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Abstract

Dynamic cerebral autoregulation (dCA) of the posterior circulation has been shown to be more pressure-passive compared with
the anterior circulation, possibly due to a lower basal vascular tone. In hypoxia, vascular tone and dCA are typically reduced;
however, evidence using volumetric assessment is limited to the anterior circulation. We hypothesized that the posterior circula-
tion would have an exacerbated reduction in dCA than the anterior circulation in acute hypoxia. Twenty participants (14 males, 6
females) were exposed to 120 min of normoxia and acute poikilocapnic hypoxia (12.5% fraction of inspired oxygen). dCA was
assessed as the rate of regulation (RoR) of vascular conductance to thigh cuff-induced acute hypotension, in the internal carotid
artery (ICA) and vertebral artery (VA) by duplex ultrasound, and the middle cerebral artery (MCA) and posterior cerebral artery
(PCA) by transcranial Doppler ultrasound, representing anterior (ICA and MCA) and posterior (VA and PCA) circulations. Linear
mixed model analysis revealed that ICA RoR [—0.06 (0.22) s~', P = 0.279] and VA RoR [-0.05 (0.21) s, P = 0.343] were com-
parable in normoxia and hypoxia. MCA RoR (P = 0.995) and PCA RoR (P = 0.895) were also comparable between conditions. In
males only, hypoxia reduced VA RoR [—0.15 (0.19) s~', P = 0.012], but not ICA RoR [—0.07 (0.21) s~', P = 0.264]. In addition,
hypoxia induced vasodilation of the ICA [+ 0.30 (0.32) mm, P = 0.009] but not the VA [+ 0.08 (0.33) mm, P = 0.398] in males.
In conclusion, volumetric dCA of the cerebral conduit arteries to acute hypotension in hypoxia was regionally different in males
and may not be influenced by changes in vascular tone.

NEW & NOTEWORTHY We demonstrate that hypoxia causes regional dynamic cerebral autoregulation (dCA) in males, where
volumetric dCA was reduced in the vertebral artery but not the internal carotid artery. In addition, immediately before the dCA
assessment, the vertebral artery diameter was unchanged, whereas the internal carotid artery diameter was increased. In combi-
nation, these findings challenge the prevailing view that reductions in dCA in hypoxia are due to a reduction in vascular tone.

cerebral autoregulation; cerebrovascular; Doppler; hypoxia; regional

INTRODUCTION

Dynamic cerebral autoregulation (dCA) is an intrinsic
mechanism that regulates cerebral blood flow to fluctuations
in arterial blood pressure within a few seconds via changes
in vascular tone (1-3). Arterial vascular tone is regulated by
the vascular smooth muscle that lines the cerebral arterial
circulation (4). The type, density, and distribution of recep-
tors and channels present on the arterial vascular wall and
their sensitivity to vasoactive agents are key mediators
responsible for the regulation of vascular tone (5), and vari-
ability within these mechanisms between the anterior and
posterior cerebral circulation may underpin the observed
regional cerebral blood flow regulation during systemic
physiological stress, such as orthostasis (6), hypoxia (7-10),
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hyperthermia (11, 12), and alterations in end-tidal carbon
dioxide (9, 13). Moreover, distinctive sympathetic adrenore-
ceptor subtype distribution and parasympathetic innerva-
tion between the anterior and posterior cerebral conduit
arteries have been identified (14) and may explain early
reports of opposing vasoactive responses to norepinephrine
between anterior and posterior bovine cerebral conduit
arteries (15). Furthermore, a lower sensitivity to vasoactive
agents, such as reactive oxygen species and nitric oxide bioa-
vailability, has been reported in the posterior circulation
compared with the anterior circulation (16-18).

These observed regional differences in cerebral blood
flow regulation may be necessary to maintain a lower basal
vascular tone in the posterior compared with the anterior
circulation. Such differences may preferentially maintain

Correspondence: A. T. Friend (afriend2094@gmail.com); S. J. Oliver (s.j.oliver@bangor.ac.uk). '.)
Submitted 21 May 2024 / Revised 4 June 2024 / Accepted 24 July 2025

Check for
Updates

709

Published by the American Physiological Society.
Downloaded from journals.physiology.org/journal/jappl at Manchester Metropolitan Univ (149.170.005.002) on October 10, 2025.


