee the accuracy of the source data, as malicious devices
could inject invalid information that becomes uncorrectable
once stored [21]. Lightweight blockchain platforms have been
proposed in the literature to address the resource limitations of
IoT [22], [23], [24], [25], [22]. However, with the large volume
of transaction and the growing blockchain size, monitoring
the accuracy of the system becomes difficult. To address these
issues, two-layer blockchain architectures have been proposed
in the literature to manage trust and privacy in the IoT [26],
[27], [28].

This paper proposes a hierarchical trust management system
for smart cities. In the proposed model, a smart city comprises
multiple organizations, each of which own numerous smart
objects that request or provide services to the community.
We assume that each organization uses a local blockchain
for internal trust management. We consider two organizational
trust levels in our proposed model, i.e. intra-organizational
and inter-organizational levels. The intra-organizational level
leverages a light blockchain platform to store trust values for
smart objects within the organization. The inter-organizational
level employs a global, reputation-based blockchain for inter-
actions between organizations. When an organization requests
a service, a suitable service provider is chosen based on the de-
veloped smart contracts and the requested service type and the
requesting organization’s category. The chosen organization’s
smart object responds to the request, and the service provider’s
trust value will be updated on the global blockchain. The key
contributions of this paper are:

1) A scalable and privacy-preserving two-level blockchain-
based trust management model is proposed. This model
uses a private and lightweight blockchain within each or-
ganization (intra-organizational layer) to streamline trust
calculations and transaction confirmation. Additionally,

a global blockchain in the inter-organizational layer is
used to store each organization’s reputation information
and the trust scores.

2) Trust values for individual IoT nodes is calculated
by comparing observations from neighboring nodes,
achieved through probing and evidence-based methods.

3) Organizational trust value incorporates both direct and
indirect trust calculation, creating to a three-tier classi-
fication system: whitelisted, graylisted, and blacklisted
organizations.

This paper is structured as follows. Section II provides
a concise overview of the relevant trust management mech-
anisms. Section III details the proposed trust mechanism.
Section IV presents the performance evaluation results of the
proposed model. Section V examines the scalability of the
proposed trust management model and Section VI analyzes
the resilience of the proposed methods against security attacks.
Section VII concludes the paper by summarizing the key
findings.

II. RELATED WORK

This section explores the application of single-layer and
two-layer blockchain architectures in trust management sys-
tems.

A. Single-layer blockchain trust management

With the expansion of smart cities and the increase of
network traffic, edge computing has improved the quality of
service. However, it also faces security challenges, such as
central node failure and insider attacks. Wang et al. [29]
propose a blockchain-based trust management model for edge
devices in the smart city. Due to storage and computing
limitations in edge devices, common consensus algorithms are
difficult to implement. To solve this problem, a reputation-
based consensus algorithm is proposed which divides the
network into two parts: the edge servers and the edge devices.
The solution often struggles with the heterogeneity, mobility,
and scalability demands of the Internet of Things (IoT). To
address these challenges, Kouicem et al. [30] proposed a
BC-Trust, a decentralized and hierarchical blockchain-based
trust management protocol with mobility support. In BC-Trust,
mobile devices assess trust recommendations about other
devices without relying on a central authority. Additionally,
the protocol leverages cloud nodes and service providers to
maintain the blockchain, alleviating resource-constrained IoT
devices from storing trust information and performing complex
computations.

Due to limited interaction experience, nodes may require
recommendations to assess other nodes. However, these rec-
ommendations can be unreliable. To address this, Wu et al.
[11] proposed a blockchain-based distributed trust manage-
ment mechanism for the IoT called BBTM. In BBTM, trust
computation is published as a crowdsourcing task, where a
sensor node broadcasts a request to calculate the trustwor-
thiness of its cooperating partner. Nearby edge nodes then
receive this task and provide their feedback about the re-
questing nodes. Layered Blockchain-based Trust Management
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(LBTM) and its distributed variant DLBTM [28] propose
multi-tier trust architectures where local nodes evaluate peers
and periodically synchronize with a higher-level blockchain.
These models improve scalability over single-chain designs
and reduce evaluation latency. However, they primarily rely on
static trust computation formulas (e.g., fuzzy logic) and do not
incorporate hybrid trust evaluation methods such as combining
evidence-based and probing-based analysis. Furthermore, they
lack an explicit mechanism for smart contract-based aggrega-
tion or adaptive parameter tuning under dynamic adversarial
behavior.

To address concerns about data reliability at the source in
the Internet of Things (IoT), Dedeoglu et al. [31] proposed a
layered model. This model separates data trust evaluation (sen-
sor observations) from block verification (blockchain layer)
using trust and reputation modules within gateways. In the
Internet of Social Things (IoST), Amiri et al. [32] proposed
LBTM, a lightweight blockchain-based trust management sys-
tem. LBTM leverages social connections between IoT devices
to incorporate valuable social information alongside traditional
feedback data, enhancing trust evaluation during interactions
(data transfer, service provision). Devices can directly interact
with the system or use edge nodes.

BC-Trust [30] is a foundational work that uses a single-layer
blockchain to store and manage trust values. Trust scores are
computed based on direct interactions and stored immutably to
prevent tampering. However, the model depends on a proof-of-
work (PoW) consensus mechanism, making it computationally
expensive and less suitable for resource-constrained IoT de-
vices. Moreover, the single-layer architecture results in poor
scalability as the number of transactions grows, limiting its
deployment in large-scale networks such as smart cities.

RobustTrust is a non-blockchain statistical trust framework
that uses data-driven outlier detection and weighted voting
to assess trustworthiness. It offers flexibility and robustness
in small and medium-sized networks. Nevertheless, the lack
of a secure distributed ledger means that trust data can be
spoofed or modified by attackers, reducing its resilience to
tampering and long-term audits. Additionally, the model lacks
a clear mechanism to verify source authenticity in distributed
environments.

T-Broker [?] introduces a broker-based trust negotiation
model where IoT devices select trustworthy services based on
historical interactions and contextual policies. While flexible
in service selection, T-Broker is not blockchain-based and
therefore lacks transaction traceability and tamper-resistance.
It also assumes relatively powerful devices capable of exe-
cuting negotiation protocols, making it impractical for highly
constrained IoT sensors or real-time systems such as vehicular
networks.

Collaboration between devices from different domains in the
Industrial Internet of Things (IloT) raises concerns about trust
in device-to-device interactions. Wu et al. [33] address this
by proposing PPTMA, a blockchain-based privacy-preserving
trust management architecture for cross-domain trust assess-
ment. PPTMA utilizes federated learning to train task-specific
trust models and employs a game theory-based incentive
mechanism to encourage honest and active participation by

IIoT devices in sending trust data to the blockchain, ulti-
mately improving trust calculation accuracy. Additionally, a
parallel consensus protocol is proposed to enhance consensus
efficiency.

B. Two-layer blockchain trust management

Two of the most important challenges of the Internet of
Things are the protection of smart objects and the need to guar-
antee their independence. To solve these challenges, Corradini
et al. [27] have presented a two-layer blockchain-based trust
management mechanism. In this model, intelligent objects are
appropriately grouped into communities. Each community is
linked to a local blockchain and is used to record probing
transactions and evaluate the trust of one object to another
from the same community or another community. To reduce
the volume of transactions, a lightweight blockchain is used
which aggregates transactions periodically. If the reputation
value of the smart object is less than the threshold, it will be
removed from the community. In the global blockchain, the
list of objects belonging to each community, the amount of
reputation of smart objects of each community and the trust
of each community in other communities are calculated and
updated using smart contracts.

