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In brief

A multicohort genome-wide association
meta-analysis of osteoarthritis highlights
the impact of joint site types on the
features of genetic risk variants and the
link between osteoarthritis genetics and
pain-related phenotypes, pointing toward
potential targets for therapeutic
intervention.
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SUMMARY

Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study
meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently asso-
ciated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the dis-
ease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects
between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset
osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular
cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We pro-
vide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and iden-
tify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in
disease processes and highlight attractive drug targets to accelerate translation.

INTRODUCTION 2018). Currently no curative treatments are available, and man-

agement strategies focus on symptom alleviation through pain
Osteoarthritis is one of the leading causes of disability and pain  relief and arthroplasty. A detailed understanding of disease
worldwide, with over 300 million people affected (GBD 2017 etiopathology and new drug targets are therefore urgently
Disease and Injury Incidence and Prevalence Collaborators, needed.

4784 Cell 184, 4784-4818, September 2, 2021 © 2021 The Authors. Published by Elsevier Inc.
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Osteoarthritis is a complex degenerative disease of the whole
joint, characterized by cartilage degeneration, subchondral bone
thickening, osteophyte formation, synovial inflammation, and
structural alterations of the joint capsule, ligaments, and associ-
ated muscles (Hunter and Bierma-Zeinstra, 2019). Recently, ad-
vances were made in elucidating the genetic background of
osteoarthritis, using genome-wide association studies (GWAS)
(Styrkarsdottir et al., 2018; Tachmazidou et al., 2019; Tachmazi-
dou et al., 2017; Zengini et al., 2018), with 96 statistically inde-
pendent risk variants reported to date. These variants only
explain a small proportion of the phenotypic variance (Tachma-
zidou et al., 2019) and are mainly associated with osteoarthritis
affecting the knee and hip joints.

Osteoarthritis can affect every synovial joint and an increase in
body mass index (BMI) is associated with risk of disease (Geu-

sens and van den Bergh, 2016). A better understanding of the
genetic differences between weight bearing (knee, hip, and
spine) and non-weight bearing joints (hand, finger, and thumb)
is needed to help disentangle the metabolic and biomechanical
effects contributing to disease development. Here, we conduct-
ed a GWAS meta-analysis across knee, hip, finger, thumb, and
spine osteoarthritis phenotypes in 826,690 individuals of Euro-
pean and East Asian descent. We integrated functional geno-
mics analyses from disease-relevant tissue, including gene
expression, protein abundance and genome-wide methylation,
mouse knockout model and monogenic human disease pheno-
typing data, and complementary computational fine-mapping,
colocalization, and causal inference approaches to identify likely
effector genes and facilitate much-needed translation into ther-
apies by enhancing our understanding of disease etiopathology.
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RESULTS

Genetic architecture

Identification of osteoarthritis risk variants

We performed GWAS meta-analyses for osteoarthritis across 13
international cohorts stemming from 9 populations (Table S1), in
up to 826,690 individuals (177,517 osteoarthritis patients). This is
a substantial (2.3-fold) increase of osteoarthritis patient numbers
compared to the largest osteoarthritis GWAS to date. Two of the
cohorts are of East Asian and 11 of the cohorts are of European
descent. We defined 11 phenotypes encompassing all major
sites for osteoarthritis (Figure 1; Table S1; STAR Methods). We
found 11,897 genome-wide significantly associated single
nucleotide variants (SNVs) using a threshold of p < 1.3 x 108,
to account for the effective number of independent tests. We
applied conditional analyses within phenotype and identified
223 independent associations, some of which overlap across
phenotypes (Figure 1; Table 1). Eighty-four variants have not
been associated with osteoarthritis before. We investigated the
previously reported osteoarthritis-loci and found that 87 out
of 96 replicated in the same direction at nominal significance
(Table S2).

We used conditional analyses to identify associations that do
not overlap across disease phenotype definitions. We identified
100 unique and independent variant associations, 60 of which
were associated with more than one osteoarthritis phenotype.
Fifty-two variants have not been associated with any osteoar-
thritis phenotype before (Tables 2 and S3). For each of the 100
association signals, we defined the lead SNV as the risk variant
with the strongest statistical evidence for association. Six lead
SNVs are coding (all missense), 59 reside within a gene tran-
script, and 35 are intergenic.

Here, we report signals for spine (n = 1) and thumb (n = 2) oste-
oarthritis and increase the number of risk SNVs for hand (5 new, 3
previously reported) and finger (3 new, 2 previously reported)
osteoarthritis, phenotypes that had not been studied at scale
before (Tables 1, 2, and S3). Of the 100 SNVs, 90 are common
(minor allele frequency [MAF] >5%) and 4 are low-frequency
variants (MAF <5% and >0.5%). We detected 6 rare variant as-
sociations (MAF 0.03%-0.11%) with large effect sizes (odds ra-
tio [OR] range = 3.03-9.52) (Table 2); 1 variant association was
previously reported and 5 variant associations are new findings.
All of the new rare variant associations are primarily driven by a
large extended family in Iceland.

Signals from 4 osteoarthritis phenotypes (spine, knee, knee
and/or hip, and osteoarthritis at any site) included individuals
of non-European ancestry (between 0.9%-2.8% of cases were
of East Asian descent). Even though sample sizes in the East
Asian cohorts are small, we observed that 62% of the signals
have supportive evidence in East Asian ancestry-only analysis,
with the same direction of effect, and 20% of these signals are
also nominally significant (binomial test p = 2.27 x 10-5, 95%
confidence interval [Cl] = 7%-100%) (STAR Methods).

We investigated the predictive power of polygenic risk scores
(PRS) and found significantly higher odds of developing dis-
ease in individuals at the higher decile of the PRS distribution
for several osteoarthritis phenotypes (Table S4; STAR
Methods).

4786 Cell 184, 4784-4818, September 2, 2021
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Female-specific osteoarthritis risk variants

To investigate the presence of osteoarthritis signals specific to
males only, females only, or with effects of opposite direction
in men and women, we performed a sex-differentiated test of
association and a test of heterogeneity in allelic effects (Magi
et al., 2010; Magi and Morris, 2010). We identified 3 new fe-
male-specific independent SNVs, two of which showed signif-
icant (Phet-diff <0.016) differences in effect size between
sexes (Tables 2 and S5). rs116112221 (Psex-diff = 3.20 x
10-9, Phet-diff = 4.09 x 10—4; female OR = 1.95, 95% CI =
1.58-2.41, P-female = 4.61 x 10-19; male OR = 1.06, 95%
Cl = 0.82-1.38, P-male = 0.64) is significant in the female-
only total hip replacement phenotype and is located in a region
containing long intergenic non coding RNAs with the closest
protein coding gene being FANCL. FANCL mutations are
potentially causative for premature ovary insufficiency in hu-
mans (Yang et al., 2020), a condition that leads to early meno-
pause, which has been suggested to be linked to increased
prevalence of osteoarthritis, although definitive evidence for
this hypothesis is still lacking (Jung et al., 2018; Srikanth
et al., 2005). Preclinical and clinical studies indicate that selec-
tive estrogen receptor modulators (SERMs) treatment has
consistently positive effects on osteoarthritis, especially for
postmenopausal patients with early-stage or osteoporotic
osteoarthritis (Xiao et al., 2016).

We further identified a signal associated with total hip replace-
ment with opposite direction of effects between men and
women, rs10282983 (Psex-diff = 4.93 x 10-'6, Phet-diff =
7.66 x 10-14; female OR = 1.15,95% Cl = 1.11-1.19, P-female =
2.21 x 1014, male OR = 0.92, 95% CIl = 0.88-0.96, P-male =
5.16 x 10-4). rs10282983 resides in an intron of C80rf34, which
has been associated with waist-to-hip ratio (Kichaev et al., 2019;
Pulit et al., 2019) and heel bone mineral density (Kichaev et al.,
2019), both risk factors for osteoarthritis (Hardcastle et al,
2015; Lohmander et al., 2009). rs10453201 is significantly asso-
ciated with female osteoarthritis at any site (Psex-diff = 5.67 x
10-9, Phet-diff = 0.049; female OR = 1.05, 95% CI| = 1.03-
1.06, P-female = 1.05 x 10-8; male OR = 1.02, 95% CI =
1.003-1.04, P-male = 0.02) and is located 5" of UBAP2, which
has been associated with Parkinson’s disease (Nalls et al.,
2019), type 2 diabetes (Xue et al., 2018), BMI (Kichaev et al.,
2019), and heel bone mineral density (Morris et al., 2019) in
humans.

Early-onset osteoarthritis

Genome-wide meta-analysis identified a new risk variant for
early osteoarthritis with large effect size and low allele fre-
quency (rs148693048; effect allele frequency = 0.12%, p =
3.37 x 108, OR = 6.26, 95% CIl = 3.26-12.00) (Tables 2
and S3). The variant is nominally significantly associated in
all contributing studies and with the same direction of effect.
rs148693048 has not been associated with osteoarthritis
before. Two protein-coding genes in the vicinity show signifi-
cantly different expression levels in intact compared to
degraded cartilage (NEFM and DOCK5). NEFM (neurofilament
medium) is relevant to the elongation of neuronal structures
(Pezzini et al., 2017), and the expressed protein is commonly
used as a biomarker of neuronal damage (Khalil et al., 2018).
The guanine nucleotide exchange activity of DOCK5
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Figure 1. Genetic architecture

Graphical summary of the Genetics of Osteoarthritis Consortium workflow and results.

(A) Overview of the 11 defined osteoarthritis phenotypes, sex specific analysis, their relationship with each other and their sample sizes (cases/controls). TKR,
total knee replacement; THR, total hip replacement.

(B) Merged Manhattan-plot of all individual meta-analysis results of all 11 examined osteoarthritis phenotypes. The dashed line represents the genome-wide
significance threshold p = 1.3 x 1078,

(C) Graphical overview of all lead genome-wide significant independent osteoarthritis associated single nucleotide variants (SNVs) and the osteoarthritis
phenotypes with which they are associated.

See also Table S1.
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Table 1. Summary results for all genome-wide significant
osteoarthritis associated SNVs

Genome-wide Cases/ New Known

association study ~ controls Signals®  signals®  signals®

All osteoarthritis® 177,517/ 21 8 13
649,173

Knee and/or hip 89,741/ 31 9 22

osteoarthritis 400,604

Hip 36,445/ 45 17 28

osteoarthritis 316,943

Knee 62,497/ 24 11 13
osteoarthritis 333,557

Total hip 23,021/ 38 12 26
replacement 296,016

Total knee 18,200/ 10 4 6
replacement 233,841

Total joint 40,887/ 37 12 25
replacement 327,689

Hand 20,901/ 7 5 2
osteoarthritis 282,881

Finger 10,804/ 5 3 2
osteoarthritis 255,814

Thumb 10,536/ 4 2 2
osteoarthritis 236,919

Spine 28,372/ 1 1 0
osteoarthritis 305,578

Total 223 84 139
Total independent 100 52 48
signals across

phenotypes®

Sex-specific analysis

Female total hip 11,089/ 2 2 0
replacement 67,516

Female all 90,838/ 1 1 0
osteoarthritis 192,697

Early-onset osteoarthritis analysis

Early all 6,838/ 1 1 0

osteoarthritis 41,449

Signals reported here are genome-wide significant (p < 1.3 x 1078) with
the exception of the early-onset analysis (p <5 x 107%).

8Cases are any-site osteoarthritis: hip, knee, hand, finger, thumb,
and spine.

PSignals numbers are based per defined osteoarthritis phenotype, new/
known are based on previously reported osteoarthritis loci.
°Independence calculated within and across osteoarthritis phenotypes,
the lead SNV is assigned to the most significant phenotype (Table S3).

(dedicator of cytokinesis 5) has been identified as a regulator
of osteoclast function, playing an essential role in bone
resorption (Vives et al., 2011). Pharmacological inhibition of
its activity prevents osteolysis, while preserving bone forma-
tion in both humans and mice (Mounier et al., 2020). Intronic
variation in DOCK5 also shows association (p < 5.0 x 10-8)
with other bone phenotypes, such as heel bone mineral den-
sity (Kim, 2018) and adolescent idiopathic scoliosis (Liu
et al., 2018).
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Cross-phenotype analysis
Similarities and differences of signals across phenotypes
We observed that some variants demonstrate a joint-specific ef-
fect. We found that the majority of SNVs (60 out of the 100) were
genome-wide significantly associated with more than one oste-
oarthritis phenotype (Figure 2). Forty of the identified SNVs show
genome-wide significant associations with weight bearing joints
only and 4 SNVs show genome-wide significant associations
with non-weight bearing joints only (Figure 2; Table S3). We
have over 80% power to detect all 4 non-weight bearing specific
variants in the weight bearing joint analyses (at genome-wide
significance). Further, we have over 80% power to detect 22 of
the 40 weight bearing joint-specific effects in non-weight bearing
joint analyses (hand osteoarthritis). Although several core path-
ways are known to underpin osteoarthritis pathology, regardless
of joint site affected, no common genetic osteoarthritis SNVs
have been found previously, with the exception of the GDF5 lo-
cus (Reynard and Loughlin, 2013; Sandell, 2012). Here, we
have identified 42 SNVs with strong association across
both weight bearing and non-weight bearing joints. Several of
these SNVs, rs3771501 (TGFA), rs3993110 (TEAD1/DKK3),
rs72979233 (CHRDL2), and rs7967762 (PFKM/WNT10B) (Fig-
ures 2B and 2D), are associated with multiple osteoarthritis joint
sites. These signals likely represent a common underlying mech-
anism in osteoarthritis pathology. They have been shown to play
arole in the transforming growth factor g (TGF-f)/bone morpho-
genetic protein (BMP), Wnt/B-catenin signaling pathways, the
functional interaction of which has been implicated in the patho-
genesis of osteoarthritis (Wu et al., 2012). These signaling path-
ways could be prime candidates for drug development.
Additional insights may also be gleaned from the comparison
of association signals across osteoarthritis phenotypes. Most of
the SNVs associated with knee, hip, and knee and/or hip osteo-
arthritis have a larger effect size on the respective joint replace-
ment-defined phenotypes, all of which are notably of smaller
sample size. This could be driven by homogeneity of phenotype
definition (Manchia et al., 2013) (Table S1) or can represent a bio-
logical and functional relevance, indicating that these loci might
play more important roles in receiving a joint replacement (i.e.,
pain and inflammation) than in osteoarthritis pathology itself.
For example, rs76340814 (PTCH1) and rs28929474 (missense
variant in SERPINAT) have stronger associations and larger ef-
fect sizes with total hip replacement (THR), total knee replace-
ment (TKR), and total joint replacement (TJR), than with hip or
knee osteoarthritis (Figure 2A). Indeed, PTCH1 is thought to
function in neurogenic and brain development (Mansilla et al.,
2006; Ribeiro et al., 2010), and SERPINA1 is thought to function
in inflammation. Studies in rat osteoarthritis models have shown
that early treatment with alpha-1-antiproteinase, encoded by
serpinat, blocked the proteolytic activity of neutrophil elastase
and caused lasting improvements in joint inflammation, pain,
and saphenous nerve damage (Muley et al., 2017).
Genetic links between phenotypes
We found osteoarthritis subtypes to share substantial genetic
components, albeit with a wide range (Figure 2E; Table S6).
We investigated if osteoarthritis genetic components are
shared with other traits and found significant correlation with
anthropometric traits (BMI, obesity, weight, and fat mass), type
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Table 2. Summary statistics of the 100 independent genome-wide significant SNVs

Osteoarthritis

Other osteoarthritis

phenotype phenotypes SNV Chr:pos EA  NEA EAF OR 95% CI p Annotation Nearest gene WitGrp
New SNVs
FingerOA rs11588154 1:55301936 T G 0.17 0.83 0.79-0.88 6.08 x 10°'° intron Clorf177 2
HipOA THR rs4411121 1:118757034 T (¢} 0.31 1.07 1.05-1.09 216 x 107" intergenic SPAG17 0
THR HipOA, TJR rs1327123 1:184014593 C G 0.35 0.91 0.89-0.93 2.44 x 10718 intergenic TSEN15 0
ThumbOA rs11588850 1:227927242 A G 0.82 0.87 0.84-0.91 3.53 x 107"° intron SNAP47 2
KneeHipOA KneeOA rs74676797 2:633063 A G 0.82 1.05 1.03-1.07 6.39 x 107" intergenic TMEM18 0
THR HipOA rs66989638 2:106689736 A G 0.13 1.12  1.08-1.15 3.31 x 107" intron C2o0rf40 1
THR rs2276749 3:11643465 T C 0.05 0.86 0.82-0.90 3.34 x 10°°  missense VGLL4 1
p.lle37Met
AlIOA rs62242105 3:20630395 A G 0.33 0.97 0.96-0.98 2.93 x 107° intergenic RNUG6-815P NA
HipOA rs781661531 3:187051013 T C 0.9997 0.11  0.05-0.21 8.36 x 10~"" intergenic RTP4 NA
HipOA rs747952496  3:188311659 A G 4x107* 7.02 3.93-1255 4.91x 10~"" intron LPP NA
HipOA rs9835230 3:189735461 A G 0.24 1.07 1.04-1.09 1.34 x 10°° intron LEPREL1 1
AlIOA SpineOA rs201194999  4:66666895 T C 0.3 0.88 0.85-0.92 3.05x 10°° intergenic RNU2-40P 1
AlIOA rs11729628 4:121584282 T G 0.24 0.97 0.96-0.98 474 x 107° intergenic RP11-501E14.1 NA
THR rs75686861 4:145621328 A G 0.09 1.12  1.08-1.16 3.04 x 107° intron HHIP 0
KneeOA rs2066928 5:30843787 A G 0.48 0.96 0.95-0.97 1.20 x 1078 intergenic RPL19P11 1
THR HipOA rs56132153 5:67825133 A C 0.61 1.07 1.05-1.09 3.80 x 107° intron CTC-537E7.1 0
HandOA rs1560080 5:115338732 A G 0.83 0.91 0.88-094 9.61 x10°° intron AQPEP 1
KneeHipOA TJR, AlIOA, rs17615906 5:128018413 T C 0.84 0.95 0.93-096 3.76 x 107" intron SLC27A6 1
HipOA, THR
HandOA ThumbOA, rs10062749 5:141805088 T G 0.27 1.08 1.6-1.11 2.04 x 107° intron AC005592.2 1
KneeOA
FingerOA HandOA rs9396861 6:18404133 A (¢} 0.61 1.13  1.09-1.17 9.35 x 107" intron RNF144B 2
TJR rs2038740 6:35114542 T C 0.72 0.94 0.93-0.96 6.20 x 10" intron TCP11
TJR rs116934101 7:101775597 A G 0.27 1.06 1.04-1.08 7.12 x 107° intron CUX1 1
AlIOA rs12667224 7:114024316 A G 0.52 0.97 0.96-0.98 1.66 x 10~° intron FOXP2 NA
KneeHipOA rs571734653 7:137143697 A C 3x 107 6.03 3.30-11.03 5.56 x 107° intron DGKI NA
TKR rs7787744 7:150521096 A G 0.67 1.08 1.05-1.11 1.29 x 107°  upstream_gene AOC1 0
TJR rs76340814 9:98321412 A G 0.05 0.89 0.86-0.92 1.87 x 10°° intergenic RP11-332M4.1
THR HipOA, TJR, rs79895530 9:110416422 T C 0.13 0.88 0.85-0.91 3.86 x 10" intergenic RNU6-996P
KneeHipOA
HipOA rs7862601 9:118343026 A G 0.62 0.94 0.92-0.96 6.19 x 107° intergenic RP11-284G10.1 O
HipOA rs10983775 9:120521100 T C 0.54 0.95 0.93-097 4.65x 107° intergenic RP11-281A20.2 0
HipOA rs10465114 9:129917824 A G 0.22 1.06 1.04-1.09 9.04 x 10°° intron RALGPST1 0

(Continued on next page)
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Table 2. Continued