https://orcid.org/0000-0001-9533-5732
https://orcid.org/0000-0002-8783-3624
https://orcid.org/0000-0001-5784-5694
https://orcid.org/0000-0002-9610-6066
https://orcid.org/0000-0002-2375-146X
https://orcid.org/0000-0002-9971-9546
mailto:afriend2094@gmail.com
mailto:s.j.oliver@bangor.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1152/japplphysiol.00376.2024&domain=pdf&date_stamp=2025-8-11
http://www.jappl.org
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1152/japplphysiol.00376.2024

(}) REGIONAL CEREBRAL AUTOREGULATION IN HYPOXIA

blood flow to the posterior regions of the brain involved in
systemic cardiorespiratory control, particularly during times
of systemic physiological stress (6), and/or to meet the neuro-
metabolic demand of the occipital lobes to visual stimulation
since assessments are normally conducted with eyes open
(19-21). The influence of vascular tone on dCA has been sel-
dom studied in humans, perhaps due to the difficulty of
manipulating and measuring vascular tone before and during
the dCA assessment. However, using an elegant design, one
study to examine the role of vessel tone demonstrated
regional differences in dCA (6). Specifically, in response to an
orthostatic-induced reduction in blood pressure caused by
head-up tilt, cerebral blood flow reductions were attenuated
in the vertebral artery (VA) compared with the internal
carotid artery (ICA), which are the upstream conduit arteries
supplying blood to the posterior and anterior circulations,
respectively. This was attributed to an unchanged vascular
tone in the VA that contrasted with the increased vascular
tone of the ICA (6). Volumetric dCA was then assessed by the
rapid thigh cuff method during the head-up tilt, and it was
reported that compared with supine the VA had a greater
reduction in blood flow and a slower rate of regulation (RoR)
of vascular conductance to the abrupt reduction in blood
pressure caused by the thigh cuff deflation than the ICA (6).
It was proposed that a lower basal vascular tone of the VA is
necessary to preferentially attenuate the orthostatic-induced
reduction in cerebral blood flow to the posterior regions of
the brain, but this is at the expense of a reduced dCA. Further
evidence of a more pressure-passive disposition of the poste-
rior compared with the anterior circulation to acute reduc-
tions in blood pressure is reported elsewhere (22-25).

Exposure to acute hypoxia has been shown to reduce ante-
rior dCA (26-34). This has been attributed to the reduction in
vascular tone of the cerebrovasculature, which is a compen-
satory response in a low-oxygen environment to increase cet-
ebral blood flow to maintain cerebral oxygen delivery (33,
35). Consequently, hypoxia is a suitable physiological stress
to examine whether vascular tone and dynamic cerebral
autoregulation are different in the posterior circulation com-
pared with the anterior circulation. Recent recommendations
(36) also suggest that single-site indices of cerebral hemody-
namics (i.e., middle cerebral artery blood velocity) are not
representative of global cerebral conduit function, and volu-
metric multisite measurements should be central to future
investigations of dCA. Only a few studies have assessed ante-
rior vascular tone and volumetric blood flow simultaneously
during dCA in hypoxia, and none have assessed dCA in the
posterior circulation (26-28). Establishing further evidence
of a more pressure-passive nature of the posterior circulation
compared with the anterior circulation may also help to
explain the stronger association of the posterior than anterior
circulation with pathophysiological symptoms and condi-
tions, such as orthostatic (in)tolerance (37), acute mountain
sickness (38, 39), and cerebral small vessel disease (40).

This study compared volumetric dCA of the anterior
and posterior cerebral conduit arteries in a mixed cohort of
males and females in normoxia and in acute poikilocapnic
hypoxia. As previous research indicates the posterior circula-
tion is more pressure-passive than the anterior circulation
(6, 22, 41, 42), and the magnitude of hypoxia-induced vasodi-
lation is similar between the anterior and posterior cerebral

conduit arteries (7, 43), we hypothesized that the reduction
in dCA to large abrupt reductions in blood pressure in acute
hypoxia would be exacerbated in the posterior compared
with the anterior circulation.

METHODS
Ethical Approval

Ethical approval for this study was obtained from the
Ethics Committee of the School of Sport, Health, and
Exercise Sciences at Bangor University (Ethics ID: POS5-
2021) and was conducted following the standards of the
Declaration of Helsinki 2013, except for registration in a
database, with written informed consent obtained from all
participants.

