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Abstract:12 

To address the challenge of modal characterization of complex turbulent structures in 13 

high Reynolds number cavity flow, this study integrates the Time Integration 14 

Contribution - Dynamic Mode Decomposition (TIC-DMD) and Sparsity-Promoting 15 

Dynamic Mode Decomposition (SPDMD) as multi-scale analysis methods. Utilizing 16 

Particle Image Velocimetry (PIV) experimental data (Re=5×105 and Re=2×106), it 17 

comprehensively analyzes the dynamic characteristics and modal reconstruction 18 

performance of high Reynolds number cavity flow. The findings show that the TIC-19 

DMD effectively extracts the dominant vortex structures through a time-domain energy 20 

integration mechanism. At Re = 5×105, it achieves 61.02% reduction in reconstruction 21 

error compared to SPDMD when using a high modal number (N=246), significantly 22 

enhancing its ability to capture multi-scale turbulence. In addition, the SPDMD 23 

suppresses noise interference through sparsity constraints, achieving a reconstruction 24 

error of 0.0593 with a low modal number (N=7), a 75.79% improvement over the 25 

standard DMD. Both methods' first-order modes consistently stably reconstruct the 26 

dominant vortex structures of the flow field, while the standard DMD suffers from 27 
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mode fragmentation due to noise sensitivity. Further analysis reveals that SPDMD 28 

excels at low modal numbers, whereas TIC-DMD offers superior stability and accuracy 29 

in flow field reconstruction as the modal number increases, particularly for high 30 

Reynolds number flows. The modal analysis framework developed in this study 31 

introduces a novel paradigm for modeling complex flows. The framework proposes to 32 

integrate experimental data with the Large Eddy Simulation (LES) benchmark database, 33 

thereby advancing engineering applications in high Reynolds number flow control.34 

Keywords: High Reynolds number cavity flow; Dynamic Mode Decomposition; TIC-35 

DMD; SPDMD; Multi-scale turbulence36 

37 

1. Introduction38 

With the rapid development of Computational Fluid Dynamics (CFD) and39 

experimental techniques, investigating the spatiotemporal evolution and underlying 40 

mechanisms of complex flow fields has become an increasingly critical focus in modern 41 

fluid mechanics research. In particular, when studying high Reynolds number flows, 42 

the intricate turbulence characteristics and multi-scale structures significantly 43 

increase the difficulty of analyzing their dynamic behavior and flow mechanisms. 44 

Conventional dimensionality reduction techniques, such as Proper Orthogonal 45 

Decomposition (POD) and Dynamic Mode Decomposition (DMD), encounter 46 

significant challenges in handling turbulence, especially due to the dominance of 47 

nonlinear interactions that drive dynamic complexity (Roy et al.,2023; Mohan et 48 

al.,2018). The optimal linear bases of these methods fail to adequately capture such 49 

complexities (Schmid 2010; Rowley et al., 2009). High Reynolds number flows are 50 

typically characterized by pronounced nonlinear and unsteady phenomena, including 51 

three-dimensional turbulence structure (Marusic & Monty, 2019; Smits et al., 2021), 52 

vortex formation and evolution (Haller, 2015; Green et al., 2020), and flow field 53 

instability phenomena (Taira et al., 2017; Schmid, 2022). These characteristics pose 54 

substantial challenges for the analysis and prediction of high Reynolds number flow 55 

fields in fluid mechanics research (Menon & Mittal 2020).56 
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DMD, initially proposed by Schmid et al. (2010), aims to extract dynamic modes 57 

of the flow field from experimental or numerical simulation data. This method is 58 

fundamentally based on the Koopman operator theory, which maps a nonlinear system 59 

onto an infinite-dimensional linear space. By identifying a set of low-dimensional 60 

subspaces as bases, DMD describes the evolution of the flow field through the 61 

superposition of these subspaces in a new low-dimensional coordinate system (Kou et 62 

al.,2018; Tiziano et al.,2022). It successfully captures the key dynamic characteristics 63 

of the flow field such as vortex structures, dominant frequencies, and growth rates by 64 

identifying and extracting them. As research has advanced, data-driven analysis 65 

methods have gradually become an essential tool for feature extraction and reduced-66 

order modeling of complex flow fields (Marensi et al.,2023). As an emerging modal 67 

analysis technique, DMD decomposes time-series data into modes and eigenvalues, 68 

revealing the key dynamic characteristics of the flow field (Ming et al.,2020). This 69 

method has been widely applied to various classical flow problems, such as turbulence 70 

analysis (Rowley et al.,2009), vortex street characteristics (Ye et al., 2017), and flow 71 

field reconstruction in aerospace and wind tunnel experiments (Mohan & Gaitonde 72 

2017).73 

However, studies have shown that standard DMD is sensitive to noise interference 74 

and struggles to effectively identify dominant modes in complex systems (Feldhusen et 75 

al.,2021; Hemati et al.,2017). Additionally, in high Reynolds number flows, both the 76 

accuracy of mode selection and computational efficiency require improvement 77 

(Chávez-Dorado et al.,2025). To address these issues, Jovanović et al. (2014) proposed 78 

the Sparsity-Promoting Dynamic Mode Decomposition (SPDMD) method. SPDMD 79 

enhances mode selection accuracy by introducing sparsity constraints, which optimize 80 

modal amplitude vectors, retain important modes, and reduce noise interference. 81 

Moreover, Tsolovikos et al. (2020) applied SPDMD to estimation and control in 82 

complex flow environments, demonstrating its robustness in fluid system control 83 

(Jovanović et al., 2014). Hu et al. (2023) validated the efficiency of SPDMD in turbine 84 

flow field prediction, providing a fast and effective tool for turbine mechanical design 85 
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(Li et al.,2022).86 

