Please cite the Published Version

Akoshile, Ahsan Adeleke ©, Jogunola, Olamide ©, Hammoudeh, Mohammad @ and Dargahi,
Tooska © (2025) A Comparative Analysis of Hybrid Deep Learning Models for Reentrancy Vulner-
ability Detection in Ethereum Smart Contracts. In: ICFNDS '24: The 8th International Conference
on Future Networks & Distributed Systems, 11 - 12 December 2024, Marakech, Morocco.

DOI: https://doi.org/10.1145/3726122.3726256
Publisher: Association for Computing Machinery (ACM)
Version: Accepted Version

Downloaded from: hitps://e-space.mmu.ac.uk/640922/

Usage rights: E Creative Commons: Attribution 4.0

Additional Information: This is an author accepted manuscript of an article published
in Proceedings of the 8th International Conference on Future Networks & Distributed Sys-
tems, by ACM. This version is deposited with a Creative Commons Attribution 4.0 licence
[https://creativecommons.org/licenses/by/4.0/], in accordance with Man Met's Research Publica-
tions Policy. The version of record can be found on the publisher’'s website.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0009-0000-3070-7750
https://orcid.org/0000-0002-2701-9524
https://orcid.org/0000-0003-1058-0996
https://orcid.org/0000-0002-0908-6483
https://doi.org/10.1145/3726122.3726256
https://e-space.mmu.ac.uk/640922/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

A Comparative Analysis of Hybrid Deep Learning Models for
Reentrancy Vulnerability Detection in Ethereum Smart Contracts

Ahsan Adeleke Akoshile

ahsan.a.akoshile@stu.mmu.ac.uk
Manchester Metropolitan University
Manchester, UK

Mohammad Hammoudeh
m.hammoudeh@mmu.ac.uk
Manchester Metropolitan University
Manchester, UK

ABSTRACT

Recent research has exposed significant security vulnerabilities
within smart contracts that run on blockchain. Threats, such as,
reentrancy attacks, where malicious actors exploit recursive func-
tion calls in a smart contract, pose a critical threat. This led to sub-
stantial financial losses in organisations. Traditional vulnerability
detection methods, largely based on static analysis, showed limi-
tations in effectively identifying reentrancy issues, often yielding
high false positive rates and missing complex execution paths. This
paper analyses hybrid deep learning models for reentrancy vulner-
ability detection in Ethereum smart contracts, introducing a unique
approach that combines semantic and syntactic feature extraction.
Specifically, our approach integrates CodeBERT embeddings for
deep semantic insights with pattern-based feature vectors that cap-
ture Solidity constructs that are vulnerable to reentrancy attacks.
Five hybrid models are evaluated, each selected to provide insights
into structural and sequential dependencies within code. Findings
highlighted the novelty of using multimodal feature integration
in vulnerability detection, with models like Autoencoder-LSTM
and CodeBERT-Transformer Encoder achieving high accuracy of
98.3% and 98.01%, respectively, demonstrating the effectiveness of
hybrid architectures for capturing complex vulnerability patterns.
This comparative study advances the smart contract security field,
showcasing each model’s strengths and trade-offs, and providing
practical guidance for deploying deep learning-based vulnerability
detection within blockchain ecosystems.

KEYWORDS

Deep learning, Smart contracts, Recurrent neural networks, Feature
extraction, Convolutional neural networks, Security, Solidity

ACM Reference Format:
Ahsan Adeleke Akoshile, Olamide Jogunola, Mohammad Hammoudeh,
and Tooska Dargahi. 2024. A Comparative Analysis of Hybrid Deep Learning

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICENDS °24, December 11-12, 2024, Marakech, Morocco

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1170-1/24/12.

https://doi.org/10.1145/3726122.3726256

Olamide Jogunola®
o.jogunola@mmu.ac.uk
Manchester Metropolitan University
Manchester, UK

Tooska Dargahi
t.dargahi@mmu.ac.uk
Manchester Metropolitan University
Manchester, UK

Models for Reentrancy Vulnerability Detection in Ethereum Smart Con-
tracts. In The 8th International Conference on Future Networks & Distributed
Systems (ICENDS °24), December 11-12, 2024, Marakech, Morocco. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3726122.3726256