In the Internet of Vehicles (IoV), cars collect data from their
environment and share it through the Internet of Things (IoT).
However, vehicles can transmit false information, jeopardizing
trust within the network. To address this and overcome the lim-
itations of single-layer blockchains, Ruan et al. [28] propose
a two-level blockchain-based trust management mechanism
called DLBTM. DLBTM utilizes separate blockchains for
vehicles and Road Side Units (RSUs). The vehicle blockchain
involves vehicles and a limited number of RSUs participating
in consensus. The RSU blockchain consists solely of RSU
nodes and miners. RSU nodes handle tasks like block gener-
ation, calculating final vehicle trust (combining vehicle mes-
sage trust, vehicle evaluation trust, and vehicle past behavior
trust), delivering messages to requesting vehicles, and storing
both vital and temporary messages. Vehicle nodes focus on
generating, evaluating, and requesting messages. Through lo-
gistic regression, DLBTM calculates the final trust value by
combining these three trust components. This model boasts an
accuracy of at least 90% in identifying malicious nodes over
time. Fischer et al. [34] incorporated the direct and indirect
feedback of a vehicular nodes towards others to estimate
the reputation of vehicles in a network. Huang et al. [35]
computed the node’s reputation by employing weighted voting
algorithm. The importance of nodes with higher weight would
have higher preferences and has been computed on the basis
of nodes presence near the event. Yang et al. [36] proposed
a blockchain based decentralized trust management system
based on positive and negative votes and incorporates the
RSU for vote aggregation. The system is decentralized but it
has not provided any mechanism for ensuring vote privacy of
vehicles. Further, the system does not consider the trustworthy
weight of participating vehicles. Ray et al. [37] incorporated
a data-analytics approach to estimate the trusted behaviour of
nodes in a vehicular ad-hoc network (VANET). The system
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weighs each consider the trust weight of feedback provider
and well-defined rules to estimate the trust of the vehicles. A
centralized system can be used to collect the feedback, feed-
back aggregation and relying the aggregated feedback to other
participants of the network. Muhammad et al. [38] adopted
crowdsourcing approach for aggregating the feedback from
participating vehicles in a completely decentralized fashion
by employing a homomorphic encryption. The approach also
incorporated trust weights while evaluating the trustworthiness
of the vehicles. Haitham et al [39] proposed a blockchain-
based reputation system which computes reputation of vehicles
in a privacy-preserving, secure and decentralized way.

Awan et al. [40] propose a model for secure routing in
sensor networks using blockchain technology. Their model
allows for choosing reliable paths between source and des-
tination nodes by calculating trust values and detecting mali-
cious behavior. The system utilizes a combination of public
and private blockchains to store identities of collector nodes
(ANs) and sensor nodes (SNs), respectively, and perform
authentication. Additionally, the model identifies and removes
malicious sensor nodes based on three parameters: forwarding
rate, response time, and delayed transmission. Furthermore, it
ensures secure routing by considering the remaining energy
and confidence values of sensor nodes.

C. Comparison and Limitations of Existing Work

Table I provides a high-level comparison of the discussed
models across six dimensions: blockchain usage, consensus
mechanism, scalability, trust evaluation method, hierarchical
design, and resilience to malicious attacks.

As seen, none of the existing models simultaneously address
the challenges of scalability, hybrid trust evaluation, real-time
adaptability, and blockchain-based aggregation in a hierarchi-
cal structure. These limitations form the core motivation for
our proposed framework.

D. Summary of Contributions

Unlike the above models, our approach introduces a scalable
two-layer architecture combining local trust aggregation and
global consensus through lightweight blockchains. It supports
hybrid trust evaluation (probing- and evidence-based), utilizes
efficient PoA consensus, and ensures robustness against mul-
tiple attack types through redundancy, adaptive pruning, and
secure smart contracts. The effectiveness of our model is val-
idated through extensive simulations, demonstrating superior
scalability, accuracy, and resilience in comparison with state-
of-the-art alternatives.

ITII. PROPOSED MODEL

As explained in the introduction section, in the proposed
model, we assume that each organization owns numerous
smart objects that request or provide services. We also assume
that each organization is connected to either a lightweight
or a local blockchain, forming an intra-organizational layer.
The inter-organizational layer interfaces with the global/public
blockchain and stores information, such as the list of smart

objects associated with each organization, the reputation score
of each object, and the trust level of each organization. When
an organization requests a service within this model, a smart
contract is activated, recommending an organization based
on the requested service and its category. Subsequently, the
service request is forwarded to the designated organization,
and a smart object from that organization responds to the
request. The object’s response is transmitted to the organiza-
tion via a secure communication channel. Following this, the
organization’s trust value is computed through a smart contract
and stored in the global blockchain.

The proposed hierarchical trust model is based on the
following key assumptions:

o Honest Majority: More than 50% of the nodes in both
intra- and inter-organizational layers are assumed to be-
have honestly. This threshold is critical, as the correct-
ness of most consensus-based mechanisms (e.g., Proof
of Authority (PoA)) and aggregation-based trust models
depends on the presence of a majority of honest nodes.
If a dishonest majority (i.e., > 50%) emerges, reputation
scores can be manipulated, thereby compromising the
accuracy of trust evaluations.

« Service Redundancy: Each service within an organization

has at least 2—3 redundant smart objects capable of
providing the same service. This redundancy enables
effective probing and evidence-based validation. It also
allows pruning of outlier responses for more accurate
reputation aggregation. In a 1000-node smart city, divid-
ing nodes into 100 partitions with 2-3 redundant devices
per partition ensures sufficient honest majority and fault
tolerance.
Assumption 2 asserts that the maximum number of col-
luding nodes ¢ within any partition p;; remains less than
the partition size |p;;|. This is justified by the redundant
design of service partitions, where each partition includes
multiple nodes from independent subgroups or trust
zones, limiting coordinated compromise. For example, in
a 10-node partition with 3 redundant nodes per service,
even if 3 nodes are malicious, the trust evaluation remains
robust due to the dominance of honest majority and
the pruning of anomalous outputs. Additionally, node
authentication using digital certificates mitigates Sybil
attacks and constrains entry of unauthorized participants,
further supporting this assumption.

A. Intra-organizational layer

In interactions among smart objects, some nodes may
exhibit malicious behavior. We propose two methods for
calculating the trust score and reputation value of each smart
object, i.e. probing-based and evidence-based.

1) Probing-based method: The probing-based method, in-
spired by [27], involves a smart object seeking services from
another smart object within the same or a different organi-
zation. This mechanism assesses the reliability and reputa-
tion of objects through probing. Nodes undergo testing via
probe queries regarding their service capabilities, with their
responses compared to those of other nodes offering the same
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TABLE I: Comparison of Existing Blockchain-Based Trust Models in IoT

Model Blockchain Consensus Scalability Trust Eval. Hierarchy Attack Resilience
BC-Trust Yes PoW Low Direct No Medium
RobustTrust No - Medium Statistical No Low
LBTM No - Medium Fuzzy Logic Partial Medium
DLBTM Yes BFT Medium Fuzzy Logic Yes Medium
T-Broker No - Medium Negotiation No Low
Proposed Yes PoA High Hybrid (Prob/Evid) Yes High

service. This comparison enables the calculation of the object’s
reliability. All transactions involved in evaluating smart object
reliability are recorded in a lightweight blockchain with a
smart contract. In this system, the consensus mechanism used
is Proof-of-Authority (PoA). In this approach, only trusted
entities are allowed to produce new blocks, and nodes must au-
thenticate their identities. Compared to other algorithms such
as Proof-of-Work, this mechanism requires less energy and
time, making it more suitable for fast and reliable transaction
validation.

As depicted in Figure 1, the proposed model comprises
multiple organizations, with each object belonging to precisely
one organization capable of inter-communication. The model
consists of two layers: the intra-organizational layer and the
inter-organizational layer. In the intra-organizational layer,
each organization is composed of several smart objects that
both request and provide services. A lightweight blockchain
is employed to manage transaction volume, record probing
transactions, and oversee the trustworthiness of each smart
object within its respective organization. Periodically, once
the local blockchain reaches a predetermined length threshold,
these transactions are aggregated, and the resultant values are
stored in the global blockchain.