Furthermore, standard DMD modal ordering is usually based on initial energy or 87 

growth rate(Kong et al.,2020). However, in high Reynolds number flows, multi-scale 88 

characteristics result in time-dependent evolution of modal importance (Kutz et 89 

al.,2016). Consequently, accurately assessing mode importance requires considering 90 

both initial conditions and global evolution characteristics. To address this, Kou et al. 91 

(2016) proposed the TIC method, which ranks modes by integrating their accumulated 92 

energy over the entire time domain. This approach significantly improves sensitivity to 93 

mode convergence and initial conditions (Asada et al.,2025).94 

At low Reynolds numbers, the dominant frequency is relatively clear, whereas the 95 

multi-scale characteristics and broad frequency spectrum of high Reynolds number 96 

flows make mode selection more complex (Baars et al.,2017). Although DMD has 97 

achieved remarkable results in turbulence, vortex street, and unsteady flow analysis 98 

(Brunton et al., 2020; Abu & Sung. 2011; Li et al., 2017; Li et al.,2021), research on 99 

cavity flows has primarily focused on low to moderate Reynolds numbers (Burggraf et 100 

al., 1966; Koseff & Street, 1984; Gustafson & Halasi, 1987;Chen et al., 2014; Tanase, 101 

et al.,2017;Wang et al.,2025). Studies on high Reynolds number (Re ≥ 1×105) cavity 102 

flows remain limited, particularly regarding the precise modal extraction using DMD 103 

methods. This paper applies TIC-DMD and SPDMD methods for modal decomposition 104 

and flow field reconstruction. By comparing the differences in mode selection, 105 

eigenvalue spectra, frequency-energy spectra, and flow field reconstruction errors 106 

between the two methods, this study not only reveals the dynamic characteristics of 107 

high Reynolds number flow fields but also provides reliable benchmark data for 108 

LES/Direct Numerical Simulation (DNS) turbulence models through physical 109 

experiments of high Reynolds number cavity flow. Additionally, the findings enhance 110 

theoretical understanding of TIC-DMD and SPDMD methods in high Reynolds number 111 

flows, supporting both research and engineering applications in fluid dynamics.112 

2. Research Methods and Data Essentials113 

This study combines TIC-DMD and SPDMD methods to extract the main dynamic 114 
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characteristics of the flow field and construct reduced-order models based on high 115 

Reynolds number flow field data. This section provides a detailed explanation of the 116 

DMD method, data sources, snapshot construction, and modal sorting methods, among 117 

others.118 

2.1 Dynamic Mode Decomposition Method119 

DMD is a mathematical method used to extract dynamic information of the flow 120 

field from experimental data or numerical simulations (Nguyen et al., 2023). It reduces 121 

the dimensionality of the flow field data, revealing the main dynamic characteristics of 122 

the system (Kou & Zhang, 2016), and provides reduced-order modeling for complex 123 

flow behaviors. For flow field data from time t1 to tN, the flow field snapshots can be 124 

represented as:125 

1 1 2 3 { , , , ,N

NV v v v v=   (1)126 

here, 𝑣𝑖 represents the flow field snapshot at the i-th time step, with a time interval of 127 

Δt. Assuming that the system can be described by a discrete linear dynamical system, 128 

the relationship can be written as:129 

   Y AX= (2)130 

where:131 

2 3 2 { ,, , N

NY v v v V=  = (3) 132 

 1
1 2 1 1 { , , , N

NX v v v V
−

−=  = (4)133 

The system matrix A can shift the physical field along the time dimension by Δt, 134 

thus the eigenvalues of A characterize the time evolution properties of 𝑉1𝑁.135 

Since the snapshot matrices X and Y of the flow field typically have high-136 

dimensional features, the system matrix A contains a large amount of data. As a result, 137 

it is necessary to extract the eigenvalues using the reduced-order matrix 𝐴̃. The core of 138 

DMD is to reduce the dimensionality of the flow field through a similarity 139 

transformation method combined with Singular Value Decomposition (SVD), ensuring 140 

numerical stability while obtaining a low-dimensional dynamical description of the 141 

system (Liao, 2023).142 
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Through the POD method, the relationship between A and its reduced-order matrix 143 𝐴̃ can be expressed as:144 

*A UAU=  (5) 145 

here, U is the left singular matrix obtained from the SVD of the snapshot matrix X:146 

*  ΣX U V    (6) 147 

By substituting equations (2) and (4) into (3), the expression for the reduced-order 148 

matrix is obtained:149 

* 1ΣA U YV −=  (7) 150 

in which 𝐴̃ is the optimal low-dimensional estimate matrix of A. By solving for the 151 

eigenvalues and eigenvectors of 𝐴̃ , the DMD analysis results can be obtained. 152 

Performing an eigenvalue decomposition on matrix 𝐴̃:153 

1
A Q Q −=  (8) 154 

where the j-th eigenvalue of 𝐴̃ is 𝜆𝑗, and the corresponding eigenvector is 𝑄𝑗. The j-155 

th DMD mode can be defined as:156 

j j
UQ = (9) 157 

The modulus and phase of the eigenvalue represent the growth rate gj and frequency wj 158 

(Hz) of the mode, respectively:159 

Re{log( )}
j

j
g

t


=


(10) 160 

Im{log( )}

2

j

j
w

t




=


(11) 161 

The flow field snapshot at any time can be approximated as:162 

1 1 1
1 1 1 1

i

i i i iv Av UAU v UQ Q U v UQ Q U v  −  − − 
− − −= = = =        (12)163 

Each column of Φ is defined as the corresponding DMD mode in space. From equation 164 

