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Foundations of expected points in rugby
union: A methodological approach

Guillermo Martinez-Arastey1 , Naomi Datson2 , Neal Smith1

and Matthew Robins3

Abstract
This study explores the feasibility of an Expected Points metric for rugby union, aiming to shift performance analysis from

descriptive indicators to a predictive metric of possession quality. Notational analysis was conducted on 132 Premiership

Rugby matches, producing a dataset of 35,199 unique phases of play containing variables such as team in possession, pitch

location, play type, score differences, time remaining and scoring outcomes. Four machine learning algorithms were

explored to predict scoring outcomes: multinomial logistic regression, random forest, support vector machine and

k-nearest neighbors. After extensive feature engineering and hyperparameter optimisation, the best-performing model

achieved 39.7% accuracy, below a literature-derived baseline for practical usability (44.3%), making it unsuitable for

applied contexts. A key challenge was predicting minority scoring outcomes due to severe class imbalance. SMOTE

was explored to address this imbalance, resulting in a lower accuracy (35.7%) but an improved 34.4% F1-score. This

study highlights the limitations of modelling scoring outcomes in open-play team sports, challenging the predominant posi-

tivist paradigm in sports performance analysis. The methodology provides critical foundational groundwork and a bench-

mark for future research to build upon. It recommends exploring advanced samplers for minority classes, expanded

feature sets and alternative modelling techniques, such as recurrent neural networks.
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Introduction
The analysis of performance in invasion team sports begins
with assessing the successful execution of individual plays
(Yurko et al., 2019). Conventional studies have approached
this problem by relying on descriptive methods to establish
key determinants of success and draw generalised conclu-
sions on which on-pitch actions are most influential to
winning (Bremner et al., 2013; James et al., 2005). A
common methodology has been narrowing down multiple
performance factors into a concise set of key performance
indicators with strong associations to scoring or
winning matches, such as territory gained (Hunter and
O’Donoghue, 2001), attacking and defensive profiles
(Hendricks et al., 2013), set piece outcomes (Jones et al.,
2004) or tackling success (Hughes et al., 2012).

However, reducing rugby union analysis to isolated
measures oversimplifies the complexity of human behav-
iour in sports, as it assumes linear and predictable outcomes
from simple cause-and-effect observations (Colomer et al.,

2020). This descriptive approach fails to account for situ-
ational context. For example, a 10-metre carry may hold
different value if performed at a team’s own 22-metre line
or the opponent’s 22-metre line. Therefore, establishing
success factors using descriptive methods on, for instance,
carries (Bishop and Barnes, 2013) or metres gained
(Watson et al., 2017), in isolation conflates explanatory
power with true predictive capability (Shmueli, 2010).
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This paradigm has resulted in poor generalisability and
inconsistent results, causing a profound lack of scientific
consensus, with over 392 unique performance indicators
identified in the literature (Colomer et al., 2020). This
reflects the absence of a common framework capable of
capturing how complex interactions between performance
indicators in a given situation influence match outcomes.
Identifying success determinants in the sport may first
require the quantification of the expected situational value
of match scenarios. Predictive modelling may bring
research in rugby union a step closer to that goal.
However, over the last two decades, rugby union has
lagged behind other sports in the application of contempor-
ary data analytics methods, with 80% of published articles
omitting these critical contextual considerations (Colomer
et al., 2020).

This methodological challenge has been exacerbated by
issues with data accessibility. Unlike sports like American
football, where organisations like the National Football
League (NFL) publish vast, free play-by-play datasets
(Romer, 2006), major rugby bodies have not offered simi-
larly detailed records. Researchers are therefore forced to
rely on time-consuming manual notational analysis from
match footage (Bremner et al., 2013; Vahed et al., 2016).
This has restricted studies to small sample sizes, averaging
67±91 matches, undermining their ability to produce statis-
tically significant conclusions with broad applicability
(Bishop and Barnes, 2013; Colomer et al., 2020).

Sports such as American football (Romer, 2006; Yurko,
2017) or rugby league (Kempton et al., 2016) have recog-
nised this methodological limitation and progressed by
developing standardised metrics to account for contextual
factors influencing performance. These efforts, supported
by the vast publicly and commercially available data in
these sports, have resulted in the development of an
Expected Points metric. Expected Points assigns a singular
points value to each game scenario. This value is derived
from the probabilities of all possible scoring outcomes
(and their associated point values) occurring next, given
the current play’s context (Burke, 2008; Carter and
Machol, 1971).

Carter and Machol (1971) introduced the concept of
Expected Points in American football by analysing 8,373
plays from 56 games of the 1969 NFL season to quantify
possession value at specific field locations. Expected
Points were calculated by adding the products of each pos-
sible scoring outcome’s true value and its probability of
occurrence, expressed as EP = ∑

i Vi × Pi, where Vi repre-
sents the point value of outcome i, and Pi is the probability
of its occurrence. This formula implies that an essential pre-
requisite for calculating Expected Points is, first, being able
to reliably predict the probability of each scoring event (Pi).
Carter andMachol (1971) used this approach to estimate the
impact of different actions on match scores and assess the
effectiveness of technical and tactical decisions. Expected

Points were then used to develop strategic recommenda-
tions for various game situations (Katz and Burke, 2016).

The theoretical framework established by Carter and
Machol (1971) on Expected Points methodology in
American football inspired numerous subsequent studies
to expand on this foundational work and improve the scien-
tific rigour of its calculation (Goldner, 2017; Romer, 2006).
It also gained traction beyond academia, extending to NFL
clubs, media and its fan base (Causey, 2015). Burke
(2008) popularised the concept of average net point advan-
tage through their website Advanced Football Analytics,
challenging conventional performance metrics by arguing
that the value of performance metrics is relative to field
position.

The proliferation of Expected Points across American
football literature produced several approaches for deriving
expected values, such as dynamic programming (Romer,
2006), absorbing Markov chain models (Goldner, 2017),
bootstrapping (Causey, 2015), linear regression (Burke,
2008) and logistic regression (Yurko, 2017). Adaptations
of the Expected Points metric also emerged. Burke (2010)
developed Expected Points Added (EPA) to quantify the
change in Expected Points between plays and assess their
effectiveness. Katz and Burke (2016) also developed pos-
itional, player-level EP metrics by distributing EPA
among all players involved in a play, including a Total
Quarterback Rating (QBR). Expected Points research also
ventured into other sports, such as rugby league
(Kempton et al., 2016), ice hockey (Thomas, 2006), basket-
ball (Cervone et al., 2016), Australian rules football
(O’Shaughnessy, 2006) and association football (Green,
2012).