Osteoarthritis

Other osteoarthritis

phenotype phenotypes SNV Chr:pos EA NEA EAF OR 95% ClI p Annotation Nearest gene WitGrp
THR HipOA rs3740129 10:73767859 A G 0.46 1.08 1.05-1.10 1.70 x 10~""  Missense CHST3 0
p.Arg357GiIn
TJR rs10824456 10:78615458 (¢} G 0.58 0.95 0.94-0.97 116 x 1078 intergenic KCNMAT1 1
HandOA THR rs3993110 11:12794530 A (¢} 0.61 1.09 1.06-1.11 3.75 x 10~ intron TEAD1 1
KneeHipOA rs1631174 11:47974373 A (¢} 0.34 1.04 1.03-1.05 7.28 x 107°  regulatory_region PTPRJ 1
TKR KneeOA rs72979233 11:74355523 A G 0.75 0.92 0.89-0.95 252 x 107° intron POLD3 1
TJR AlIOA, KneeHipOA, rs10831475 11:95796907 A G 0.81 1.08 1.05-1.10 5.89 x 107'2 intron MAML2 1
HipOA, THR
KneeHipOA KneeOA, TKR rs10842226 12:23959589 A G 0.42 1.04 1.03-1.06 4.68 x 107'° intron SOX5 1
TKR KneeOA rs7967762 12:48420214 T (¢} 0.16 111 1.07-1.15 4.41 x 107'°  upstream_gene RP1-228P16.4 1
KneeOA rs1426371 12:108629780 A G 0.27 0.95 0.93-0.97 8.86 x 107'° intron WSCcD2 0
KneeOA rs58973023 13:42959133 AT 0.49 1.06 1.04-1.08 4.72 x 107"° intergenic FABP3P2 1
TJR rs28929474 14:94844947 T C 0.02 0.81 0.76-0.86 1.06 x 10°'°  Missense SERPINA1 0
p.Glu366GIn
THR HipOA rs746239049 15:63067433 D | 0.21 0.90 0.87-0.93 8.19 x 107" intron TLN2 0
KneeOA rs12914479 15:99174828 (¢} G 0.66 1.04 1.03-1.06 7.12 x 107°  intergenic RP11-35015.1 0
KneeOA rs6500609 16:4515334 C G 0.11 0.94 0.91-0.96 516 x 107° intron NMRAL1 1
TJR rs227732 17:54769890 T C 0.3 1.06 1.04-1.09 1.61 x 10°° intergenic NOG 0
KneeHipOA HipOA, AlIOA rs9908159 17:54841961 T C 0.51 1.04 1.03-1.05 4.44 x 107" intergenic C170rf67 1
AlIOA rs1039257158 18:77950448 T (¢} 6x107* 3.62 2.35-5.60 6.56 x 107° intron PARD6G NA
KneeHipOA rs551471509 19:9943264 T (¢} 0.9996 0.18 0.10-0.32 115 x 1078 upstream_gene CTD-2623N2.11  NA
HandOA FingerOA rs8112559 19:46390455 (¢} G 0.89 1.13 1.09-1.18 7.32 x 107" upstream_gene IRF2BP1 2
TJR rs9981884 21:40585633 A G 0.49 0.95 0.94-0.97 7.93 x 107°  intron BRWD1 1
KneeOA rs11705555 22:28206912 A (¢} 0.76 1.05 1.03-1.07 2.99 x 107°  regulatory_region MN1 1
THR TJR, HipOA rs12160491 22:38195796 A G 0.71 0.93 0.90-0.95 1.28 x 107" intergenic H1FO 0
Previously reported
HipOA THR, TJR, AllOA, rs11164653 1:103464210 T C 0.41 0.92 0.91-0.94 2.77 x 107 '8 intron COL11A1 1
KneeHipOA
AlIOA 1:150214028 1:150214028 D | 0.38 1.04 1.02-1.05 8.58 x 107'°  intergenic RNU2-17P NA
TJR rs10797923 1:183901966 T (¢} 0.69 1.05 1.04-1.07 6.20 x 107° intron COLGALT2 0
TJR KneeHipOA, rs2605100 1:219644224 A G 0.32 1.07 1.05-1.09 4.49 x 107" intergenic RP11-95P13.1 1
KneeOA,
HipOA, THR
KneeHipOA KneeOA rs7581446 2:33423801 T (¢} 0.48 0.95 0.94-0.97 4.87 x 107" intron LTBP1 1

(Continued on next page)
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Table 2. Continued

I°D

Osteoarthritis ~ Other osteoarthritis
phenotype phenotypes SNV Chr:pos EA NEA EAF OR 95% ClI p Annotation Nearest gene WitGrp
AlIOA HipOA, TJR, rs3771501 2:70717653 A G 0.47 1.04 1.03-1.05 4.05 x 107" intron TGFA NA
THR, ThumbOA,
KneeHipOA,
HandOA
AlIOA rs62182810 2:204387482 A G 0.54 1.03 1.02-1.04 3.82x10°° intron RAPH1 NA
THR KneeHipOA, rs3774354 3:52817675 A G 0.37 1.10 1.07-1.12 1.40 x 107'® intron ITIH1 0
TJR, HipOA
TJR TKR, HipOA, AlIOA, rs1530586 4:1760927 T C 0.8 1.09 1.06-1.11 3.34 x 107" regulatory_ TACCS3 0
KneeOA, THR, region
KneeHipOA
THR TJR, HipOA, rs1913707 4:13039440 A G 0.6 1.09 1.06-1.11 1.23 x 107'®  intergenic RNU6-962P 1
KneeHipOA, AlIOA
AlIOA HipOA, KneeHipOA rs13107325 4:103188709 T C 0.07 1.08 1.06-1.10 3.25x 10°'7 missense SLC39A8 0
p.Ala391Thr
KneeHipOA HipOA rs3884606 5:170871074 A G 0.52 0.96 0.95-0.97 8.96 x 107'° intron FGF18 1
HipOA rs79220007 6:26098474 T C 0.93 0.90 0.87-0.93 222 x10°  3_prime_UTR HFE 0
KneeHipOA rs2856821 6:33046742 T C 0.79 1.05 1.03-1.06 571 x 107°  intron HLA-DPA1 0
THR KneeHipOA, rs17288390 6:45384018 T C 0.65 0.92 0.90-0.94 9.16 x 107" intron RUNX2 0
HipOA, TJR
THR HipOA, TJR rs9475400 6:55638258 T C 0.1 1.15 1.10-1.19 1.73 x 107'®  intron BMP5 0
THR HipOA, TJR rs12209223 6:76164589 A C 0.11 122 1.18-1.26 1.92 x 1072° intron FILIP1 1
HipOA THR rs111844273 7:18436337 A G 0.02 1.26 1.18-1.34 1.05 x 107" intron HDAC9 0
THR HipOA rs143083812  7:128843410 T C 1.1 x10° 330 2.34-466 1.11x10°'" missense SMO NA
p-Arg173Cys
THR HipOA, TJR rs11984666 8:130730280 A C 0.2 0.90 0.87-0.92 1.69 x 107'°  intergenic RP11-274M4.1 0
KneeHipOA KneeOA rs10974438 9:4291928 A C 0.65 1.04 1.03-1.06 7.39 x 107" intron GLIS3 1
KneeHipOA TKR, KneeOA, rs72760655 9:116916214 A C 0.33 1.05 1.03-1.06 5.97 x 10713 upstream_gene COL27A1 1
TJR, AIIOA
THR HipOA rs1330349 9:117840742 C G 0.59 1.10 1.07-1.12 6.47 x 10~ intron TNC 0
THR HipOA, TJR rs1321917 9:119324929 cC G 0.41 1.10 1.08-1.13 9.87 x 107'° intron ASTN2 1
THR HipOA rs62578126 9:129375338 T C 0.37 0.92 0.90-0.94 1.39 x 1072 intron RP11-123K19.1 0
KneeHipOA TJR rs1517572 11:28829882 A C 0.41 1.04 1.03-1.05 6.79 x 107'° intron RP11-115423.1 1
THR HipOA, TJR rs67924081 11:65342981 A G 0.74 1.10 1.07-1.12 2.14 x 10"  upstream_gene EHBP1L1 1
THR HipOA rs34560402 11:66872320 T C 0.06 0.86 0.82-0.90 2.64 x 107'° intergenic KDM2A 0 %
KneeHipOA rs1149620 11:76506572 A T 0.44 0.96 0.95-0.97 2.87 x 10° intron TSKU 1 o o
FingerOA rs7294636 12:15054016 A G 0.37 116 1.12-1.20 2.99 x 107'® intron C120rf60 1 % oD
THR TJR, KneeHipOA, rs10843013 12:28025196 A C 0.78 0.86 0.84-0.88 2.53 x 107%° intergenic RP11-993B23.1 0 Z =
HipOA 3 Y
THR HipOA rs17120227 12:59289349 T C 0.07 117 1.12-1.22 7.21 x 107" intron LRIG3 0 Crg 8
(Continued on next page) % (/)]
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Table 2. Continued

Osteoarthritis

Other osteoarthritis

phenotype phenotypes SNV Chr:pos EA NEA EAF OR 95% Cl p Annotation Nearest gene WtGrp

KneeHipOA TJR rs7953280 12:94136009 C G 0.5 1.04 1.03-1.06 4.84 x 107" intron CRADD 0

KneeOA rs753350451 12:123732769 D | 0.2 0.93 0.91-0.95 3.36 x 107'° intron C120rf65 0

TJR HipOA, THR rs1809889 12:124801226 T (¢} 0.28 1.07 1.05-1.09 5.70 x 10°"*  downstream_ FAM101A 0

gene

KneeOA KneeHipOA rs4380013 15:50759428 A G 0.19 1.06 1.04-1.08 8.73 x 107"° intron USsP8 1

HandOA KneeOA, TKR, rs11071366 15:58334244 A T 0.61 0.90 0.88-0.92 4.88 x 107" intron ALDH1A2 1
FingerOA, ThumbOA

HipOA TJR,THR, rs12908498 15:67366488 C G 0.54 1.08 1.06-1.10 1.85 x 107'® intron SMAD3 1
KneeHipOA, AlIOA

KneeHipOA TJR, HipOA, rs9940278 16:53800200 T C 0.43 1.06 1.04-1.07 1.45 x 107'® intron FTO 1
KneeOA

KneeOA TKR rs34195470 16:69955690 A G 0.45 0.95 0.94-0.96 3.13 x 107" intron wwp2 0

AlIOA TKR, KneeHipOA, rs216175 17:2167690 A (¢} 0.83 1.04 1.03-1.06 2.74 x 107" intron SMG6 NA
KneeOA

THR HipOA rs7212908 17:59654593 A G 0.8 0.91 0.89-0.94 1.95 x 107" intergenic NACA2 0

THR TJR, HipOA rs2716212 17:67503653 A G 0.62 0.93 0.91-0.95 3.56 x 107'° intron MAP2K6 0

AlIOA KneeOA rs10405617 19:10752968 A G 0.32 1.03 1.02-1.04 9.33 x 107" intron SLC44A2 NA

TJR AlIOA rs75621460 19:41833784 A G 0.03 121 1.14-1.28 2.72 x 107" intron TGFB1 1

THR HipOA, TJR rs4252548 19:55879672 T C 0.02 1.39 1.29-1.49 2.49 x 107" Missense IL11 1

p.Arg33His

KneeOA AlIOA, TJR, rs143384 20:34025756 A G 0.59 1.07 1.06-1.09 1.01 x 1072®  5_prime_UTR GDF5 1
KneeHipOA, TKR

THR TJR rs9981408 21:40017446 T G 0.23 1.10 1.07-1.12 2.21 x 107" intron ERG 0

Female-specific

THR rs116112221 2:59439973 T (¢} 6.1x10°° 1.95 1.58-2.41 461 x 107"  upstream_gene FANCL NA

THR rs10282983 8:69590554 T (¢} 0.22 115 1.11-1.19 221 x 107" intron C8orf34 NA

AlIOA rs10453201 9:34050345 T (¢} 0.22 1.05 1.03-1.06 1.05 x 1078 upstream_gene UBAP2 NA

Early-onset

AlIOA rs148693048 8:24598320 T (¢} 0.0012 6.26 3.26-12.00 3.37 x 10°® intron NEFM NA

Abbreviations: osteoarthritis (OA) phenotype, OA phenotype with a genome-wide significant association (p < 1.3 x 1078) with the exception of the early-onset analysis (p <5 x 10~%); other
osteoarthritis phenotypes, other OA phenotypes associated with this SNV at GWS level but less significant than OA phenotype; AIIOA, OA at any joint site; KneeOA, OA of the knee; HipOA,
OA of the hip; KneeHipOA, KneeOA and/or HipOA; TJR, total knee and/or hip replacement; TKR, total knee replacement; THR, total hip replacement; SpineOA, OA of the spine; FingerOA,
OA of the finger; ThumbOA, OA of the thumb; HandOA, FingerOA and/or ThumbOA,; EA, effect allele; NEA, Non-Effect allele; EAF, effect allele frequency; OR, odds ratio; 95% Cl, 95% confidence
interval of the OR; Annotation, most severe consequence according to grch37 Ensembl REST API (Yates et al., 2015), if missense the amino acid change is provided according to the Human Gene
Mutation Database nomenclature; NearestGene, nearest gene according to grch37 Ensembl REST API; WtGrp, which weight bearing group the signal belongs to (p < 5 x 1074, 0 = weight
bearing only, 1 = weight bearing and non-weight bearing, 2 = non-weight bearing only, NA = unclassified due to incomplete information for all phenotypes, a female specific association or
an AllIOA association.

See also Table S3.
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Figure 2. Similarities and differences of signals across phenotypes

Correlation and overlap between osteoarthritis genetics

(A-D) Heatmap plots of osteoarthritis associated single nucleotide variants (SNVs). Effect sizes (OR, odds ratio) and p values are displayed for each lead SNV for
each osteoarthritis phenotype GWAS results. OR are plotted as color, and p values are represented as symbols in the box. (A) Weight bearing joints only (hip,
knee, and spine). (B) Both weight and non-weight bearing joints (hip, knee, spine, hand, finger, and thumb). (C) Non-weight bearing joints (hand, finger, and
thumb). (D) Any-site osteoarthritis SNVs.

(E) Heatmap plot of the genetic correlation (R?) between the examined osteoarthritis phenotypes.

(F) Venn diagram depicting the number and overlap of SNVs associated with weight bearing and non-weight bearing joints.

(G) Circos plot depicting the overlap in osteoarthritis associations of the 100 lead variants.

See also Table S6.

2 diabetes, education, depressive symptoms, smoking behavior,  osteoarthritis cartilage (Liu et al., 2020) and has been associated
bone mineral density, reproductive phenotypes and intelligence  with back pain and with lumbar intervertebral disc degeneration
as previously reported (Tachmazidou et al., 2019; Zengini et al.,  (Suri et al., 2018). These findings are supported by animal model
2018), and several pain phenotypes (Table S6). data, in which inactivation of SOX5 leads to defects in skeletogen-
Pain is the most disabling symptom experienced by osteoar-  esis such as in cartilage development, the notochord, and inter-
thritis patients and is one of the main reasons to proceed to physi-  vertebral discs in mice (Smits and Lefebvre, 2003; Smits et al.,
cian consultation and total joint replacement (Schaible, 2018). The  2001). We also observed strong correlation between osteoarthritis
etiology of pain in osteoarthritis is multifactorial including signifi- and pain phenotypes in the LD-Hub database (all derived from the
cant soft tissue inflammation, the sensitization of pain pathways UK Biobank dataset), in particular between spine osteoarthritis
involving the joint nociceptors, the nociceptive processing in the  and dorsalgia (rg = 0.87), leg pain on walking (rg = 0.82), knee
CNS, and neuropathic pain components in osteoarthritis models  pain (rg = 0.63), hip pain (rg = 0.76), back pain (rg = 0.75), and
(Dimitroulas et al., 2014; Fu et al., 2018; Hsia et al., 2018; Kidd, = neck/shoulder pain (rg = 0.67) (Table S6). Thus, our data suggest
2012). Although a main symptom, no genetic determinants of that a proportion of the identified signals are also associated with
osteoarthritis pain have been discovered before. We found high  osteoarthritis pain.
correlation between osteoarthritis and sciatica, fibromyalgia,
headaches, and other back pain phenotypes, where the highest Effector genes and biological pathways
correlation is with spine osteoarthritis (genetic correlation [rg] = Identification of putative causal variants
0.61,0.87,0.39, and 0.79, respectively). SOX5, one of the newsig- We employed complementary computational approaches
nals, has been previously reported to be upregulated in human (STAR Methods) to fine-map the GWAS signals to a small set
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of likely causal variants, identify relevant tissues based on signal
enrichment (Figure S1), and provide mechanistic insights based
on expression quantitative trait locus (eQTL) colocalization and
causal inference analysis (Table S7). Twelve signals were fine-
mapped to variant sets contained entirely within the transcript
of a single gene with >95% posterior probability (PP), although
we note that this does not provide conclusive evidence for the
effector gene. Of note, ALDH1A2, which fine-maps to 6 intronic
variants with 99% PP, is currently the target of approved drugs in
use for other indications, providing a potential opportunity for
drug repositioning (Sumita et al., 2017) (Table S8).

For 6 SNVs (3 new and 3 known), a single variant could be
postulated as causal with >95% PP (Table S8).

Amassing evidence to identify effector genes

We assessed if any of the genes residing within 1 Mb of the
osteoarthritis-associated lead variants showed differential
gene expression and protein abundance in primary osteoar-
thritis-affected tissue in chondrocytes extracted from osteoar-
thritis patients undergoing joint replacement surgery. Similarly,
we compared gene expression of subchondral bone tissue un-
derneath the intact and degraded cartilage tissue (Tables S9
and S10). By combining results from the complementary func-
tional genomics and computational approaches (outlined
above), we identified 637 genes with at least one line of evi-
dence pointing to a putative effector gene (Table S10). For
these 637 genes, we combined supportive information from
the fine-mapping, eQTL colocalization analyses, animal model
data, human musculoskeletal and neuronal phenotype data,
functional genomics, and causal inference analysis and identi-
fied 77 genes that have at least 3 different lines of evidence in
support of their role as an effector gene (Tables 3 and S10).
Of these 77 genes, 4 are supported by missense lead variants
(rs2276749 in VGLL4, rs3740129 in CHST3, rs143083812 in
SMO, and rs4252548 in IL11). Forty eight provide strong addi-
tional evidence for the likely effector gene at previously re-
ported osteoarthritis-associated SNVs (Table 3) and 30 reside
in newly associated signals.

CHST3, SMAD3, and GDF5 accrued the highest levels of con-
fidence, each with 6 different lines of evidence in support of their
involvement in osteoarthritis. CHST3 (carbohydrate sulfotrans-
ferase 3) represents a newly identified signal and encodes
chondroitin sulfate, the major proteoglycan present in cartilage.
Mutations in CHST3 have been previously associated with short
stature, congenital joint dislocations, clubfoot, Larsen syn-
drome, and elbow joint dysplasia (Superti-Furga and Unger,
1993; Unger et al., 2010). CHST3 has also been shown to be
associated with lumbar disc degeneration (Song et al., 2013).

To glean further insight into the biological role of the high-con-
fidence effector genes in disease processes, we integrated addi-
tional information based on the analysis of endophenotypes
more closely related to the underlying biology, monogenic and
rare human disease data, phenome-wide analyses, and addi-
tional functional genomics data (Tables S11 and S12; STAR
Methods). By synthesizing all lines of evidence, we found that
the assignment of several of the 77 high-confidence effector
genes into likely mechanisms through which they exert their ef-
fect traverses multiple biological processes (Figure 3A). Here,
we primarily focus on the newly associated genes that are re-
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ported in this work. These represent high-value candidates for
further mechanistic and clinical investigation.

The majority of high-confidence effector genes are associated
with skeletal development (63 in total, 21 genes associated with
newly reported signals) and joint degradation (50 in total, 18
genes associated with newly reported signals; 13 genes in com-
mon between the skeletal development and joint degradation
categories) (Figure 3A). Three effector genes arising from new
genetic signals encode structural proteins: CHST3, COL2A1,
and FBN2. Collagen type Il alpha 1 chain (COL2A1) codes for
an essential structural component of cartilage and is important
for joint formation and bone growth (Figure 3B). A wide spectrum
of diseases is associated with COL2A7, including cartilage
and bone abnormalities, such as spondyloepimetaphyseal
dysplasia, Kniest dysplasia, and early onset osteoarthritis (Kui-
vaniemi et al., 1991; Loppodnen et al., 2004; Wilkin et al., 1999;
Xiong et al., 2018). Fibrillin 2 (FBN2) encodes a glycoprotein
that forms microfibrils in the extracellular matrix and has a major
role during early morphogenesis. Fibrillins potently regulate
pathways of the immune response, inflammation, and tissue
homeostasis (Zeyer and Reinhardt, 2015), are important in
bone remodeling, and regulate local availability of BMP and
TGF-B (Nistala et al., 2010) (Figure 3B). Mutations in FBN2 cause
contractual arachnodactyly (Putnam et al., 1995).

Several genes are connected with signaling pathways. Vesti-
gial like family member 4 (VGLL4) functions via interacting with
TEA domain (TEAD) transcription factors (Jiao et al., 2017; Lin
et al., 2016). Notably, we identified another new THR and hand
osteoarthritis-associated signal located in such a transcription
factor, the TEAD1 gene, indicating a common molecular
pathway underlying both signals (Figure 3B). TEAD1 functions
in the Hippo signaling pathway and is transcriptionally regulated
by the YAP1 and TAZ protooncogene proteins, which are
involved in mechanosensing and mechanotransduction (Dupont
et al., 2011; Low et al., 2014). Mechanoadaptation of articular
cartilage is an important factor in osteoarthritis (Vincent and
Wann, 2019; Zhao et al., 2020). Downregulation of VGLL4 is
linked to the upregulation of Wnt/B-catenin pathway target
genes (Jiao et al., 2017).