(7), we have:165 

UQ = (13) 166 

The initial amplitude of the mode is defined as:167 
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( 1) *
1Q U v −= (14) 168 

here, 𝛼 represents the contribution of this mode to the initial snapshot 𝑣1, and 𝑈∗𝑣1 169 

represents the new system constructed corresponding to the first snapshot flow field. At 170 

this point, the flow field snapshot 𝑣𝑖 is expressed as:171 

log( )
*

1 1

1 1

jr r t
i i t

i j j j j j

j j

v e



    − − 

= =

=  =  =    (15)172 

where Φj represents the j-th mode value, 𝜆𝑗𝑖−1 is the eigenvalue of the j-th mode at the 173 

i−1-th time step, and 𝛼𝑗 is the amplitude of the j-th mode. Through this method, the 174 

temporal evolution of the flow field can be effectively predicted.175 

2.2 Sparsity-Promoting Dynamic Mode Decomposition176 

SPDMD is an extended method of standard DMD that introduces sparsity 177 

constraints (Schmid et al.,2023). SPDMD optimizes the modal amplitude vectors by 178 

retaining only the most representative modes, reducing noise, and improving the 179 

accuracy of mode selection. This method effectively highlights the main dynamic 180 

features of the system while minimizing interference from redundant modes 181 

(Pasquariello et al.,2017).182 

2.2.1 Sparse Structure Selection183 

From equation (13), the approximate form of the flow field snapshot matrix can 184 

be obtained:185 

Φ andX HV (16)186 

 

2
1 1 1

2
2 2 2

1

2

0 0 1

0 0 1

0 0 1

N

N

i

N
i m i

  
  

  

−

−

−

  
  
  =   
     

∮ ∮ (17)187 

in which, H is the initial amplitude coefficient matrix, and 𝑉and is the Vandermonde 188 

matrix containing oscillatory mode information.189 

To extract the key oscillatory information of the system, the modal amplitude 𝛼𝑖 190 

needs to be precisely estimated through an optimization problem. The goal is to 191 
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minimize the reconstruction error, and the Frobenius norm approximation of the 192 

problem is expressed as (Chen et al.,2014):193 

( )

2
and

** *
and and

* * *

min ( )

tra( ( ))

FJ X HV

V QHV V QHV

P q q s

 

   

= −

=  −  −

= − − +

‖ ‖

 (18) 194 

To minimize 𝐽(𝛼), we obtain:195 

1 * * 1 *
and and and(( ) ( )) diag( )P q Q Q V V V V Q − −= =    (19)196 

We address the sparsity-inducing problem by enhancing the objective function 𝐽(𝛼) 197 

with additional content. This penalty seeks to reduce the number of non-zero elements 198 

in the unknown amplitude vector:199 

1
( )

r

i
i

minimize J


  
=

+   (20)200 

here, γ>0 is the sparsity regularization parameter, controlling the strength of the sparsity 201 

constraint, and 
i  represents the absolute value of the amplitude of the i-th mode. As 202 

γ increases, the number of non-zero elements in α gradually decreases, thus achieving 203 

sparse structure selection.204 

To solve the above convex optimization problem, the Alternating Direction Method of 205 

Multipliers (ADMM) is used. The specific steps are as follows:206 ①Replace the amplitude vector α with a new variable β. The optimization207 

problem in equation (20) is converted into the following constrained optimization 208 

problem:209 

minimize ( ) ( )

subject to 0.

J g  
 

+
− =

(21) 210 

here, 𝑔(𝛽) = ∑ |𝛽𝑖|𝑟𝑖=1 , and equation (21) is equivalent to equation (20).211 

②Introduce the augmented Lagrangian function to convert the constraint in212 

equation (21) into an objective function:213 
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* * 2
2

1
( , , ) : ( ) ( ) ( ( ) ( ) )

2
J g               = + + − + − + −‖ ‖L (22) 214 

where θ is the Lagrange multiplier, and ρ>0 is the penalty parameter, controlling the 215 

weight of the constraint term.216 

③Minimize over α, minimize over β, and update the Lagrange multiplier:217 

1

1 1

1 1 1

: arg ( , , ),

: arg ( , , ),

: ( ).

k k k

k k k

k k k k





   

   

    

+

+ +

+ + +

=

=

= + −

L

L  (23)218 

④Begin iterations from the initial point (β0, θ0) and solve until the following error219 

condition is met:220 

1 1
2 prim

1
2 dual

k k

k k

 

 

+ +

+

− 

− 

‖ ‖

‖ ‖

ò

ò
(24)221 

2.2.2 Amplitude Correction222 

After sparse structure selection, SPDMD further corrects the amplitude to balance 223 

the reconstruction quality and the number of modes (Arai et al.,2021). With the sparse 224 

structure fixed, only the non-zero amplitudes are optimized through the following 225 

convex optimization problem:226 

minimize ( )

subject to 0T

J

E


 =

(25) 227 

here, E is the encoding matrix used to constrain the sparse structure of the non-zero 228 

modes. Its columns are unit vectors, and E encodes the sparse structure information of 229 

the amplitude α.230 ①Introduce the Lagrangian function:231 

* *( , ) ( ) ( )

0 0

T T

T

J E E

P E q

E

      



= + +

     
=     

     