Despite its similarities with other invasion team sports,
rugby union has yet to fully embrace model-based analyt-
ical approaches prevalent in the NFL and rugby league.
The primary aim of this study is to explore the extension
of the Expected Points framework to rugby union, assessing
its feasibility and practicality. It builds on the hypothesis
originating from NFL studies (Burke, 2008; Carter and
Machol, 1971; Yurko et al., 2019) that the development
of a model that reliably estimates the points value of
any given match situation has the potential to change
the way rugby union is analysed and understood. As illu-
strated in Table 1, this approach assigns a quantifiable
points value to each unique match situation by multiply-
ing the points awarded from each scoring method (e.g.,
+3 points for a scored penalty kick) by their modelled
probability. The aggregation of all these products repre-
sents the overall estimated points value for that specific
match situation.

This study represents a foundational proof-of-concept
for the feasibility of reliably deriving such probabilities.
The objective is not to deliver a deployable Expected
Points metric but to rigorously document the methodo-
logical process, establish a performance benchmark and
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transparently identify the primary obstacles to creating such
a model for rugby union. The aim is to provide the critical
groundwork that will guide future research in the shift of the
research paradigm in sports performance analysis in rugby
union from descriptive statistical methods to predictive
modelling techniques (Shmueli, 2010).

The successful development of an Expected Points
metric in rugby union has the potential to provide practi-
tioners with a standardised, universally interpretable frame-
work to benchmark performance, enabling consistent
evaluations and coherent comparisons of possession value
across teams and match scenarios. The quantification of
scoring probabilities across a range of contextual factors
could help coaches adapt tactics, exploit opponent weak-
nesses, prioritise specific strategies and make more
informed decisions on play selection. The analysis of
Expected Points fluctuations between plays could indicate
how a team’s actions affect their scoring chances.
Coaching practices could be informed by a detailed evalu-
ation of a team’s over- or under-performance relative to
the Expected Points value of particular contexts. Player per-
formance analysis could also gain greater consistency with
the evaluation of individual actions based on their relative
contribution to the team’s overall Expected Points.

The development process of Expected Points in rugby
union presented in this study also aims to provide transpar-
ency and reproducibility of its methodology to inspire
future sports performance analysis research. Previous
Expected Points studies have lacked comprehensive expla-
nations of their statistical methodologies (Carter and
Machol, 1971) or have failed to share model performance
evaluations necessary to demonstrate the generalisability
of results (Romer, 2006; Yurko, 2017). This study aims
to overcome such gaps by presenting a detailed account
of data pre-processing (Kotsiantis et al., 2006), feature
engineering (Zheng and Casari, 2018), hyperparameter
optimisation (Feurer and Hutter, 2019), cross-validation

(Kohavi, 1995) and model performance evaluation pro-
cesses (Powers, 2020).

Methods

Participants
Event-level data for 35,199 phases of play was collected
through the notational analysis of all 132 matches played
during the 2018/19 English Premiership Rugby season.
Twelve rugby union clubs competed in the round-robin
competition, playing each opposing team twice over 22
rounds. This match sample was 95% larger than the
mean sample size (67 matches) reported in rugby union
literature (Colomer et al., 2020), and also exceeded the
8,373 plays analysed by Carter and Machol (1971) and
11,112 by Romer (2006) in early NFL Expected Points
studies.

Data collection
Full match video recordings were analysed using
Sportscode Elite (Version 10, Hudl, Nebraska, United
States) by notating key data points at every breakdown
and start of play. Full match video recordings were obtained
from publicly available broadcasts. The use of this footage
for notational analysis falls under fair dealing principles for
non-commercial research purposes. The operational defini-
tions in Table 2 ensured the validity and reliability of the
descriptive variables notated (Williams, 2012). These defi-
nitions were cross-validated using the existing literature,
such as the Rugby Union Video Analysis Consensus publi-
cation by Hendricks et al. (2020). Descriptive variables
included phase sequence number, team in possession,
pitch location, play type, match score, points difference,
match clock and disciplinary cards.

Each notation corresponded to an individual phase of
play, defined as the instance when the scrum-half retrieved
the ball from the breakdown to begin a new phase. For
scenarios that did not begin from a breakdown (e.g.,
match start, set pieces or turnovers), each data point
reflected the moment the ball was first collected by the
new team in possession. Upon scoring, the event (e.g.,
tries, penalty kicks, drop goals or end of the half) was
assigned to all phases since the previous scoring event.
Phases by the scoring team were labelled with the positive
scoring outcome (e.g, scored try), while those by the con-
ceding team were attributed the opposite outcome (e.g,
conceded try).

Due to the possibility of observational errors, notational
analysis was repeated on 13 randomly selected matches
representing 10% of the dataset to test intra-observer
and inter-observer reliability (O’Donoghue, 2007). Intra-
observer reliability testing indicated high consistency,

Table 1. Example illustrating the estimated value of a possession

through expected points, assuming reliable outcome probabilities

(Pi) could be modelled.

Scoring outcome

Awarded

points

Modelled

probability

Expected

Points

Scored try & conversion +7 26% +1.82

Scored try +5 20% +1.00

Scored penalty kick +3 15% +0.45

Scored drop goal +3 3% +0.09

End of half (no scoring) 0 15% 0

Conceded drop goal −3 2% −0.06

Conceded penalty kick −3 10% −0.30

Conceded try −5 4% −0.20

Conceded try &

conversion

−7 5% −0.35

Estimated possession value 100% +2.48
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with a percentage error of 1.4%. Inter-observer reliability
also produced an acceptable error rate of 4.42% and a
kappa coefficient of 0.907 (95% CI: 0.902–0.912, p-value
≤ 0.05).

Data analysis
Analysis was conducted using the programming language
Python (Python Software Foundation, Python Language
Reference, version 3.10). Python scripts were written in
Google Colaboratory (Google LLC, Mountain View,
California), a cloud-based Jupyter notebook service (Kluyver
et al., 2016). The dataset was exported as a comma-separated
values file from Sportscode Elite and imported into Google
Colaboratory for exploratory data analysis, data pre-
processing, model training and model performance evaluation.

Exploratory analysis and preliminary modelling
Initial exploratory data analysis primarily assessed the dis-
tribution of scoring outcomes to identify any bias or skew-
ness, as class imbalance could increase the likelihood of
classification errors (Japkowicz and Stephen, 2002). The
analysis showed class imbalance with 25.8% of phases
leading to converted tries, while drop goals (both scored

and conceded) only accounted for less than 0.1% of
phases (see Figure 1). Moreover, penalty kicks were
scored in 19.1% of phases and conceded in 13.2%.