Global

Blockchain
©@® Local Blockchain
% O Organization
. @l Smart Object

* * F ¥
' H
' '

'

Global Blockchain

'
Local Blockchain

e
ah

'
Local Blockchain

ST

Local Blockchain

Fig. 1: Probing-based trust evaluation model

a) Assessment of Trust in Smart Objects: Regarding the
services provided by objects within the organization, it is
assumed that a certain level of service redundancy exists
to prevent service interruptions (multiple objects within the
same organization can provide the same service). If half
or more of the nodes are malicious, however, trust values

cannot be accurately assigned. Consequently, both the probing-
based and evidence-based methods assume that over 50%
of the nodes are honest. Gateway nodes are selected based
on computational capacity and pre-authenticated via a trusted
third-party certificate authority during network setup.

A request initiated by a trustor ¢7; to a trustee te; within
an organization is denoted as reg;;. Subsequently, a partition
p;, comprising smart objects in the organization capable of
responding to reg;, is identified. A pruning process is then
applied to p;; to eliminate smart objects with outlier data,
resulting in the pruned partition p;,. To assess the trustworthi-
ness of T, based on the output out; provided by te; and the
outputs from smart objects within p;;, it is computed using
the equation 1.

1 ,

T, = @ * Eokeij F (1
In equation 1, |p;, | represents the count of smart objects in
the pruned partition, while the function F; ,z defines the criteria
for validating the outputs of smart objects. This validation
involves comparing the function with a threshold value, which
is determined based on specific application requirements and

calculated using equation 2.

]__Iz _ 1 if outy supports out;, 2

0 otherwise.

b) Calculation of Smart Object’s Reputation Value : The
reputation of a smart object reflects the collective perception
of the entire organization towards that object, as illustrated
in Figure 2. Reputation calculation serves as a method to
maintain blockchain efficiency by minimizing its size, and it
is computed via a smart contract when the local blockchain
reaches its length threshold w. Within this threshold, all
probing transactions are aggregated. 7' rSj represents the set
of nodes that have engaged in at least one probing transaction
with te;. Upon reaching the threshold w, the reputation of te;
is determined using Equation 3

R‘f’: Zf TTSj#@,

J

{a . R}“_l +(1—-a)Tp” 3)

R}‘F L otherwise.

Where, R;-”*l represents the reputation value of te; from the
previous aggregation. The parameter « serves as a weight
parameter to assess the significance of past data relative to new
data. In critical scenarios necessitating a high level of security
assurance, the value of « is set to a lower value. We designate
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Fig. 2: Reputation calculation aggregates probing transactions
when the local blockchain reaches threshold w.

the initial reputation value for all smart objects within the
organization at system startup as 0.7, which corresponds to
the Secondary Reputation Threshold (SRT). TT“’ denotes the
average confidence attained by summing the confidence values
of te; across w iterations, calculated using Equation 4.
W _ ZtmETTSj 717J (4)
! |TrS;]

Through the smart contract’s reputation value calculations,
smart objects with reputations lower than the Initial Reputation
Threshold (IRT) are expelled from the organization, set at
IRT = 0.5. If an output node lacks support from over 50%
of the partition nodes, its trust falls below 0.5, impacting its
reputation. Nodes falling between the primary and secondary
reputation thresholds are categorized as medium. Nodes whose
output values estimate support from 50-70% of partition nodes,
indicating less precise outputs, are classified as average and
logged in the global blockchain. Smart objects are grouped
using the relationship given in Equation 5.

Cuweak ifRY < IRT,
Cobj = § Crmedium ifIRT < RY < SRT, (5)
Cperfect Ziju 2 SRT.

2) Evidence-based method: As depicted in Figure 3,
each organization comprises a set of gateway nodes G =
G1,Ga,. .., G, forming a lightweight blockchain. Each gate-
way node G, encompasses k smart object nodes O; =
0i,,0;,,...,0;, and is tasked with data collection from ob-
jects. The observed data is hashed and can be stored off-chain,
while aggregated transactions and interactions are recorded on
the blockchain. Smart objects affiliated with the same gateway
are adjacent, facilitating related observations. Furthermore,
smart objects linked to a gateway offer a degree of redundancy
in service provision. Every node in the network possesses
a unique public-private key pair. During the network setup
phase, nodes register using their public key, and transactions
are signed using their private keys. Gateway nodes, holding
access to registered nodes’ public keys, verify these signatures.

Local Blockchain
eeg)

Local Blockchain
egeg)

Local Blockchain
ETD

Fig. 3: Evidence-based trust evaluation method

a) Lightweight-blockchain: In [31], a lightweight
blockchain based on the trust architecture of the Internet
of Things is proposed, which we adhere to in our provided
private blockchain. As illustrated in Figure 4, gateway
nodes are responsible for block generation, block validation,
and distributed consensus within the private blockchain.
According to the presented method, the gateway nodes are
recognized by the network and granted permission to produce
blocks, eliminating the need to compete for block production
using computationally expensive block mining mechanisms
such as proof-of-stake and proof-of-work. Gateway nodes
generate blocks at periodic intervals. Upon receiving all
related smart object transactions, the gateway node validates
these transactions, calculates the evidence and reputation of
the node, and creates a block with transactions containing
the observation data, public key, and signature of the smart
object, as well as the trust value of the evidence and the
reputation of the smart object. Subsequently, the block is
transmitted to other blockchain nodes for validation. Block
validation encompasses: 1) validation of data transactions
by verifying the public keys of the smart objects and their
signatures within the transactions, and 2) validation of the
trust and reputation values assigned by the gateway node
through recalculation with the data within the generated
block.

To manage and minimize the length of the blockchain,
a lightweight blockchain named Sensor-chain is introduced
in [23]. In line with this approach, once the blockchain’s
length surpasses a predefined threshold, a gateway node is
designated as the aggregator node. Subsequently, the blocks
are consolidated, resulting in an aggregate block serving as the
genesis block. Eventually, the reputation values of the smart
objects associated with that organization are updated in the
Global blockchain. Any smart object whose reputation value
falls below the initial threshold is subsequently removed from
the organization.

b) Calculation of trust and reputation of smart object:
The observations made by neighboring smart objects can serve
as evidence regarding the reliability of the observations made
by a given smart object. The trust value of a smart object
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Fig. 4: Block generation in the PoA-based model. Gateway
nodes validate transactions and submit blocks once the local
threshold w is reached.

is instantaneous for each observation. Denoted as absij, it
represents the observation made by the smart object O;;
belonging to the gateway G;. N;, denotes the set of adjacent
smart objects to O;,. Based on the observations of neighboring
smart objects, a pruning process is conducted on N;; to
eliminate smart objects with outlier data, resulting in the set
Nj;. Subsequently, the trust value T;, of the smart object is
calculated using Equation 1.

The level of reputation reflects the long-term performance of
the smart object and significantly influences the organization’s
assessment. The reputation value Rﬁj for the smart object O;;
is determined as follows:

The trust and reputation values associated with the node
in transactions involving the smart object are logged in the
local blockchain. Initially, all smart objects are assigned a
reputation value of 0.7. Once the local blockchain reaches
its length threshold w, it is consolidated, and the most recent
reputation values of the smart objects within that organization
are updated in the global blockchain via the smart contract.
Any smart object with a reputation value below the initial
threshold is expelled from the organization. Smart objects are
categorized based on the relationship defined in Equation 5.