L

(26) 232 

②The corrected sparse amplitude vector αsp is obtained:233 
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1

sp [  0]
0 0T

P E q
I

E


−
   

=    
   

 (27) 234 

2.3 Data Description and Snapshot Construction235 

The velocity distribution in the middle plane has long been a focal point in the 236 

analysis of cavity flow, both in experiments and numerical studies. Thus, this study 237 

selects the middle plane of a square cavity for flow field measurements. The 238 

experimental data were collected using a PIV system, with measurements conducted in 239 

a 0.5-meter square cavity at Reynolds numbers of 5×105 and 2×106. To improve 240 

measurement accuracy, a high-speed camera (resolution: 1920×1080 pixels, maximum 241 

frame rate: 1000 fps) and an 8W laser (wavelength: 532 nm) were employed. The tracer 242 

particles used were hollow glass microspheres with a particle size of 10μm. Prior to 243 

measurements, the conveyor belt was run for 10 to 15 minutes to stabilize the flow 244 

pattern. Tracer particles were then evenly distributed within the fluid to ensure uniform 245 

distribution under laser illumination. The laser was activated and adjusted to an 246 

appropriate intensity to ensure uniform illumination of the target area. After starting the 247 

high-speed camera, the capture frequency, exposure time, and acquisition duration were 248 

set, and the flow field image data were captured and saved using dedicated acquisition 249 

software. 250 

251 

252 

Figure1. Lid-driven cavity 253 

2.4 Modal Sorting Methods for Two Dynamic Mode Decomposition Approaches254 
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In DMD method, modal sorting remains a critical issue. Common sorting methods 255 

include modal norm methods, initial amplitude methods, and frequency-weighted 256 

methods (Peng et al., 2022). To more accurately assess the importance of modes, this 257 

study adopts TIC-DMD method, which measures each mode’s contribution to the entire 258 

dataset by calculating the integral of the absolute value of the time coefficient for each 259 

mode. TIC-DMD provides a comprehensive reflection of the mode's importance, is 260 

suitable for periodic and linear flows, and is also effective for analyzing unstable or 261 

transient systems (Li et al., 2024).262 

The energy modal index is defined as:263 

1

| ( ) | | |
N

j j ij

i

I b t dt b dt
=

=  (28)264 

where j
I   represents the energy index of the j-th mode, and ( )

j
b t   is the time 265 

coefficient of the mode as it varies over time. The time integral measures the energy 266 

contribution of the mode across the entire data sequence. Compared to standard 267 

methods, this index provides a more stable and accurate modal sorting criterion.268 

For SPDMD, the modal energy sorting is based on the corrected modal amplitude 269 

values. The SPDMD method, through sparsity optimization, retains only a few key 270 

modes, thereby improving the accuracy of mode selection and reducing interference 271 

from noise.272 

3.Results and Discussion273 

3.1 Modal Selection and Reconstruction Error Analysis274 

In both TIC-DMD and SPDMD methods, modal selection is a key factor 275 

influencing the flow field reconstruction accuracy and dynamic feature extraction. TIC-276 

DMD typically relies on energy sorting to manually select the number of modes, while 277 

SPDMD optimizes the number of modes automatically by introducing a sparsity 278 

regularization parameter γ and a loss function (Wang et al., 2022). Although both 279 

methods require the specification of the number of modes, TIC-DMD determines the 280 

number of modes through energy sorting, whereas SPDMD selects the number of 281 
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modes by optimizing the loss function. For comparison purposes, the number of modes 282 

was set to seven in both methods in this study. Considering the impact of conjugate 283 

modes, four independent modes were extracted in practice.284 

To investigate the convergence of the SPDMD method with varying modal 285 

numbers, the loss function 𝒱loss (Pasquariello et al., 2017) is defined as:286 

2
and

loss

( )
100 100

(0)
F

F

X HVJ

J X

 −
= =

‖ ‖

‖ ‖
V  (29) 287 

Figure 2 shows the relationship between the SPDMD penalty coefficient γ and the 288 

number of modes at different Reynolds numbers. As γ increases, the number of modes 289 

gradually decreases, indicating that the sparsity constraint effectively compresses the 290 

redundant modes. However, even at higher values of γ, the number of modes remains 291 

above 100, suggesting that the complex dynamic features of the flow field have not 292 

been fully compressed. The Reconstruction Error rate initially increases sharply before 293 

stabilizing as the number of modes decreases, remaining relatively high value of around 294 

15% or more. This indicates that the method struggles to fully capture the multi-scale 295 

characteristics of high Reynolds number flow fields, where nonlinear behaviors become 296 

more pronounced and mode coupling effects intensify, reducing modal sorting 297 

accuracy. Moreover, DMD methods inherently rely on linear system approximations, 298 

which inherently limit their ability to fully represent the nonlinear dynamical 299 

characteristics of real-world flow fields. This limitation can lead to discrepancies 300 

between extracted modes and the physical reality of the flow, further compromising 301 

modal fidelity (Gosea & Pontes Duff, 2021). Additionally, noise from the PIV 302 

measurement system further degrades the fidelity of flow field representation (Liu et 303 

al., 2020).304 
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305 

(a) Re=5×105 (b) Re=2×106
306 

Figure 2: SPDMD - Penalty Coefficient γ, Number of Modes , Reconstruction Error.307 

Further analysis is presented in Figure 3, showing the modal energy sorting and 308 

modal extraction results for both TIC-DMD and SPDMD at different Reynolds 309 

numbers. The dominant modes extracted by both methods are consistent, indicating 310 

good agreement in capturing the main dynamic features. Among the seven modes 311 

extracted, three modes are identical for both methods. By comparing the modal energy 312 

distribution, the SPDMD shows a more dispersed modal energy distribution, with more 313 

significant differences in energy across modes, especially at Re = 2×106, where the 314 

modal energy proportion decreases in a stepwise fashion. In contrast, the TIC-DMD 315 

exhibits a higher concentration of dominant modal energy, with the extracted modes 316 

accounting for a larger proportion of the total modal energy, indicating that TIC-DMD 317 

prioritizes modes with larger energy contributions. At Re = 5×105, the dominant modes 318 

in TIC-DMD account for 12% of the total energy, while those in SPDMD account for 319 