Participants

Twenty young healthy participants were recruited for
this study [14 males, 6 females, 25 (6) yr, 175.7 (8.5) cm, 71.1
(11.2) kg, body fat 15.8 (6.3) %, hemoglobin 14.4 (1.3) g-dL %,
hematocrit 43 (4) %, mean (standard deviation)]. Twenty
participants were recruited to account for dropout, data
loss, and to reflect the participant characteristics of previ-
ous studies involving exclusively male (n = 12) (27) or pre-
dominantly male (male: n =12, female: n = 1) (28) cohorts,
which reported reductions in ICA RoR in response to
hypoxia. Participants were nonsmokers, free from cardio-
vascular, hematological, and neurological disease, not at
an increased risk of COVID-19 as defined by the Welsh
Government, and had not resided overnight at an altitude
of >2,500 m within the last 6 mo. Females were included if
they had a regular menstruating cycle or were taking an
oral contraceptive pill that included inactive/placebo
days. Participants with a regular menstrual cycle were
tested during the onset of menses and the early follicular
phase (day 1-5), and participants on the oral contraceptive
pill were tested during their withdrawal bleed (44).
Menstrual subphase identification was completed by a for-
ward-counting self-report method (45). Before completing
the experimental trials, participants were familiarized
with the experimental procedures. On the day before each
trial, participants refrained from consuming alcohol and
undertaking exhaustive exercise. On the day of each trial,
participants matched their diet and supplement intake
and refrained from consuming caffeinated beverages.

Experimental Design

This study followed a repeated-measures, counterbal-
anced crossover design with each participant completing
two experimental trials at the same time of day, separated by
at least 48 h. Experimental trials consisted of a 120-min
exposure to either normoxia (fraction of inspired oxygen
[Flo,] = 20.9%) or acute poikilocapnic hypoxia (Flo, = 12.5%)
in a temperature [25.6 (1.1) °C] and humidity [29.0 (7.1) %]
controlled environmental chamber (Hypoxico Inc., New
York). A 120-min exposure to an Flp, of 12.5% was selected to
achieve arterial desaturation (43) and relatively more stable
ventilatory responses to hypoxia compared with shorter
duration hypoxia (46, 47).
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Experimental Measurements

Cardiorespiratory.

Peripheral arterial oxygen saturation was measured via pulse
oximetry (Spo,, Model 7500 Oximeter, Nonin Medical Inc.,
Minnesota). Beat-to-beat heart rate was measured with a
Lead II electrocardiogram, and blood pressure was measured
by finger photoplethysmography (Finometer MIDI, Finapres
Medical Systems, The Netherlands). Measurements of sys-
tolic blood pressure, diastolic blood pressure, and mean arte-
rial pressure (MAP) were calculated from the finger arterial
waveform and calibrated to the average of three automated
brachial blood pressure measurements (Tango +, SunTech,
Morrisville, NC). The partial pressure of end-tidal oxygen
(PETo,) and partial pressure of end-tidal carbon dioxide
(PETco,) were recorded breath-by-breath by a gas analyzer
(ML206, ADInstruments, Colorado, CO).

Extracranial arteries.

Blood flow of the ICA and VA was collected using duplex
ultrasound with a 15-MHz linear transducer at 30 Hz
(uSmart 3300, Terason, Burlington, MA). High-resolution
images of vessel diameter were acquired using B-mode imag-
ing, whereas pulse wave mode was used to simultaneously
measure the Doppler velocity spectra. Care was taken to
ensure the strongest Doppler velocity spectrum signal by
positioning the Doppler gate in the center of the artery with
a 60° angle of insonation and adjusting to fill the artery
lumen as per recommended technical guidelines (48). The
ICA was measured at least 1.0-1.5 cm distal to the carotid
bifurcation, and the VA was measured between C3 and the
subclavian artery.

Intracranial arteries.

Blood velocity of the middle cerebral artery (MCA) and pos-
terior cerebral artery (PCA) was measured by transcranial
Doppler ultrasound (TCD) using two 2-MHz probes placed
over the left and right transtemporal windows and secured
in place via an adjustable headpiece (PMD150, Spencer
Technologies, Seattle, WA). Insonation of each artery was
achieved using standardized procedures (49), with probe
position, signal depth, and gain settings recorded to replicate
the placement between sessions. All TCD measurements
were collected by the same operator (A.T.F.). Pairs of MCA
and ICA, and PCA and VA were measured on the same side
of the participant as determined by the most reliable and
reproducible signals.

In two separate day-to-day reproducibility studies com-
pleted by the same operator (A.T.F.), the coefficient of varia-
tion for duplex ultrasound (n = 5) measurements of blood
flow, vessel diameter, and blood velocity of the ICA (4%, 1%,
and 3%) and VA (8%, 1%, and 7%) and TCD (n = 10) blood
velocity measurements of the MCA (3%) and PCA (3%) were
comparable with recommended guidelines (48).