B. Inter-organizational layer

Organizations function as both service providers and re-
questers within the network. Each organization is registered
in the global blockchain with a unique public and private key.
Information such as the services offered, the list of associated
smart objects, and their reputations is stored in the global
blockchain using a smart contract. Inter-organizational trust
is established through direct observations made by each orga-
nization regarding others, as well as indirect recommendations
received from other organizations.

Ri = AR~ 4 (1= NT;, (6)

In the probing-based method, when organization ¢ requests
a service, it selects an intelligent object with a high reputation
as an intermediary node. This intermediary node then requests
the service from the target node and activates the probing
mechanism to assess the trustworthiness of the target object
based on the response provided by the smart contract in the

local blockchain. The resulting trust value is then conveyed to
the requesting organization. Conversely, in the evidence-based
method, the gateway node relays the response to the requesting
organization using the values it has already collected from the
smart objects.

Whenever organization k requests service s,, at time ¢, the
organizations offering service s, are initially identified using
the smart contract. Subsequently, based on the category of
the requesting organization, the corresponding service provider
organization is selected. The trust between organization k and
organization ¢ is then evaluated and updated with respect to
service s,, as follows:

T (t) = a T3 (t = 1) + BTDE (t) + 7. TRy (1) (7)

Where, a, /3, and « represent weight parameters within the
range [0,1], satisfying the constraint v+ 8+ a = 1. TD]SC;” (t)
denotes the direct observation of organization k regarding
organization ¢ at time ¢, defined as follows:
u.TDZ’q” t-1)+(1- u)Rfj.A;”

ifTDy" (t— 1) # 2, )

R?j .A;” otherwise.

TDyr(t) =

Where, Rfj represents the reputation value of smart object
Oi_j affiliated with organization ¢, which offers the service s,,.
The parameter Ay’ is calculated as follows:

o [ONT (=0T (@7 g ifAyT £ o,
1 1 otherwise.
©))
The index J(g*,q* ') measures the degree of change in
organization g compared to the previous aggregation. It is
computed by evaluating the Jaccard coefficient between the
sets of smart objects in organization ¢ during aggregations w
and w — 1, as defined in Equation 10.

g ngvTt

J(@"“,q" ") =
lqw U gt

(10)

The indirect recommendation, denoted as TRZ;” (t), stems
from other organizations that have previously interacted with
organization q. It is recalculated and updated using Algorithm
1 following each interaction. Additionally, the overall trust
value of the organization is determined by its collective service
provision, computed through the smart contract. Based on the
resultant total trust value T, (), the organization is categorized
as follows:

BlackList ifT,(t) < 0.35,
Corg, = § GrayList if0.35 < T,(t) <0.7, (11)
WhiteList ifT,(t) > 0.7.

The smart contract aggregates trust scores from probing
transactions, applies a weighted reputation update (Eq. 3), and
classifies nodes into Perfect, Medium, or Weak trust levels.

Blacklisted organizations will face suspension and restric-
tions on both providing and requesting services, primarily due
to the heightened risk of collusion among malicious smart
objects. Greylisted organizations are restricted to receiving ser-
vices solely from organizations within their category, although
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Algorithm 1 Smart contract for calculating the trust value of
organization k with respect to organization ¢

Require: k: Service requester organization, g: Service provider or-
ganization, s,,: Service, orgn: Set of all organizations

1: orgn + orgn — {k,q}

2: Compute direct trust TD,Z" using Equation (8)

3: T,f;” (t) « - T,j;” t—-1)+5- TDZ;" t)+~- TRZ;” ()
4 T,(t) v - Tqt—-1)+(1—-v)- T,f(’;” (t)

5: Classify organization g using Equation (11)

6: for org; € orgn do

7: TR;"(t) < p-TR;"(t— 1)+ (1 —p) - T, (1)

8: end for

they retain the ability to provide services to organizations
in the same category or those on the whitelist. White list
organizations, on the other hand, encounter no limitations in
their interactions and are free to both provide and receive
services without restriction.

IV. EXPERIMENTAL ANALYSIS

The efficiency and accuracy of the two proposed methods
are evaluated using the Confusion Matrix. Simulations are
conducted using Python and Solidity programming languages
within the Ganache test network. The confusion matrix serves
as a valuable instrument for assessing the effectiveness of
classification algorithms, particularly in the context of evalu-
ating trust management models. In the two proposed methods,
samples are categorized into two groups: reliable nodes and
malicious nodes. The parameters of the confusion matrix are
outlined as follows [17]:

1) True Positive (TP): Instances where trusted nodes were
correctly identified as trusted.

2) True Negative (TN): Instances where malicious nodes
were correctly identified as malicious.

3) False Positive (FP): Instances where malicious nodes
were incorrectly identified as trusted.

4) False Negative (FN): Instances where trusted nodes were
incorrectly identified as malicious.

Based on the obtained parameters, the following evaluation
metrics can be computed to assess the performance of the trust
management system.

1) Accuracy: This metric assesses the overall correctness
of predictions and is computed using Equation 12.
TP+ TN
TP+TN+FP+FN
2) Precision: It represents the proportion of true positive

predictions among all positive predictions and is deter-
mined by Equation 13.

Accuracy = (12)

TP
TP+ FP

3) Recall: This metric demonstrates the model’s ability to
correctly identify positive samples and is calculated as
per Equation 14.

Precision = (13)

TP

Recall = m

(14)

4) Specificity: It indicates the model’s capability to accu-
rately recognize negative samples and is computed as
per Equation 15.

TN
TN+ FP
5) F-measure: This metric serves as a comprehensive eval-

uation of accuracy and recall and is utilized as a holistic

measure to evaluate model performance, calculated us-
ing Equation 16.

Speci ficity = (15)

2PrecisionRecall

F — measure = (16)

Precision + Recall

A. Determining Evaluation Parameters

1) Probing-Based Method: Initially, the optimal reputation
weight parameter is identified through analysis of the confu-
sion matrix to ensure accurate detection of malicious nodes
within the organization. Subsequently, the optimal value of
the probing transaction probability is assessed.

a) Optimal Reputation Weight Parameter: The reputa-
tion of the smart object is computed based on formula 3.
Simulation parameters, as outlined in Table II, are configured
to ascertain the optimal weight parameter. Initially, malicious
nodes in the evaluation model are assumed to be consistently
malicious, after which they are assessed for on-off attacks.
These simulations involve 100 smart objects, among which
20% are considered malicious. Other key parameters, includ-
ing the number of partitions, initial reputation values, and
the probing transaction probability, are adjusted accordingly
to assess the optimal reputation weight parameter.

TABLE II: Simulation Parameters for Determining Optimal
Reputation Weight in Probing-Based Method

Parameters Values
Number of Smart Objects 100
Malicious Smart Objects 20%

Partitions 10

Initial Reputation Value 0.7
Initial Reputation Threshold 0.5
Probing Transaction Probability 1
Local Blockchain Length Threshold )
Number of Runs 10

Figure 5 illustrates the impact of increasing the reputation
weight on the confusion matrix metrics when considering
permanently malicious nodes and on-off attack modes. A
reputation weight value of a = 0.1 indicates that past
reputation values have less influence on the smart object’s
reputation outcome, while new trust assessments have a greater
impact. Analysis of the results in Tables 5a and 5b reveals
that up to a weight of o = 0.8 for the permanent destructive
mode and a = 0.7 for the on-off attack mode, the specificity
metric consistently exceeds 0.9. Lower reputation weight for
historical data correlates with higher model accuracy.