Wnt family member 1 (WNT7) and wnt family member 10B
(WNT10B) are involved in the Wnt signaling pathway, which
has an established role in osteoarthritis pathogenesis (Zhou
et al., 2017). Mutations in WNT10B have been linked to limb de-
fects and dental abnormalities (Kantaputra et al., 2018; Ullah
et al., 2018; Yu et al., 2016), and mutations in WNTT are associ-
ated with osteogenesis imperfecta (Fahiminiya et al., 2013). Insu-
lin like growth factor 1 receptor (IGF1R) has tyrosine kinase ac-
tivity, mediates the action of insulin-like growth factor, and
regulates cartilage mineralization (Heilig et al., 2016).

Nitric oxide synthase 3 (NOS3) encodes the vascular endothe-
lium isoform of nitric oxide synthase (eNOS). NOS3 is associated
with sporadic limb defects in mice (Gregg et al., 1998) and has
been implicated in bone remodeling in rats (Hukkanen et al.,
1999). LIM homeobox transcription factor 1 beta (LMX1B) is a
transcription factor. Mutations in LMX1B cause a rare autosomal
dominant disorder characterized by dystrophic nails, hypoplas-
tic or absent patellae, and dysplasia of the elbows and iliac
horn (Marini et al., 2010).
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Table 3. Amassing evidence to identify effector genes

Coding eQTL Cartilage Bone
variant  Fine colocalization Mouse Human Mouse Human  Human
Lead and fine mapped (Gtex/OA Blood pQTL musculoskeletal musculoskeletal neuronal pain pain

Signal OA SNV EA EAF OA map gene tissue) Expr. Abund. Expr. MR+coloc  phenotype phenotype phenotype disorder gene Score

9 rs3740129 A 0.46 N  CHST3 CHST3 (6/1) CHST3 CHST3 CHST3 6

33 rs12908498 C 0.54 K SMAD3 SMAD3 (1/1) SMAD3 SMAD3 SMAD3 6

54 rs143384 A 0.59 K GDF5 GDF5 (4/1) GDF5 GDF5 GDF5 6

14 rs67924081 A 0.74 K LTBP3 (1/1) LTBP3 (+) LTBP3 LTBP3 5

22 rs7294636 A 037 K MGP (4/2) MGP MGP MGP 5]

25 rs7967762 T 0.16 N WNT10B (+) WNT10B (+) WNT10B WNT10B WNT10B 5

49 rs66989638 A 0.13 N  C2o0rf40 C2o0rf40  C20rf40 C2o0rf40 5]

(40/21)

69 rs1530586 T 08 K FGFR3 (6/4) FGFR3 FGFR3 FGFR3 5

72 rs17615906 T 0.84 N FBN2 (2/2) FBN2 FBN2 FBN2 5]

97 rs62578126 T  0.37 K LMX1B (3/2) LMX1B LMX1B LMX1B 5

17 rs1149620 A 044 K TSKU TSKU (5/4) TSKU 4

25 rs7967762 T 0.16 N COL2A1 (1/0) COL2A1 COL2A1 COL2A1 4

25 rs7967762 T 0.16 N PFKM (2/2) PFKM (-) PFKM 4

25 rs7967762 T 0.16 N VDR VDR VDR VDR 4

28 rs58973023 A  0.49 N TNFSF11 (+) TNFSF11 (+) TNFSF11 TNFSF11 4

31 rs11071366 A  0.61 K ALDH1A2 ALDH1A2 (-) ALDH1A2 ALDH1A2 4

33 rs12908498 C 0.54 K MAP2K1 MAP2K1 MAP2K1 MAP2K1 4

34 rs12914479 C 0.66 N IGF1R (1/1) IGF1R IGF1R 4

35 rs6500609 C o0.11 N HMOX2 (1/1) HMOX2 HMOX2 4

42 rs2716212 A 062 K PRKAR1A () PRKAR1A PRKAR1A PRKAR1A 4

45 rs75621460 A 0.03 K TGFB1 TGFB1 TGFB1 TGFB1 4

47 rs4252548 T 0.02 K L1 L1 IL11 (+) IL11 (+) 4

53 rs3771501 A 047 K TGFA TGFA (2/2) TGFA 4

55 rs9981408 T 023 K ERG ERG (1/1) ERG 4

59 rs2276749 T 0.05 N VGLL4 VGLL4 VGLL4 (1/0) VGLL4 4

93 rs1330349 C 0.59 K TNC TNC (+) TNC (+) TNC 4

100 rs76340814 A 0.05 N PTCH1 (5/2) PTCH1 PTCH1 4

1 rs11164653 T  0.41 K COL11A1 COL11A1 COL11A1 3

3 1:150214028 D 0.38 K CTSK CTSK CTSK 3 %

3 1:150214028 D 0.38 K SF3B4 SF3B4 SF3B4 3

5 rs1327123 C 0.35 N  TSEN15 TSEN15 (8/5) 3 % O

6 rs2605100 A 032 K IARS2 IARS2 IARS2 3 g %
(Continued on next page) (J% _g
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Table 3. Continued

Coding eQTL Cartilage Bone
variant  Fine colocalization Mouse Human Mouse Human  Human
Lead and fine mapped (Gtex/OA Blood pQTL musculoskeletal musculoskeletal neuronal pain pain
Signal OA SNV EA EAF OA map gene tissue) Expr. Abund. Expr. MR+coloc  phenotype phenotype phenotype disorder gene Score
7 rs11588850 A 0.82 N SNAP47 (3/3) SNAP47 3
11 rs3993110 A 061 N TEAD1 TEAD1 TEAD1 3
18 rs10831475 A 0.81 N MTMR2 (+) MTMR2 MTMR2 3
24 rs10843013 A 0.78 K PTHLH PTHLH PTHLH 3
25 rs7967762 T 0.16 N WNT1 WNT1 WNT1 3
30 rs4380013 A 0.19 K CYP19A1 CYP19A1 CYP19A1 3
30 rs4380013 A 0.19 K USP8 USPS8 (6/2) 3
35 rs6500609 Cc 0.1 N CREBBP CREBBP CREBBP 3
36 rs9940278 T 043 K FTO FTO FTO 3
36 rs9940278 T 043 K RPGRIP1L RPGRIP1L RPGRIP1L 3
37 rs34195470 A 045 K wwp2 WWP2 (-) wwp2 3
38 rs216175 A 083 K BHLHA9 BHLHA9 BHLHA9 3
38 rs216175 A 083 K SERPINF1 SERPINF1 SERPINF1 3
39 rs227732 T 03 N NOG NOG NOG 3
40 rs9908159 T 051 N NOG NOG NOG 3
41 rs7212908 A 08 K TBX4 (-) TBX4 TBX4 3
42 rs2716212 A  0.62 K MAP2K6 MAP2K6 3
(1)
44 rs10405617 A 0.32 K ILF3 (2/1) ILF3 3
44 rs10405617 A 0.32 K SMARCA4 SMARCA4 SMARCA4 3
45 rs75621460 A 0.03 K ERF ERF ERF 3
45 rs75621460 A 0.03 K MEGF8 MEGF8 MEGF8 3
45 rs75621460 A  0.03 K SPTBN4 SPTBN4 SPTBN4 3
46 rs8112559 C 0.89 N APOE APOE APOE 3
51 rs7581446 T 048 K LTBP1 LTBP1 (1/0) LTBP1 3
55 rs9981408 T 023 K KCNJ6 KCNJ6 KCNJ6 3
58 rs12160491 A 0.71 N TRIOBP TRIOBP (-) 3
(22/13)
69 rs1530586 T 08 K IDUA IDUA IDUA 3
69 rs1530586 T 08 K TACC3 (9/6) TACC3 3
73 rs10062749 T 0.27 N NR3C1 NR3C1 NR3C1 3
74 rs3884606 A 052 K FGF18 FGF18 (+) FGF18 3
74 rs3884606 A 052 K SH3PXD2B SH3PXD2B SH3PXD2B 3

(Continued on next page)
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Table 3. Continued

Coding eQTL Cartilage Bone
variant  Fine colocalization Mouse Human Mouse Human  Human
Lead and fine mapped  (Gtex/OA Blood pQTL musculoskeletal musculoskeletal neuronal pain pain
Signal OA SNV EA EAF OA map gene tissue) Expr. Abund. Expr. MR+coloc  phenotype phenotype phenotype disorder gene Score
76 rs56132153 A  0.61 PIK3R1 (-) PIK3R1 PIK3R1 3
77 rs9396861 A 0.61 N RNF144B RNF144B 3
/1)
78 rs79220007 T 0.93 K HFE HFE HFE 3
81 rs17288390 T 0.65 K CLIC5 CLIC5 CLIC5 3
81 rs17288390 T 0.65 K RUNX2 RUNX2 RUNX2 3
82 rs9475400 T 01 K HCRTR2 HCRTR2 HCRTR2 3
83 rs12209223 A 0.1 K MYOS6 (+) MYO6 MYO6 3
84 rs116934101 A 0.27 N CUX1 CUX1T (+) CUX1 3
86 rs143083812 T 0.0011 K SMO SMO SMO 3
87 rs571734653 A 3.00E- N CHRM2 CHRM2 CHRM2 3
04
88 rs7787744 A 0.67 N NOS3 NOS3 NOS3 3
89 rs111844273 A  0.02 K TWIST1 TWIST1 TWIST1 3
92 rs72760655 A 0.33 K COL27A1 (5 COL27A1 COL27A1 3
93 rs1330349 C 059 K COL27A1 () COL27A1 COL27A1 3
96 rs10983775 T 0.54 N TLR4 TLR4 TLR4 3
98 rs10465114 A  0.22 N LMX1B LMX1B LMX1B 3
S1 rs10453201 T 0.22 N ENHO (-) ENHO ENHO 3

Abbreviations: Lead OA SNV, rsID of the lead variant; EA, effect allele; EAF, effect allele frequency; OA, if the signal is new (N) or previously reported (K); Coding variant and FineMap, gene in which
the lead SNV or a SNV in high LD (R? >0.8) has a moderate to high severity consequence (STAR Methods) and is present in the 95% credible set (CS); Fine-mapped gene, all SNVs in the 95% CS
reside within the transcript of the gene; eQTL colocalization, gene colocalized in at least 1 GTEx tissue, the number of GTEX tissues in parentheses followed by the number of these tissues also
enriched in tissue enrichment analysis, which is suggestive of a role in osteoarthritis pathology; Cartilage Differential Expr, gene was differentially expressed (+ indicates increased, — indicates
decreased) in high-grade compared to low-grade osteoarthritic cartilage; Cartilage Differential Abund, gene that codes for a protein that was differentially expressed (+ indicates increased, —
indicates decreased) in high-grade compared to low-grade osteoarthritic cartilage; Bone Differential Expr, gene was differentially expressed in subchondral bone; Blood pQTL MR+coloc, gene is
on the causal path and also colocalized; Human musculoskeletal phenotype, gene linked to a musculoskeletal phenotype according to the nosology and classification of genetic skeletal dis-
orders (Mortier et al., 2019); Mouse musculoskeletal/Neuronal phenotype, indicates if a musculoskeletal (skeleton, limb/digit/tail, and muscle) or neuronal phenotype (“nervous system pheno-
type” included in the MGI mouse phenotype ontology) is observed in any mouse knockout from https://www.hugedomains.com/domain_profile.cfm?d=boneandcartilage&e=com and the MGl
Mouse Genome Informatics from http://www.informatics.jax.org/; Human pain disorder, gene is linked to a pain or neuropathy disorder according to OMIM (https://www.omim.org/); Human Pain
Gene, gene is linked to pain in the Human Pain Genetics Database (HPGD) (http://humanpaingenetics.org/hpgdb; Score, cumulative score for each gene based on the supporting fine-mapping
and functional analysis. Genes are identified by Ensembl GeneName. See also Tables S9 and S10.
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Figure 3. High-confidence osteoarthritis
effector genes

(A) Overview of the 77 high-confidence osteoar-
thritis effector genes and their broad biological
classifications, as depicted in Tables 3 and S12.
The lead SNV for each is given in brackets.

(B) Schematic representation of a chondrocyte
and its extracellular matrix, highlighting exemplary
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Patched 1 (PTCHT) codes for a receptor for Hh ligands and
regulates the activity of smoothened, frizzled class receptor
(SMO,another effector gene associated with a known lead
SNV). When bound, PTCH1 relinquishes its inhibitory effect on
SMO and activates the Hh signaling cascade, which plays an
important role in controlling the proliferation of chondrocytes
and also in stimulating osteogenesis during endochondral
bone formation and longitudinal growth (Alman, 2015).

Several further newly identified high-confidence effector
genes have a neuronal connection (Figure 3A). Augurin, the pro-
tein encoded by C20rf40 (also called ECRG4), is involved in CNS
development in animal models (Gonzalez et al., 2011) and shows
association with neuropathologic features of Alzheimer’s dis-
ease and related dementias in humans (Beecham et al., 2014).
SNVs in the vicinity of TSEN15 have been robustly associated
with anthropometric traits that have epidemiological links to
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osteoarthritis, such as height (Gudbjarts-
son et al., 2008), body fat distribution
(Rask-Andersen et al., 2019), and waist
circumference adjusted for BMI (Hubel
et al., 2019). Cut like homeobox 1
(CUXT1) is a transcription factor involved
in brain neuronal differentiation and syn-
aptogenesis (Cubelos et al., 2010). Cux1
expression was observed at chondro-
genic interzones during limb develop-
ment, suggesting also a regulatory role
in joint formation (Lizarraga et al., 2002).

The TRIO and f-actin binding protein
(TRIOBP) gene encodes multiple protein
isoforms via 2 promoters (Park et al.,
2018). TRIOBP-1 is ubiquitously ex-
pressed and interacts with TRIO and
f-actin binding protein that together play
crucial roles in neuronal morphogenesis
(Woo et al., 2019) and controlling actin
cytoskeleton organization, cell motility,
and cell growth (Zaharija et al., 2020).

Myotubularin related protein 2 (MTMR2)
has an important role in membrane target-
ing, vesicular trafficking, and regulation of
signal transduction pathways. Mutations
in MTMR2 cause Charcot-Marie-Tooth
disease type 4B, which features a generalized loss of large myelin-
ated nerve fibers and focally folded myelin sheaths giving rise to
inadequate nerve signaling to muscles, resulting in muscle weak-
ness and atrophy (Volpatti et al., 2019). The ubiquitously ex-
pressed protein encoded by CREB-binding protein (CREBBP)
plays a critical role during development in particular with brain
size regulation, correct neural cell differentiation, and neural pre-
cursor cell migration, as demonstrated in mouse models (Schoof
et al., 2019).

Cholinergic receptor muscarinic 2 (CHRM2) is involved in the
mediation of cellular responses. Analysis of rat tissues revealed
expression in whole brain (Peralta et al., 1987) and in human neu-
roblastoma cells (Zhou et al., 2001). Variation in CHRM2 predis-
poses to various neuropsychiatric diseases (Cannon et al., 2011;
Rajji et al., 2012), and Alzheimer’s disease (Mash et al., 1985).
The protein encoded by synaptosome associated protein 47

Profibrotic
Proteins

RUNX2 & TEAD1
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(SNAP47) is a soluble N-ethylmaleimide-sensitive fusion protein
attachment protein receptor (SNARE) protein involved in traf-
ficking and membrane fusion. SNARE-mediated fusion is an
essential mechanism that drives the synaptic transmission,
neuron development, and growth. SNAP47 plays a role in exo-
cytic mode and neuronal morphogenesis (Holt et al., 2006; Ur-
bina et al., 2021).

Several of the effector genes have an immune or inflammatory
role. For example, the protein encoded by toll like receptor 4
(TLR4) plays a fundamental role in pathogen recognition and
activation of the innate immune response (Tatematsu et al.,
2016). TLR4 is also activated by host-derived molecules gener-
ated by damaged tissues related to different musculoskeletal
pathologies (Abdollahi-Roodsaz et al., 2007; Goldring and
Goldring, 2007). This, along with gene expression in chondro-
cytes (Wang et al., 2011), osteoblasts (Kikuchi et al., 2001),
and synoviocytes (Midwood et al., 2009), has linked TLR4 to dis-
eases like rheumatoid arthritis (Abdollahi-Roodsaz et al., 2007),
osteoarthritis (Gomez et al., 2015), and osteoporosis (Vijayan
et al., 2014), where modulation or inhibition of TLR4 has been
suggested as a treatment. Activation of T cells can lead to
osteoclastogenesis and bone resorption by influencing the
expression of tumor necrosis factor ligand superfamily member
11 (TNFSF11) (Kong et al., 1999). TNFSF11 encodes receptor
activator of nuclear factor kappa-p ligand (also known as
RANKL), a cytokine that has been linked to inflammatory bone
remodeling in rheumatoid arthritis, with increased TNFSF11
levels associated with worsening arthritis severity (Papadaki
et al., 2019; Remuzgo-Martinez et al., 2016) and a well-estab-
lished role in osteoclastogenesis (Kohli and Kohli, 2011).

Nuclear receptor subfamily 3 group C member 1 (NR3C7) en-
codes the glucocorticoid receptor (GR) which circulates in the
cytoplasm and is involved in the inflammatory response
(Escoter-Torres et al., 2019). In osteoarthritis, endogenous
glucocorticoid signaling in osteoblasts and chondrocytes is
detrimental (Macfarlane et al., 2020).

Phosphofructokinase (PFKM) has a role in muscle function. It
encodes a muscle isozyme that catalyzes the phosphorylation
of fructose-6-phosphate during glycolysis. Mutations in this
gene result in Tarui’s disease (glycogen storage disease type
7) that is an autosomal recessive metabolic disorder character-
ized clinically by exercise intolerance, muscle cramping,
exertional myopathy, and compensated hemolysis (Raben and
Sherman, 1995).

Drug target identification

We examined the druggability status of all 637 genes with at least
one piece of supporting evidence from fine-mapping and func-
tional analyses (Table S10; STAR Methods). Of these 637 genes,
205 were present in the druggable genome database (Finan
et al., 2017), showing a 1.46-fold enrichment of genes with sup-
porting evidence in the database (binomial test p =2.21 x 10-9)
(STAR Methods). From these osteoarthritis druggable target
genes, 71 genes reside in tier 1, which incorporates the targets
of approved (licensed) drugs and drugs in clinical development
(Table S10; STAR Methods). Of the 77 genes with three different
lines of evidence supporting causality, 20 are tier 1 candidates
(18 of these are present in DrugBank) (Table 4; STAR Methods),
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of which 7 correspond to new genetic signals discovered in this
study (CHST3, VDR, TNFSF11, IGF1R, NR3C1, CHRM2,
and NOS3).

Within tier 1, ten candidates have previously been studied in
clinical trials of efficacy or in cohort studies of osteoarthritis
(six arising from new signals: PPARD, NR3C1, VDR, MAPK14,
IGF1R, and CHST3). The PPARD antagonist sulindac has mar-
keting authorization as a non-steroidal anti-inflammatory drug
(NSAID) in osteoarthritis for its prostaglandin synthase activity.
The SLC1A1 agonist and neuropathic pain inhibitor pregabalin
is commonly prescribed in osteoarthritis. Pregabalin has some
supportive clinical trial data for its co-prescription with the
NSAID meloxicam in the short-term treatment of pain in
knee osteoarthritis (Ohtori et al., 2013). NR3C1 encodes the
glucocorticoid receptor, the activation of which has broad anti-
inflammatory and immunomodulatory actions with marketing
authorization for several agonist molecules. One of these,
prednisolone, has long been used as a disease modifying agent
in inflammatory arthritis and in the recent Heart Outcomes Pre-
vention Evaluation (HOPE) study was found to be effective in
reducing pain and synovitis in hand osteoarthritis (Kroon et al.,
2019). Cathepsin K (encoded by the CTSK gene) is an enzyme
that plays a critical role in collagen degradation within osteo-
clasts, and MIV-711 is a selective cathepsin K inhibitor that
has recently been shown in a phase 2 clinical trial to be effective
in reducing structural damage in patients with knee osteoarthritis
(Conaghan et al., 2020). VDR encodes the vitamin D receptor, the
activation of which is a major regulator of calcium metabolism.
The results of clinical trials of vitamin D supplementation on
symptoms and structural damage in knee osteoarthritis have
been mixed (Arden et al., 2016; Jin et al., 2016; McAlindon
etal., 2013; Sanghi et al., 2013; Zheng et al., 2017) but may sug-
gest a small benefit in patients with vitamin D deficiency. EGLN2
encodes Egl nine homolog 2, a prolyl hydroxylase that mediates
hydroxylation of proline and thus contributes to collagen and
proteoglycan synthesis. Supplementation of its agonist, ascor-
bic acid (vitamin C), has been associated with joint health in
observational cohorts, although with mixed effects (Joseph
et al., 2020; McAlindon et al., 1996; Peregoy and Wilder, 2011).
Deficiency of the HCAR2 agonist niacin (vitamin B3) was associ-
ated with knee osteoarthritis progression in the Japanese ROAD
cohort (Muraki et al., 2014). The MAPK14 antagonist PH-797804
has been studied in a phase 2 clinical trial to examine the pain re-
lief of PH-797804 alone or with naproxen in subjects with osteo-
arthritis of the knee (NCT01102660), although we are not aware
of any trial results reporting in PubMed or on ClinicalTrials.gov.
Finally, the carbohydrate sulfotransferase 3 agonist thalidomide
has been shown to attenuate early osteoarthritis development in
a mouse medial meniscus destabilization model through a
mechanism involving the downregulation of vascular endothelial
growth factor (VEGF) expression (Seegmiller et al., 2019).