only 3.2%. As the Reynolds number increases, at Re = 2×106, the dominant modal 320 

energy in TIC-DMD accounts for approximately 8.5%, while in SPDMD, the dominant 321 

modal energy accounts for only 2%. This trend suggests that the increasing complexity 322 

of high Reynolds number flow fields reduces the representativeness of dominant modes 323 

in capturing the overall flow field characteristics.324 

325 
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326 

TIC-DMD  SPDMD 327 

(a) Re=5×105
328 

329 

TIC-DMD    SPDMD330 

(b) Re=2×106
331 

Figure 3: Energy Sorting of seven Modes.332 

3.1.1 Analysis of the First-Order Modes333 

Figure 4 presents a comparison of the first-order modes in the U and V directions 334 

extracted using standard DMD, TIC-DMD, and SPDMD methods across different 335 

Reynolds numbers. The modal sorting in standard DMD primarily relies on initial 336 

energy or growth rates (such as initial amplitude sorting) (Chen et al., 2021). However, 337 

in high Reynolds number flows, the multi-scale characteristics of the flow field give 338 

rise to significant transient modes or noise interference. In the top lid-driven cavity flow 339 

at Re = 5×10⁵ and Re = 2×10⁶, the first-order modes extracted by standard DMD do not 340 

display the mean flow field with a frequency of 0, but rather show fragmented residual 341 

structures. This indicates that standard DMD is susceptible to high-frequency noise or 342 

secondary transient modes (Noack et al., 2016), failing to accurately capture the 343 
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fundamental spatial characteristics of the flow field. Particularly at Re = 2×10⁶, the first-344 

order mode from standard DMD exhibits more small-scale vortices and fragmented 345 

regions, reflecting its sensitivity to secondary dynamics rather than accurately capturing 346 

the main flow structure.347 

In contrast, TIC-DMD sorts modes by integrating the cumulative energy of each 348 

mode over the entire time domain, avoiding over-reliance on initial conditions (Arbabi 349 

et al., 2017). In the flow fields at Re = 5×10⁵ and Re = 2×10⁶, the first-order mode from 350 

TIC-DMD consistently represents a stable mean flow field (real part of the eigenvalue 351 

≈ 1, imaginary part ≈ 0), and its spatial distribution shows smooth and stable patterns 352 

(see Figure 3). This mode accurately reflects the primary dynamic features of the flow 353 

field. Unlike standard DMD, TIC-DMD can overcome transient variations in the flow 354 

field, focusing on modes that describe the long-term behavior of the flow field, 355 

demonstrating strong robustness.356 

SPDMD optimizes the modal amplitude through sparsity constraints, suppressing 357 

noise and retaining key modes (Brunton et al., 2016). Its first-order mode is identical to 358 

that of TIC-DMD, further verifying the complementarity and robustness of the two 359 

methods in modal selection. SPDMD, while retaining the dominant modes, removes 360 

less important noise modes, especially in high-noise or highly complex flow fields, 361 

demonstrating higher computational efficiency and accuracy.362 

As the Reynolds number increases from 5×10⁵ to 2×10⁶, the flow field's 363 

nonlinearity increases, exhibiting more vortices and small-scale structures, which 364 

results in a more dispersed energy distribution (see Figure 4). The modes extracted by 365 

standard DMD under these conditions exhibit distinct "fragmentation" characteristics, 366 

indicating its difficulty in effectively distinguishing between dominant and secondary 367 

modes when handling high Reynolds number flows. In contrast, TIC-DMD and 368 

SPDMD are able to stably extract the first-order mode representing the mean flow field 369 

and preserve the main vortex structures in the flow field. At Re = 5×10⁵, the flow field 370 

is relatively smooth, and the first-order modes from TIC-DMD and SPDMD clearly 371 

display large-scale circulation structures, ensuring that the modes' physical meaning 372 
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aligns with the true dynamics of the flow field. Although the flow field is more turbulent 373 

at Re = 2×10⁶, the first-order modes from TIC-DMD and SPDMD still effectively 374 

identify the dominant circulation, while the modes from standard DMD are 375 

overwhelmed by high-frequency noise and small vortices, failing to accurately reflect 376 

the primary features of the flow field.377 

Through global energy integration or sparsity constraints, TIC-DMD and SPDMD 378 

effectively filter out high-frequency noise and small-scale turbulence, focusing on the 379 

dominant modes, ensuring that the modes' physical meaning aligns with the true 380 

dynamics of the flow field. Taking Re = 2×10⁶ as an example, despite the presence of 381 

many fragmented regions in the flow field, the first-order modes from TIC-DMD and 382 

SPDMD still maintain spatial consistency, indicating that both methods exhibit high 383 

adaptability and precision for complex flows. With this optimized modal selection, 384 

TIC-DMD and SPDMD significantly reduce errors in flow field reconstruction, and 385 

their computational efficiency exceeds that of standard numerical simulations (Hu et 386 

al., 2023). Particularly, SPDMD enhances stability in high-noise environments through 387 

parameter optimization (Iwasaki et al., 2022), while TIC-DMD's global energy 388 

integration strategy further strengthens the reliability of modal selection. The optimized 389 

modal selection in both methods not only improves the accuracy of the analysis but also 390 

substantially reduces computation time, showing significant advantages, especially in 391 

high Reynolds numbers and complex flow field conditions.392 
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Figure 4: First-Order U-V Modes400 
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3.2 Eigenvalue Spectrum401 