Figure 6 illustrates the reputation trajectories and the av-
erage number of trusted and malicious nodes within the
organization per transaction under the persistent malicious



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

.....

nfusion matix metrics

i
nfusion

§ 031 o recal §os

04 05 068 o
Reputation weight parameter

(b) On-Off Attack Mode

0s 05 o5 o0
Reputation weight parameter

(a) Permanent Malicious Mode

Fig. 5: Evaluation of Optimal Reputation Weight of Smart
Object in Probing-Based Method

mode, across a range of reputation weights from a = 0.1
to o = 0.9. As the weight assigned to past data increases,
more transactions between smart objects are needed to identify
malicious nodes, since historical behavior is emphasized more
heavily. This has significant implications depending on the
deployment context. In low-interaction environments—such as
smart homes, where devices exchange only a few messages per
hour—a lower weight (o =~ 0.2-0.4) is advisable to emphasize
recent behavior and allow for gradual reputation decay, reduc-
ing false positives from isolated malicious actions. Conversely,
in high-throughput settings like smart city sensor networks or
industrial automation, where hundreds of interactions occur
per minute, a higher weight (o« ~ 0.6-0.8) enables rapid
detection and isolation of persistently misbehaving nodes. No-
tably, lower « values also lead to malicious nodes with fewer
interactions maintaining an average reputation below the initial
threshold, thereby expediting trust establishment for honest
nodes. Thus, tuning « to the network’s interaction density
strikes a crucial balance between resilience and responsiveness
in trust evaluation.

These reputation trajectories illustrate the effect of the
weight parameter « on the speed of trust updates. For instance,
in a smart city scenario, setting o = 0.2 enables rapid
detection of misbehaving traffic sensors. This helps mitigate
the risk of false congestion reports, which could otherwise
cause inefficient route planning or traffic mismanagement.

Figure 7, demonstrates the on-off attack mode, the average
count of trusted and malicious nodes per transaction within
the organization varies across different reputation weights
a = [0.1,0.9]. It’s observed that as the reputation weight
increases, there is a higher fluctuation in the average reputation
of malicious nodes, potentially leading to undetected malicious
nodes.

To swiftly identify malicious nodes and also foster trust
in honest nodes during subsequent interactions, we propose
a reward and penalty mechanism to assign value to the
reputation weight of the smart object. As per Equation 17,
the reputation weight is determined based on the previous
reputation value of the smart object compared to the average
value of the new trust. If the previous reputation exceeds the
average trust value, indicating a decline in trustworthiness, the
reputation weight is set to 0.1. Conversely, if the average trust
value surpasses the previous reputation, signifying improved
performance in interactions, the reputation weight is set to 0.9.
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Fig. 6: Examining the Behavior of Persistent Honest and
Malicious Nodes with Varying Reputation Weight Parameters
in a Probing-Based Method
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The behavior of honest and malicious nodes under the
reward and punishment mechanism is illustrated in Figure 8.
In this mode, honest nodes gradually increase their reputation
through consistent, trustworthy interactions. Conversely, ma-
licious nodes experience a decline in reputation once their
behavior falls below a defined threshold, especially during
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Fig. 7. Examining the Behavior of Honest and Malicious
Nodes in the On-Off Attack Mode with Varying Reputation
Weight Parameters in the Probing-Based Method

limited interactions.

To evaluate the effectiveness of this mechanism, we com-
pared it against a baseline with a static weighting factor
A = 0.5. Our adaptive mechanism exhibits significantly
faster detection of malicious behavior compared to the static
model. This enhanced responsiveness is critical for real-time
IoT environments such as smart transportation or industrial
automation.

The initial reputation value is used as the starting point, and
the system dynamically adjusts trust scores based on accumu-
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Fig. 8: Examining the Behavior of Honest and Malicious
Nodes with Reward and Punishment Mechanism in Probing-
Based Method

lated positive or negative behavior. As such, this mechanism
enhances resilience against both persistent and intermittent
malicious behavior patterns.

b) Optimal Probing Transaction Probability: In the
probing-based method, the reliability of smart objects is
assessed through a probing mechanism, typically involving
probe queries. However, conducting probing transactions can
be costly. To alleviate system overhead and enhance efficiency,
probing experiments are randomly conducted with a certain
probability. Simulation parameters, as detailed in Table III,
are configured to determine the optimal probing transaction
probability.

TABLE III: Simulation Parameters for Determining Optimal
Probing Transaction Probability in Probing-Based Method

Parameter Value
Number of Smart Objects 100
Percentage of Malicious Nodes [5%, 50%)]
Partitions 10
Initial Reputation Value 0.7
Initial Reputation Threshold 0.5
Reputation Weight Value («) Equation 17
Local Blockchain Length Threshold 5
Number of Runs 10

In Figure 9, the impact of increasing the number of
malicious nodes within the organization on the confusion
matrix metrics is illustrated for different probing transaction
probabilities p = [0.1,1]. The results indicate that lower
probabilities lead to reduced system accuracy and inaccurate
detection of malicious nodes. Conversely, higher probabilities
enhance system accuracy but also increase system cost and
overhead. This cost is quantified by the number of packets
sent to perform the probing transaction, calculated as cj in
partition p;, as described in Equation 18.
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Fig. 9: Evaluation of Performance and Cost of Probing-Based
Method with Different Probing Transaction Probabilities

To optimally determine the probing transaction probability,
we establish threshold values for both the specificity metric
and the cost. The specificity metric threshold is set to 0.9,
indicating that we aim to correctly detect 90% of malicious
nodes. Additionally, the cost criterion threshold is set to 0.6.
Based on these threshold definitions, the optimal probing
transaction probability occurs at p = 0.5. At this probability

10 @-efmzfoo e 1
Y l---||--_-q____‘
~
0.9 S -
0.8 s D e R el e L
- w -
8 3
£ 07 0.7
[4 »
£ ~
x 0.6 Sy
= e -
E 0.5 = S 5
c B ST
2 0.4 < 0.4
3 bt ST
E 034 —#- Recall W
o] —®- Precision
0.2 + -®- Accuracy 0.2
o1 F-measure )
= -#- specificity o
0.0 4 —»- Cost
} | t

0 5 10 15 20 25 30 35 40 45 50
Percentage of malicious nodes(%)

Fig. 10: Evaluation of Efficiency and Cost of the Probing-
Based Method with Probing Probability p = 0.5 in On-Off
Attack Mode

TABLE IV: Simulation Parameters for Determining Optimal
Reputation Weight in Evidence-Based Method

Parameters Values
Number of Smart Objects 100
Malicious Smart Objects 20%
Gateway Nodes 10
Initial Reputation Value 0.7
Initial Reputation Threshold 0.5
Reputation Weight Parameter (\) [0.1,0.9]
Local Blockchain Length Threshold 20
Number of Runs 10

value, nearly 30% of malicious nodes exhibit specificity values
exceeding 0.9, while simultaneously maintaining a cost crite-
rion value lower than 0.6. Therefore, selecting p = 0.5 as the
probing transaction probability achieves the desired balance
between effectively detecting malicious nodes and minimizing
the associated cost.

By determining the optimal probing probability as p = 0.5,
Figure 10 illustrates the impact of increasing malicious nodes
in the on-off attack mode on the confusion matrix criteria.
Notably, the specificity metric indicates that up to 40% of
malicious nodes exhibit values above 0.8.

2) Evidence-based method: The reputation of the smart
object is computed in the evidence-based method using For-
mula 6. To ascertain the optimal reputation weight, simulation
parameters are configured based on Table IV. This section
investigates the detection of malicious nodes in the on-off
attack mode to determine the optimal reputation weight.

In Figure 11, the impact of varying the reputation weight on
the metrics of the confusion matrix in the on-off attack mode
is illustrated. Generally, as the reputation weight decreases, the
system’s accuracy increases, leading to a higher rate of correct
detection of malicious nodes. The results indicate that for
reputation weights up to A = 0.6, the specificity metric value
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Fig. 11: Investigating Optimal Reputation Weight of Smart
Object in Evidence-Based Method

remains consistently above 0.9. This suggests that a lower
reputation weight enhances the system’s ability to accurately
identify malicious nodes, as evidenced by the high specificity
metric values observed within this range.