Experimental Procedures

Rapid thigh cuff deflation-induced hypotension.

dCA was assessed (elapsed time: 60 min) using the standar-
dized rapid thigh cuff method that causes transient, abrupt
hypotension (50). Participants were instrumented with bilat-
eral thigh cuffs (CC17, Hokanson, Bellevue, WA) connected

to a rapid deflator (E20 Rapid Cuff Inflator, Hokanson),
seated comfortably in an upright position, and asked to rest
for a 2-min baseline. The bilateral thigh cuffs were then
inflated to 200 mmHg for 3 min. Participants were instructed
to remain relaxed and were not given feedback regarding the
elapsed time of thigh cuff occlusion. Immediately after the
3-min inflation, both thigh cuffs were rapidly deflated (<15s),
causing a transient fall in MAP, and participants were
instructed to remain still for 1 min thereafter. Measurements
of heart rate, MAP, Spy,, PETo,, PETco,, and blood velocity of
the MCA and PCA were recorded continuously throughout
each rapid thigh cuff deflation. Simultaneous ICA and VA
measurements were recorded for 30 s pre and postdeflation.
At least four thigh cuff deflations were completed per partici-
pant to enable a minimum of two recordings each of the ICA
and VA. The coefficient of variation of the relative MAP
reduction to the thigh cuff deflation in this study was 15% in
normoxia and 18% in hypoxia.

Data Processing

Measurements of blood velocity of the MCA and PCA,
heart rate, systolic and diastolic blood pressure, Spg,,
PETo,, and PETco, were all acquired continuously at 1 kHz
using an analog-to-digital converter (PowerLab 16/30,
ADInstruments) and interfaced on a computer in real time
using LabChart software (Chart 8, ADInstruments). Real-
time beat-to-beat MAP and time-averaged maximum
velocity (TAMXx) of the MCA or PCA were determined from
each R-R interval. All duplex ultrasound data were cap-
tured and stored for subsequent offline analysis by an
investigator blinded to the condition of the experimental
trials. Concurrent measurements of vessel diameter and
TAMXx were acquired using an automated edge-detection
tracking software (Brachial Analyzer, Vascular Research
Tools 6, Medical Imaging Applications, Coralville, IA).
Subsequently, blood flow was calculated using the follow-
ing equation:

Blood flow (mL - min ') = [TAMx (cm - s 1) /2]

X [n X (meanvessel diameter (cm) /2)2] x 60

Following a conservative quality check, data and statis-
tical analysis were completed on normoxia:hypoxia: 18:17
ICA (13:12 males, 5:5 females), 17:19 VA (12:13 males, 5:6
females), 19:19 MCA (13:13 males, 6:6 females), and 16:16
PCA (10:10 males, 6:6 females). The exclusions were due to
a poor image or signal quality of the extra- and intracranial
arteries.

Data Analysis

Cardiorespiratory.

Continuous beat-to-beat heart rate, systolic blood pressure,
diastolic blood pressure, MAP, Sp,,, PETo,, and PETco, were
calculated from a 2-min average before the rapid thigh cuff
method.

Cerebrovascular.
In accordance with previous methods (51), dCA after rapid
thigh cuff deflation was characterized by the following
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metrics (Fig. 1): 1) maximal reduction, 2) time to counterre-
gulation, and 3) rate of regulation (RoR).

The absolute and relative maximum reduction following
rapid thigh cuff deflation in MAP, blood flow, blood velocity,
vessel diameter, and cerebrovascular conductance (CVC =
blood flow/MAP) or index (CVCi = blood velocity/MAP) val-
ues were calculated as the difference from their respective
predeflation mean that was defined as the 4 s immediately
before thigh cuff release. The time taken from thigh cuff
deflation to the nadir in MAP and CVC or CVCi was individu-
ally determined and defined as the time to first MAP nadir
and time to CVC or CVCi counterregulation, respectively.
RoR was calculated from CVC or CVCi. Post-thigh cuff

1.1
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Figure 1. Representative illustration of the dynamic cerebral autoregula-
tion metrics after rapid thigh cuff deflation-induced hypotension. Mean
arterial pressure (MAP, circle), cerebral blood flow (CBF) or velocity (CBv,
square), and cerebrovascular conductance (CVC) or index (CVCi, triangle)
after rapid thigh cuff method assessment of dynamic cerebral autoregula-
tion. Data were normalized relative to their respective means during the
4 s immediately before the thigh cuff release. In accordance with previous
methods (51), dCA after rapid thigh cuff deflation was characterized as the
following metrics 7) maximal reduction, 2) time to counterregulation, and
3) rate of regulation (RoR).