Preliminary modelling conducted using default hyper-
parameter configurations from Scikit-Learn (Pedregosa
et al., 2011) showed comparable results across models
(Table 3). The support vector machine (SVM) achieved
the highest accuracy (32.1%) and F1-score (29.9%), while
the other models performed similarly, with accuracies
ranging from 25.2% (k-nearest neighbors) to 30.6% (multi-
nomial logistic regression). A key observation was the sub-
stantial model bias towards predicting majority classes,
such as tries scored and the end of the half, impacting
both precision and recall across all outcomes.

Feature engineering
Following preliminary observations, the rugby union
dataset was refactored to improve predictive power. Tries
with and without conversions were consolidated, and
phases leading to drop goals were also excluded due to
their rarity (0.1% of phases). As shown in Figure 2, these
changes reduced class imbalance, with the imbalance ratio
increasing from 0.17 to 0.40 (He and Garcia, 2009).

Table 2. Operational definitions of data variables.

Variable Definition

Phase Period between subsequent rucks. A ruck is formed when at least one player from each team is in contact, on

their feet and over the ball, which is on the ground (Hendricks et al., 2020).

Team in Possession Team handling the ball at a given point in time (Ungureanu et al., 2019).

Location The location on the pitch where the phase began, determined by the metre lines dividing the rugby union pitch.

Side The location on the pitch where the phase began, determined by the lineout lines dividing the rugby union pitch.

Play Type: Scrum A set piece for restarting play after penalties with scrum option, offsides, unplayable mauls or incorrect lineout

throws. A scrum is formed when eight players from each team engage with their opponents so that the heads

of the front rows are interlocked (Hendricks et al., 2020).

Play Type: Lineout A set piece restarting play after the ball has been taken out or kicked to touch. A lineout is formed on the mark of

touch with teams forming a single line parallel to the mark of touch on their side of the lineout between the

5-metre and 15-metre lines (Hendricks et al., 2020).

Play Type: Quick Tap A quickly taken penalty where a player taps the ball with their foot and surges forward (ESPN, 2022).

Play Type: Restart

Kick

A match is started, or restarted, with a drop kick from behind the centre of the halfway line (Nakagawa, 2006).

Play Type: Kick A kick in open play which does not go into touch, whether intentionally or not (Eaves et al., 2005).

Play Type: Turnover When one side takes possession of the ball from their opponents (ESPN, 2022).

Score The exact score on the scoreline at the time the phase began.

Time The exact match clock time in minutes and seconds.

Cards: Yellow A player who receives a yellow card from the referee has to leave the pitch for ten minutes and sit in the Sin Bin

(ESPN, 2022).

Cards: Red A player is sent off for the remainder of the game or for a period of 20 minutes, depending on the infraction

(ESPN, 2022).

Outcome: Try A score awarded when the ball is touched down on the ground by a player across the try line. It includes penalty

tries awarded by the referee for defensive foul play during try-scoring plays (ESPN, 2022).

Outcome: Penalty

Kick

An uncontested kick awarded to a team for a major infraction by the other team, taken directly at goal (ESPN,

2022).

Outcome: Drop

Goal

A kick between the posts by an attacking side, where the ball must hit the ground before being kicked (ESPN,

2022).
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Predictive modelling
The development of an Expected Points model in rugby
union was treated as a classification problem given the dis-
crete nature of scoring outcomes (Yurko, 2017). This char-
acteristic makes regression models inappropriate for
predicting point scores, as their residuals fail to conform
to the assumption of normality. A more effective strategy
involves developing classification models that treat each
scoring method as a distinct category, independent of its
point allocation (Yurko et al., 2019).

Four classification algorithms were selected: multi-
nomial logistic regression for its effectiveness in identifying
linear relationships (Kleinbaum et al., 2008), random forest
for its handling of high-dimensional data and categorical
variables (Ho, 1995), support vector machine for its profi-
ciency with imbalanced datasets (Wu and Chang, 2005)
and k-nearest neighbors for its effectiveness with non-
linearly separable data (Cover and Hart, 1967). While
more advanced techniques such as gradient boosting
machines or deep learning models exist, the primary goal
of this foundational study was to first assess feasibility

using these well-established models. The exploration of
more complex architectures is identified as a key avenue
for future work.

Models were trained on a sub-sample of the rugby union
data to ensure their performance was only evaluated against
a separate, unseen subset (Guyon, 1997). A stratified group
10-fold cross-validation method was used to prevent data
leakage, ensuring phases from the same match were only
present in a single subset. Models were iteratively trained
and validated, and later evaluated for generalisability on a
separate test subset (Davis and Goadrich, 2006).

Hyperparameter optimisation was performed using
Optuna (Akiba et al., 2019) to identify optimal model con-
figurations. Optuna is an optimisation framework that
dynamically explores model configurations by pruning
unpromising models and applying parallelisation to concur-
rently execute multiple trials (Akiba et al., 2019). The
number of trials was adapted to each model’s computational
demands: multinomial logistic regression used 1,000 trials
per iteration in the group 10-fold cross-validation method
(10,000 total), random forest and KNN used 500 trials per
fold (5,000 total), while SVM used 100 trials per fold
(1,000 total).

The optimisation process explored a balance between
model complexity, regularisation techniques, optimisation
algorithms and decision boundary characteristics
(Table 4). Multinomial logistic regression was tuned for
regularisation strength, type and solver algorithm (Hosmer
et al., 2013). Random forest hyperparameters included
ensemble size, splitting criteria and class imbalance

Figure 1. Frequencies of different scoring outcomes showing an imbalanced dataset.

Table 3. Accuracy and F1-score across four classification models.

Model Accuracy (%) F1-score (%)

Multinomial logistic regression 30.6 26.9

Random forest 29.4 28.4

K-nearest neighbors 25.2 24.8

Support vector machine 32.1 29.9

Martinez-Arastey et al. 5



strategies (Breiman, 2001). Support vector machine opti-
misation covered regularisation strength, kernel types,
gamma values and decision function shapes (Andrew,
2000). K-nearest neighbors was optimised for number of
neighbours, weighting schemes, search algorithms, and dis-
tance metrics (Cunningham and Delany, 2007).

Each model’s best-performing configuration was evalu-
ated using classification reports and confusion matrices to
identify biases. The detailed model development, tuning
and evaluation provide an exhaustive comparison of these
four classification algorithms. This helps identify their pre-
dictive potential while highlighting the inherent challenges
of modelling Expected Points in rugby union.