In Figure 12, which pertains to the on-off attack mode, it
illustrates the average count of both honest and malicious
nodes within the organization each time the gateway node
gathers information from smart objects. Generally, as the
reputation weight increases, there is a higher likelihood of
detecting malicious nodes during data collection while also
fostering quicker trust establishment for honest nodes. As
depicted in Figure 13, a similar approach to the previous
method is employed here, utilizing a reward and punishment
mechanism to expedite the identification of malicious nodes
and enhance trust in honest nodes during interactions.

In Figure 14, we observe the impact of increasing malicious
nodes on the confusion matrix metrics in both permanent
malicious mode and on-off attack scenarios, employing a
reward and penalty mechanism. Specifically, in Figure 14a, for
the permanent malicious mode, the specificity metric reaches
one for up to 50% of malicious nodes, indicating accurate
detection. However, the recall value exceeds 0.9 for up to
35% of malicious nodes, after which the likelihood of false
positives increases, leading to honest nodes being misidentified
as malicious. In Figure 14b, corresponding to the on-off attack
mode, the recall metric indicates accurate detection for up to
40% of malicious nodes.

B. Evaluation of Results

Based on the results obtained and the specified parameter
values, we assess and compare the performance of the two
proposed methods.

According to Table V and Figure 15, the performance of
the two proposed methods (Evidence and Probing) is evalu-
ated against three baseline approaches [27], [30], and [32],
based on confusion matrix metrics—precision, specificity, and

recall—under varying proportions of malicious nodes (from
0% to 50%).
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Fig. 12: Investigating the Behavior of Honest and Malicious
Nodes in the On-Off Attack Mode with Varying Reputation
Weight Parameters in Evidence-Based Method

The Evidence-based method (Figure 15a) consistently
achieves perfect precision and specificity (value of 1.0) across
all scenarios, indicating strong resistance to false positives and
a robust ability to accurately classify trustworthy nodes. How-
ever, its recall gradually degrades beyond the 35% threshold,
reaching 0.54 at 50% malicious nodes due to an increase in
false negatives, likely caused by collusion effects. This trend
underscores the importance of maintaining an honest majority,
in line with Assumption 1. Additionally, the operational cost
of this method declines as malicious nodes are eliminated,
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reducing unnecessary interactions.

The Probing-based method (Figure 15b), with a full probing
probability (p = 1), also shows strong and balanced perfor-
mance, maintaining precision and specificity above 0.9 even
at 50% malicious nodes. It demonstrates slightly better recall
than the Evidence method at high malicious node levels, indi-
cating higher resilience. However, this robustness comes at the
cost of increased network overhead due to exhaustive probing.
To mitigate this, subsequent experiments apply randomized
probing with optimized probability to balance accuracy and
efficiency.

In comparison with the baseline methods, the Evidence
approach significantly outperforms all in both precision and
specificity. While the method in [32] achieves perfect recall,
its precision and specificity remain noticeably lower. The other
two baselines, particularly [30], show a substantial drop in all
metrics as the malicious node ratio increases. For instance,
at 50% malicious nodes, its precision and specificity decline

to 0.26 and 0.10, respectively, reflecting poor robustness in
adversarial settings. As further illustrated in Figure 15c, the
method in [27] experiences a drop in specificity below 0.9
even beyond 20% malicious nodes.

In summary, both proposed methods—especially the
Evidence-based approach—offer high accuracy and robustness
in trust classification, making them suitable for deployment
in security-critical IoT environments where minimizing false
positives is essential.

These results demonstrate that in smart city scenarios, where
thousands of heterogeneous IoT devices (e.g., traffic sensors,
streetlights, surveillance units) must collaborate securely, the
proposed methods remain robust even as up to 50% of nodes
act maliciously. This is particularly vital to prevent cascading
failures from compromised edge devices.

The assumption of service redundancy—requiring 2-3 re-
dundant smart objects per partition—is designed to ensure re-
liable trust evaluation within each service group. In a network
of 100 nodes, for instance, with 10 partitions, this results in
approximately 20-30 redundant nodes across the system. In a
larger network with 1,000 nodes and a proportional increase to
100 partitions, maintaining 2—-3 redundant nodes per partition
would require 200-300 nodes—preserving the same relative
distribution. Therefore, this assumption scales effectively with
network size, provided that the number of service partitions
increases proportionally. Clustering and partitioning mecha-
nisms help ensure that redundancy is preserved even in highly
distributed and large-scale IoT environments.

In a smart home deployment with 100 IoT devices—such as
motion sensors, cameras, thermostats, and door locks—a 30%
malicious node ratio means 30 compromised devices. Our trust
framework maintains 98—-100% precision under this condition,
ensuring critical security devices are not misclassified or dis-
abled, thus preserving system reliability and occupant safety.

In Figure 16, the trust dynamics of the organization within
the inter-organizational layer are explored across various pro-
portions of malicious nodes. Organizations containing more
than 35% malicious nodes are deemed malicious, with trust
values below the 0.35 threshold warranting classification as
blacklisted entities, subject to suspension. Organizations with
trust values ranging from 0.35 to 0.7 fall into the gray-listed,
while those exceeding the 0.7 threshold are classified as white-
listed entities. The Jaccard coefficient undergoes variations
with each aggregation within the blockchain when malicious
nodes are present in the organization. If organizational changes
surpass 50%, the likelihood of collusion increases, potentially
leading to honest nodes being misidentified as malicious.
Consequently, organizations harboring more than 35% mali-
cious nodes are blacklisted. Conversely, in organizations with
less than 35% malicious nodes, the elimination of malicious
nodes during subsequent aggregation stages boosts the Jaccard
coefficients, ultimately elevating the trust level within the
organization.

V. SCALABILITY ANALYSIS

To evaluate the scalability of the proposed model, we
first consider the one-layer blockchain configuration. Equa-
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TABLE V: Comparison of the performance of the proposed methods (Evidence and Probing) and baseline approaches based
on precision, specificity, and recall metrics with increasing percentages of malicious nodes.

Precision Specificity Recall
Malicious% | Evidence | Probing | [27] | [30] | [32] | Evidence | Probing | [27] | [30] | [32] | Evidence | Probing | [27] | [30] | [32]
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 0.98 1 1 1 1 0.85 1 0.93 1 1 1 1 1
10 1 0.99 1 1 0.99 1 0.98 1 1 0.92 1 1 1 1 1
15 1 1 0.97 1 0.98 1 1 0.95 | 0.99 | 0.89 1 1 1 1 1
20 1 0.98 0.97 | 0.99 | 0.97 1 0.97 0.98 | 0.95 | 0.88 0.98 1 0.99 | 0.99 1
25 1 0.97 0.95 | 0.96 | 0.97 1 0.96 0.85 | 0.88 | 0.91 0.98 0.99 0.97 | 0.98 1
30 1 0.97 0.94 | 0.88 | 0.95 1 0.96 0.87 | 0.71 | 0.88 0.97 0.93 0.97 | 0.93 1
35 1 0.98 0.92 | 0.79 | 0.94 1 0.98 0.82 | 0.59 | 0.89 0.96 0.90 0.93 | 0.86 1
40 1 0.96 0.87 | 0.65 | 0.93 1 0.96 0.81 | 0.42 | 0.89 0.86 0.83 0.85 | 0.72 1
45 1 0.95 0.81 | 0.46 | 0.90 1 0.96 0.76 | 0.22 | 0.87 0.73 0.68 0.81 | 0.55 1
50 1 0.87 0.76 | 0.26 | 0.87 1 0.91 0.75 | 0.10 | 0.84 0.54 0.59 0.78 | 0.35 1
p=1
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Fig. 15: Precision, recall, and specificity under increasing malicious nodes for (a) evidence-based, (b) probing-based, (c)
Corradini et al. [27], (d) Kouicem et al. [30], and Amiri et al. [32] methods.

tion 19 quantifies the number of blocks created in the global
blockchain under this configuration:

Org
HeightOne—Layer(t) = Z |Gn‘ t- SRy,

n=1

19)

In Equation 19, SR,, denotes the data collection rate from
smart objects by the gateway node, |G,, | represents the number
of gateway nodes in each organization, and ¢ is the elapsed
time (in minutes). This equation provides insight into the scal-
ability of the system by accounting for the data generation rate
and the number of gateway nodes over time, thus highlighting
the potential for exponential growth in the blockchain size as
the network scales.