All of the 45 further tier 1 druggable targets have market
authorization or are in clinical development for other indications
(Table 4). Ten of these are high-confidence effector genes and 16
arise from new genetic signals. The functional and epidemiolog-
ical evidence of their roles in clinical osteoarthritis presented
here provides support for early repurposing investigation. One
antibody small molecule, fostamatinib, appears multiple times
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Table 4. Drug repurposing opportunities

Molecular
Drugbank  Molecule Development mechanism Current clinical
Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)
AAK1 AP2-associated Q2M218 Fostamatinib DB12010  small approved, antagonist  inhibitor of spleen tyrosine chronic immune
protein kinase 1 molecule investigational kinase thrombocytopenia
ABCB8" mitochondrial Q9NUT2  Doxorubicin DB00997  small approved, antagonist  cytotoxic anthracycline wide range of
potassium molecule investigational antibiotic, binds to nucleic hematological and
channel ATP- acids and inhibits non-hematological
binding subunit topoisomerase Il to exert malignancies
antimitotic activity
ADAM10 disintegrin and 014672 XL784 DB04991  small investigational antagonist  potent small investigational
metalloproteinase molecule molecule inhibitor of the in albuminaemia/
domain-containing ADAM-10 metalloprotease diabetic
protein 10 enzyme, which plays a role in nephropathy
blood vessel formation and
cell proliferation that can
cause renal fibrosis and
impairment
ADRBK1 beta-adrenergic P25098 ATP DB00171 small investigational, agonist specifically phosphorylates the nutritional
receptor kinase 1 molecule nutraceutical agonist-occupied form of the supplement,
beta-adrenergic and closely investigational in
related receptors advanced cancer
and in venous
stasis ulcers
ALDH1A2°  retinal 094788 Tretinoin® DB00755 small approved agonist cell reproduction, proliferation, acne, skin
dehydrogenase 2 molecule differentiation keratinization
disorders
APH1A gamma- Q96BI3 E-2012 DB5171 small investigational antagonist  inhibits beta-amyloid production investigational in
secretase molecule through inhibition of gamma Alzheimer’s disease
subunit APH-1A secretase activity
ATP1A3 Sodium/ P13637 Ouabain DB01092  small approved inhibitor cardiac glycoside, inhibits the atrial fibrillation,
potassium- molecule Na-K-ATPase membrane pump atrial flutter and
transporting heart failure
ATPase
subunit alpha-3
CACNA1D  voltage-dependent Q01668 Nimodipine® DB00393  small approved, antagonist  voltage-gated calcium channel Hypertension,
L-type calcium molecule investigational blocker, inhibiting vascular including
channel subunit smooth muscle contraction intracranial
alpha-1D
CDK5" cyclin-dependent- Q00535 Trilaciclib® DB15442  small approved, antagonist  inhibits several CDKs (proline- bone marrow
like kinase 5 molecule investigational directed serine/threonine-protein  suppression caused

kinases) essential for neuronal
cell cycle arrest, most notably
CDK4

by chemotherapy

(Continued on next page)
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Table 4. Continued

I°D

Molecular
Drugbank  Molecule Development ~ mechanism Current clinical

Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)

CDK7° cyclin-dependent P50613 Trilaciclib® DB01085 small approved, antagonist  inhibitor of serine/threonine bone marrow
kinase 7 molecule investigational kinase involved in cell cycle suppression caused

control and RNA polymerase by chemotherapy
Il-mediated RNA transcription

(main action against CDK4

and CDKa®, also active

against CDK7)

CHRM2">°  muscarinic P08172 Pilocarpine DB155443 small approved, agonist slowly hydrolyzed muscarinic dry mouth, ocular
acetylcholine molecule investigational agonist hypertension
receptor M2

Atropine DB00572  small approved antagonist  inhibits the muscarinic action of reduce airway

molecule acetylcholine in postganglionic secretions during
cholinergic nerves anesthesia, reduces

smooth muscle
spasm, increases
heart rate, used
as antidote to
cholinergic acting
poisons

CHST3"° carbohydrate Q7LGC8  Thalidomide DB01041  small approved, agonist modulates cytokine release, immunosuppressive,
sulfotransferase 3 molecule withdrawn catalyzes sulfation of chondroitin ~ anti-angiogenic,

for hypnotic experimental in
indications osteoarthritis

CSNK1E® casein kinase | P49674 Umbralisib® DB14989  small approved, antagonist  Umbralisib inhibits several relapsed and
isoform epsilon molecule investigational protein kinases, including PI3K3 refractory

and casein kinase CK1e. PI3K3 lymphoma
is expressed in both healthy cells

and malignant B cells; CK1e is

believed to be involved in the

pathogenesis of malignant cells,

including lymphomas

CTSK® cathepsin K P43235 MIV-711 DB15599  small investigational ~antagonist  osteoclast inhibitor investigational

molecule in osteoarthritis

CYP19A1°  cytochrome P11511 Aminoglutethimide® DB00357  small approved antagonist  aromatase inhibitor, blocks breast cancer,
P450 19A1 molecule conversion of androgens to prostate cancer

estrogens

EGLN2 Egl nine Q96KS0 Ascorbic acid® DB00126  small approved agonist co-factor in collagen synthesis, vitamin C deficiency,
homolog 2 molecule carbohydrate, and lipid investigational in

metabolism; antioxidant.

osteoarthritis

(Continued on next page)
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Table 4. Continued

Molecular
Drugbank  Molecule Development ~ mechanism Current clinical
Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)
ENG" endoglin P17813 Carotuximab DB06322  small investigational  unknown regulator of angiogenesis through  investigational
molecule TGFB type 2 receptor binding treatment of
solid tumors
EPHA5" ephrin type-A P54756 Fostamatinib® DB12010  small approved, antagonist  reduces ATP binding to inhibit to  rheumatoid
receptor 5 molecule investigational ephrin-a family tyrosine kinase arthritis, immune
thrombocytopenic
purpura
EPOR erythropoietin P19235 Erythropoietin® DB00016 recombinant approved agonist erythropoietin or exogenous treatment of
receptor protein epoetin alfa binds to the anemia
erythropoietin receptor (EPO-R)
and activates intracellular signal
transduction pathways
FGF18° fibroblast growth 076093 Sprifermin DB12616  recombinant investigational agonist cell morphogenesis, osteoporosis,
factor 18 protein chondrogenesis, cartilage cancer bone
thickening in OA metastasis,
investigational in
osteoarthritis
FGFR3° fibroblast growth Pemigatinib® DB15102  small approved, antagonist  inhibitor of FGF receptors 1 to 4 advanced
factor receptor 3 molecule investigational that are tyrosine kinases that cholangiocarcinoma
activate signaling pathways in in patients with
tumor cells FGFR alterations
GAK cyclin-G- 014976 Fostamatinib DB12010  small approved, antagonist  reduces ATP binding to inhibit rheumatoid
associated molecule investigational a wide range of kinases arthritis, immune
kinase thrombocytopenic
purpura
GRIK5 glutamate Q16478 Glutamic acid DB00142  small approved, agonist activates both ionotropic and nutritional
receptor molecule nutraceutical metabotropic glutamate supplement
ionotropic, receptors
kainate 5
Butabarbital DB00237  small approved antagonist  potentiates GABAergic neurons sedative
molecule while inhibiting neuronal
acetylcholine and
glutamate receptors
GRIN2B glutamate Q13224 Acetylcysteine DB06151  small approved, agonist cysteine/glutamate transporter mucolytic therapy
receptor molecule investigational activator and management
ionotropic, of acetaminophen
NMDA 2B overdose

(Continued on next page)
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Table 4. Continued

I°D

Molecular
Drugbank  Molecule Development  mechanism Current clinical
Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)
Felbamate® DB00949  small approved antagonist  antagonist at the strychnine- anticonvulsant
molecule insensitive glycine-recognition
site of the N-methyl-D-aspartate
(NMDA) receptor-ionophore
complex
GSK3A glycogen P49840 Fostamatinib DB12010 small approved, antagonist  antagonizes GSK3A that is a rheumatoid
synthase molecule investigational negative regulator in the arthritis, immune
kinase-3 alpha hormonal control of glucose thrombocytopenic
homeostasis, Wnt signaling purpura
and regulation of transcription
factors, and microtubules
HCAR2 hydroxycarboxylic ~Q8TDS4 Niacin® DB00627  small approved, agonist vitamin B3, mediates increased dietary
acid receptor 2 molecule investigational, adiponectin secretion and supplementation;
nutraceutical decreased lipolysis through Gii)- niacin is a B vitamin
protein-mediated inhibition of used to treat vitamin
adenylyl cyclase that may deficiencies as well
affect activity of cAMP- as hyperlipidemia,
dependent phosphorylation dyslipidemia,
of target proteins, leading to hypertriglyceridemia,
neutrophil apoptosis and for anti-
atherosclerotic
activity, potential
neuroimmune effects;
investigational in
osteoarthritis
HCRTR2° orexin 043614 Suvorexant® DB09034  small approved, antagonist  antagonist of orexin receptors insomnia
receptor type 2 molecule investigational OX1R and OX2R that promotes
sleep
HDAC3® histone 015379 Vorinostat® DB02546  small approved, antagonist  inhibits enzyme activity of class | cutaneous
deacetylase 3 molecule investigational and class Il histone deacetylases T cell ymphoma
HDAC7° histone Q8wuUl4 Panobinostat® DB06603  small approved, antagonist  selectively inhibits the class | refractory
deacetylase 7 molecule investigational (HDAC1, HDAC2, HDACS3, and multiple myeloma

HDACS), Il (HDAC4, HDACS,
HDACS6, HDAC7, HDAC9, and
HDAC10), and IV (HDAC11)
mammalian histone deacetylase
families of enzymes, protein
metabolism inhibitor, cell-cycle
inhibitor
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Table 4. Continued

Molecular
Drugbank  Molecule Development ~ mechanism Current clinical
Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)
HDAC9 histone Q9UKVO  Valproic acid DB00313  small approved, antagonist  direct histone deactylase anticonvulsant,
deacetylase 9 molecule investigational (HDAC) inhibitor migraine, mania
associated with
bipolar disorder
ICAM1 intercellular P05362 Nafamostat DB12598  small investigational antagonist  inhibits several enzyme anticoagulant
adhesion molecule systems, including coagulation
molecule 1 and fibrinolytic systems (thrombin,
Xa, and Xlla), kallikrein-kinin
system, complement system,
pancreatic proteases, and
activation of protease-
activated receptors; inhibits
lipopolysaccharide-induced nitric
oxide production, apoptosis, and
interleukin (IL)-6 and IL-8 levels in
cultured human trophoblasts;
antioxidant in TNF-a-induced
ROS production
IGF1R"* insulin-like growth ~ P08069 Mecasermin® DB01277  protein approved agonist mediates effects of growth growth failure
factor 1 receptor hormone through cell surface in children due to
receptor tyrosine kinases, IGF1 deficiency,
anabolic experimental in
osteoarthritis
Teprotumumab® DB06343 monoclonal approved, antagonist  fully human IgG1 monoclonal thyroid eye
antibody investigational antibody directed against the disease
human insulin-like growth
factor-1 receptor, inhibits
downstream effects of
IGF1R signaling
JAK2 tyrosine-protein 060674 Baricitinib® DB11817  small approved, antagonist  selective and reversible Janus rheumatoid arthritis
kinase JAK2 molecule investigational kinase 1 (JAK1) and 2 (JAK2) resistant to non-

inhibitor

biologic disease-
modifying anti-
rheumatic drugs,
treatment of
COVID-19

(Continued on next page)
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Table 4. Continued

I°D

Molecular
Drugbank Molecule Development ~ mechanism Current clinical
Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)
KCNH2° potassium Q12809 Sotalol® DB00489  small approved antagonist  inhibits beta-1 adrenoceptors atrial and
voltage- molecule in the myocardium and ventricular
gated channel competitive inhibitor of rapid arrhythmias
subfamily H potassium channels to slow
member 2 repolarization, lengthen the
QT interval, and slow and
shorten conduction of action
potentials through the atria
LAMC2 laminin subunit P11047 Lanoteplase DB06245  protein investigational unknown third generation recombinant investigational
gamma-1 plasminogen activator; serine for treatment of
protease that binds to fibrin in myocardial
thrombus and converts infarction
plasminogen to plasmin to
degrade fibrin clot
MAP2K1¢ mitogen- Q02750 Binimetinib® DB11967  small approved, antagonist  potent and selective oral metastatic
activated molecule investigational mitogen-activated protein melanoma,
protein kinase kinase 1/2 (MEK 1/2) inhibitor investigational in
kinase 1 rheumatoid
arthritis
MAP2K6° dual specificity P52564 Fostamatinib DB12010  small approved, antagonist  tyrosine kinase inhibitor, role in rheumatoid
mitogen- molecule investigational osteoclast activation and arthritis, immune
activated endochondral ossification thrombocytopenic
protein kinase through SOX9 purpura
kinase 6
MAPK14° mitogen-activated Q16539 PH-797804 DB07835  small investigational antagonist investigated for the treatment of
protein kinase 14 molecule osteoarthritis.
NFKB1 nuclear factor P19838 Thalidomide® DB01041  small approved, agonist modulates cytokine release, immunosuppressive,
kappa beta p105 molecule withdrawn catalyzes sulfation of chondroitin ~ anti-angiogenic
subunit for hypnotic
indications
NISCH nischarin Qayait Tizanidine® DB00697  small approved agonist alpha-2 adrenergic receptor muscle spasm
molecule agonist causing presynaptic
inhibition of motor neurons
Tepotinib DB15133  small approved, antagonist mesenchymal-epithelial metastatic non-
molecule investigational transition factor tyrosine small cell lung cancer
kinase inhibitor %
NOS3°° nitric oxide P29474 Levamlodipine® DB09237  small approved, agonist inhibits L-type calcium hypertension, @) 0
synthetase molecule investigational channels in vascular smooth including intracranial % (1)
muscle, reducing peripheral Z =
vascular resistance Cj% -g
(Continued on next page) ﬁ.l) ]
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Table 4. Continued

Molecular
Drugbank  Molecule Development  mechanism Current clinical
Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)
Miconazole DB01110  small approved, antagonist  broad-spectrum azole fungal infections
molecule investigational antifungal with inhibitory
action on endogenous and
inducible nitric oxide
synthetase in humans
NR3C1°° glucocorticoid P04150 Prednisolone® DB00860  small approved agonist multiple anti-inflammatory, multiple
receptor molecule immunosuppressive, indications involving
anti-neoplastic, and inflammation and
vasoconstrictive actions immunity,
investigational in
osteoarthritis
Budesonide DB01222  small approved antagonist inflammatory bowel
molecule disease, chronic
inflammatory lung
conditions
PAK1 serine/threonine Q13153 Fostamatinib DB12010  small approved, antagonist  tyrosine kinase inhibitor, role rheumatoid
protein kinase 1 molecule investigational in osteoclast activation and arthritis, immune
endochondral ossification thrombocytopenic
through SOX9 purpura
PPARD" peroxisome Q03181 Treprostinil® DB00374  small approved agonist synthetic prostacyclin analog, pulmonary artery
proliferator- molecule vasodilatation, anti-platelet hypertension
activated
receptor delta
Sulindac DB00605  small approved, antagonist  negative regulator of PPARD, symptom
molecule investigational non-steroidal anti-inflammatory management in
agent osteoarthritis and
inflammatory joint
conditions
PPARG® peroxisome P37231 Rosiglitazone® DB00412  small approved, agonist thiazolidinedione, selective diabetes mellitus
proliferator- molecule investigational ligand of PPARY increases
activated insulin sensitivity
receptor
gamma
PRKCD protein kinase Q05655 Ingenol mebutate DB05013  small approved agonist neutrophil-mediated actinic keratosis
C delta type molecule inflammation, activator of
PKC-delta
Fostamatinib DB12010 small approved, antagonist  tyrosine kinase inhibitor, rheumatoid
molecule investigational role in osteoclast activation arthritis, immune

and endochondral ossification
through SOX9

thrombocytopenic
purpura

(Continued on next page)
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Table 4. Continued

I°D

Molecular
Drugbank  Molecule Development ~ mechanism Current clinical
Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)
PTHLH® parathyroid P12272 Teriparatide DB06285  protein approved, agonist synthetic human parathyroid osteoporosis,
hormone investigational hormone (PTH) amino acid investigational in
like hormone sequence 1 through 34 of the osteoarthritis
complete molecule which
contains amino acid sequence 1
to 84; endogenous PTH is the
primary regulator of calcium and
phosphate metabolism in bone
and kidney
RAF1° RAF proto- P04049 Cholecystokinin DB08862  small approved, agonist peptide hormone synthesized pancreatic
oncogene molecule investigational in the human gut, also the most insufficiency and
serine/threonine- ubiquitously found neuropeptide diagnostic for
protein kinase in the human brain; regulates gallbladder
gallbladder contraction, disorders
intestinal motility, and pancreatic
enzyme secretion and growth
Sorafenib® DB00398  small approved, antagonist  interacts with multiple advanced renal
molecule investigational intracellular (CRAF, BRAF, cell carcinoma
and mutant BRAF) and cell and hepatocellular
surface kinases (KIT, FLT-3, carcinoma
VEGFR-2, VEGFR-3, and
PDGFR-) that are involved
in angiogenesis, thus sorafenib
reduces blood flow to the
tumor; Sorafenib is targeting
the Raf/Mek/Erk pathway; by
inhibiting these kinases, genetic
transcription involving cell
proliferation and angiogenesis
is inhibited
S1PR5 sphingosine Q9H228 Fingolimod® DB08868  small approved, antagonist  sphingosine 1-phosphate- multiple
1-phosphate molecule investigational induced cell proliferation, sclerosis
receptor 5 survival, and transcriptional
activation
SLC1A1 excitatory amino P43005 Pregabalin® DB00230  small approved, agonist structurally similar to gamma- neuropathic
acid transporter 3 molecule investigational aminobutyric acid (GABA)—an pain, and in
inhibitory neurotransmitter chronic pain in %
arthritis @) 0
SLC6A1° sodium- and P30531 Tiagabine® DB00906 small approved, antagonist  selective gamma amino butyric anticonvulsant, % (1]
chloride- molecule investigational acid (GABA) reuptake inhibitor. treatment of panic jZ> =U
dependent GABA Inhibits GABA reuptake into disorder o=
transporter 1 presynaptic neurons ﬁ.l) 8
(Continued on next page) % (V)]
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Table 4. Continued

Molecular
Drugbank  Molecule Development ~ mechanism Current clinical
Gene Encoded protein Uniprot ID Drug name ID type phase of action Mechanism of action indication(s)
SMO° smoothened Q99835 Fluocinonide DB01047  small approved, agonist glucocorticoid steroid with Inflammatory
frizzled family molecule investigational Whnt-protein binding SMO and pruritic
receptor agonist activity manifestations
of corticosteroid-
responsive
dermatoses
Vismodegib® DB08828 small approved, antagonist  inhibits /HH signaling basal cell
molecule investigational carcinoma
SST° somatostatin Somatostatin DB09099  protein approved, agonist peptide hormone that multiple endocrine
investigational regulates the endocrine indications,
system and affects including carcinoid
neurotransmission and cell syndrome
proliferation via interaction
with G protein-coupled
somatostatin receptors and
inhibition of the release of
numerous secondary
hormones
TGFB1° transforming P01137 Terazocin DB1162 small approved agonist multifunctional peptide: cell benign prostatic
growth factor molecule growth, proliferation and hyperplasia,
beta 1 differentiation hypertension
Hyaluronidase DB14740  protein approved antagonist  cleaves hyaluronic acid at the increases
glucosaminidic bond between dispersion of
C1 of glucosamine and C4 of subcutaneously
glucuronic acid injected fluids
and drugs
TNFSF11°°  tumor necrosis 014788 Denosumab DB06643 monoclonal  approved, antagonist  inhibits osteoclast formation, osteoporosis,
factor ligand antibody investigational function, and survival bone metastasis,
superfamily investigational in
member 11 osteoarthritis
TPOP thyroid P07202 Carbimazole® DB00389  small approved, antagonist  an imidazole anti-thyroid hyperthyroidism
peroxidase molecule investigational agent; Carbimazole is
metabolized to methimazole,
which is responsible for the
anti-thyroid activity
TYK2 non-receptor P29597 Tofacitinib® DB08895 small approved, antagonist  Janus kinase inhibitor rheumatoid
tyrosine-protein molecule investigational arthritis resistant

kinase TYK2

to non-biologic
disease-modifying
anti-rheumatic drugs

(Continued on next page)
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Table 4. Continued

Molecular

Current clinical
indication(s)

mechanism
of action

Development

Molecule
phase

type

Drugbank

Mechanism of action

Uniprot ID Drug name

P11473

Encoded protein

Gene

vitamin D

active metabolite of

agonist
vitamin D

approved

small

DB00136

Calcitriol®

vitamin D
receptor

VDR"*

deficiency, chronic
kidney disease,

molecule

hyperparathyroidism

(secondary),

investigational in
osteoarthritis

secondary

antagonist  synthetic vitamin D
analog

approved,

small

DB00910

Paracalcitol”

hyperparathyroidism
associated with

investigational

molecule

chronic renal failure

Genes are identified according to the Ensembl GeneName for the gene. Both agonists and antagonists of the target protein are shown. DrugBank information on the tier 1 likely effector genes.