The modelling process was conducted in two stages.
First, all four algorithms were trained and evaluated on
the data’s original, imbalanced class distribution to estab-
lish a performance baseline. This allowed for a transparent
diagnosis of the challenges inherent to the dataset. Second,
in direct response to the baseline models’ poor performance
on minority classes, a targeted experiment was conducted
on the best-performing model (random forest). This experi-
ment used the Synthetic Minority Over-sampling
Technique (SMOTE) to address the class imbalance and
assess its impact on predictive performance.

Results

Baseline model performance
The best-performing model was a random forest classifier
composed of 770 decision trees. It achieved an accuracy of

39.7% ±2.8 ppts and an F1-score of 29.3% ±2.5 ppts (see
Table 5). While this was a 17 percentage point improvement
over the no-information rate (22.7%), it fell short of the
44.3% baseline established as a minimum threshold for prac-
tical application. The hyperparameter optimisation process for
the random forest model resulted in the following configur-
ation: a maximum depth of 45 levels, a maximum features
ratio of 0.6, a minimum of 2 samples required for internal
node splitting and a minimum of 13 samples mandated at
each leaf node. Additionally, the model incorporated a
minimum impurity decrease threshold of 0.0056 and a
minimum weighted fraction of 0.001. The 10.4 percentage
point difference between accuracy and F1-score indicates a
bias towards certain classes in the random forest model.

The random forest model was closely followed by the
SVM model, which demonstrated a 39.0% ±2.7 ppts accur-
acy and a 33.0% ±2.9 ppts F1-score. The optimal SVM
model configuration used an RBF (Radial Basis Function)
kernel with a C value (regularisation parameter) of 0.38, a
gamma (kernel coefficient) of 0.1, a tolerance for stopping
criterion of 0.0006, a one-versus-rest decision function
shape and break ties enabled.

On the other hand, the multinomial logistic regression
model (37.8% ±2.7 ppts accuracy; 31.4% ±2.6 ppts
F1-score) and KNN (36.9% ±2.1 ppts accuracy; 32.4%
±2.1 ppts F1-score) showed marginally lower predictive
power. The multinomial logistic regression configuration
that achieved best results used a SAG solver with an L2
penalty, a C value of 0.006 and a tolerance of 0.000004;
while the best KNN model configuration used a Ball Tree
algorithm with 72 neighbours, a leaf size of 72, the

Figure 2. Frequencies of different scoring outcomes after reducing the classes of the dependent variable.
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Manhattan distance metric and uniform weights for all
points in each neighbourhood. However, the small perform-
ance difference among the top configurations suggested that
Optuna reached a performance plateau during optimisation
of these two models.

Classification report
A further evaluation using the classification report in Table 6
highlighted significant biases towards predicting the majority
class. The random forest showed a considerable preference for
predicting tries scored (83.1% ±5.1 ppts recall; 36.9% ±1.9
ppts precision) and end of half (65.7% ±9.9 ppts recall;
54.0% ±7.4 ppts precision), leading to a failure to predict
any penalty kicks. This bias was less pronounced in the
SVM and the multinomial logistic regression models, which
showed a reduced recall for tries scored (73.7% ±6.5 ppts
SVM; 73.2% ±4.5 ppts multinomial logistic regression) and
the end of half (40.6% ±9.3 ppts SVM; 42.2% ±9.8 ppts

multinomial logistic regression) compared to the random
forest model. The reduced bias enhanced these models’ preci-
sion across most classes compared to the random forest clas-
sifier. However, while this allowed the SVM and
multinomial logistic regression models to outperform the
random forest model’s F1-score by 3.7 and 2.1 percentage
points, respectively, the high recall but low precision for pre-
dicting tries scored continued to indicate an over-prediction of
the majority class. The KNNmodel displayed similar patterns
to those observed with the other models.

Confusion matrix
The confusion matrix in Table 7 shows further details on the
effectiveness across models in predicting different scoring

Table 4. Hyperparameters explored for different models.

Hyperparameter Values tested

Multinomial Logistic Regression
Regularisation (C) 0.00001 to 100,000

Regularisation type (penalty) Lasso (l1), Ridge (l2) and Elastic

Net

Solver Newton-CG, LBFGS, SAG, SAGA

Random Forest
Number of Decision Trees Range between 50 and 1,000

Criterion Gini, Entropy

Maximum Depth 2 to 100

Minimum Samples Split Range between 2 and 15

Minimum Samples Leaf Range between 1 and 15

Max Features None, Sqrt, Log2, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9

Class Weight None, Balanced, Balanced

Subsample

Min Weight Fraction Leaf Range between 0.0 and 0.5

Bootstrap Yes, No

Minimum Impurity Decrease Range between 0.0 and 0.1

Support Vector Machine (SVM)
Regularisation (C) 0.1 to 1

Kernel Linear, Polynomial, Radial Basis

Function (RBF), Sigmoid

Gamma Scale, Auto, 1, 0.1, 0.01, 0.001

Tolerance 0.0001 to 0.001

Decision Function Shape One-Over-One (OVO),

One-Over-Rest (OVR)

Break Ties Yes, No

K-Nearest Neighbors (KNN)
Number of neighbours (k) 1 to 400

Weights Uniform, Distance

Algorithm Ball Tree, KD Tree, Brute, Auto

Leaf size 1 to 300

Distance metric Minkowski, Manhattan, Euclidean,

Chebyshev

Minkowski metric power (p) 1, 2

Table 5. Hyperparameter values of the top-performing

configurations for each model.

Hyperparameter Best Model

Random Forest
Number of Decision Trees 770

Criterion Gini

Maximum Depth 45

Minimum Samples Split 2

Minimum Samples Leaf 13

Max Features 0.6

Class Weight None

Min Weight Fraction Leaf 0.001

Bootstrap Yes

Minimum Impurity Decrease 0.0056

Accuracy 39.7% ±2.8 ppts

F1-score 29.3% ±2.5 ppts

Support Vector Machine
Regularisation (C) 0.38

Kernel RBF

Gamma 0.1

Tolerance 0.0006

Decision Function Shape One-Versus-Rest (OVR)

Break Ties Yes

Accuracy 39.0% ±2.7 ppts

F1-score 33.0% ±2.9 ppts

Multinomial Logistic Regression
Regularisation (C) 0.006

Regularisation type (penalty) L2

Solver SAG

Tolerance 0.000004

Accuracy 37.8% ±2.7 ppts

F1-score 31.4% ±2.6 ppts

K-Nearest Neighbors
Number of neighbours (k) 72

Weights Uniform

Algorithm Ball Tree

Leaf size 72

Distance metric Manhattan

Minkowski metric power (p) 1

Accuracy 36.9% ±2.1 ppts

F1-score 32.4% ±2.1 ppts

Martinez-Arastey et al. 7



outcomes. It indicates that models over-predicted tries
scored by between +125.2% (random forest) and +85.9%
(SVM) relative to their true occurrence (n=11,743),
accounting for between 75.2% (random forest) and 62.1%
(SVM) of all predictions despite only representing 33.4%
of all phases in the dataset. On the other hand, tries con-
ceded were significantly under-predicted by the random
forest model, with -60.8% fewer predictions (n=2,827)
than true instances (n=7,205). Most of these missed true
instances of tries conceded (90.4%) were predicted by this
model as tries scored, further highlighting a bias towards
the latter outcome. While the other three models showed
a more balanced distribution of predictions for tries con-
ceded, ranging from -7.9% (KNN) to +10.0% (SVM) com-
pared to true instances, they produced a considerable
number of false positives (69.4% KNN; 68.3% MLR;
68.0% SVM).