To mitigate the rapid increase in transaction volume and
reduce the global blockchain size, a hierarchical two-level
blockchain architecture is implemented. In this model, trans-

actions are first recorded on a lightweight, temporary local
blockchain. Once the local blockchain reaches a predefined
threshold length w,, the aggregated transactions are trans-
ferred to the global blockchain. The scalability of this two-
layer approach is captured in Equation 20:

Org
, G| -t- SR,
HelghtTwo-Layer (t) = E \‘ ‘

n=1

(20)

Wn

Here, w,, is the threshold length for each organization’s lo-
cal blockchain. By aggregating transactions locally, the model
reduces the frequency of updates to the global blockchain,
thereby lowering storage and processing overhead. A higher
w, diminishes the global blockchain’s growth, enhancing
scalability. However, this benefit comes at the cost of delayed
updates to smart object reputations, which may affect the
accuracy of trust evaluations.
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Fig. 16: Investigating Inter-Organizational Interactions with
Varying Percentages of Malicious Nodes within Organizations

a) Practical Example:: To ground the above equation in
a real-world context, consider a smart city deployment with
|G| = 10 gateway nodes, each collecting trust-related data
at a rate of SR, = 100 transactions per minute. For a time
interval of ¢ = 10 minutes, the total number of transactions
is:

|G| x SRy, x t =10 x 100 x 10 = 10,000.

In a traditional one-layer blockchain setup, all 10,000 trans-
actions would be appended to a single chain. However, using
the proposed two-layer model with a local block aggregation
threshold of w, = 100, each gateway produces one block
every 100 transactions, resulting in:

100

which constitutes a 100x reduction in global blockchain
height. This example demonstrates the effectiveness of our
hierarchical design in significantly reducing storage overhead
and synchronization frequency while preserving trust granu-
larity.
b) Practical Example:: To ground the above equation in
a real-world context, consider a smart city deployment with
|G| = 10 gateway nodes, each collecting trust-related data
at a rate of SR, = 100 transactions per minute. For a time
interval of ¢ = 10 minutes, the total number of transactions
is:

10 x 100 x 1
{OXOOXOJ — 100 global blocks,

|G| x SRy, x t =10 x 100 x 10 = 10,000.

In a traditional one-layer blockchain setup, all 10,000 trans-
actions would be appended to a single chain. However, using
the proposed two-layer model with a local block aggregation
threshold of w, = 100, each gateway produces one block
every 100 transactions, resulting in:

10 x 100 x 10
100

J = 100 global blocks,

which constitutes a 100x reduction in global blockchain
height. This example demonstrates the effectiveness of our
hierarchical design in significantly reducing storage overhead
and synchronization frequency while preserving trust granu-
larity.

c) Trade-off Discussion:: While increasing the local
blockchain threshold w,, significantly reduces the frequency of
global updates—thereby improving scalability and reducing la-
tency—it also introduces a delay in global reputation updates.
For example, as illustrated in Figure 18, using w, = 100
achieves approximately a 3x reduction in transaction latency.
However, this also implies that reputation values are updated
only after 100 local trust transactions have been collected. In
rapidly evolving IoT environments, such as vehicular networks
or industrial automation, this delay may hinder timely detec-
tion of malicious nodes or abnormal behavior. Consequently,
selecting an appropriate w,, requires careful balancing between
performance optimization and trust responsiveness, depending
on the time-sensitivity and risk profile of the deployment
context.

To illustrate the practical scalability benefits, consider a
smart city with |G,| = 10 gateways, each producing 100
transactions per minute. Over 10 minutes, the one-layer
model yields 10,000 blocks, while the two-layer model (with
wy, = 100) reduces this to just 100 global blocks—a 100X
reduction. As shown in Figure 18, latency reduction saturates
at w, =~ 100, beyond which local trust aggregation delays
become significant. This highlights the trade-off between scal-
ability and responsiveness: larger w,, improves throughput and
storage efficiency but may delay reputation updates in time-
sensitive networks. The use of PoA for local chains ensures
scalability without requiring expensive global consensus at
every step.

A. Storage Efficiency Improvement

The reduction factor in storage growth can be expressed as:

Height, t
Reduction Factor = M (21)
Hei ght’Two—Layer (t)
Substituting the expressions from Equations 19 and 20:
Gp|-t-SR,
Reduction Factor = 2L |Gnl -t Shn (22)

Z |Gpnl|-t-SR,
Wn

For large values of w,, the reduction factor approaches
approximately w,,. Thus, storage requirements are reduced by
roughly a factor of w,,. For example:

e If w, = 10, the global blockchain storage is reduced by
approximately 10x.
o If w, = 100, the reduction is about 100x.

This confirms that the two-layer blockchain scales better since
the global blockchain grows much slower than in a traditional
one-layer blockchain.

Figure 17 demonstrates that employing a two-layer archi-
tecture with a predefined threshold results in a significant
reduction in the growth of the blockchain height, thereby de-
creasing overall storage requirements. This approach contrasts
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Fig. 17: Blockchain height growth comparison: one-layer vs.
two-layer models over time.

with the model presented in [30], which relies on a single-layer
blockchain. In BC-trust [30], the blockchain grows linearly
with increasing data rates and the number of organizations,
leading to rapidly escalating storage demands. In our two-
layer model, the introduction of a threshold effectively limits
blockchain growth, enhancing scalability and making it better
suited for environments with a high number of organizations
and elevated data generation rates.

B. Latency Analysis

In a one-layer blockchain, every transaction undergoes
immediate global consensus, leading to higher confirmation

delays. The total transaction latency, Lone-rayer, COMprises:
LOne—Layer = Lprop + Lcons + Lblock (23)

where:

Lprop is the transaction propagation delay.
Le¢ons 1s the consensus delay.
Lpiock 18 the block inclusion delay.

The growth rate of latency is O(n), i.e., it increases linearly
with the number of nodes and transactions.

In the two-layer model, transactions are initially recorded
locally and are aggregated when the threshold w,, is reached.
The total transaction latency is:

LOne—Layer

LTwo-Layer = Llocal—prop + Llocal—cons + (24)

n
where:

e Liocal-prop 18 the local transaction propagation delay (which
is faster than global propagation).
o Liocalcons 18 the local consensus delay (with fewer nodes
and lower complexity).
This formulation shows that as w, increases, the global
blockchain latency component % decreases significantly,
leading to a lower overall latency. The latency growth rate in
the two-layer model is O(n/w), which is lower than O(n).
1) Latency Reduction Factor: The latency reduction factor
is defined as:

16

. Lone.
Reduction Factor = —2netayer (25)
Two-Layer
Substituting the latency components:
. Lytop + Leons + Liioc

Reduction Factor = pe e blOLd; — (20

Llocal-prop + Llocal—cons + %

For large w,, and assuming relatively low local latency, the
reduction factor approximates to w,,. For instance:
o If w, = 10, the latency is reduced by approximately 10x
compared to the one-layer blockchain.
o If w, = 50, the latency reduction factor is around 50x.