Figure 5 illustrates the eigenvalue spectrum analysis of standard DMD, TIC-DMD, 402 

and SPDMD at different Reynolds numbers. Eigenvalues inside the unit circle represent 403 

decaying modes, which have a certain impact on the early evolution of the flow field, 404 

but as time progresses, their structure gradually decays, reducing their influence on the 405 

flow field (Maziar et al., 2017). For example, at Re = 5×105, the first few modes 406 

extracted by the standard DMD method exhibit significant high-frequency 407 

characteristics. Specifically, the first mode has a growth rate of -30.6315 and a 408 

frequency of 24.793 Hz, while the third mode has a growth rate of -30.7544 and a 409 

frequency of 49.370 Hz. These modes exhibit relatively high oscillation frequencies, 410 

with energy dissipating rapidly over a short time. However, in the fourth mode, standard 411 

DMD identifies a structure approaching steady state, with a decay rate of only -0.0127 412 

and a frequency of 0 Hz. This suggests that the standard method has a noticeable lag in 413 

capturing steady-state structures (Ferrer et al., 2014).414 

In contrast, the TIC-DMD method, at Re = 2×106, shows that the first mode 415 

exhibits low-frequency oscillatory characteristics, with a decay rate of only 0.0974 and 416 

a frequency of 0 Hz. This indicates that this mode corresponds to large-scale vortex 417 

structures and can significantly influence the system's evolution over an extended time 418 

scale. Its energy characteristics reflect a dynamic equilibrium, neither rapidly decaying 419 

nor rapidly diverging (Maziar et al., 2017).420 

The SPDMD method tends to select eigenvalues close to the unit circle, and as the 421 

sparsity regularization parameter increases, the number of selected eigenvalues 422 

gradually decreases. In the SPDMD results at Re = 5×105, the second mode (decay rate 423 

of -0.0421, frequency of 0.515 Hz) and the fourth mode (decay rate of -0.5407, 424 

frequency of 1.4369 Hz) are both located near the unit circle, indicating the method's 425 

preference for stable modes. Notably, the clustering of feature value near the point (1, 426 

0) suggests that SPDMD favors selecting steady-state structure modes. This427 

characteristic becomes more pronounced at Re = 2×106, where the first mode of428 

SPDMD (decay rate of 0.0974, frequency of 0 Hz) is directly located at the (1, 0) point,429 

accurately capturing the actual flow characteristics of the flow field.430 
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Figure 5 TIC-DMD - SPDMD Eigenvalue Spectrum.458 

3.3 Frequency-Energy Spectrum459 

Figure 6 shows the frequency-energy spectra for TIC-DMD and SPDMD methods 460 

at different Reynolds numbers. With N=7, the modal points selected by both TIC-DMD 461 
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and SPDMD are mostly concentrated in the low-frequency region. At Re = 5×105, TIC-462 

DMD selects a broader frequency range, whereas at Re = 2×106, SPDMD selects a 463 

wider frequency range. Additionally, there is a difference between the corrected 464 

amplitude and the original amplitude, indicating that SPDMD optimizes the modal 465 

amplitude through sparsity constraints, prioritizing modes that have a significant impact 466 

on the flow field evolution.467 

As the number of modes increases (N=246/247), the frequencies of the selected 468 

modes extend outward, which is consistent with the trend observed in the eigenvalue 469 

spectrum of TIC-DMD and SPDMD shown in Figure 5 (the eigenvalue points spread 470 

out along the x-axis), indicating a proportional relationship between the imaginary part 471 

of the eigenvalue and the frequency (ω) (see Equation 11).472 

TIC-DMD selects modes based on descending modal energy, starting with the 473 

mode that has the highest energy, ensuring a prioritized energy distribution. In contrast, 474 

SPDMD first optimizes modal selection through sparsity constraints and then sorts the 475 

corrected modal amplitudes (Jovanović et al., 2014). In SPDMD, the corrected 476 

amplitude energy may not necessarily be the highest, reflecting that SPDMD not only 477 

focuses on modes with the maximum amplitude but also identifies the modes that have 478 

the greatest impact on the time evolution of the data sequence (Erichson et al., 2019).479 
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Figure 6 Frequency-Energy Plot497 

3.4 Evolution of the First Seven Modal Coefficients498 

To reveal the role of each mode in the development of the cavity flow, the modal 499 
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coefficients are defined as (Rowley et al., 2017):500 

  exp ln( ) /Δi i ib t t =   (30) 501 

As shown in Figure 7, modes with a frequency of zero are omitted, as they 502 

represent the mean flow or steady-state structure of the flow field. Since the remaining 503 

modes are conjugate modes with negative growth rates, the amplitude of the modal 504 

coefficients gradually decreases over time. By examing the trend of the modal 505 

coefficients over time, it becomes clear that standard DMD always prioritizes modes 506 

with larger initial amplitudes during selecting modes. These modes, when N=7, rapidly 507 

decay at any Reynolds number, causing their impact on the flow field to diminish 508 

quickly over a short period. As the number of modes increases to 246 /247, additional 509 

modes that can persistently affect the flow field appear. This is due to the inclusion of 510 

more modes, enabling a more comprehensive capture of the flow field’s long-term 511 

dynamic features.512 

Although TIC-DMD also selects modes with larger initial amplitudes, which 513 

decay relatively quickly, it employs the Time Integration Contribution method to sort 514 

and select modes with low decay rates that have a lasting impact on the flow field. For 515 

example, at N=7, in the flow fields at Re=5×105 and Re=2×106, modes 4 and 5 (for 516 

Re=5×105) and modes 2 and 3 (for Re=2×106) exhibit slower decay and larger 517 

amplitudes, significantly influencing the flow field's evolution. Their energy 518 

contributions are just below that of the first-order mode, indicating their importance in 519 

the flow field.520 

In contrast, the SPDMD method, through sparsity constraints optimization, 521 

prioritizes modes with lower decay rates and suppresses rapidly decaying high-522 

frequency modes. While SPDMD effectively retains low-frequency modes that exert a 523 

lasting influence on the flow field's evolution, these modes generally have smaller 524 

amplitudes. For example, at Re=2×106, the amplitudes of modes 2 and 3 selected by 525 