Indicates that multiple drugs with similar mechanisms of action are identified for a given target. Here, an example drug from the class is shown to represent an identified mechanism of action on

the target-encoded protein.

PDenotes associated with newly reported signal.

°Denotes effector genes with at least 3 lines of evidence.
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in Table 4 as a tyrosine kinase inhibitor that targets AAK1,
EPHA5, GAK, GSK3A, MAP2K1, MAP2K6, PAK1, and PRKCD,
and has marketing approval as a biologic disease-modifying
anti-rheumatic drug (DMARD). The JAK2 antibody baricitinib
and the TYK2 antibody tofacitinib are both marketed as biologic
DMARDs, and the MAP2K1 antibody binimetinib is currently in
phase 3 clinical trials as a biologic DMARD. Each of these drugs
therefore present a clinical opportunity and putative mechanism
for repurposing studies in osteoarthritis. Of the remaining tier 1
and tier 2 druggable targets, the potentially actionable molecules
are at an earlier stage of development and present a more distant
repurposing opportunity.

DISCUSSION

Our findings have generated further knowledge on the differ-
ences between weight bearing and non-weight bearing joints
and point to mechanisms that are common to disease develop-
ment at any joint, and joint-type-specific. Indeed, bone and carti-
lage development pathways were enriched in signals traversing
weight bearing and non-weight bearing joints, identifying joint
development as a common mechanism for any form of osteoar-
thritis (Table S13).

We have been able to establish molecular links between the
disease and its main symptom, pain. We demonstrate genetic
correlation between osteoarthritis and pain-related phenotypes
and identify signal enrichment in neurological pathways (Table
S13). Furthermore, several of the high-confidence effector genes
have a role in neuropathology. The majority of osteoarthritis
cases in this study were defined as total joint replacement and/
or self-reported osteoarthritis, and both of these disease pheno-
types are highly driven by pain. Identification of these genes can
also have implications for further joint pain-related disorders, for
which insights have been limited to date.

A large number of the high-confidence effector genes
converge on the endochondral pathway, playing an essential
role in homeostasis of the chondrocyte (Figure 3) and osteophy-
tosis. Several of the identified genes are important in TGF-8
signaling and function. The newly identified fibrillin 2 (FBN2)
signal, together with LTBP1 and LTBPS3, regulate the availability
of active TGFB1. TGFB1 is the major form of TGFB in cartilage
and can activate a cascade of downstream genes through
SMADS-signaling, including ECM-genes which have been iden-
tified in our current study, such as carbohydrate sulfotransferase
3 (CHST3) (Zhou et al., 2020).

Our data provide evidence for the FGF-signaling cascade
(FGFR3, FGF18, and PIK3R1) being causally involved in osteoar-
thritis (Figure 3). FGF18 is currently being tested in clinical trials
for its effectiveness in osteoarthritis (Hochberg et al., 2019). The
newly identified molecular player phosphoinositide-3-kinase
regulatory subunit 1 (PIK8R1) encodes the p85a, p55a, and
p50a regulatory subunits of class IA phosphatidylinositol 3
kinases (PI3Ks), which are known to play a key role in the meta-
bolic actions of insulin and are required for adipogenesis (Kim
et al., 2014; Thauvin-Robinet et al., 2013). Mutations in PIK3R1
cause agammaglobulinemia 7 (Conley et al., 2012), immunodefi-
ciency 36 (Deau et al., 2014; Lucas et al., 2014), and SHORT
syndrome (Dyment et al., 2013), which is characterized by short
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stature, hyperextensibility of joints, ocular depression, Rieger
anomaly, and teething delay (Dyment et al., 2013; Thauvin-Rob-
inet et al., 2013). The balance between chondrocyte prolifera-
tion, differentiation, and hypertrophic conversion is controlled
by crosstalk between several signaling pathways, of which we
find causal evidence here: PTHLH and IHH-signaling (SMO
and PTCH1) antagonize signaling through FGFRS. In addition,
we identify two independent genetic variants implicating noggin
(NOG) as an osteoarthritis effector gene. Noggin binds to TGFB,
BMPs, and GDF5 and thereby prevents binding to the cognate
receptor. Mutations in NOG cause a whole range of bone and
cartilage phenotype depending on the severity of the mutation
(Lehmann et al., 2007).

Several of the putative osteoarthritis causal genes are involved
in developmental pathways (Figure 3). Skeletal development can
be linked to osteoarthritis in several ways. First, skeletal develop-
mental genes are involved in joint (tissue) characteristics before
onset of disease such as cartilage thickness (TGFA, FGFR3,
RUNX2, and PIK3R1) (Castano-Betancourt et al., 2016) or joint
shape (resulting in different loading of the joint). Second, the
skeletal development pathway could be involved in the reaction
to damage in the joint. Depending on the specific genetic
makeup, each individual reaction to a damaging trigger to the
joint could be different, thereby determining the risk of devel-
oping osteoarthritis upon trauma or mechanical overload.
Pathway analysis performed on the current study signals further
corroborated this, because it revealed evidence for enrichment
of pathways typically involved in reaction to damage.

Our data also suggest that subtle changes in pivotal osteo-
chondrogenic pathways lead to an adverse response to joint
damage and/or overload. This may catalyze a fibrotic
response both in cartilage and in the synovium. We identified
tenascin C (TNC) as one of the high-confidence effector genes
(Fu et al., 2017; Imanaka-Yoshida et al., 2020) (Figure 3). TNC
is a component of the extracellular matrix and is involved with
organ fibrosis, inflammation, and cardiovascular disease (Gol-
ledge et al., 2011; Yasuda et al., 2018). The formation of fibro-
cartilage and fibrosis in the joint is a major contributor to the
degenerative changes in osteoarthritis (Rim and Ju, 2020).
Further, elevated levels of TGF-B signaling are associated
with the pathological and fibrosis changes (van der Kraan,
2017). TGF-B is also a potent inducer of epithelial-mesen-
chymal transition (EMT) (Nieto et al., 2016; Stone et al,,
2016). EMT, a process whereby fully differentiated epithelial
cells undergo transition to a mesenchymal phenotype giving
rise to fibroblasts, is a driver of early fibrosis, which is a typical
response to injury or pathological changes and inflammation,
all common endpoint outcomes in osteoarthritis. The severity
of fibrosis contributes to the degree of degenerative changes
that lead to pain in osteoarthritis. We have identified signifi-
cant association of variants in many of the genes involved in
the induction (e.g., EMT genes, CUX7 and multiple molecular
components of the TGF-B pathway) and progression of
fibrosis (ECM genes e.g., TNC, TGF-B signaling FBN2,
LTBP1, LTBP3, TGFB1, and SMAD3) (Figure 3B). These find-
ings indicate that combined variation in the regulation of these
genes may collectively contribute to the susceptibility and
severity of degenerative changes in osteoarthritis.
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Seventy-one of the implicated genes code for molecules that
are the targets of approved (licensed) drugs and drugs in clinical
development. Our findings substantially strengthen the evidence
for these potential therapeutics, provide drug repositioning op-
portunities, and offer a solid basis on which to develop, or repur-
pose, such interventions for osteoarthritis.

Our work provides a robust springboard for follow-up func-
tional and clinical studies. We have demonstrated clear differ-
ences between distinct osteoarthritis patient populations, for
example based on disease severity, joint site affected, and
sex. We enhance our understanding of the genetic etiology of
disease, shed biological insights, and provide a stepping stone
for translating genetic associations into osteoarthritis drug
development, ultimately helping to catalyze an improvement in
the lives of patients suffering from osteoarthritis.

Limitations of the study
Enhancing population diversity in genetic association studies is
important for discovering risk variants, pinpointing likely causal
alleles, improving risk prediction, and ensuring the transferability
of findings across global populations. In this work, less than 3%
of contributing subjects were of non-European ancestry. Going
forward, the identification and inclusion of diverse populations
in osteoarthritis genetic association studies is urgently needed.
Disentangling mechanisms that are active at the point of dis-
ease initiation versus those activated during the natural history
of disease warrant animal model studies in which disease dy-
namics can be studied in depth. Indeed, investment in mecha-
nistic studies of the newly identified high-value targets will be
important next steps. Clinical trials of intervention will be needed
to take our findings forward into mechanism and clinical
outcome, therefore elucidating how to target the implicated
genes and proteins, how downstream events will be affected,
and, ultimately, how these interventions will affect disease
outcome in the patient.
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https://www.geisinger.org/precision-
health/mycode/discovehr-project
Contact Joyce van Meurs
(j.vanmeurs@erasmusmc.nl).

Application to the data manager of
the Rotterdam Study Frank van Rooij
(f.vanrooij@erasmusmec.nl).

Available upon application to
Kathryn Cheah (kathycheah@hku.hk).

Available upon application to
kontakt@hunt.ntnu.no

(Continued on next page)
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Continued
REAGENT or RESOURCE SOURCE IDENTIFIER
Cohort-level summary statistics and raw data This paper. Available upon application to Maris

for Estonian Biobank (EGCUT) are available
upon application.

Cohort-level summary statistics For GARP
study and LLS are available upon request.
Raw data are not available due to patient
confidentiality or consent restrictions or
ethical and legal

restrictions.

Cohort-level summary statistics for UK
Biobank are available by request.

Raw data for UK Biobank are available by
application.

Cohort-level summary statistics for arcOGEN
and UKHLS are available by request.

Raw data for arcOGEN are available from the
European Genome-phenome Archive (EGA).

Raw data for UKHLS are available by
application.

Cohort-level summary statistics for ARGO-
Larissa are available by request.

Raw data for ARGO-Larissa are available
from the European Genome-phenome
Archive (EGA).

Cohort-level summary statistics and raw data
for ARGO-Athens are available by request.

Resource related to LD SCore analysis:
Pre-computed LD scores for European
populations.

Resource related to drug identification
analysis: DrugBank database.

Resource related to eQTL colocalization,
causal inference and tissue specificity
analyses: GTEXx.

Resource related to meta-analyses and
tissue specificity analysis: 1000 Genomes
Project.

Resource related to tissue specificity analysis:

ROADMAP.

This paper. Refer to the following

for additional genetic information.
GARP study: Meulenbelt et al., 2008;
https://www.lumc.nl/org/reumatologie/
research/artrose/9031609354853/?
setlanguage=English&setcountry=
en LLS: Beekman et al., 2010;
https://www.leidenlangleven.nl/
en/home

This paper. Refer to Bycroft

et al., 2018 for additional

cohort genetic information.

Bycroft et al., 2018.

This paper.

Zeggini et al., 2012.

University of Essex, Institute for Social
and Economic Research, NatCen
Social Research, Kantar Public. (2020).
Understanding Society: Waves 1-10,
2009-2019 and Harmonised BHPS:
Waves 1-18, 1991-2009. [data
collection]. 13th Edition. UK Data
Service. SN: 6614, https://doi.org/
10.5255/UKDA-SN-6614-14.

This paper.

This paper.

This paper.

Bulik-Sullivan et al., 2015a, 2015b

Wishart et al., 2018

Battle et al., 2017

Auton et al., 2015

Kundaje et al., 2015
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Teder-Laving (maris.teder-laving@ut.ee)
or https://genomics.ut.ee/et

Contact Ingrid Meulenbelt
(i.meulenbelt@lumc.nl).

Contact Eleftheria Zeggini
(eleftheria.zeggini@helmholtz-
muenchen.de).

https://www.ukbiobank.ac.uk/enable-
your-research/apply-for-access

Contact Eleftheria Zeggini
(eleftheria.zeggini@helmholtz-
muenchen.de).

EGAS00001001017.

https://www.understandingsociety.ac.uk/

Contact Eleftheria Zeggini
(eleftheria.zeggini@helmholtz-
muenchen.de).

EGAS00001000917.

Contact Eleftheria Zeggini
(eleftheria.zeggini@helmholtz-
muenchen.de).

https://alkesgroup.broadinstitute.org/
LDSCORE/eur_w_Id_chr.tar.bz2
https://go.drugbank.com

https://www.gtexportal.org/

http://www.internationalgenome.org/

http://www.roadmapepigenomics.org/

(Continued on next page)
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Used as a reference panel of genotype
imputation and allele frequency checking in
meta-analyses: The Haplotype Reference
Consortium (HRC).

Human Phenotype Ontology (HPO) database
was used to identify if any of the high
confidence effector genes are implicated

in monogenic and rare human diseases.

MGI Mouse Genome Informatics database
was used to extract all mouse knockout
phenotypes.

OMIM database resource was used to identify
human genes linked to monogenetic pain
disorders.

Human Pain Genetics Database resource was
used to identify genes linked to pain.

Orphanet database resource was used to
identify if any of the high confidence effector
genes are implicated in monogenic and rare
human diseases.

Ensembl resource was used to obtain genes
and variants annotation.

Resource related to tissue specificity
analysis: ENCODE.

Resource related to drug identification
analysis: ChEMBL database.

DECIPHER database resource was used
to identify if any of the high confidence
effector genes are implicated in monogenic
and rare human diseases.

McCarthy et al., 2016

Kohler et al., 2021

Bult et al., 2019; Finger et al., 2015

Amberger et al., 2015

Meloto et al., 2018

Orphanet: an online database
of rare diseases and orphan drugs.
Copyright, INSERM 1997.

Yates et al., 2015, 2020

Snyder et al., 2020

Gaulton et al., 2017

Firth et al., 2009

http://www.haplotype-reference-
consortium.org/

https://hpo.jax.org/

http://www.informatics.jax.org/

https://www.omim.org/

https://humanpaingenetics.org/hpgdb/

https://www.orpha.net/consor/cgi-
bin/index.php?Ing=EN

http://www.ensembl.org//useast.
ensembl.org/index.html?redirectsrc=//
www.ensembl.org%2Findex.html

https://www.encodeproject.org

https://www.ebi.ac.uk/chembl/

https://www.deciphergenomics.org/
about/overview

Software and algorithms

R statistical software

EasyQC

METAL

GWAMA

PLINK 1.9
COJO in GCTA

FUMA
LDHub
PRsice2

LDpred
LDSC (LD SCore)
fast.coloc

ConsensusPathDB-human

R Project for Statistical Computing.

Winkler et al., 2014

Willer et al., 2010

Mégi et al., 2010; Magi and
Morris, 2010

Purcell et al., 2007
Yang et al., 2011, 2012

Watanabe et al., 2017
Zheng et al., 2017

Choi and O’Reilly, 2019;
Choi et al., 2020

Vilhjalmsson et al., 2015
Bulik-Sullivan et al., 2015a, 2015b

Genetics ToolboX Created by
Toby Johnson 2019.

Kamburov et al., 2011

https://www.R-project.org/

https://www.uni-regensburg.de/medizin/
epidemiologie-praeventivmedizin/
genetische-epidemiologie/software/

https://genome.sph.umich.edu/wiki/
METAL_Documentation

https://bmcbioinformatics.biomedcentral.
com/articles/10.1186/1471-2105-11-288

https://www.cog-genomics.org/plink/1.9/

https://cnsgenomics.com/software/
gcta/#C0OJO

https://fuma.ctglab.nl
https://github.com/bulik/Idsc
https://www.prsice.info

https://github.com/bvilhjal/Idpred
https://github.com/bulik/Idsc/

https://github.com/tobyjohnson/gtx/blob/
526120435bb3e29c39fc71604eec03a
371ec3753/R/coloc.R

http://cpdb.molgen.mpg.de/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
PhenoScannerV2 Kamat et al., 2019 http://www.phenoscanner.medschl.

Adobe illustrator

Vector graphics editor and design
program developed and marketed
by Adobe

cam.ac.uk/

https://www.adobe.com/de/
creativecloud/illustration.html

Custom scripts for quality control and This paper. https://doi.org/10.5281/
analyses. zenodo.5036143

Other

Website for GO Consortium. This paper. https://www.genetics-

osteoarthritis.com/

Website for Avon Longitudinal Study of
Parents and Children (ALSPAC).

Website for Understanding Society study.

Boyd et al., 2013; Fraser et al., 2013 http://www.bristol.ac.uk/alspac/

University of Essex, Institute for
Social and Economic Research,
NatCen Social Research, Kantar
Public. (2020). Understanding
Society: Waves 1-10, 2009-2019
and Harmonised BHPS: Waves
1-18, 1991-2009. [data collection].
13th Edition. UK Data Service.
SN: 6614, https://doi.org/
10.5255/UKDA-SN-6614-14.

Bycroft et al., 2018

https://www.understandingsociety.ac.uk/

Website of UK Biobank. https://www.ukbiobank.ac.uk/

RESOURCE AVAILABILITY

Lead contact
Further information requests should be directed to the lead contact, Eleftheria Zeggini (eleftheria.zeggini@helmholtz-muenchen.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability

The data from the genome-wide summary statistics for each meta-analysis generated during this study have been deposited at the
‘Downloads’ page of the Musculoskeletal Knowledge Portal (https://mskkp.org), and are publicly available as of the date of publica-
tion. Details for the cohort-specific raw genetic/genomic data are listed in the key resources table.

This paper does not report original code. The scripts used to run publicly available software (listed in the Key resources table) has
been deposited at https://github.com/hmgu-itg/Genetics-of-Osteoarthritis-1 and is publicly available. The DOI is listed in the Key
Resources Table.

Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohorts

Detailed information relating to the human subjects for each cohort, is provided in Table S1. This includes the number of individuals in
each cohort, sex information and ethnicity.

arcOGEN

Arthritis Research UK Osteoarthritis Genetics (arcOGEN) is a collection of 7410 unrelated, UK-based individuals of European
ancestry with knee and/or hip osteoarthritis from the arcOGEN Consortium (Zeggini et al., 2012). Samples were collected in 2 stages
from 10 United Kingdom locations (London, Nottingham, Oxford, Sheffield, Southampton, Edinburgh, Newcastle-Upon-Tyne, Shef-
field, Wansbeck, and Worcester). The majority of cases had primary OA requiring joint replacement of the hip or knee while a smaller
number were ascertained by radiographic evidence of disease (Kellgren-Lawrence (KL) grade > 2). The exclusion criteria included
the need for joint replacement due to fracture, secondary OA of any cause, and developmental, vascular, or infective causes of joint
disease.
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United Kingdom Household Longitudinal Study (UKHLS)

UKHLS also known as Understanding Society, is a longitudinal panel survey of 40,000 UK households (England, Scotland, Wales and
Northern Ireland) representative of the UK population. Participants are surveyed annually since 2009 and contribute information
relating to their socioeconomic circumstances, attitudes, and behaviors via a computer assisted interview. The study includes
phenotypical data for a representative sample of participants for a wide range of social and economic indicators as well as a biolog-
ical sample collection encompassing biometric, physiological, biochemical, and hematological measurements and self-reported
medical history and medication use. https://www.understandingsociety.ac.uk/.

ARGO-Larissa

The ARGO-Larissa study was set up to investigate the genetic architecture of knee OA in a Greek population. It included individuals
with primary knee OA undergoing total knee arthroplasty. The osteoarthritis participants’ recruitment was conducted in the city of
Larissa, central Greece.

ARGO-Athens

The ARGO study, was set up to investigate the genetic architecture of hip and knee OA in a Greek population. More than 1,500 pa-
tients with severe OA, undergoing hip and/or knee total joint replacement were recruited from the cities of Athens and Larissa. The
ARGO collection was conducted in three public hospitals (Attikon University General Hospital of Athens, Nea lonia General Hospital
Konstantopouleio, and KAT Hospital) and one private hospital (Lefkos Stavros General Hospital) in the city of Athens, Greece be-
tween February of 2015 and March 2017.

UK Biobank

The UK Biobank study is a large population-based prospective study of > 500,000 participants with ages ranging 40-69 years. In
total, 503,325 participants who registered in the National Health Service were recruited out of 9.2 million mailed invitations between
2006 and 2010 in 22 assessment centers throughout the UK (Sudlow et al., 2015). Most participants visited the center once, but some
individuals visited the center at up to three times. Baseline data were collected using electronic signed consent, a self-completed
touch-screen questionnaire, a brief computer-assisted interview, physical and functional measures, and collection of biological sam-
ples and genetic data. The UK Biobank genetic data contains genotypes for 488,377 participants. All detailed genotyping, quality
control, and imputation procedures are described at the UK Biobank website (https://biobank.ctsu.ox.ac.uk). Briefly, 50,000
samples were genotyped using the UKBILEVE array and the remaining samples were genotyped using the UK Biobank Axiom array
(Affymetrix) for ~800,000 SNPs. Population structure was captured by principal component analysis on ~500,000 UK Biobank
samples using ~100,000 SNPs. After sample and SNP quality control (QC) of the directly-typed genotypes, resulting in 670,739 auto-
somal markers in 487,442 individuals, data were prephased using SHAPEIT3 (O’Connell et al., 2016) and imputed using the IMPUTE4
program (https://jmarchini.org/software/). Both analyses were carried out centrally (Bycroft et al., 2018) and the full dataset consisted
of approximately 96 million variants in 487,411 individuals. https://www.ukbiobank.ac.uk/

This work was based on the third UK Biobank release, which includes the full set of genotypes imputed on the Haplotype Reference
Consortium (McCarthy et al., 2016) and the merged UK10K and 1000 Genomes phase 3 reference panels1000 Genomes Consortium
(Huang et al., 2015). Access to UK Biobank genetic and phenotypic data was given through the UK Biobank Resource under appli-
cation request.