Penalty kicks were significantly impacted by the models’
bias towards predicting tries scored. The random forest
model made no penalty kick predictions, despite these
two scoring outcomes combined representing 32.4% of
the phases in the dataset (19.1% scored; 13.3% conceded).
Other models also significantly struggled with penalty kick
predictions, under-predicting penalty kicks scored by a
margin ranging from -76.8% (SVM) to -46.4% (KNN)
and penalty kicks conceded by between -98.8% (MLR)
and -76.4% (KNN) compared to their true instances. As
with tries conceded, the few penalty kick predictions

made by the models also produced a high number of false
positives for both scored (74.9% MLR; 71.8% KNN;
68.2% SVM) and conceded (84.5% MLR; 79.3% SVM;
74.6% KNN).

Predictions for the end of the half showed mixed results
across models. The random forest model over-predicted
phases leading to the end of the half by 21.6% compared
to its true instances (n=4,848). The majority of these incor-
rect predictions corresponded to true instances of tries
scored (47.2%) and conceded (21.9%). In contrast, all
other models under-predicted the end of the half by
amounts ranging from -60.8% (KNN) to -12.9% (MLR).
The bias towards predicting tries scored was a major con-
tributor to under-predicting the end of the half, with the
models predicting tries scored for between 43.0% (SVM)
and 55.3% (KNN) of true instances leading to the end of
the half.

Addressing class imbalance with SMOTE
In response to the baseline random forest model’s inability
to predict penalty kicks, a targeted experiment was con-
ducted using SMOTE. While this led to a 4 percentage
point drop in overall accuracy to 35.7%, it achieved a sub-
stantial 5.1 percentage point increase in the weighted
F1-score to 34.4%, a more appropriate metric for this imbal-
anced classification problem. As shown in Table 8, the
application of SMOTE increased the model’s ability to
predict penalty kicks from a 0.0% F1-score to a more effect-
ive 26.1% (scored) and 21.9% (conceded) F1-score. This
demonstrates a successful rebalance, where a moderate
decrease in performance on majority classes resulted in a
considerable gain in predictive power on rare but meaning-
ful minority classes, making the model more practically
relevant.

Feature importance
Feature importance metrics were extracted from the multi-
nomial logistic regression and the random forest models,
given that the support vector machine and k-nearest neigh-
bors do not inherently produce feature importance mea-
sures, as these methods rely on distance or similarity
calculations rather than explicit parameters or splitting cri-
teria tied to individual features. The analysis of standardised
coefficient magnitudes showed that pitch location was the
most influential feature for the multinomial logistic regres-
sion model, accounting for 44.9% of the model’s import-
ance. Disciplinary actions, such as yellow cards (14.7%)
and red cards (13.8%), and time remaining (9.1%) also
played important roles in the model’s predictions. On the
other hand, phase sequence number (1.9%), points

Table 6. Classification reports for different models.

Model Outcome Precision (%) Recall (%) F1 (%)

RF1 For Try 36.9 83.1 51.1

For PK5 0.0 0.0 0.0

End of Half 54.0 65.7 59.2

Against PK 0.0 0.0 0.0

Against Try 41.1 14.0 20.0

SVM2 For Try 39.6 73.7 51.5

For PK 33.5 7.4 11.9

End of Half 55.0 40.6 46.6

Against PK 21.7 1.2 2.3

Against Try 32.0 35.3 33.5

MLR3 For Try 38.7 73.2 50.7

For PK 25.5 5.9 9.5

End of Half 48.4 42.2 44.9

Against PK 24.2 0.2 0.4

Against Try 31.8 31.4 31.5

KNN4 For Try 39.1 73.0 50.9

For PK 28.4 15.1 19.6

End of Half 56.5 22.2 31.7

Against PK 25.8 6.0 9.8

Against Try 30.8 28.2 29.4

1 RF: Random Forest
2 SVM: Support Vector Machine
3 MLR: Multinomial Logistic Regression
4 KNN: K-Nearest Neighbors
5 PK: Penalty Kick
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difference (1.4%) and pitch side (0.7%) all showed minimal
contribution to its predictions.

The random forest model presented a different feature
importance distribution. The model heavily relied on the
seconds remaining variable (72.7%), defined as 80
minutes minus the seconds elapsed from the beginning of
the match. Given the model’s low overall accuracy, this
heavy reliance indicated a possible under-representation
of more complex features in the dataset, forcing the

model to concentrate on the most easily discernible
pattern. As a result, the model over-emphasised time-
sensitive scoring outcomes, such as the end of a half.
Points difference was the second most influential feature
(12.6%), while features such as type of play (0.6%),
phase sequence number (0.3%), cards (0.1%) and pitch
side (0.1%) had minimal impact on the model’s decisions.

Discussion
This study presents a comprehensive methodological
approach to developing an Expected Points framework for
rugby union. While the primary objective was to build a
predictive metric representative of possession quality, the
results did not achieve the necessary performance for prac-
tical application. However, the study’s main contribution
lies in the invaluable foundational groundwork. It presents
a transparent methodological benchmark, a rich dataset
and a clear identification of the core challenges that must
be overcome to transition the analysis of performance in
rugby union from descriptive performance indicators to pre-
dictive modelling.

Following extensive notational analysis of 35,199
phases of play, four classification algorithms were evalu-
ated. Despite hyperparameter optimisation, the top-

Table 7. Confusion matrix for the best models of each classification algorithm.