deflation responses were normalized to their concomitant
predeflation values. RoR was calculated using the following
equation:

RoR = (Aconductance/Atime)/AMAP

where Aconductance/Atime is the slope of the normalized
CVC (or CVCi) regression line between time of CVC (or CVCi)
counterregulation (i.e., the nadir) plus 2.5 s, and AMAP is the
magnitude of the reduction in normalized MAP during thigh
cuff release during the same 2.5-s phase.

Statistical Analysis

Statistical analysis was conducted using SPSS Statistics
v27 (IBM Corp., Armonk, NY), and figures were created
in GraphPad Prism (GraphPad Prism 9, San Diego, CA).
Cardiorespiratory, cerebrovascular, and dCA metrics before
and following the rapid thigh cuff method were analyzed by
a linear mixed model with condition (normoxia and hypoxia)
as the primary fixed effect of interest and participant as a
random effect. Secondary additional fixed effects of interest
of region (anterior and posterior) or PET¢o, were also investi-
gated in the model. Raw data are mean (standard deviation),
unless otherwise stated, and statistical significance was set at
P < 0.05. Bonferroni-corrected multiple pairwise compari-
sons were conducted when significant main or interaction
effects were detected. Values from linear mixed model pair-
wise comparison analysis are reported as estimated marginal
means and an estimated standard deviation (43, 52).

RESULTS

Cardiorespiratory Response in Normoxia and Hypoxia
before Thigh Cuff Deflation-Induced Hypotension

Compared with normoxia, acute poikilocapnic hypoxia
reduced Sp,, [estimated marginal means (estimated stand-
ard deviation), —14.6 (3.7) %, main effect of condition, P <
0.001, Table 1], PETo, [—57.0 (4.8) mmHg, P < 0.001], PETco,
[-2.7 (3.6) mmHg, P = 0.004], diastolic blood pressure [-5.1
(8.6) mmHg, P = 0.014], and MAP [-4.5 (7.4) mmHg, P =
0.013] and increased heart rate [+ 7.0 (7.6) beats/min, P =
0.001].

Regional Hemodynamics and Dynamic Cerebral
Autoregulation in Normoxia and Hypoxia

Blood flow and blood velocity of the extracranial and
intracranial arteries were unchanged to hypoxia (all P >
0.05, Table 1). Hypoxia increased ICA vessel diameter (i.e.,
reduced vascular tone; P = 0.002) but did not significantly
increase VA vessel diameter (P = 0.076) before thigh cuff
deflation-induced hypotension (Table 1).

The rapid thigh cuff deflation caused a comparable time
to the first MAP nadir and absolute maximum reduction in
MAP in normoxia and hypoxia (both P > 0.05, Table 2). Due
to lower pre thigh cuff deflation MAP in hypoxia than nor-
moxia (Table 1), the relative maximum reduction in MAP
was greater in hypoxia than normoxia (main effect of condi-
tion, P = 0.048). The relative maximum reduction to the
thigh cuff-induced hypotension in blood velocity, vessel
diameter, and blood flow of the extracranial (ICA and VA)
arteries and blood velocity of the intracranial (MCA and
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Table 1. Cardiorespiratory and cerebrovascular
responses before the rapid thigh cuff method in
normoxia and hypoxia

Condition P Value
Normoxia Hypoxia Condition
Cardiorespiratory
Spo,, % 96.8 (1.0) 82.1(3.7) <0.001
Heart rate, beats/min 66.0 (8.2) 73.0 (10.4)  0.001
Systolic blood pressure, mmHg 171 (1.4) 113.8(12.6) 0.076
Diastolic blood pressure, 73.3(8.2) 68.2 (10.8) 0.014
mmHg
Mean arterial pressure, mmHg 87.9 (8.1) 83.4 (10.3) 0.013
PETo,, mmHg 106.0 (4.4) 49.0 (3.9) <0.001
PETco,, mmHg 37.9 (3.4) 35.3(2.8) 0.004
Extracranial blood flow, mL. min~"
Internal carotid artery 260.2 (58.8) 289.5(68.3) 0.129
Vertebral artery 107.0 (33.3) 115.1(54.3) 0.357
Extracranial vessel diameter, mm
Internal carotid artery 5.03(0.70) 5.41(0.61) 0.002
Vertebral artery 3.69(0.51) 3.87(0.52) 0.075
Extracranial blood velocity, cm-s™
Internal carotid artery 45.0 (9.7) 42.2 (8.) 0.279
Vertebral artery 32.8(6.7) 31.9 (7.5) 0.450
Intracranial blood velocity, cm-s ™'
Middle cerebral artery 54.3 (13.3) 56.1(13.6) 0.338
Posterior cerebral artery 43.4 (9.8) 45.3 (10.5) 0.355