Hong Kong work -HKSpineOA

Hong Kong Degenerative Disc Disease Population Cohort (HKDDDPC) is a a population-based cohort with subjects openly recruited
via newspapers advertisement, posters and e-mails, regardless of their social and economic status (Li et al., 2016). The study call was
for any participant who agreed to a study on the lumbosacral spine with MRI, clinical questionnaires and follow-up assessments.
Participants with prior surgical treatment of the spine, spinal tumors and fractures, and marked spinal deformities were excluded
from the study. Subjects selected were not based on the presence or absence of clinical symptoms. All qualified subjects underwent
T1-weighted axial MRI and T2-weighted sagittal MRI of the lumbosacral spine (L1-S1) after informed consent was obtained from par-
ticipants and ethics was approved by a local institutional board. MRI Protocol: 1.5T or 3T MRI machines were used for axial and
sagittal imaging at L1-S1. Subjects were oriented in the supine position. For T1-weighted axial scans, the field of view was
21cmx21cm, slice thickness was 4mm, slice spacing was 0.4mm, and imaging matrix was 218x256. For T2-weighted sagittal scans,
the field of view was 28cmx28cm, slice thickness was 5mm, slice spacing was 1mm, and imaging matrix was 448x336. The repetition
time for T1- and T2-weighted MRI were 500ms-800ms and 3320ms respectively, and their echo time was 9.5ms and 85ms. Accord-
ing to the pedicle and disc levels, 11 parallel slices were made at each spinal level with reference to the adjacent endplates. Definition
of OA on X-rays: For the lumbar lateral radiographs, each disc level (L1-2, L2-3, L3-4, L4-5, L5-S1) was measured for osteophytes and
vertebral narrowing. Grade 0 was considered none; grade 1 was mild; grade 2 was moderate; and grade 3 was severe. The L5-S1
disc was narrowed when its height was less than the disc space of L3-4. Diagnosis of OA was based on the criteria as described by de
Schepper et al. (2010). Disc space narrowing was present with grade > 1 and osteophytes with grade > 2. OA had either “narrow-
ing,” “osteophytes” or “both.” Narrowing was considered with grade > 1 narrowing at 2 or more vertebral levels and osteophytes
were considered with grade > 2 at 2 or more vertebral levels. With both narrowing and osteophytes, then “both” was considered.
Conversion of MRI for OA diagnosis: Conversion of MRI for OA diagnosis was dependent on two MRI ratings: disc bulging and
Schneiderman score. Disc bulging was divided into 4 categories: 0 = no disc bulging; 1 = posterior disc bulging (disc displaced
beyond a virtual line connecting the posterior edges of two adjacent vertebrae); 2 = disc extrusion (distance between the edge of
the protruded disc into the spinal canal was greater than the distance between edges of the base of the disc); 3 = disc sequestration
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(disc material detached and migrated away from the level of the intervertebral disc) (Cheung et al., 2009; Maatta et al., 2015; Tera-
guchi et al., 2020). The Schneiderman score (Schneiderman et al., 1987) was used to describe the disc signal intensity and was eval-
uated by a 4-point scale: 0 = normal disc height and signal intensity; 1 = speckled pattern or heterogeneous decreased disc signal
intensity; 2 = diffuse loss of signal; 3 = signal void.

Each lumbar intervertebral disc was rated for disc bulging and Schneidermann score. Lumbar spine OA was defined to be present
if (1) At least 1 disc with Schneidermann score 3, OR (2) At least 1 disc with Schneidermann score 2 and Bulging score 2, OR (3) At
least 2 discs with Schneidermann score 2 AND disc bulging score 1,

There were 587 of subjects with X-rays as well. We validated our definition based on MRI by testing and confirming its equivalence
with X-ray diagnoses using these subjects. DNA samples were genotyped using the lllumina humanOmniZhongHua-8 v1.2 Bead-
Chip. Quality control (QC) of the genotyped data were conducted based on pipeline provided by Anderson et al. (2010). Imputation
of single nucleotide polymorphisms (SNPs) was performed using reference panels from the Haplotype Reference Consortium (HRC)
(McCarthy et al., 2016).

The Nord-Trondelag Health Study (The HUNT Study)

The Nord-Trondelag Health Study (HUNT) is a large population-based cohort from the county Nord-Trendelag in Norway. All
residents in the county, aged 20 years and older, have been invited to participate. Data was collected through three cross-sectional
surveys, HUNT1 (1984-1986), HUNT2 (1995-1997) and HUNTS3 (2006-2008), and has been described in detail previously (Krokstad
et al., 2013), with the fourth survey recently completed (HUNT4, 2017-2019). DNA from whole blood was collected from HUNT2 and
HUNTS3, with genotypes available from 71,860 participants. All genotyped participants have signed a written informed consent
regarding the use of data from questionnaires, biological samples and linkage to other registries for research purposes. In total,
DNA from 71,860 HUNT samples was genotyped using one of three different Illumina HumanCoreExome arrays
(HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM HUNT Biobank v1.0). Samples which failed to reach a 99% call
rate, had contamination > 2.5% as estimated with BAF Regress (Jun et al., 2012), large chromosomal copy number variants, lower
call rate of a technical duplicate pair and twins, gonosomal constellations other than XX and XY, or whose inferred sex contradicted
the reported gender, were excluded. Samples that passed quality control were analyzed in a second round of genotype calling
following the Genome Studio quality control protocol described elsewhere (Guo et al., 2014). Genomic position, strand orientation
and the reference allele of genotyped variants were determined by aligning their probe sequences against the human genome
(Genome Reference Consortium Human genome build 37 and revised Cambridge Reference Sequence of the human mitochondrial
DNA,; http://genome.ucsc.edu) using BLAT (ENCODE Project Consortium, 2012). Variants were excluded if their probe sequences
could not be perfectly mapped to the reference genome, cluster separation was < 0.3, Gentrain score was < 0.15, showed deviations
from Hardy Weinberg equilibrium in unrelated samples of European ancestry with p value < 0.0001), their call rate was < 99%, or
another assay with higher call rate genotyped the same variant. Imputation was performed on the 69,716 samples of recent European
ancestry using Minimac3 (v2.0.1, https://genome.sph.umich.edu/wiki/Minimac3) (Das et al., 2016) with default settings (2.5 Mb refer-
ence based chunking with 500kb windows) and a customized Haplotype Reference consortium release 1.1 (HRC v1.1) for autosomal
variants and HRC v1.1 for chromosome X variants (McCarthy et al., 2016). The customized reference panel represented the merged
panel of two reciprocally imputed reference panels: (1) 2,201 low-coverage whole-genome sequences samples from the HUNT study
and (2) HRC v1.1 with 1,023 HUNT WGS samples removed before merging. We excluded imputed variants with Rsq < 0.3 resulting in
over 24.9 million well-imputed variants.

Geisinger

Geisinger is an integrated health care provider located in central and northeastern Pennsylvania and New Jersey. Geisinger’s
electronic health record (EHR) consists of comprehensive longitudinal clinical information including patients’ demographic data,
diagnoses (including co-morbidities), lab measurements, prescriptions, procedures, vital signs, and, of relevance for this study, sur-
gical procedure logs. The EHR captures a median of 14 years of health data for patients within the MyCode® Community Health
Initiative biorepository. Through the Geisinger-Regeneron DiscovEHR collaboration, whole exome sequence and genome wide
genotype data are available from more than 92,000 MyCode® participants to date. These high dimensional clinical data linked to
genetic data provide opportunities to conduct precision health research at an unprecedented scale that can lead to significant clinical
insights. https://www.geisinger.org/precision-health/mycode

The details of MyCode Community Health Initiative have been described previously (Carey et al., 2016).

Genotyping was performed in two batches on the lllumina Infinium OmniExpress Exome array and GSA-24v1-0 array for Geisinger
60k and Geisinger 30k cohorts, respectively (Zhang et al., 2021). The Michigan Imputation Server was used to impute genotypes for
both cohorts to HRC.r1-1 EUR reference genome (GRCh37 build) separately. Pre-imputation QC included sample call rate and
marker call rate > 90%, HWE p value > 1e-15, MAF > 1%. A/T & G/C SNPs were removed if MAF > 0.4. SNPs with differing alleles,
SNPs with > 0.2 allele frequency difference, SNPs not in HRC reference panel were also removed. Variants with imputation info score
> 0.3 and MAC > 5 were included in the analyses. We used ICD-code based method to define OA cases and controls. We adopted a
linear mixed model built in BOLT_LMM (N > 5000) or GEMMA (N < 5000) for the association tests while accounting for the relatedness
and population structure (first 20PCs). PLINK1.9 was used for genetic data quality control and PC calculation.

Japan Study
The Japanese cohort of knee OA GWAS (disease cohort) consists of 900 cases and 3,400 controls. The cases were all symptomatic
OA. They were diagnosed and recruited by expert orthopedic surgeons based on clinical and radiographic examination. All had
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clinical records for OA and radiographs (standing knee A-P). The controls were obtained from Biobank Japan. The genotyping was
done by using lllumina HumanHap550v3 Genotyping BeadChip. After excluding cases with call rate of < 0.98, we applied SNP QC
(call rate of > 0.99 in both cases and controls and P value of Hardy-Weinberg equilibrium test of > 1.0 X 10—6 in controls). Finally,
459,393 SNPs on autosomal chromosomes passed the QC filters (Nakajima et al., 2010).

deCODE

The deCODE genetics osteoarthritis study is an ongoing population based study in Iceland that was initiated in 1997. The study in-
cludes information on all subjects who have undergone total joint replacement in Iceland, and on osteoarthritis status from the Land-
spitali University Hospital electronic health records. Information on hand osteoarthritis patients is derived from a database of hand
osteoarthritis patients that was initiated in 1972. Subjects have given blood or buccal samples to deCODE genetics biobank, which
has gathered genotypic and medical data from more than 160,000 volunteer participants. https://www.decode.com/.

The details of OA definition and analyses have been described previously (Styrkarsdottir et al., 2014, 2018).

Rotterdam Study

The Rotterdam study is a large longitudinal population-based cohort study designed to study the risk factors for all major diseases of
the elderly. The study started in 1991, has grown to up to 15000 individuals and has detailed phenotyping for cardiovascular, neuro-
degenerative, endocrine and locomoter diseases and more. For osteoarthritis, longitudinal X-rays on multiple joints and knee MRI’s
are available (and scored), as well as information on joint pain. GWAS data are available for all individuals of the Rotterdam Study, as
well as additional molecular layers (such as RNA, methylation, microbiome). Genomic studies in the Rotterdam Study are led by the
Genetic Laboratory, Department of Internal Medicine of the ErasmusMC in Rotterdam (lkram et al., 2020). http://www.epib.nl/
research/ergo.htm, http://www.glimdna.org

Nurses’ Health Study and Nurses’ Health Study II: The Nurses’ Health Studies are among the largest prospective investigations into
the risk factors for major chronic diseases in women (https://nurseshealthstudy.org/). The NHS is a prospective cohort study estab-
lished in 1976. Blood samples were collected from a subset of participants in 1989-90. DNA was collected from cheek cells from
another subset of participants in 2001-2004. The NHS Il was established in 1989 to study a population younger than the original
NHS cohort. Blood samples were collected on a subset of participants in 1996-1999. DNA from cheek cells was collected in 2006
from another subset of participants. Self-reported cases of total hip replacement from the NHS and NHS2 were analyzed for the
GO meta-analysis.

TwinsUK

TwinsUK is the UK’s largest adult twin registry and the most clinically detailed in the world. Professor Tim Spector from King’s College
London set up the cohort in 1992 to investigate the incidence of osteoporosis and other rheumatologic diseases in several hundred
monozygotic (identical) twins. We now have almost 14000 identical and non-identical twins from across the UK, with ages between
sixteen and one hundred and our research has expanded to include multiple diseases and conditions. TwinsUK aims to investigate
the genetic and environmental basis of a range of complex diseases and conditions. Current research includes the genetics of meta-
bolic syndrome, cardiovascular disease, the musculoskeletal system, aging, sight as well as how the microbiome affects human
health. The TwinsUK cohort is now probably the most genotyped and phenotyped in the world. TwinsUK data have enabled multiple
collaborations with research groups worldwide and the publication of research papers. https://twinsuk.ac.uk/

Details on OA definition as in Styrkarsdottir et al. (2014) and GWAS, QC imputation as described in Hysi et al. (2018) and den Hol-
lander et al. (2017).

GARP and LLS studies

The GARP study is a prospective observational study in patients with familial generalized osteoarthritis, hand osteoarthritis and other
osteoarthritis phenotypes. All patients (N = 380) have symptoms and definite radiological signs of osteoarthritis and represent an
advanced disease state (Meulenbelt et al., 2008). https://www.lumc.nl/org/reumatologie/research/artrose/9031609354853/ The Lei-
den Longevity Study (LLS) consists of 420 Caucasian families with at least two long-lived siblings (men aged 89 years or above;
women aged 91 years or above), the middle aged offspring and the partners of this offspring (Beekman et al., 2010). https://www.
leidenlangleven.nl/en/home

Estonian Biobank

EGCUT has 52000 gene donors, who are all genotyped. In 2019, 100000 new donors will be collected and genotyped. All osteoar-
thritis cases were selected from Estonian Biobank which is a population-based biobank of the EGCUT. https://genomics.ut.ee/en

Osteoarthritis cases were chosen from ca 50000 participants of Estonian Biobank by using ICD 10 codes. To specify THR, TKR and
TJR cases, the codes from NOMESCO Classification of Surgical Procedures were used in addition. The numbers for cases and con-
trols used are provided in the attached table.

For genotyping, lllumina Human CoreExome, OmniExpress, 370CNV BeadChip and GSA arrays were used. Quality control
included filtering on the basis of sample call rate (< 98 %), heterozygosity (> mean + 3SD), genotype and phenotype sex discordance,
cryptic relatedness (IBD > 20%) and outliers from the European descent based on the MDS plot in comparison with HapMap refer-
ence samples. SNP quality filtering included call rate (< 99%), MAF (< 1%) and extreme deviation from Hardy-Weinberg equilibrium
(p <1 x 10—4). Imputation was performed using SHAPEIT2 for prephasing, the Estonian-specific reference panel (Mitt et al., 2017)
and IMPUTE2 (Howie et al., 2009) with default parameters. Association testing was carried out with snptest-2.5.2, adjusting for 4 PCs,
arrays, current age and sex (when relevant).
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ALSPAC
Avon Longitudinal Study of Parents and Children (ALSPAC). Pregnant women resident in Avon, UK with expected dates of delivery 1st
April 1991 to 31st December 1992 were invited to take part in the study. The initial number of pregnancies enrolled is 14,541 (for these
at least one questionnaire has been returned or a “Children in Focus” clinic had been attended by 19/07/99). Of these initial pregnan-
cies, there was a total of 14,676 fetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. When the
oldest children were approximately 7 years of age, an attempt was made to bolster the initial sample with eligible cases who had failed
to join the study originally. As a result, when considering variables collected from the age of seven onward (and potentially abstracted
from obstetric notes) there are data available for more than the 14,541 pregnancies mentioned above. The number of new pregnancies
not in the initial sample (known as Phase | enrolment) that are currently represented on the built files and reflecting enrolment status at
the age of 24 is 913 (456, 262 and 195 recruited during Phases Il, lll and IV respectively), resulting in an additional 913 children being
enrolled. The phases of enrolment are described in more detail in the cohort profile paper and its update (see footnote 4 below). The
total sample size for analyses using any data collected after the age of seven is therefore 15,454 pregnancies, resulting in 15,589 fe-
tuses. Of these 14,901 were alive at 1 year of age. A 10% sample of the ALSPAC cohort, known as the Children in Focus (CiF) group,
attended clinics at the University of Bristol at various time intervals between 4 to 61 months of age. The CiF group were chosen at
random from the last 6 months of ALSPAC births (1432 families attended at least one clinic). Excluded were those mothers who
had moved out of the area or were lost to follow-up, and those partaking in another study of infant development in Avon.

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Commit-
tees. Informed consent for the use of data collected via questionnaires and clinics was obtained from participants following the rec-
ommendations of the ALSPAC Ethics and Law Committee at the time.

Informed consent and study approval

arcOGEN

The arcOGEN study was ethically approved by appropriate review committees, and the prospective collections were approved by
the National Research Ethics Service in the United Kingdom. All subjects in this study provided written, informed consent.
UKHLS

The UKHLS has been approved by the University of Essex Ethics Committee, and informed consent was obtained from every
participant.

ARGO-Larissa

Verbal informed consent was given by all research participants prior to the collection of blood samples for the research. The research
participant recruitment, consent process, and study protocol were approved by the Institutional Review Board of the University Hos-
pital of Larissa and conform to the ethical principles set out in the Declaration of Helsinki (1975).

ARGO-Athens

The ARGO collection was conducted in three public hospitals (Attikon University General Hospital of Athens, Nea lonia General Hos-
pital Konstantopouleio, and KAT Hospital) and one private hospital (Lefkos Stavros General Hospital) in the city of Athens, Greece
between February of 2015 and March 2017. All studies were approved by the relevant hospital Institutional Review Board and con-
ducted in accordance with the principles set out in the Declaration of Helsinki. All patients provided written informed consent prior to
participation.

UK Biobank

All participants signed consent to participate in UK Biobank and UK Biobank’s scientific protocol and operational procedures were
reviewed and approved by the North West Research Ethics Committee (REC reference number 06/MREQ08/65), North West Multi-
center Research Ethics Committee (REC reference 11/NW/0382), the National Information Governance Board for Health and Social
Care and the Community Health Index Advisory Group.

Hong Kong work -HKSpineOA

Informed consent was obtained from participants and ethics was approved by a local institutional board.

The Nord-Trondelag Health Study (The HUNT Study)

All genotyped participants have signed a written informed consent regarding the use of data from questionnaires, biological samples
and linkage to other registries for research purposes. The current study was approved by the Regional Committee for Medical and
Health Research Ethics (REK) 2015/573.

Geisinger

MyCode Governing Board and an external Ethics Advisory Council approved the study and informed consent was obtained from all
subjects as detailed in this reference: Carey et al. (2016).

Japan Study

The Ethical committee of RIKEN Yokohama Institute approved the study. Informed consent was obtained from all subjects.
deCODE

All participants who donated samples gave informed consent and the National Bioethics Committee of Iceland approved the study
(VSN 14-148) which was conducted in agreement with conditions issued by the Data Protection Authority of Iceland. Personal iden-
tities of the participant’s data and biological samples were encrypted by a third-party system (Identity Protection System), approved
and monitored by the Data Protection Authority.
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Rotterdam Study

The Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC (registration number MEC 02.1015)
and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act WBO, license number 1071272-159521-PG). The
Rotterdam Study has been entered into the Netherlands National Trial Register (NTR; https://www.trialregister.nl) and into the WHO
International Clinical Trials Registry Platform (ICTRP; https://www.who.int/ictrp/network/primary/en/) under shared catalog number
NTR6831. All participants provided written informed consent to participate in the study and to have their information obtained from
treating physicians. Nurses’ Health Study and Nurses’ Health Study Il: This study was approved by the Institutional Review Boards of
the Harvard T. H. Chan School of Public Health and Brigham and Women’s Hospital. Informed consent was obtained from all subjects
for the collection of biospecimens for genotyping and the use of their genotype and de-identified data for research.

TwinsUK

Ethics approval was obtained from the Guy’s and St. Thomas’ Hospital Ethics Committee. Written informed consent was obtained
from every participant. RAAK, GARP, LLS: Ethical approval for all studies was obtained from the medical ethics committee of the
Leiden University Medical Center (RAAK: P08.239 and P19.013; GARP: P76.98; LLS P01.113) and informed consent was obtained
from all participants.

ALSPAC

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.
Specific approval references for each clinic can be found at http://www.bristol.ac.uk/alspac/researchers/research-ethics/. Informed
consent for the use of data collected at clinics was obtained from participants following the recommendations of the ALSPAC Ethics
and Law Committee at the time. Consent for biological samples has been collected in accordance with the Human Tissue Act (2004).
Estonian Biobank

Our study has been reviewed and approved by the local ethics committee on Estonian Bioethics and Human Research, resolution nr
1.1-12/624. Informed consent was obtained from all subjects.