Model True Value
Predicted Value

Total

For Try For PK EoH Ag. PK Ag. Try

RF For Try 9,765 0 1,280 0 698 11,743

For PK 5,672 0 500 0 534 6,706

EoH 1,592 0 3,181 0 75 4,848

Ag. PK 3,805 0 338 0 519 4,662

Ag. Try 5,609 0 595 0 1,001 7,205

Total 26,443 0 5,894 0 2,827 35,164

SVM For Try 8,658 487 772 52 1,774 11,743

For PK 4,677 494 249 46 1,240 6,706

EoH 2,084 65 1,967 12 720 4,848

Ag. PK 2,531 193 224 55 1,659 4,662

Ag. Try 3,883 315 370 101 2,536 7,205

Total 21,833 1,554 3,582 266 7,929 35,164

MLR For Try 8,593 600 843 18 1,689 11,743

For PK 4,862 395 322 18 1,109 6,706

EoH 2,242 17 2,042 0 547 4,848

Ag. PK 2,558 220 343 9 1,532 4,662

Ag. Try 3,918 343 671 13 2,260 7,205

Total 22,173 1,575 4,221 58 7,137 35,164

KNN For Try 8,574 1,075 322 230 1,542 11,743

For PK 4,368 1,013 132 182 1,011 6,706

EoH 2,680 271 1,080 72 745 4,848

Ag. PK 2,419 525 133 280 1,305 4,662

Ag. Try 3,894 710 232 337 2,032 7,205

Total 21,935 3,594 1,899 1,101 6,635 35,164*

Abbreviations: MLR = Multinomial Logistic Regression, RF = Random Forest, SVM = Support Vector Machine, KNN = K-Nearest Neighbors, PK =
Penalty Kick, EoH = End of Half, Ag. = Against.

*N=35,164 after the exclusion of drop goals.

Table 8. Comparison of random forest performance with and

without SMOTE.

Scoring

Outcome Metric

Without

SMOTE

With

SMOTE Change

Overall Accuracy 39.7% 35.7% −4.0 ppts

Overall F1-score 29.3% 34.4% +5.1 ppts

Per-Class F1-score
For Try F1-score 51.1% 42.4% −8.7 ppts

End of Half F1-score 59.2% 53.8% −5.4 ppts

Against Try F1-score 20.0% 24.3% +4.3 ppts

For PK F1-score 0.0% 26.1% +26.1

ppts

Against PK F1-score 0.0% 21.9% +21.9

ppts
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performing model, a random forest classifier, achieved an
accuracy of only 39.7% and an F1-score of 29.3%. All base-
line models displayed considerable bias towards predicting
tries at the expense of penalty kicks. While the SVM model
produced a more balanced F1-score (33.0%), the overall
performance was limited by factors like feature representa-
tion and class imbalance. However, a subsequent experi-
ment using SMOTE demonstrated that this imbalance
could be partially mitigated, improving the F1-score by
5.1 percentage points.

Comparing these results against current Expected Points
models was challenging due to the absence of model evalu-
ation results (e.g., accuracy, F1-scores or confusion matri-
ces) in existing literature (O’Shaughnessy, 2006; Romer,
2006; Yurko et al., 2019). Consequently, alternative
sports performance analysis literature was used to set an
accuracy baseline. Studies across various sports have devel-
oped three-class models to predict match outcomes (wins,
losses or draws) with accuracy scores between 52.4% and
67.5% (Hubáček et al., 2019; McCabe and Trevathan,
2008). The average performance of these models (54.9%)
represented a 21.6 percentage point improvement from
random guessing (33.3%). In this study, a 21.6 percentage
point improvement from the no-information rate (22.7%),
i.e., the accuracy that a model must exceed to outperform
random guessing after accounting for class imbalance
(James et al., 2013), resulted in a minimum accuracy base-
line of 44.3%. Unfortunately, neither the random forest
(39.7%) nor the support vector machine (39.0%) models
were able to reach that baseline. This result confirms that
while the methodological framework is sound, the resulting
model is not yet reliable enough for direct application in
professional coaching or tactical decision-making.

Despite insufficient predictive power, the Expected
Points framework presented in this study carries important
theoretical implications. The study recommends transition-
ing from fragmented individual indicators to a holistic
approach of measuring performance through contemporary
modelling techniques (Colomer et al., 2020). It identifies
opportunities in rugby union research by drawing parallels
from other invasion team sports, such as American football
(Carter and Machol, 1971; Yurko, 2017), Australian rules
football (O’Shaughnessy, 2006) or rugby league
(Kempton et al., 2016).

Research in these sports has embraced predictive model-
ling and Expected Points, concepts that have received little
attention in rugby union performance analysis literature
(Hughes et al., 2012; James et al., 2005; Ortega et al.,
2009). An opportunity exists to revolutionise the under-
standing of performance in rugby union by applying estab-
lished methodologies from other sports. However, Expected
Points literature often lacks sufficient information on model
performance evaluation (Burke, 2008; Romer, 2006;
Yurko, 2017). The absence of essential model evaluation
metrics fails to demonstrate the generalisability and

reliability of current Expected Points models in informing
tactical decisions and limits their comparability to new
models. This study addresses this gap by providing a
detailed account of modelling steps and performance evalu-
ation results, establishing a clear benchmark for future
Expected Points models in rugby union.

The primary limitation identified was the severe class
imbalance inherent to rugby union data, likely originating
from the point-maximising nature of on-pitch actions,
such as opting for tries over penalty kicks (Romer, 2006).
This uneven class distribution caused the baseline models
to over-predict majority outcomes at the expense of minor-
ity ones. However, the successful application of SMOTE
indicated that this problem can be addressed with appropri-
ate resampling techniques. Additionally, feature expansion
may also help mitigate model bias by improving feature
representation of key factors influencing penalty kicks,
such as referee decisions to award penalties (Mascarenhas
et al., 2005), player discipline (Mitchell and Tierney,
2021) or weather conditions (Crewther et al., 2020).

A second limitation observed was the complexity in mod-
elling open-play sports like rugby union. The sport’s charac-
teristics, involving tactical execution, technical ability,
physicality and continuous play, create a dynamic environ-
ment where complex relationships between variables influ-
ence each phase’s outcome, such as player skills (Ziv and
Lidor, 2016), tactics (Roberts et al., 2008), weather
(Kearney and Riddiford-Harland, 2012), morale (Cotterill
and Fransen, 2016) and fatigue (Duthie et al., 2003). These
elements are typically absent from notational analysis datasets
due to their limited observability (Hughes and Franks, 2004).
Consequently, models trained on core contextual variables
struggle to learn these underlying interactions. Future research
could explore the addition of contextual data related to player
fitness, fatigue, team morale or psychological resilience to
capture player endurance and its influence on decision-making
and scoring. Team-level data on formations, player roles and
strategic plays could also enrich the modelling process.