Data were analyzed by linear mixed model analysis. The pri-
mary outcome of interest for these cardiorespiratory and cerebro-
vascular variables was the effect of condition (normoxia and acute
poikilocapnic hypoxia). PETco,, partial pressure of end-tidal car-
bon dioxide; PETo,, partial pressure of end-tidal oxygen; Spo,,
peripheral arterial oxygen saturation. Bolded values indicate sta-
tistical significance (i.e., P < 0.05). Data (n = 20 participants) are
raw means (standard deviation).

PCA) arteries was comparable in normoxia and hypoxia (all
P> 0.05, Table 2). ICA RoR [-0.06 (0.22) s, P = 0.279] and
VA RoR [-0.05 (0.21) s, P = 0.343], maximal reduction in
CVC or CVCi and time to CVC or CVCi counterregulation for
the extracranial arteries, and all metrics of dCA for the

Table 2. Hemodynamic responses to the rapid thigh cuff
deflation-induced hypotension in normoxia and hypoxia

Condition P Value
Normoxia Hypoxia Condition
Mean arterial pressure (MAP)
Time to MAP first nadir, s 4.5 (1.0) 45 (0.9) 0.846
Max. AMAP, mmHg —21.3(6.0) —22.6 (2.8) 0.383
Max. AMAP, % —23.3(6.3) —26.2 (3.7) 0.048
Extracranial max. Ablood flow, %
Internal carotid artery —33.9(8.2) —32.2(9.4) 0.426
Vertebral artery —34.3(8.6) —33.2(8.2) 0.423
Extracranial max. Avessel diameter, %
Internal carotid artery -6.3(2.7) —7.7(3.1) 0.089
Vertebral artery —-7.2(3.9) —-79(4.9) 0.804
Extracranial max. Ablood velocity, %
Internal carotid artery —26.5(7.3) —22.9(8.7) 0.096
Vertebral artery —26.6 (8.2) —24.4 (6.2) 0.226
Intracranial max. Ablood velocity, %
Middle cerebral artery —26.6 (6.2) —25.8 (5.5) 0.429
Posterior cerebral artery —26.2 (4.3) —24.9 (6.0) 0.452

Data were analyzed by linear mixed model analysis. The pri-
mary outcome of interest for mean arterial pressure and cerebro-
vascular variables was the effect of condition (normoxia and acute
poikilocapnic hypoxia). Bolded values indicate statistical signifi-
cance (i.e., P < 0.05). Data (n = 20 participants) are raw means
(standard deviation).

intracranial arteries were comparable in normoxia and
hypoxia (all P > 0.05, Fig. 2 and Table 3).

In males only, compared with normoxia, VA RoR was
reduced in hypoxia [-0.15 (0.19) s, P = 0.012, Fig. 3C],
whereas ICA RoR was maintained [-0.07 (0.21) s, P =
0.264, Fig. 3A]. In males, MCA RoR [+0.00 (0.07) s™, P =
0.979] and PCA RoR [+0.01 (0.15) s7% P = 0.841] were
unchanged by acute hypoxia. In males, as in the mixed
cohort, immediately before the thigh cuff deflation, hypoxia
increased ICA diameter [+ 0.30 (0.32) mm, main effect of
condition, P = 0.009, Fig. 3B] but did not increase VA vessel
diameter [+ 0.08 (0.33) mm, P = 0.398, Fig. 3D]. Adding
region or PET¢o, to the analysis did not change the statistical
outcome for any cerebrovascular or dCA parameter in the
mixed or male-only cohorts.