METHOD DETAILS

Cohorts and phenotype definition

Genome-wide association analysis for osteoarthritis was performed across 21 cohorts (Table S1), for a total of 826,690 individuals
(177,517 osteoarthritis patients). We defined 11 stratified osteoarthritis phenotypes: osteoarthritis at any site, osteoarthritis of the hip
and/or knee, knee osteoarthritis, hip osteoarthritis, total joint replacement, total knee replacement, total hip replacement, hand oste-
oarthritis, finger osteoarthritis, thumb osteoarthritis and spine osteoarthritis (Figure 1; Table S1). Osteoarthritis was defined by either
a) self-reported osteoarthritis, b) clinical diagnosed, c) ICD10 codes (Table S1) or d) radiographic as defined by the TREAT-OA con-
sortium (Kerkhof et al., 2011), depending on the data available in the cohort (Table S1). Controls were OA-free or population-based
with or without ICD code exclusions. An age exclusion if appropriate (preferable of 45 years and older) was applied at the discretion of
each cohort. GWAS analysis were performed by each cohort, and adjusted for cohort specific covariates (Table S1).

Annotation of protein coding variants

For coding SNVs we considered only the following moderate to high impact annotations when weighting genes for prioritisation:
transcript_ablation, splice_acceptor_variant, splice_donor_variant, stop_gained, frameshift_variant, stop_lost, start_lost, transcript_
amplification, inframe_insertion, inframe_deletion, missense_variant, protein_altering_variant.

Mouse and human phenotypes

We investigated if any of the genes within 1Mb (upstream and downstream) of the 100 SNVs had a musculoskeletal or neuronal/
pain phenotype in mouse knockouts using information from the Mouse Gene expression database (GDX) of the Mouse Genome
Informatics (MGI) database (Bult et al., 2019; Finger et al., 2015). Mouse orthologs of the genes were extracted from Ensembl,
using biomart (GRCh37, Version 69) (Yates et al., 2020). The MGI Batch Query was used to extract all mouse knockout pheno-
types from the GDX for all of the investigated genes Using the MGI mouse phenotype ontology the following mouse knockout
phenotypes were included for musculoskeletal phenotypes: skeleton phenotype, muscle phenotype and immune system pheno-
type. For mouse neuronal/pain phenotype the following MGl mouse phenotype ontology was included: nervous system pheno-
type. We also investigated if any genes had a musculoskeletal phenotype in mouse knockouts using information from https://
www.hugedomains.com/domain_profile.cfm?d=boneandcartilage&e=com. Genes which had a mouse musculoskeletal or
neuronal phenotype were reported (Table S10). We also investigated human skeletal genetic disorders. We used the Nosology
and classification of genetic skeletal disorders (Mortier et al., 2019) to identify genes within 1Mb (upstream or downstream) of
the 100 SNVs that had links to human musculoskeletal phenotypes. For human genes linked to monogenetic pain disorders,
we downloaded the OMIM database (Amberger et al., 2015) (https://www.omim.org/) and extracted any genes containing pheno-
types with the following key words: pain, pain and neuropathy, neuropathy. In addition, we also included genes linked to pain from
the curated Human Pain Genetics Database (Meloto et al., 2018) (https://humanpaingenetics.org/hpgdb/) We then examined if any
genes within 1Mb (upstream or downstream) of the 100 SNVs were included in those human pain gene lists. Human genes with a
pain phenotype or link were reported (Table S10).
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Additional phenotypes and endophenotypes

For additional information on the 100 identified osteoarthritis associated SNVs, we examined their association in several osteoar-
thritis endophenotype and structural phenotype GWAS studies. The osteoarthritis definition and related structural phenotypes
were defined based on radiographs in the Rotterdam Study cohorts of the hip, hand, finger, thumb and knee joints (n = 5,634 to
9,276). We have used the following radiographic measurements to create (semi)-quantitative endophenotypes for the hip, knee,
hand, finger and thumb joints: Joint Space Narrowing (JSN) (0-3 scoring), Joint Space Width (JSW) (mm), Osteophytes (0-3 scoring),
and Kellgren-Lawrence (KL)-score (0-5). Using these measurements we have defined the following structural OA phenotypes:
Finger/Hand/Thumb/Knee/Hip JSN sum score, osteophyte sum score, KL sum score and Hip JSW.JSW was assessed at pelvic ra-
diographs in anterior-posterior position and measured in mm, along a radius from the center of the femoral head. Within the Rotter-
dam Study, a 0.5 mm graduated magnifying glass laid directly over the radiograph was used to measure the joint space width of the
hip joints. Acetabular dysplasia was measured using the Center-Edge angle or also known as the Wiberg (CE-angle). The angle was
measured using statistical shape model (SSM) software. A continuous phenotype was used for the CE-angle, because of the normal
distribution of the measured angles. Since the CE-angle of the right hip and the left hip has a high correlation (Pearson correlation
coefficient 0.68), only the CE-angle of the right hip was used in our GWAS. Minimal Joint Space Width (mJSW) GWAS data was taken
from Castafio-Betancourt et al. (2016). Summary statistics for Bone Size as measured by DXA were taken from Styrkarsdottir
et al. (2019).

Cartilage-type specific effect

To investigate if any of the high-confidence effector genes show a different expression in osteophytes, indicating a potential role
in repair mechanisms in response to joint cartilage degeneration, we investigated if they showed significant (0.1% FDR) differential
gene expression, methylation or differential protein abundance in osteophytic cartilage compared to low-grade (intact) cartilage in a
within-individual matched analysis from 9 individuals who had undergone THR for primary osteoarthritis (Steinberg et al., 2018) (Ta-
ble S12).

Effect on intervertebral disc degeneration

To identify if any of the high confidence effector genes code for proteins that are implicated in disc degeneration, we investigated if
the proteins were differentially abundant in recently published spatiotemporal proteomics atlas of human intervertebral discs (Tam
et al., 2020). Eight effector genes demonstrate differential protein abundance in a comparison between intervertebral discs from a
younger (16 year old male) and an older (59 year old male) individual with no reported scoliosis or degeneration (Table S12).

Monogenic and rare human diseases

We scanned the Human Phenotype Ontology (HPO) database (Kohler et al., 2021), which is currently being developed using the med-
ical literature, DECIPHER (https://www.deciphergenomics.org/about/overview) (Firth et al., 2009), OMIM (https://omim.org/)
(Amberger et al., 2015) and Orphanet (https://www.orpha.net/consor/cgi-bin/index.php?Ing=EN), to examine if any of the high con-
fidence effector genes are implicated in phenotypic abnormalities of monogenic and rare human diseases. Fifty-one genes are
involved in diseases related to skeletal development, joint degeneration, adipogenesis, muscle function, neuronal function, immune
response and inflammation (Figure 3; Table S12).

QUANTIFICATION AND STATISTICAL ANALYSIS

Meta-analysis

GWAS summary statistics from all cohorts were collected and checked to contain all the data needed for the meta-analysis. The qual-
ity control (QC) was performed centrally by using EasyQC (Winkler et al., 2014). Briefly, missing data, mono-allelic SNVs, nonsensical
values (p > 1, infinite beta’s etc.) and duplicates were removed from the data. We excluded variants with poor imputation quality (R <
0.3), if the effective sample size was < 20 and if the minor allele count was < 6. Allele coding was harmonized across cohorts (A/T/C/G
or I/D). Allele frequency was checked against the imputation reference (HRC http://www.haplotype-reference-consortium.org/) (Mc-
Carthy et al., 2016) or 1000G http://www.internationalgenome.org/) to identify possible allele coding errors. P values were checked to
match the corresponding beta values. Cleaned data was used as input for the meta-analysis. Meta-analysis was performed using
inverse variance weighting in METAL (Willer et al., 2010). Genomic control was performed on all datasets, except those which
had already carried out genomic-control adjustments prior to centralized QC and meta-analysis. Genome-wide significance
threshold was set at p < 1.3x1078, corrected for multiple testing (see significance threshold section below). For each phenotype
we only considered variants reported in at least 2 cohorts with the same direction of effect with a minimum MAF > = 0.0001 in
any contributing cohort. We repeated the same procedure to perform two sensitivity analyses: a) we excluded from the meta-ana-
lyses the largest contributing dataset, UK Biobank (https://www.ukbiobank.ac.uk/) (Bycroft et al., 2018) and b) East Asian ancestry-
only meta-analyses for the 4 osteoarthritis phenotypes (spine, knee, knee and/or hip, and osteoarthritis at any site) that included East
Asian cohorts. To summarize the significance of the signals that have supportive evidence in East Asian ancestry-only meta-analysis,
we conducted a binomial test (N = 10 SNVs with concordant direction and p < 0.05, N = 77 SNVs tested, and 0.025 is the expected
proportion of SNVs at p < 0.05 and with the same direction of effect). As a sensitivity analysis, we excluded the largest contributing
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dataset in which the majority of previously-reported loci originate (UK Biobank; up to 68,621 osteoarthritis cases and 247,846 con-
trols) from the meta-analyses.

Sex-differentiated meta-analysis

The meta-analyses and QC steps described above were repeated for males and females separately in a subset of cohorts. We
then combined the resulting association summary statistics (male-specific meta-analysis, consisting of up to 56,462 cases and
153,808 controls, and female-specific meta-analysis, consisting of up to 90,838 cases and 192,697 controls) to conduct a sex-
differentiated test of association and a test of heterogeneity in allelic effects, as implemented in GWAMA (Méagi et al., 2010;
Magi and Morris, 2010). This method allows for heterogeneity of allelic effects in magnitude and/or direction between males
and females and offers substantial gains in power to detect SNV associations. The genome-wide significance threshold was
set at p < 1.3x1078, corrected for multiple testing. Heterogeneity in allelic effect sizes was assessed with Cochran’s Q statistic
and the significance threshold was set at p < 0.016, corrected for the 3 independent new signals identified across the 11 oste-
oarthritis phenotypes (Table S5).

Early-onset osteoarthritis meta-analysis

We carried out a meta-analysis of early osteoarthritis, defined as age at onset younger than 45 years of age, across 3 cohorts (Esto-
nian Biobank, HUNT & UK-Biobank) with age at onset information available. The analysis was conducted on 6,838 early-onset oste-
oarthritis patients and 41,449 controls in only one of the 11 phenotype definitions used in the main meta-analysis (osteoarthritis at any
site, abbreviated as EarlyAllOA). The QC and meta-analysis steps of the main meta-analysis were repeated for early-onset meta-
analysis and the genome-wide significance threshold was set at p < 5x1078,

Significance threshold

The testing of M = 11 osteoarthritis phenotypes in this study needed to be taken into account in the interpretation of genome-wide
statistical significance. Applying a Bonferroni correction would be inherently conservative as this method assumes independence
among the tests considered. Therefore, we first used LD Score regression method (Bulik-Sullivan et al., 2015a, 2015b) (https://
github.com/bulik/Idsc/) with genome-wide meta-analysis summary statistics to estimate the genetic correlation matrix
between the 11 osteoarthritis traits (Table S6) and then calculated the effective number of independent traits (M_eff) from the eigen-
values }_i of the correlation matrix (Li et al., 2012):

Meff = M — > "i=1M[I(2i > 1)(Ai—1)]

For the M = 11 osteoarthritis phenotypes in this study, M_eff = 4.6565. The threshold corrected for the effective number of traits to
report genome-wide significance is p < 1.3x1078.

Statistical independence

To define independent signals for each osteoarthritis phenotype (Table S3), we used the clumping function in PLINK 1.9 (Purcell et al.,
2007) with the following parameters: (a) significance threshold for index variants: p < 1.3x107%, (b) LD threshold for clumping: 0.10,
and (c) physical distance threshold for clumping: 1Mb (2Mb window around the index variant). LD calculations were based on the full
UK Biobank imputed set. To test that the index variants defined by clumping were statistically independent, we performed an approx-
imate stepwise model-selection procedure, as implemented by COJO in GCTA (Yang et al., 2011, 2012) (https://cnsgenomics.com/
software/gcta/). A signal in a region was defined as independent if its P value of association in the stepwise regression was less than
the adjusted genome-wide significant threshold (p < 1.3x1075).

To define independent signals across the 11 osteoarthritis phenotypes (Tables 2 and S3), we performed reciprocal approximate
conditional analyses, as implemented by COJO in GCTA (Yang et al., 2012; Yang et al., 2011), of each independent variant of one
osteoarthritis phenotype conditioned on each independent variant of the other osteoarthritis phenotypes within 1-Mb region. Two
signals were considered dependent if the P value for either signal conditioned on the other was either > 1x10~7, or attenuated by
at least 2 orders of magnitude. Among dependent variants, the one with the lowest P value was classified as independent. Using
an approximate conditional and joint multiple-SNP analysis, as implemented by COJO in GCTA (Yang et al., 2012; Yang et al,,
2011), we investigated the statistical independence between index signals per osteoarthritis phenotype and previously reported
osteoarthritis variants within a 1-Mb region. In Tables 1, 2, and S2 the index variant was classified as a new association if it had a
conditional p < 1x10~7 or the P value difference between conditional and unconditional analysis increased by more than two orders
of magnitude. Index variants were classified as known if they have previously been reported or the association signal disappeared
after conditioning on the variant of a previously reported locus.

Polygenic-risk-score analyses

PRS were created for all osteoarthritis phenotypes with 3 different approaches by using 2 different software, PRSice2 (Choi
et al., 2020; Choi and O’Reilly, 2019) which has a P value thresholding shrinkage strategy and LDpred (Vilhjalmsson et al., 2015)
that uses a Bayesian approach to polygenic risk scoring. First, we recreated summary statistics from the main sex-combined

Cell 184, 4784-4818.e1-e16, September 2, 2021 el1



https://github.com/bulik/ldsc/
https://github.com/bulik/ldsc/
https://cnsgenomics.com/software/gcta/
https://cnsgenomics.com/software/gcta/

¢? CellPress Cell

meta-analyses excluding arcOGEN samples (Table S1), in order to use the largest possible discovery sample for calculating the
weights. PRS were created for the arcOGEN cohort individuals for all available phenotypes (Table S4) using raw genotype data in
the software PRSice2 with the binary trait settings. The P value thresholds ranging from 1.3x1078 to 1.0x10~* with LD clumping pa-
rameters of R? = 0.1 over 1Mb windows and 10,000 permutations to account for the overfitting. As arcOGEN doesn’t have data for
spine osteoarthritis, hand osteoarthritis, thumb osteoarthritis and finger osteoarthritis, we calculated PRS in the UK Biobank sam-
ples. For the weights we used the main sex combined meta-analysis excluding UK Biobank individuals. We performed the analysis
in PRSice2 using P value thresholds from 1.3x10~8 to 1.0x10~* with LD clumping parameters of R? = 0.1 over 1Mb windows and the
binary trait setting. In our third approach, deCODE was used as the target dataset since all 11 phenotypes are available and the loss of
power in the base dataset wouldn’t be as great as if we had excluded the UKBB dataset. We used PRS analyses for one osteoarthritis
trait to investigate its predictive power for another osteoarthritis trait (Table S4). We used effect estimates based on meta-analysis for
osteoarthritis excluding deCode. The risk scores were calculated using genotypes for about 600,000 well-imputed autosomal
markers. We estimated LD between markers using 4,000 phased Icelandic samples and used this LD information to calculate
adjusted effect estimates using LDpred. We created several PRS assuming different fractions of causal markers (the P parameter
in LDpred), and selected the PRSs that best predicted the trait itself. The correlation between the PRS and traits was calculated using
logistic regression in R (v3.5) (R Core Team, 2019) adjusting for principal components, sex and year of birth by including them as
covariates in the analysis. Variance explained is estimated using Nagelkerke RZ. We binned the UK Biobank individuals based on
their PRS into deciles and we calculated the odds ratio (OR), 95% CIl and P value (Fisher’s Exact test) for individuals in the top decile
compared to the bottom decile (Table S4).

We generated PRS in the genome-wide meta-analysis excluding the deCODE dataset and used univariate linear regression to test
the predictiveness of the scores on age at joint replacement in the deCODE cohort (Table S4).

To investigate PRS predictability of patient strata, we assigned the high confidence effector genes into 6 broad areas of osteoar-
thritis biological action; skeletal development, joint degeneration, immune function and inflammation, neuronal function and devel-
opment, muscle function and adipogenesis (Figure 3A; Table S13). For each group the lead SNV for each effector gene member was
used to construct a PRS. A meta-analysis without UK Biobank included was used as the base data and UK Biobank was used as the
target using PRSice2 (Choi et al., 2020; Choi and O’Reilly, 2019) (Table S4).

We investigated associations between osteoarthritis PRS and bone mineral density (BMD) and body mass index (BMI) trajectories in
Avon Longitudinal Study of Parents and Children (ALSPAC) study (Boyd et al., 2013; Fraser et al., 2013), by analyzing 24,844 BMI, total
body less head BMD (TBLH BMD), total body fat mass (TBFM) and total body lean mass (TBLM) observations from 6,263 individuals.
Outcome assessment
BMI, total body less head BMD (TBLH BMD), total body fat mass (TBFM) and total body lean mass (TBLM) were measured at the
following clinics for adolescents: a) Age 9 (mean age 9.9), b) Age 11 (mean age 11.8), c) Teen focus 2 (mean age 13.8), d) Teen focus
3 (mean age 15.5), €) Teen focus 4 (mean age 17.8) and f) Focus at 24 (mean age 24.5). TBFM and TBLM indices were generated by
dividing TBFM or TBLM by height2. Mean BMI, BMD, TBFM and TBLM at each clinic are presented in Table S4. SNVs associated with
osteoarthritis at genome-wide significance were included in the scores. Unweighted polygenic risk scores were generated by sum-
ming the dosage of the osteoarthritis risk-increasing alleles. Weighted polygenic risk scores were generated by multiplying the
dosage of the risk-increasing alleles by the log odds and summing across all alleles. PRS were generated for the SNPs associated
with osteoarthritis at any site, hip osteoarthritis and knee osteoarthritis.

Associations between PRS and BMI trajectories were determined using mixed-effects linear spline regression modeling. 5 knot
points were generated at the mean age at each clinic starting at mean age 11.8. PRS-by-spline interaction terms were included
to determine if PRS affects the rate of BMI change between time points. Models were adjusted for sex and 4 principal components
(PCs). Age (centered at 9.9, the mean age at the first clinic) and individual ID were included as random effects. Analyses were
repeated stratified by gender.

As a sensitivity analysis, analyses were repeated with DXA scans coded as having artifacts excluded, as well as DXA scans coded
as having major positioning errors.

Correction for multiple testing

We analyzed six different exposures (weighted and unweighted PRS for osteoarthritis at any site, hip osteoarthritis and knee osteoar-
thritis) and five different outcomes (BMI, TBLH BMD, TBFMi, TBLMi and height). However, the weighted and unweighted PRS are highly
correlated and BMD/TBFMi/TBLMi and height are all components of BMI. Therefore, our corrected P value threshold was determined
as 0.05/3 = 0.017. Removing observations extracted from DXA scan images with artifacts or positioning errors did not affect conclu-
sions. Diagnostic tests did provide some evidence of heteroskedasticity and non-normality of residuals for BMI and TBFMi, but log-
transforming these outcomes did not alter results or improve residuals. The study website contains details of all the data that is available
through a fully searchable data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/).

Genetic signals across phenotypes

Results from all independent lead SNVs (n = 100) across all osteoarthritis phenotypes were extracted from the full meta-analysis re-
sults. All OR were calculated on the minor allele (allele frequency < 50%), and SNVs with a MAF < 1% were excluded (n = 6). For all the
remaining SNVs (n = 94) the OR for each osteoarthritis phenotype GWAS was plotted in a heatmap, together with the corresponding
association P (Figure 2). All figures were plotted using R and adjusted for publication quality using Adobe illustrator.
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We also created three classification groups: 0 = Weight bearing joints only (hip and/or knee, knee, hip, total joint replacement, total
knee replacement, total hip replacement and spine), 1 = Both, 2 = Non-weight bearing joints only (hand, finger, thumb). Osteoarthritis
at any site wasn’t included in this analysis as it wasn’t clear which osteoarthritis subphenotype was leading the signal. In Table 2 and
Figure 2 each of the 100 independent genome wide significant SNVs was assigned to the above groups only if it wasn’t nominally
significant (p > 0.05) for any of the other phenotypes in the other classification groups, resulting in 86 SNVs to be further analyzed.

Genetic correlation

We estimated the genetic correlation between osteoarthritis traits and secondary traits using the cross-trait LD Score regression
method as implemented in LDHub (Bulik-Sullivan et al., 2015a, 2015b) (https://github.com/bulik/Idsc) . We used results for about
1.1 million well imputed variants, and for LD information we used pre-computed LD scores for European populations (https://
alkesgroup.broadinstitute.org/LDSCORE/eur_w_Id_chr.tar.bz2). LD scores for the East Asian populations could not be calculated
as the LD Score method requires a sample size of > 4000 individuals.

To avoid bias due to overlapping samples, we calculated the genetic correlation between equally sized, non-overlapping sub-
groups of the sample sets from the meta-analysis of Icelandic, Norwegian and USA samples and UK, Dutch, Estonian and Greek
samples (Table S6). The results of the two analyses were subsequently meta-analyzed. For genetic correlations with other traits,
we calculated the genetic correlation between a meta-analysis of UK, Dutch, Estonian and Greek samples and the Icelandic
GWAS summary statistics for each secondary trait, and also between a meta-analysis of Icelandic, Norwegian and USA samples
and UKBB GWAS summary statistics for each secondary trait. The results of the two analyses were subsequently meta-analyzed.
We also analyzed the genetic correlation between the osteoarthritis subtypes, we split the sample-sets of the meta-analysis in
two equally sized groups and performed LD score regression between the two groups for each subtype (Table S6).