Furthermore, the selection of four classification algo-
rithms explored represents only an initial evaluation of
the predictive potential in rugby union phase-level data
aimed at laying the foundation for Expected Points model-
ling in rugby union. Future research could expand upon this
work with a more comprehensive exploration of advanced
modelling techniques that include methods such as gradient
boosting machines (Ke et al., 2017) or recurrent neural net-
works, such as long short-term memory networks
(Hochreiter and Schmidhuber, 1997). Inspired by the
work of Yurko et al. (2019) in the NFL, this study framed
the task as a classification problem. However, future
approaches could instead investigate techniques that
assume different data structures and emphasise the temporal
and sequential characteristics of rugby play. These
approaches may improve upon the predictive performance
achieved by the classification models in this study.
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The study lays the foundation for the development of
Expected Points in rugby union. Building on the application
of SMOTE demonstrated in this study, future research
should explore more advanced resampling techniques,
such as Borderline-SMOTE or ADASYN, which may
offer similar benefits with less artificial noise (Han et al.,
2005; He et al., 2008). Combining these advanced samplers
with cost-sensitive learning could also be used to apply
heavier penalties for misclassifying less frequent scoring
outcomes (Ling and Sheng, 2008).Additionally, data
expansion could also improve the feature representation
of the complex dynamics in rugby union. New variables
may include the relative strength between teams, such as
recent form, head-to-head records or win-loss ratios
(McCabe and Trevathan, 2008); player-specific metrics,
such as fatigue levels and individual player skills; environ-
mental conditions, such as weather or pitch conditions; and
psychological factors, such as team morale. One avenue for
future research is the collection of spatial and temporal fea-
tures from wearable sensors or GPS units. Another is the
derivation of momentum-related features from existing
data (Blum and Langley, 1997), such as calculating the
cumulative number of phases in a possession, the number
of seconds since the last scoring event or the percentage
possession using a 20-minute rolling window. This
greater emphasis on spatiotemporal factors could effect-
ively account for changes in playing dynamics and
scoring patterns over the course of a match.

Conclusion
The development of Expected Points in rugby union
requires a paradigm shift towards more rigorous and reli-
able approaches for quantifying the expected situational
value of different match scenarios. The study presents a the-
oretical performance analysis framework designed to better
capture complex feature relationships than association-
based statistics. However, extensive notational analysis,
feature engineering and hyperparameter optimisation
resulted in a baseline model with insufficient accuracy for
practical application, primarily due to the limiting factors
of class imbalance and feature representation. This study
demonstrated that these limitations can be partially miti-
gated with methods such as the application of resampling
techniques. The use of SMOTE sacrificed a small amount
of overall accuracy for a meaningful improvement in the
model’s F1-score and its ability to predict a wider range
of scoring events, suggesting that a more balanced model
is achievable.

The complexity observed in measuring and interpreting
all variables affecting rugby union scoring challenges the
positivist paradigm that has predominated sports perform-
ance analysis literature (Mackenzie and Cushion, 2013).
Research within this paradigm has often aimed to establish
causal relationships between isolated performance

indicators (Jones et al., 2004; Ortega et al., 2009). This epis-
temological approach has reduced the complexity of sports
performance by presenting it in an overly descriptive, sys-
tematic and unproblematic way that ignores the confound-
ing variables and contexts directly and indirectly
influencing success (Cushion, 2007).

The development of an Expected Points metric for rugby
union represents an area of opportunity with important
implications for tactical decision-making, player develop-
ment and fan engagement. A standardised measure of per-
formance that accounts for the situational context and
potential impact of each action on the pitch could revolu-
tionise the way the sport is understood, analysed and
played.

This study presents a reproducible methodology aimed
at inspiring future research to build upon its methods and
advance towards a more data-driven and engaging future
for rugby union. Exploring the sport’s spatiotemporal char-
acteristics by incorporating positional and momentum-
related metrics could substantially enhance the predictive
capabilities of datasets through improved feature represen-
tation. The integration of enriched datasets with time-series
models or boosting techniques could result in predictive
performance exceeding that observed in this study. Such
enhanced predictive power could lead to the development
of reliable Expected Points models that provide novel
insights into the sport’s key determinants of success.
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Hubáček O, Šourek G and Železnỳ F (2019) Learning to predict
soccer results from relational data with gradient boosted
trees. Machine Learning 108: 29–47.

Hughes M and Franks IM (2004) Notational Analysis of Sport:
Systems for Better Coaching and Performance in
Sport. London: Routledge Taylor & Francis Group.

12 Journal of Sports Analytics

http://archive.advancedfootballanalytics.com/2008/08/expected-points.html
http://archive.advancedfootballanalytics.com/2008/08/expected-points.html
http://archive.advancedfootballanalytics.com/2008/08/expected-points.html
http://archive.advancedfootballanalytics.com/2010/01/expected-points-ep-and-expected-points.html
http://archive.advancedfootballanalytics.com/2010/01/expected-points-ep-and-expected-points.html
http://archive.advancedfootballanalytics.com/2010/01/expected-points-ep-and-expected-points.html
http://thespread.us/expected-points.html
http://thespread.us/expected-points.html
http://thespread.us/expected-points.html
http://en.espn.co.uk/statsguru/rugby/page/97263.html
http://en.espn.co.uk/statsguru/rugby/page/97263.html
http://en.espn.co.uk/statsguru/rugby/page/97263.html
https://www.statsperform.com/resource/assessing-the-performance-of-premier-league-goalscorers/
https://www.statsperform.com/resource/assessing-the-performance-of-premier-league-goalscorers/
https://www.statsperform.com/resource/assessing-the-performance-of-premier-league-goalscorers/


Hughes MT, Hughes MD, Williams J, et al. (2012) Performance
indicators in rugby union. Journal of Human Sport and
Exercise 7(2): 383–401.

Hunter P and O’Donoghue P (2001) A match analysis of the 1999
rugby union world cup. In: Books of abstracts Fifth World con-
gress of performance analysis in sports, pp.85–90.

James G, Witten D, Hastie T, et al. (2013) An Introduction to
Statistical Learning with Applications in R. Vol. 112, 1st
Edition New York: Springer.

James N, Mellalieu S and Jones N (2005) The development of
position-specific performance indicators in professional rugby
union. Journal of Sports Sciences 23(1): 63–72.

Japkowicz N and Stephen S (2002) The class imbalance problem:
A systematic study. In: Intelligent data analysis, Vol. 6,
pp.429–449. Elsevier.

Jones NM, Mellalieu SD and James N (2004) Team performance
indicators as a function of winning and losing in rugby union.
International Journal of Performance Analysis in Sport 4(1):
61–71.

Katz S and Burke B (2016) How is total qbr calculated? we explain
our quarterback rating. https://www.advancedfootballanalytics.
com/index.php/home/stats/stats-explained/expected-points-
and-epa-explained.