DISCUSSION

This study investigated volumetric dCA of the anterior
and posterior cerebral conduit arteries in normoxia and
acute poikilocapnic hypoxia. The three novel findings of
this study are 1) in a mixed cohort of males and females,
the dCA of the intracranial and extracranial cerebral con-
duit arteries was regionally comparable during normoxia
and acute poikilocapnic hypoxia, and 2) in males only,
hypoxia reduced dCA of the posterior extracranial artery,
indicated by a reduction in VA RoR. In contrast, dCA of
the ICA was similar in normoxia and hypoxia in males,
and 3) in males, we observed that immediately before the
dCA assessment, hypoxia caused vasodilation (reduced
vascular tone) of the ICA, but not the VA, which suggests
an alternative mechanism to hypoxia-induced reduction
in conduit artery vascular tone is responsible for the
regional dCA responses observed in this study.

The absence of a reduction in anterior circulation dCA to
acute hypoxia in the present study was unexpected, as the
duration and severity of hypoxia and hypoxia-induced hypo-
capnia were comparable with the three previous studies to
report reductions in volumetric RoR of the ICA in hypoxia
(26-28). Moreover, as hypocapnia has been shown to attenu-
ate dCA during acute hypoxia (33), we incorporated PETco,
into the analyses, but this did not influence the study find-
ings. One possible explanation for these contrasting reports
of hypoxia on anterior dCA is posture differences between
studies (53), since participants sat upright in the current
study, contrasting the semirecumbent (26, 27) and supine
(28) positions of previous studies. These posture differences
may explain the differences in MAP observed between nor-
moxia and hypoxia conditions in studies immediately before
the thigh cuff test, where MAP was reduced in hypoxia com-
pared with normoxia in the current study but elevated (26)
or unchanged (27, 28) in hypoxia compared with normoxia
in previous studies. A reduction in MAP before the thigh cuff
test may cause an initial leftward shift along the autoregula-
tory curve (2), which may explain why we observed, in com-
parison with the previous literature (26-28), an exacerbated
reduction in cerebral blood flow (—33% vs. max. —22%) for a
comparable thigh cuff test reduction in MAP (—26% vs. max.
—26%). Additional support for this explanation exists from
research showing better dCA responses to the rapid thigh
cuff test in supine compared with seated postures (53).
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Another possible explanation for the contrasting reports
of hypoxia on anterior dCA may relate to the thigh cuff
stimulus and analysis. In the current study, a similar thigh
cuff stimulus was achieved in normoxia and hypoxia (cere-
bral blood flow; —34% and —32%, respectively), whereas
there were significant differences in previous studies (26—
28). In addition, when RoR is calculated from a fixed
period (i.e., 1-4 s), as was done in previous reports (26-28),
neither MAP nor cerebral blood flow may have reached
their nadir. Consequently, small or large deviations in
maximal reduction in cerebral blood flow between condi-
tions may cause a shortened or prolonged time to CVCi
counterregulation and, in turn, a steeper or flatter RoR
slope. Our study adopted the recently recommended anal-
ysis approach (51) that carefully accounts for these
between-condition individual differences and provides a
complete description of the autoregulatory response, and

Table 3. Dynamic cerebral autoregulation metrics after
rapid thigh cuff deflation-induced hypotension of the
extracranial and intracranial arteries in normoxia and
hypoxia

Condition P Value
Normoxia Hypoxia Condition
Rate of regulation, s
Middle cerebral artery 0.20 (0.05) 0.20(0.07) 0.995
Posterior cerebral artery 0.23(0.08) 0.23(0.13) 0.895
Maximal fall in CVCi, %
Internal carotid artery 20.7 (8.3) 16.7 (11.8) 0.141
Vertebral artery 17.5 (11.0) 18.8 (8.7) 0.774
Middle cerebral artery 10.6 (8.0) 7.9 (5.5) 0.107
Posterior cerebral artery 9.6 (6.0) 6.5 (6.2) 0.150
Time to CVCi counterregulation, s
Internal carotid artery 1.39(0.45) 1.26(0.63) 0.477
Vertebral artery 116 (0.65) 1.09(0.49) 0.589
Middle cerebral artery 1.28 (0.45) 1.21(0.65) 0.631
Posterior cerebral artery 1.37(0.58) 1.28(0.69) 0.763

Data were analyzed by linear mixed model analysis. The pri-
mary outcome of interest for mean arterial pressure and cerebro-
vascular variables was the effect of condition (normoxia and acute
poikilocapnic hypoxia). CVCi, vascular conductance or vascular
conductance index for extracranial and intracranial arteries,
respectively. Data (n = 20 participants) are raw means (standard
deviation).
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VA

confidence that any change in RoR was not a consequence
of a difference in stimulus intensity.