SPDMD are approximately 0.8, whereas the amplitudes of modes 2 and 3 in TIC-DMD 526 

are close to 1. Although these modes have a long-lasting effect, their lower amplitudes 527 
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may lead to a smaller impact on the flow field.528 

Overall, as the number of modes increases, the standard DMD method primarily 529 

selects modes with larger initial amplitudes. Although these modes decay rapidly, they 530 

have a more significant impact on the flow field during the initial stages. TIC-DMD, in 531 

its selection process, includes both modes with large initial amplitudes and fast decay 532 

rates, as well as modes with slower decay rates that can sustain their influence. SPDMD, 533 

however, focuses more on selecting modes with slower decay rates and selects fewer 534 

modes with rapid decay. While TIC-DMD provides a more comprehensive modal 535 

selection, it is important to note that those modes with large initial values but fast decay, 536 

despite their short duration of influence, may still play a key role in ultra-high Reynolds 537 

number flow fields.538 
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Figure 7: Modal Coefficient Evolution.560 

3.5 Flow Field Reconstruction561 

To systematically evaluate the performance of DMD, TIC-DMD, and SPDMD 562 

methods in flow field reconstruction, this section reconstructs the flow field of the 120th 563 

snapshot using the 7th and 246th modes. Figure 8 presents the reconstruction 564 

characteristics of different methods at Re = 5×105 and Re = 2×106, including streamline 565 

distribution, total velocity distribution, and vortex structures. It can be observed that, at 566 

different Reynolds numbers and modal numbers, both TIC-DMD and SPDMD methods 567 

effectively capture the main morphological features of the actual flow field, including 568 

the general distribution of total velocity, the direction of streamline motion, and the 569 

location of vortices.570 

At Re = 5×105, the 7th mode extracted by standard DMD fails to effectively 571 

reconstruct the meandering streamline shape, revealing its limitations at low modal 572 

numbers. In contrast, TIC-DMD and SPDMD are able to better capture the large-scale 573 

circulation structure. When Re = 2×106, standard DMD fails to extract the dominant 574 

modes of the flow field, leading to significant differences between the reconstructed 575 

flow field and the actual flow field, failing to reflect the fundamental dynamic features 576 

of the flow. On the other hand, TIC-DMD and SPDMD are able to stably reconstruct 577 

the dominant circulation structures of the flow field, despite the flow being more 578 

turbulent.579 
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Figure 8: Flow field reconstruction characteristics of DMD, TIC-DMD, and SPDMD 589 

methods at different Reynolds numbers.590 

To quantitatively evaluate the performance of the three methods in flow field 591 

reconstruction, the Relative L2 Error (RLE) of the 120th snapshot and the 592 

reconstruction errors of all snapshots are calculated. Tables 1 and 2 present the 593 

reconstruction errors for the 120th snapshot and for all snapshots, respectively. From 594 

the analysis, it can be seen that at low modal numbers (N=7), the reconstruction error 595 

of standard DMD is relatively large, especially at Re = 2×106, where the failure to 596 

effectively extract the dominant modes of the flow field leads to a significant increase 597 

in the reconstruction error. In contrast, TIC-DMD and SPDMD methods perform more 598 

stably at low modal numbers. At Re = 5×105, when reconstructing the 120th snapshot, 599 

the error for TIC-DMD is 0.2421, which, although higher than SPDMD (0.2151), is 600 
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lower than that of standard DMD (0.2423), indicating that SPDMD is better at 601 

extracting the dominant features of the flow field.602 

At higher modal numbers (N=246/247), TIC-DMD shows a clear advantage. 603 

When Re = 5×105 and reconstruction errors are calculated for all snapshots, SPDMD 604 

has a reconstruction error of 0.0449, while TIC-DMD's error is only 0.0175, a reduction 605 

of 61.02%. This further validates that TIC-DMD, through its global energy integration 606 

strategy, effectively filters noise and captures the dominant modes of the flow field. 607 

While SPDMD also shows some advantages at higher modal numbers, its 608 

reconstruction error is still significantly higher than TIC-DMD. Standard DMD shows 609 

the worst performance at low modal numbers, especially at Re = 2×10⁶, where it fails 610 

to extract the dominant modes of the flow field, resulting in a reconstruction error of 611 

85.25%, much higher than TIC-DMD and SPDMD.612 

613 

Figure 9: RLE of Each Mode for Different Reconstruction Methods614 

In summary, TIC-DMD demonstrates the best stability and accuracy in flow field 615 

reconstruction for high Reynolds number flows, particularly at higher modal numbers 616 
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where reconstruction errors are minimized. SPDMD performs well at low modal 617 

numbers but does not match TIC-DMD at higher modal numbers, with its 618 

reconstruction error increasing significantly as the number of modes increases. 619 

Standard DMD performs the worst when reconstructing high Reynolds number flows 620 

at low modal numbers, as it fails to extract the dominant modes of the flow field, making 621 

it unsuitable for precise reconstruction of high Reynolds number flows.622 

Table 1: Reconstruction errors for the 120th snapshot at different modal numbers (a) Re 623 

= 5×105 (b) Re =2×106.624 

Modal 
Number 

RLE(DMD) RLE(TIC-DMD) RLE(SPDMD)

(a) (b) (a) (b) (a) (b)
246/247 0.0700 0.0894 0.0584 0.0835 0.1350 0.1389 

7 0.2423 0.8804 0.2421 0.2161 0.2151 0.2700 

625 

Table 2: Reconstruction errors for all snapshots at different modal numbers (a) Re = 626 