Fine-mapping

For each independent signal we included all variants within 1Mb of the index variant. In situations where there was more than 1 oste-
oarthritis signal in the region we used the conditional summary statistics of the meta-analysis conditioned on all other signals. We
calculated Wakefield’s asymptotic Bayes factors (Wakefield, 2009) and we determined the posterior probability of each variant being
causal. To produce a 95% credible set of variants we ranked according to posterior probability and included those variants with the
highest probability of being causal until the shared probability was at least 95%. Some regions were large therefore we considered
only variants in the 95% credible with a posterior probability of causality > 3% (Table S8).

eQTL colocalization

For cis-eQTL colocalization we used summary statistics of SNPs from 48 human tissues from the GTEx v7 (Battle et al., 2017)
(https://www.gtexportal.org/home/). For each signal and each tissue we included genes that contained at least 1 eQTL (using
a threshold of < 5% false discovery rate) in GTEx and that overlapped 100kb either side of our signal. For the colocalization
analysis we included all variants in common between the meta-analysis conducted here and the GTEx cis-eQTL analysis with
the exception of indels. We used the Bayesian statistical methodology (https://github.com/tobyjohnson/gtx/blob/
526120435bb3e29c39fc71604eec03a371ec3753/R/coloc.R) which implements the method of Giambartolomei et al. (2014). This
method evaluates whether the GWAS and molecular QTL associations best fit a model in which the associations are due to a single
shared variant, summarized by the posterior probability (PP). Evidence for colocalization was assessed using the PP4 indicating that
there is an association for both traits and they are driven by the same causal variant. A PP4 > 0.8 was considered evidence for co-
localization (Table S8).

Tissue specificity

Most complex disease risk variants are thought to exert their risk by affecting regulation of expression of a target gene in a tissue and
cell-specific context (Maurano et al., 2012; Kundaje et al., 2015). Osteoarthritis affects multiple tissues within the joint, most notably
the cartilage and bone, but there is also evidence for involvement of the synovium, and possibly the muscles and tendons of the joint
(Brandt et al., 2006). To identify possible further osteoarthritis target tissues, we selected all independent genome-wide significant
SNVs across osteoarthritis GWAS (n = 100). For each signal we investigated the lead SNV and all fine-mapped SNVs (95% posterior
probability) (n = 542) to see if they colocalized with active enhancer histone marks as defined by the ROADMAP epigenomics project
(Kundaje et al., 2015) (http://www.roadmapepigenomics.org/). All tissue and cell types available in the ROADMAP epigenomics and
ENCODE project were used (n = 127) (Snyder et al., 2020; Kundaje et al., 2015). For each lead SNV and their fine-mapped SNVs, the
percentage of SNVs located in active enhancer marks was calculated. For the enrichment analysis a background value was calcu-
lated (1000 permutations) using 100 random SNVs selected from 1000 Genomes Project (Auton et al., 2015) (MAF > 0.05). For these
100 random SNVs and all SNV in high LD (R? = 0.8, LD based on 1000 Genomes Project) their percentage of colocalization with
enhancer histone marks was calculated. Once all background permutations were done, an average of all results was taken as the
final background values. Enrichment was calculated for each osteoarthritis phenotype and investigated cell type separately, by using
the two-proportions Z-test. The significance for enrichment was set to genome-wide significance (p < 1.3x1 0’8) (Figure S1). As the
analysis is highly dependent on the number of variants included (power), significance was only based on enrichment analysis
including all 100 independent SNVs across osteoarthritis phenotypes. For the eQTL colocalization using GTEx tissues, we consid-
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ered the following GTEX tissues as possible osteoarthritis target tissues, based on the tissue specificity analysis: Adipose, Brain,
Heart, Lung, Muscle, Nerve, Ovary, Placenta, Skin, Stomach, Cultured fibroblasts, Adrenal gland, and Breast tissue. In the section
‘Amassing evidence to identify effector genes’, genes that had an eQTL colocalization in one of these tissues received an additional
scoring point in the lines of evidence (Tables 3 and S10).

Causal inference analysis

Two-sample Mendelian randomization (MR) was applied to understand the association between plasma proteins on osteoarthritis. In
the MR analysis, 1640 proteins in up to 6,000 individuals were treated as the exposure and the 11 osteoarthritis phenotypes as the
outcomes. The genetic instruments of the plasma proteins were obtained from Zheng et al. (2019), where the conditional independent
pQTLs were pooled from 5 recent GWAS of plasma proteins (Emilsson et al., 2018; Folkersen et al., 2017; Suhre et al., 2017; Sun
etal., 2018; Yao et al., 2018). The genetic instruments were further split into two groups: 1) cis-acting pQTLs within a 500Kb window
from each side of the leading pQTL of the protein were used for the MR analysis; 2) trans-acting pQTLs outside the 500kb window of
the leading pQTL were designated as trans instruments. For the MR analysis, the meta-analysis summary statistics of osteoarthritis
including UK Biobank participants were used as outcomes. We selected a P value threshold of 0.05, corrected for 11 osteoarthritis
phenotypes and the number of independent tests, as our threshold for prioritising MR results for follow up colocalization analyses
(number of tests = 18.030; p < 2.77x107%) (Table S7).

For 28 protein-osteoarthritis associations that survived the multiple testing threshold in the MR analysis, we further conducted co-
localization (Giambartolomei et al., 2014) analysis to distinguish causal effects from genomic confounding due to linkage disequilib-
rium. A colocalization probability more than 80% in this analysis would suggest that the two association signals are likely to colocalize
within the test region. Colocalization analysis was applied to both cis and trans pQTLs. For protein and phenotype GWAS lacking
sufficient SNP coverage or missing key information (e.g., allele frequency or effect size) in the test region, we conducted a LD check
(Zheng et al., 2019) for the sentinel variant for each pQTL against the 30 strongest SNPs in the region associated with the phenotype
as an approximate colocalization analysis. R? of 0.8 between the sentinel pQTL variant and any of the 30 strongest SNPs associated
with the phenotype was used as evidence for approximate colocalization (Table S7).

Nine protein-osteoarthritis associations showed reliable MR and colocalization evidence (Bonferroni corrected, p < 2.77x10~°% and
colocalization probability > 70%) for a total of six proteins on seven osteoarthritis phenotypes (Table S7). Of the eight protein quan-
titative trait loci (PQTLs) used as genetic predictors of these six proteins, five were in strong LD with missense variants (R? > 0.8). As
missense variants may cause epitope-binding artifacts, we also evaluated the effect of these eight pQTLs on other molecular traits:
DNA methylation (meQTL) (Gaunt et al., 2016) and gene expression (whole blood eQTLs from eQTLGen and all tissues eQTLs from
GTEX) (Aguet et al., 2019; Vosa et al., 2018). Six of the eight pQTLs were also cis meQTLs and cis eQTLs in the same region, in which
four pQTLs are in LD (R? > 0.3) with the top meQTL and eQTL in the region (Table S7).

RNA sequencing analysis of the RAAK cohort

We performed an investigation for all genes within 1Mb (upstream and downstream) of the 100 SNVs in preserved and lesioned carti-
lage and subchondral bone samples from the same donor were obtained from the Research in Articular osteoArthritis Cartilage
(RAAK) study consisting of patients with osteoarthritis who underwent joint replacement surgery due to an end-stage disease (Cou-
tinho de Almeida et al., 2019; den Hollander et al., 2019; Ramos et al., 2014). Total RNA from articular cartilage and subchondral bone
was isolated using QIAGEN RNeasy Mini Kit (QIAGEN, GmbH, Hilden, Germany). Paired-end 2 x 100 bp RNA-sequencing (lllumina
TruSeq RNA Library Prep Kit, lllumina HiSeg2000 and lllumina HiSeq4000) was performed. Strand specific RNA-Seq libraries were
generated which yielded a mean of 20 million reads per sample. More details on mapping and quality control (QC) from cartilage are
previously described (Coutinho de Almeida et al., 2019; den Hollander et al., 2019). Methods of subchondral bones RNA sequencing
have been previously described (Tuerlings et al., 2020). After QC, 35 paired cartilage samples (N = 70) and 24 paired subchondral
bone samples (18 paired knee and 6 paired hip samples) remained for further differential expression analysis. Normalization and sta-
tistical framework was performed using the DESeq2 v1.20 R package. A general linear model (GLM) assuming a negative binomial
distribution was applied followed by a paired Wald-test between preserved and lesioned osteoarthritis cartilage and subchondral
bone samples. Benjamini-Hochberg multiple testing corrected P values with significance cut-off of 0.05 are reported as False Dis-
covery Rate (FDR).

RNA sequencing and proteomic analysis of the UK cohort

We performed an in-silico investigation for all genes within 1Mb (upstream and downstream) of the 100 SNVs in 38 individuals for
which differential expression and differential abundance was available, as described previously (Steinberg et al., 2017; Tachmazidou
et al., 2019). Briefly: DNA, RNA, and protein was extracted from matched intact and degraded cartilage samples from 38 patients
undergoing total joint replacement surgery: 29 knee and 9 hip osteoarthritis patients. From each patient, 2 paired cartilage samples
were taken; a sample with a low Osteoarthritis Research Society International (OARSI) grade which signifies healthy or macroscop-
ically intact cartilage tissue (intact) and a sample with a high OARSI grade, which denotes highly degenerated (degraded) cartilage
tissue. All patients provided full written informed consent before participation. The human biological samples were sourced ethically
and their research use was in accord with the terms of the informed consents under an Institutional Review Board (IRB)- or Ethics
Committee (EC)-approved protocol. Proteomics analysis was performed on intact and degraded cartilage samples from

e14 Cell 184, 4784-4818.e1-e16, September 2, 2021



Cell ¢? CellPress

24 individuals and gene expression analysis on samples from all 38 patients. For the proteomics we performed LC-MS analysis on the
Dionex Ultimate 3000 UHPLC system coupled with the Orbitrap Fusion Tribrid Mass Spectrometer. Abundance values were normal-
ized by the sum of all protein abundances in a given sample, then log2-transformed and quantile normalized. We restricted the
analysis to 3917 proteins that were quantified in all samples. Differential abundance was performed using a within-individual paired
sample design in limma in R (Ritchie et al., 2015). RNA sequencing was performed on the lllumina HiSeq 2000 (75bp paired-end read
length). We determined the gene-level counts from transcript-level quantification using salmon 0.8.219 with GRCh38 cDNA assembly
release 87 downloaded from Ensembl. Limma-voom (Law et al., 2014) was used to remove heteroscedasticity from the estimated
expression data. We tested genes for differential expression using limma in R (with ImFit and eBayes), based on a within-individual
paired sample design. For the proteomics and RNA sequencing significance was defined at 5% Benjamini-Hochberg FDR to correct
for multiple testing.

For the cartilage RNaseq differential analysis investigation we combined data from the two different sources (detailed above): 35
paired samples from the RAAK study (Coutinho de Almeida et al., 2019; den Hollander et al., 2019; Ramos et al., 2014) and 38 paired
samples from a UK cohort (Steinberg et al., 2017; Tachmazidou et al., 2019). We only considered genes that were significantly (FDR <
0.05) differentially expressed in both studies (RAAK cohort and UK cohort) with the same direction of effect (Table S9).

Subchondral bone differential gene expression

We performed an in-silico investigation for all genes within 1Mb (upstream and downstream) of the 100 SNVs for gene expression in
subchondral bone compared to intact cartilage. Briefly, knee joint samples were collected in 11 Han Chinese patients from the
Taiwan OA cohort that had undergone total knee replacement surgery (TKR). The subchondral bone tissues underneath the intact
and eroded cartilage were obtained as previously described (Chou et al., 2013b). RNA was extracted as described (Chou et al.,
2013a). RNA (400ng) per sample were used for cRNA synthesis and amplification. Cyanine 3-labeled cRNA was then purified and
hybridized to Agilent whole human genome 44 k microarray chips (Agilent Technologies) according to the manufacturer’s instructions
(Agilent Technologies, Santa Clara, CA). The array signal intensities were analyzed by the Agilent GeneSpring GX software (version
11.5; Agilent Technologies). Gene expression values were normalized using quantile normalization; probes with low signal intensities
were excluded by setting the filter above 32. The normalized values were log transformed and compared using the t test. Differentially
expressed genes were defined at > 2 fold-change with Benjamini-Hochberg corrected p < 0.05 (Table S9).

For the subchondral bone RNaseq differential analysis investigation we combined data from the two different sources (detailed
above): 24 paired samples from the RAAK study (Coutinho de Almeida et al., 2019; den Hollander et al., 2019; Ramos et al., 2014)
and 11 Han Chinese patients from the Taiwan OA cohort. We only considered genes that were significantly (FDR < 0.05) differentially
expressed in both studies (RAAK cohort and UK cohort) with the same direction of effect (Table S9).

Phenome-wide analysis

To cross-reference all independent lead SNVs across all osteoarthritis phenotypes with many other traits and diseases. We queried
the PhenoScannerV2 (Kamat et al., 2019) (http://www.phenoscanner.medschl.cam.ac.uk/) database through the web-based tool on
15/02/2021 and at the time it contained > 5,000 genotype-phenotype association datasets from large-scale genetic association
studies. Only associations with P value less than the genome wide significance threshold (p < 5x10~8) were included in the analysis
and proxies were not requested.

Prioritized genes in the Druggable Genome

We examined the druggability status for the 637 prioritized genes (Table S10), using the druggable gene set as defined by Finan et al.
(2017). The approach to define the Druggable Genome extended the concept of Mendelian randomization studies for drug develop-
ment from individual targets to the whole genome. This druggable genome contained 4,479 genes and it was divided in three tiers of
druggable gene sets corresponding to position in the drug development pipeline. Tier 1 (1427 genes) included efficacy targets of
approved small molecules and biotherapeutic drugs as well as clinical-phase drug candidates. This tier incorporated the targets
of approved drugs (licensed drugs) and drugs in clinical development. Proteins that are targets of approved small-molecule and bio-
therapeutic drugs were identified using manually curated efficacy target information from release 17 of the ChEMBL database (Gaul-
tonetal., 2017). Tier 2 was composed of 682 genes encoding targets with known bioactive drug-like small-molecule binding partners
as well as those with > 50% identity (over > 75% of the sequence) with approved drug targets. This tier incorporated proteins
closely related to drug targets or with associated drug-like compounds. Proteins closely related to targets of approved drugs
were identified through a BLAST search (blastp) of Ensembl peptide sequences against the set of approved drug efficacy targets
identified from ChEMBL (Gaulton et al., 2017) previously. Tier 3 contained 2370 genes encoding secreted or extracellular proteins,
proteins with more distant similarity to approved drug targets, and members of key druggable gene families not already included in
tier 1 or 2 [G protein (heterotrimeric guanine nucleotide-binding protein)—coupled receptors (GPCRs), nuclear hormone receptors, ion
channels, kinases, and phosphodiesterases].This tier was further subdivided to prioritize those genes that were in proximity (=50 kbp)
to a GWAS SNP from GWAS catalog and had an extracellular location (Tier 3A). The remainder of the genes was assigned to Tier 3B.
To test if there is enrichment of genes with supporting evidence in the druggable genome database, we conducted a binomial test
(N = 205 prioritized genes in the database, N = 637 prioritized genes in total, N = 4479 genes included in the database out of 20330
coding genes tested).
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To glean further insight into the detailed structured information about drugs and drug targets of the identified effector genes in tier 1
or 2 of the druggable genome database, we integrated information from the DrugBank online database (https://www.drugbank.com)
(Wishart et al., 2018), accessed between 3-10 March 2021 (version 5.1.8, released 2021-01-03). Of the 71 tier 1 genes, 58 (23 newly
associated with osteoarthritis) have info in DrugBank, of which 18 are high-confidence genes (7 newly associated with osteoarthritis).

Pathway analyses

We assessed pathway and gene set signal enrichment for the 637 genes with at least one line of evidence and, separately, for the 77
high-confidence putative effector genes (Table S13). Pathway and gene set enrichment analysis were performed using the Consen-
susPathDB-human enrichment software (http://cpdb.molgen.mpg.de/) (Kamburov et al., 2011). We used the Wikipathways enrich-
ment and the Gene Ontology Biological processes gene set. Enriched gene sets required a minimum of 5 genes to overlap with the
examined gene set. The significance threshold was set at FDR < 0.05.

We also performed 3 additional stratified pathway analysis on (I) all SNVs associated with only weight bearing joints (165 genes), (1)
all SNVs associated with only non-weight bearing joints (24 genes), and (lll) all SNVs associated with both weight bearing and non-
weight bearing joints (155 genes) by using the Gene2Func function of FUMA (Functional Mapping and Annotation of Genome-Wide
Association Studies, https://fuma.ctglab.nl/) (Watanabe et al., 2017). Analysis was performed as described in \Watanabe et al. (2017)
using the following settings: all known genes and transcripts were included in the background gene set, we included the MHC-region,
a minimum of 5 genes needed to overlap with the examined gene sets and the significance threshold was set at FDR < 0.05
(Table S13).
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Figure S1. Identification of involved tissues, related to Effector genes and biological pathways and STAR Methods

Heatmap depicting tissue-specific gene-regulatory region enrichment significance (-log10 P value) for all osteoarthritis GWAS phenotypes. Tissue/cell type (full
name, E-identifier, group name) and P value (-log10) of all significant enrichments (p < 1.3x10~®) are shown. Enrichment was calculated using all osteoarthritis
associated lead SNVs and the fine-mapped variants, per osteoarthritis phenotype and all together. Only rows and columns containing a significant enrichment
(p < 1.3x1078) for all osteoarthritis phenotypes (Total) are shown. OA: osteoarthritis.
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(Cell 184, 4784-4818.e1-e16, September 2, 2021)
In this article, we carried out a multi-cohort GWAS meta-analysis for 11 osteoarthritis phenotypes. Since publication, we have
become aware of the following typographical errors that were introduced during preparation of the manuscript and resulted from
multiple authors editing a single shared document.

In Table 1, there were two typographical errors: for spine osteoarthritis, the correct number of cases and controls is 28,372/305,578
(originally written as 28,3721/3057,578).

In Table 2, there were 11 typographical errors: HipOA rs781661531 EAF is 0.9997 (not 7 x 10~%), HandOA rs10062749 p is 2.04 x
1072 (not 2.04 x 107°%), TUR rs116934101 OR is 1.06 (not 1.106), TJR rs10824456 OR is 0.95 (not 10.95), KneeOA rs1426371 OR is
0.95 (not 10.95), KneeHipOA rs551471509 EAF is 0.9996 (not 6 x 107%), KneeOA rs11705555 p is 2.99 x 10~° (not 3.00 x 1079),
KneeHipOA rs2856821 OR is 1.05 (not 1.11), female-specific AlIOA rs10453201 95%Cl is 1.03-1.06 (not 1.02-1.06), the nearest
gene to female-specific THR rs116112221 is FANCL (not FALCL1), and the nearest gene to female-specific THR rs10282983 is
C8orf34 (not C30RF34).

In Table S2, there were two typographical errors: cell 42E is 0.3 (not 0.72) and cell 42F is 1.06 (not 1.08).
In the discussion, fibrillin 2 was inadvertently labelled as FNB2 in two places, instead of FBN2.

Finally, we inadvertently used an incorrect version of Figure 1, in which the information on the list of SNVs in (C) was incomplete and
12 typographical errors were introduced during the submission process. Specifically, in Figure 1A, the number of cases and controls
of (1) Knee and/or Hip OA is 89,741 cases/ 400,604 controls (not 90,865 cases/ 402,824 controls), (2) Hand OA is 20,901 cases/
282,881 controls (not 21,186 cases/ 285,101 controls), (3) Spine OA is 28,372 / 305,578 (not 28,731/307,798), (4) Hip OA is
36,445 cases/ 316,943 controls (not 36,520 cases/ 317,590 controls), and (5) Knee OA is 62,497 cases/ 333,557 controls (not
63,498 cases/ 335,777 controls). In Figure 1C, we have updated the SNVs listed in the panels, and the following sequences are
now included: rs13107325, rs17615906, and rs3884606 in the Hip Osteoarthritis (and/or THR) section; rs11164653 in the Knee
and/or Hip Osteoarthritis (and/or TJR) section; rs10062749, rs11071366, rs1530586, rs216175, rs58973023, and rs74676797 in
the Knee Osteoarthritis (and/or TKR) section; rs11164653, rs1530586, rs17615906, and rs9908159 in the All OA section; and
rs10062749 in the Hand and Knee Osteoarthritis or TKR section. Also, rs3771501 has been removed from the Hand and Knee Oste-
oarthritis or TKR section.

These errors have now been corrected in the online version of the paper. The authors apologize for any inconvenience they may have
caused the readers.

‘ Cell 184, 6003-6005, November 24, 2021 © 2021 The Author(s). Published by Elsevier Inc. 6003
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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