We report for the first time, using volumetric blood flow
RoR methods, that dCA of the VA to hypoxia may be
regionally different to the ICA in males. The prevailing
explanation for reduced dCA in the VA compared with the
ICA during systemic physiological stress is a lower basal
vascular tone of the posterior circulation, which is benefi-
cial to maintain basal blood flow to the cardiorespiratory
control centers of the brain while under physiological
stress (6). Proposed mechanisms for lower basal vascular
tone in the posterior circulation include increased meta-
bolic state of the visual cortices (19-21), less sympathetic
innervation (14), and different sensitivities to vasoactive
agents, such as reactive oxygen species and nitric oxide
bioavailability (16-18). Although no previous studies
have examined regional volumetric responses to hypoxia,
the results of the current study align with observations by
Sato et al. (6), who reported in a male-only cohort reduced
VA RoR, but not ICA RoR, following the thigh cuff test
superimposed on head-up tilt. Indeed, the studies report
similar reductions in basal MAP (our study vs. Sato;
-5 mmHg vs. —6 mmHg), VA cerebral blood flow (—-33%
vs. —32%), and VA RoR (-32% vs. —36%). This study pro-
vides further evidence of a greater cerebrovascular sensitivity
in the posterior compared with the anterior circulation, par-
ticularly to conditions involving reduced physiological levels
(i.e., the “hypo-” range), such as hypoxia (8), hypocapnia (9),
and hypothermia (54).

We report acute hypoxia-induced vasodilation of the ICA
but not VA (Fig. 3). Combined with the hypoxia-induced
reduction in dCA of the VA but not the ICA in males,
this study provides evidence that contrasts the prevailing
hypothesis that a lower vascular tone is the mechanism that
reduces dCA. This was originally formulated from investiga-
tions of dCA during hypercapnia (55). In contrast, the find-
ings of this study suggest that the reduction of dCA by
hypercapnia may relate to secondary hypertensive effects,
causing the basal MAP position on the autoregulatory curve
to shift rightward away from the autoregulatory plateau.
Another possible explanation for the lack of an association
between lowered vascular tone and reduced dCA in the
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extracranial arteries is that, although the large arteries con-
tribute to vascular resistance (56), segmental differences in
innervation and regulation of the vasculature suggest a large
proportion of vasodilation-induced reductions in dCA occur
in the microvasculature (14, 57, 58).

Methodological Considerations and Future Directions

In this study, we report intracranial dCA of MCA and PCA
blood velocity was comparable in normoxia and hypoxia,
which contrasts with the volumetric extracranial findings.
Caution is needed when interpreting intracranial findings
acquired by TCD, as they do not account for vessel diameter
changes. TCD has previously been shown to underestimate
dCA compared with duplex ultrasound (56), and the impor-
tance of capturing vessel diameter is highlighted herein as
the regional dCA response was found only when RoR was
derived from volumetric blood flow measurements obtained
at the extracranial arteries. These findings align with recent
recommendations (36) that dCA responses between different
methods are not comparable and that volumetric measure-
ments should be central to investigations of cerebrovascular
regulation moving forward to have the most confidence in
the physiological interpretation of cerebrovascular function.

Although there remains no gold standard measurement of
dCA, and with evidence of a poor agreement between differ-
ent metrics of dCA (59), we believe the dCA methods and
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analysis adopted in the current study strengthen the find-
ings (Fig. 1). Duplex ultrasonography is the only method
with a sufficient temporal resolution to examine dCA volu-
metrically to abrupt changes in blood pressure (<4 s), and
the recommended analysis (51) accounts for between-condi-
tion individual differences, involves dCA metrics that assess
the complete autoregulatory responses, and has revealed
regional differences previously, including the relative maxi-
mal reduction in hemodynamics (25), the time to counterre-
gulation (41), and RoR (6, 26-28). Moreover, the time to CVCi
counterregulation (1.4 s maximum, Table 3) was within the
time to first nadir in MAP (4.5 s on average, Table 2), so it is
unlikely that our method for assessing dCA included any
MAP-mediated counterregulation. We acknowledge emerg-
ing evidence indicating directional sensitivity in the cerebral
pressure-flow relationship (60-66), and therefore, the pres-
ent findings of regional differences in dCA to reductions in
MAP shown here may not be present in scenarios where
blood pressure is increased.

Our study highlights that including a mixed cohort may
complicate the interpretation of dCA, particularly when
hypotheses are generated from previous studies with almost
entirely male samples (6, 26-28). Females in this study com-
pleted repeat assessments in a menstrual or nonactive pill
phase associated with the lowest levels of estrogen and
progesterone to reduce the variability of sex hormones,
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