Ke G, Meng Q, Finley T, et al. (2017) Lightgbm: A highly
efficient gradient boosting decision tree. In: Advances
in neural information processing systems (NIPS), pp.3146–
3154.

Kearney PE and Riddiford-Harland DL (2012) Changing weather
conditions and the effect on rugby league match play. Journal
of Sports Science & Medicine 11(2): 327.

Kempton T, Kennedy N and Coutts AJ (2016) The expected value
of possession in professional rugby league match-play. Journal
of Sports Sciences 34(7): 645–650.

Kleinbaum DG and Klein N, (2008) Logistic Regression: A
Self-Learning Text. 2nd Edition. New York: Springer.

Kluyver T, Ragan-Kelley B, Pérez F, et al. (2016) Jupyter note-
books–a publishing format for reproducible computational
workflows. In: Positioning and power in academic publishing:
Players, agents and agendas, pp.87–90. IOS press.

Kohavi R (1995) A study of cross-validation and bootstrap for
accuracy estimation and model selection. In: Ijcai, Vol. 14,
pp.1137–1145. Montreal, Canada.

Kotsiantis S, Kanellopoulos D and Pintelas P (2006) Handling
imbalanced datasets: A review. GESTS International
Transactions on Computer Science and Engineering 30(1):
25–36.

Ling CX and Sheng VS (2008) Cost-sensitive learning and the
class imbalance problem. Encyclopedia of Machine Learning
2011: 231–235.

Mackenzie R and Cushion C (2013) Performance analysis in foot-
ball: A critical review and implications for future research.
Journal of Sports Sciences 31(6): 639–676.

Mascarenhas DR, Collins D, Mortimer PW, et al. (2005) Training
accurate and coherent decision making in rugby union referees.
The Sport Psychologist 19(2): 131–147.

McCabe A and Trevathan J (2008) Artificial intelligence in sports
prediction. In: Fifth International conference on information
technology: New generations (itng 2008), pp.1194–1197.
IEEE.

Mitchell S and Tierney GJ (2021) Sanctioning of breakdown
infringements during the knockout stage of the 2019 rugby
world cup. International Journal of Sports Science &
Coaching 16(2): 407–414.

Nakagawa A (2006) Re-examination of importance of kick-off and
50m restart kick play in rugby football games. International
Journal of Sport and Health Science 4: 273–285.

O’Donoghue P (2007) Reliability issues in performance analysis.
International Journal of Performance Analysis in Sport 7(1):
35–48.

Ortega E, Villarejo D and Palao JM (2009) Differences in game
statistics between winning and losing rugby teams in the six
nations tournament. Journal of Sports Science & Medicine
8(4): 523.

O’Shaughnessy DM (2006) Possession versus position: Strategic
evaluation in afl. Journal of Sports Science & Medicine 5(4):
533–540.

Pedregosa F, Varoquaux G, Gramfort A, et al. (2011) Scikit-learn:
Machine learning in python. Journal of Machine Learning
Research 12: 2825–2830.

Powers DM (2020) Evaluation: From precision, recall and
f-measure to roc, informedness, markedness and correlation.
arXiv preprint arXiv:2010.16061.

Roberts SP, Trewartha G, Higgitt RJ, et al. (2008) The physical
demands of elite english rugby union. Journal of Sports
Sciences 26(8): 825–833.

Romer D (2006) Do firms maximize? evidence from professional
football. Journal of Political Economy 114(2): 340–365.

Shmueli G (2010) To explain or to predict? Statistical Science
25(3): 289–310.

Thomas AC (2006) The impact of puck possession and location on
ice hockey strategy. Journal of Quantitative Analysis in Sports
2(1): 1–19.

Ungureanu AN, Brustio PR, Mattina L, et al. (2019) “how” is more
important than “howmuch” for game possession in elite northern
hemisphere rugby union. Biology of Sport 36(3): 265–272.

Vahed Y, Kraak W and Venter R (2016) Changes on the match
profile of the south african currie cup tournament during
2007 and 2013. International Journal of Sports Science &
Coaching 11(1): 85–97.

Watson N, Durbach I, Hendricks S, et al. (2017) On the validity of
team performance indicators in rugby union. International
Journal of Performance Analysis in Sport 17(4): 609–621.

Williams J (2012) Operational definitions in performance
analysis and the need for consensus. International Journal of
Performance Analysis in Sport 12(1): 52–63.

Wu G and Chang EY (2005) Kba: Kernel boundary alignment
considering imbalanced data distribution. IEEE Transactions
on Knowledge and Data Engineering 17(6): 786–795.

Yurko R (2017) Nfl expected points with n—scrapr: Part 1 - an
introduction to expected points. https://www.cmusports

Martinez-Arastey et al. 13

https://www.advancedfootballanalytics.com/index.php/home/stats/stats-explained/expected-points-and-epa-explained
https://www.advancedfootballanalytics.com/index.php/home/stats/stats-explained/expected-points-and-epa-explained
https://www.advancedfootballanalytics.com/index.php/home/stats/stats-explained/expected-points-and-epa-explained
https://www.advancedfootballanalytics.com/index.php/home/stats/stats-explained/expected-points-and-epa-explained
https://www.cmusportsanalytics.com/nfl-expected-points-nflscrapr-part-1-introduction-expected-points/
https://www.cmusportsanalytics.com/nfl-expected-points-nflscrapr-part-1-introduction-expected-points/


analytics.com/nfl-expected-points-nflscrapr-part-1-introduction-
expected-points/.

Yurko R, Ventura S and Horowitz M (2019) nflwar: A
reproducible method for offensive player evaluation in
football. Journal of Quantitative Analysis in Sports 15(3):
163–183.

Zheng A and Casari A (2018) Feature Engineering for Machine
Learning: Principles and Techniques for Data
Scientists. Sebastopol, CA: O’Reilly Media, Inc..

Ziv G and Lidor R (2016) On-field Performances of Rugby Union
Players: A Review. Journal of Strength and Conditioning
Research 30(3): 881–892.

14 Journal of Sports Analytics

https://www.cmusportsanalytics.com/nfl-expected-points-nflscrapr-part-1-introduction-expected-points/
https://www.cmusportsanalytics.com/nfl-expected-points-nflscrapr-part-1-introduction-expected-points/

	 Introduction
	 Methods
	 Participants
	 Data collection
	 Data analysis
	 Exploratory analysis and preliminary modelling
	 Feature engineering
	 Predictive modelling

	 Results
	 Baseline model performance
	 Classification report
	 Confusion matrix
	 Addressing class imbalance with SMOTE
	 Feature importance

	 Discussion
	 Conclusion
	 References