5×10⁵ (b) Re = 2×10⁶.627 

Modal 
Number 

RLE(DMD) RLE(TIC-DMD) RLE(SPDMD)

(a) (b) (a) (b) (a) (b)
246/247 0.0192 0.0206 0.0175 0.0227 0.0449 0.0374 

7 0.2469 0.8525 0.2211 0.1062 0.0593 0.1272 

628 

To further evaluate the reconstruction performance of the DMD, TIC-DMD, and 629 

SPDMD methods in the time domain, this section also analyzes the velocity 630 

reconstruction at the same point across all time steps. Figure 10 presents the U-V 631 

velocity reconstruction results of DMD, TIC-DMD, and SPDMD methods at different 632 

modal numbers (N=7 and N=246/247) under the conditions of Re = 5×105 and Re = 633 

2×106. The results show that at low modal numbers (N=7), TIC-DMD exhibits large 634 

variations in the reconstructed velocity at the initial stages, indicating that this method 635 

extracted modes with larger amplitudes and faster decay rates, leading to stronger 636 
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fluctuations during the reconstruction process. In contrast, SPDMD provides a 637 

smoother velocity reconstruction. At Re = 5×105, SPDMD has a reconstruction error of 638 

0.6021 at low modal numbers, which is smaller than the error for TIC-DMD.639 

Table 3: Reconstruction errors for all time steps (a) Re = 5×105 (b) Re = 2×106.640 

Modal 
Number 

RLE（DMD） RLE（TIC-DMD） RLE(SPDMD) 

(a) (b) (a) (b) (a) (b) 
246/247 0.1931 0.3197 0.1433 0.3027 0.3443 0.5054 

7 1.6385 2.8958 1.3658 0.7556 0.6133 0.6021 

641 

As the number of modes increases (N=246/247), TIC-DMD shows a significant 642 

improvement in reconstruction accuracy. At Re = 5×105 the reconstruction error 643 

decreases to 0.1433, a 58.4% reduction compared to SPDMD (0.3443) and a 25.8% 644 

reduction compared to DMD (0.1931). This indicates that TIC-DMD is better at fitting 645 

the actual flow field and accurately capturing the dynamic characteristics of the flow at 646 

higher modal numbers. Notably, at Re = 2×106, TIC-DMD’s reconstruction error is 647 

0.3027, which is substantially lower than SPDMD’s 0.5054 and DMD’s 0.3197, 648 

highlighting TIC-DMD’s greater stability and smaller errors under high Reynolds 649 

number conditions.650 

In summary, TIC-DMD exhibits stronger adaptability at higher modal numbers, 651 

enabling more accurate capture of the dynamic characteristics of high Reynolds number 652 

flows. While SPDMD performs better at lower modal numbers, its accuracy decreases 653 

as the number of modes increases, failing to capture transient numerical modes as 654 

effectively as TIC-DMD.655 
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Figure 10: U-V velocity reconstruction at a specific point in space.704 
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5. Conclusion705 

This study examines the application of standard DMD, TIC-DMD, and SPDMD706 

in high Reynolds number cavity flows, evaluating their performance in modal 707 

extraction, feature representation, and flow field reconstruction. Using PIV 708 

experimental data at Re = 5×105 and Re = 2×106, it assesses their strengths and 709 

limitations in capturing multi-scale turbulence dynamics.710 

TIC-DMD and SPDMD incorporate global energy integration and sparse 711 

optimization strategies, respectively, to effectively mitigate high-frequency noise and 712 

small-scale structures in high Reynolds number flows. This enhances the accuracy and 713 

reliability of flow field analysis. In the top cover cavity-driven flow at Re = 2×106, both 714 

methods accurately identify the dominant circulation structure, whereas standard DMD 715 

struggles to represent the primary dynamic features of the flow.716 

At high Reynolds numbers, TIC-DMD and SPDMD improve the accuracy of 717 

dynamic flow field analysis through optimized modal selection. At Re = 5×105, the 718 

initial modes extracted by standard DMD show significant high-frequency 719 

characteristics, leading to rapid energy dissipation. At Re = 2×106, standard DMD 720 

delayed the extraction of steady-state structures. In contrast, TIC-DMD effectively 721 

captures low-frequency large vortex structures at Re = 2×106, while SPDMD ensures 722 

more stable decay rates and frequencies at Re = 5×105.723 

In terms of performance, TIC-DMD excels at higher modal numbers (N = 246), 724 

achieving a reconstruction error of RLE = 0.0175 at Re = 5×105 that is 61.02% lower 725 

than SPDMD. SPDMD outperforms at lower modal numbers (N = 7) with an RLE = 726 

0.1272 at Re = 2×106, but its performance deteriorates as the number of modes increases. 727 

In contrast, standard DMD shows high reconstruction errors at lower modal numbers 728 

(RLE = 0.8525 at Re = 2×106).729 

The modal sorting strategy presented in this study provides a novel approach for 730 

reduced-order modeling of high-dimensional nonlinear systems. Future work could 731 

explore hybrid methods, such as TIC-SPDMD, which combine global energy 732 

integration with sparse constraints to enhance the accuracy of modeling high-Reynolds-733 
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number flows in aerospace applications, such as supersonic jet screech analysis and 734 

turbulent wake dynamics. In conclusion, TIC-DMD and SPDMD highlights the 735 

advantages of global energy integration and sparse optimization. TIC-DMD is suitable 736 

for multi-scale turbulence analysis, while SPDMD is beneficial for real-time flow field 737 

control. The findings deepen our understanding of high Reynolds number flow 738 

dynamics and provides a solid foundation for modeling and optimizing complex flow 739 

fields.740 
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