Latency Reduction Factor vs. Local Blockchain Threshold
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2541
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—— Latency Reduction Factor
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Fig. 18: Latency Reduction Factor vs. Local Blockchain
Threshold (w,,) for a 100-node network, showing saturation
at w, = 100 with a 3x latency reduction

In Figure 18, the relationship between the Latency Re-
duction Factor and the Local Blockchain Threshold (w,,) is
illustrated. The horizontal axis represents the value of w,,
while the vertical axis indicates the Latency Reduction Factor.
The results demonstrate the impact of increasing w, on
reducing overall system latency. Notably, when w,, exceeds
100, the Latency Reduction Factor asymptotically approaches
a constant value of approximately 3. This saturation behavior
suggests that beyond a certain threshold, further increases in
wy, do not contribute to additional latency reduction, indicating
the presence of a performance plateau in the system.

Initially, as w, increases, the Latency Reduction Factor
rises rapidly, highlighting the significant effect of transaction
aggregation in minimizing processing and consensus delays.

As w, continues to increase, the rate of growth in the
Latency Reduction Factor gradually declines. This observation
suggests that beyond a certain threshold of w,,, the latency
reduction reaches an optimal limit, and further increasing w,,
has little additional impact on reducing latency.

While a larger w, yields lower latency and smaller
blockchain growth, it may delay the reputation update cycle.
In dynamic IoT networks such as intelligent transportation
systems, tuning w, requires balancing between efficient ag-
gregation and timely trust evaluation to ensure safety and
responsiveness.

In a 1000-node smart city, dividing nodes into 100 partitions
with 2-3 redundant devices per partition ensures sufficient
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honest majority and fault tolerance. In delay-sensitive IoT
applications like autonomous vehicle fleets or industrial au-
tomation, high trust latency can result in operational delays or
safety risks. The proposed two-layer model reduces latency by
up to 3x for local trust updates, enabling more timely decisions
in these dynamic environments.

VI. SECURITY EVALUATION

In this section, we evaluate the resilience of the proposed
methods against the considered security attacks. A set of initial
hypotheses are as follows

1) An adequate number of smart objects is assumed to be
accessible to deliver the service effectively.

2) A maximum of ¢ colluding malicious smart objects is
assumed in each local group (e.g., partitions or gateway
clusters), where ¢ < |p;;| and ¢ < |N,;|. This constraint
ensures that malicious nodes cannot dominate trust
evaluations during aggregation or probing. However, as
illustrated in figure 15, in all proposed methods, when
the proportion of malicious nodes approaches 50%, the
recall metric significantly drops. This indicates a criti-
cal decline in detection performance, where a growing
number of honest nodes are incorrectly classified as
malicious, undermining the trust framework’s reliability
under high-adversity conditions.

3) The size of all pruned partitions (1’);; ) and the number
of pruned objects per gateway node (N;) are stipulated
to be greater than t.

The following attacks are taken into account:

1) Self-promoting attacks: This attack involves an intelli-
gent object manipulating its reputation to increase it,
which can be executed by either an individual attacker
or a coordinated group of nodes. The trust level in the
proposed methods is determined through probing and
evidence mechanisms, stored locally in the blockchain,
and used to calculate reputation. Therefore, a smart ob-
ject cannot autonomously alter its trust value. Colluding
nodes attempting to boost each other’s reputation are
prevented by assumptions 2 and 3. For instance, in
a smart agriculture system, a compromised irrigation
controller may artificially inflate its own trust value to
continuously gain access to water resources, even while
malfunctioning.

2) Bad-mouthing attack: In this scenario, the attacker aims
to manipulate the reputation of other smart objects by
reporting false data, either individually or as a group.
Smart objects participating in the probing mechanism
are unaware when responding to tests or queries. If an
object behaves maliciously by reporting incorrect data,
it will suffer reputational damage and eventually be
expelled from the organization. In a smart home setting,
a malicious thermostat may falsely report its neighbor’s
temperature sensor as faulty, leading to misclassification
and the exclusion of honest nodes.

3) Ballot-stuffing attacks: Here, the attacker aims to arti-
ficially boost the reputation of malicious objects and
provide positive recommendations for them. Due to

blockchain technology, no intelligent object can ma-
nipulate trust or reputation in the proposed methods.
Assumptions 2 and 3 rule out the possibility of collabo-
rative node attacks. In smart manufacturing, an attacker
could inject positive feedback loops through colluding
robotic nodes to elevate a malicious sensor’s reputation
and mask its anomalies.

4) On-off attack: This type of attack involves a malicious
smart object intermittently providing both good and
bad services. As shown in Figure 10, in the proposed
methods, the probing-based approach at p = 0.5 is
capable of detecting up to 90% of malicious nodes when
the maximum percentage of malicious nodes in the orga-
nization is 35%. Similarly, as illustrated in Figure 14b,
the evidence-based method can accurately identify 90%
of malicious nodes when the maximum percentage of
malicious nodes in the organization reaches 50%. In
vehicular networks, a compromised vehicle might be-
have normally for a period and then switch to malicious
routing behavior intermittently, attempting to bypass
trust filters through temporal evasion.

5) Whitewashing attack: This attack occurs when a ma-
licious smart object with a tarnished reputation delib-
erately behaves in a manner that rapidly diminishes
its reputation to the point of being expelled from the
system. Subsequently, it attempts to rejoin the system
and resume malicious activities with its original repu-
tation intact. This form of attack is prevented because
reputation values are permanently stored in the global
blockchain. Additionally, smart objects are registered
via unique physical addresses (MAC addresses) using
smart contracts. Consequently, even after expulsion, the
blockchain retains a record of the malicious node’s
behavior. In a smart campus network, a malicious node
may leave the network and rejoin with a new identity
to reset its reputation, effectively bypassing historical
penalties. Our system mitigates this using node authen-
tication and identity linkage.

It is important to distinguish between per-round recall and
overall multi-cycle detection rates. While Figure 14b shows
that recall declines at high malicious node ratios within a
single evaluation round, the cumulative detection performance
across time—particularly under on-off behavior—is higher,
exceeding 90% in long-running simulations with pruning
enabled.

In a smart grid deployment, where timing is critical for
fault isolation and load balancing, trust misclassification due
to 35% malicious nodes may result in detection delays of
10-15 minutes. This delay can propagate across subsystems,
potentially leading to energy misallocation or regional power
instability. Similarly, in a smart transportation network, if 30
out of 100 roadside sensors are compromised and falsely
marked as trustworthy, traffic routing systems may generate
incorrect detours, leading to congestion and average commute
delays of up to 20 minutes during peak hours. These examples
underscore the importance of rapid and accurate trust assess-
ment in dynamic, safety-critical IoT environments.
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VII. CONCLUSION

This paper introduces a novel hierarchical trust management
mechanism leveraging blockchain technology. The proposed
mechanism adopts a two-layer blockchain architecture to ad-
dress the inherent limitations of smart objects while simulta-
neously mitigating transaction volume and blockchain length.
This is achieved by employing a lightweight and temporary
blockchain within the intra-organizational layer, thereby en-
hancing scalability. In both the probing-based and evidence-
based methods, smart object trust is accurately computed and
stored using local blockchains. The enterprise layer employs
a local blockchain to periodically update smart object reputa-
tions to the global blockchain. Nodes failing to meet the initial
reputation threshold are automatically removed from their
organizations via a smart contract. The inter-organizational
layer focuses on maintaining organizational trust and smart
object reputations within the global blockchain. The proposed
approach significantly enhances privacy and scalability, im-
proves reliable data collection, and effectively identifies and
eliminates malicious nodes within organizations. Evaluation
results underscore the susceptibility of organizations with over
35% malicious nodes to collusion, potentially leading to the
misclassification of honest nodes as malicious, thus warranting
their classification as blacklist organizations.
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