1 INTRODUCTION

Blockchain technology revolutionised various industries by intro-
ducing decentralised, secure, and transparent systems for digital
transactions and data management. Originally proposed as the
underlying technology for Bitcoin by Satoshi Nakamoto in 2008,
blockchain was designed to enable trustless peer-to-peer trans-
actions without centralised intermediaries, thereby enhancing se-
curity and reducing dependency on traditional financial institu-
tions. This decentralised ledger technology gained further traction
with the launch of Ethereum in 2015, which extended blockchain
capabilities by introducing programmable smart contracts, these
are self-executing contracts with predefined rules embedded in
code [3]. Unlike Bitcoin, Ethereum’s blockchain was developed as
a platform for decentralised applications (dApps), such as finance,
supply chain, healthcare, and gaming. However, as adoption has
grown, so too have the challenges associated with ensuring the
security and reliability of blockchain and smart contracts [12].

Among these challenges, reentrancy vulnerabilities are particu-
larly critical due to their potential to inflict severe financial damage
by allowing attackers to repeatedly invoke contract functions be-
fore completing initial executions [11, 13, 27]. The infamous DAO
attack in 2016 is one of the most severe examples of reentrancy
exploitation, resulting in the loss of approximately 3.6 million ETH
(around 60 million USD at the time) by repeatedly calling a vulner-
able function within the contract before it updated its state [15].
In 2020, the dForce reentrancy vulnerability attack resulted in a
loss of 25 million USD from the Lendf.me protocol. This reveals
vulnerabilities within the decentralised finance (DeFi) space [10].
Instances such as these highlight the need for techniques to detect
and mitigate vulnerabilities with smart contracts.

Traditional techniques rely on static analysis and smart contract
code examination based on established patterns or rules [1, 20].
These techniques identifies certain types of smart contract vulner-
abilities at a structural level. They are inadequate in identifying
more complex issues, especially vulnerabilities that only emerge
during runtime, such as reentrancy. The capability to simulate the
dynamic behaviours of smart contracts is lacking in static analysis,

https://doi.org/10.1145/3726122.3726256
https://doi.org/10.1145/3726122.3726256

ICFNDS ’24, December 11-12, 2024, Marakech, Morocco

resulting in difficulty to capture vulnerabilities on specific execu-
tion paths [4]. However, these tools can efficiently flag potential
risks, but are often associated with producing high negative rates
or false positive. This could result in either overestimation or under-
estimation of security threats. In addition, to address the dynamic
nature and evolving complexity of smart contract vulnerabilities,
more advanced solutions are required.

Recently, research effort on detecting anomalies on blockchain
network [18], and detecting vulnerabilities in smart contracts [2]
have focused on the use of machine learning (ML) and deep learning
(DL) techniques. ML approaches such as Random Forests, Support
Vector Machines (SVMs), and Gradient Boosting, have classified
smart contracts as vulnerable or safe leveraging the handcrafted
features derived from the code, such as opcode sequences or de-
pendency graphs [2]. However, complex, non-linear relationships
inherent in smart contract vulnerabilities are often not captured
by these methods due to their reliance on feature engineering.
DL-based approaches have shifted towards automated feature ex-
traction, such as the use of Convolutional Neural Networks (CNNs)
to detect anomalies and structural patterns in contract code [27].
Recurrent Neural Networks (RNNs), including Long Short-Term
Memory (LSTM) and Bidirectional Gated Recurrent Units (BiGRUs),
usually models the sequential dependencies in contract code, for a
deeper understanding of execution flows which is critical for iden-
tifying vulnerabilities such as reentrancy attacks [26]. Likewise, a
semantic layer that incorporates both natural and programming
language representations is introduced by transformer-based archi-
tectures such as CodeBERT. This significantly improved the detec-
tion of relationships and intricate patterns in smart contracts [7].
Despite their effectiveness, the dependency on extensive, accurately
labeled datasets and the potential for overfitting to specific patterns
are some limitations of these DL models. These limitations provide
opportunities for refinement, in improving generalisability and
enhancing the efficiency of models across diverse smart contract
datasets.

To solve these challenges, hybrid ML and DL architectures have
emerged as a promising solution, leveraging the strengths of dif-
ferent models to capture both the structural and sequential com-
plexities in smart contract code. By combining different DLs, such
as CNNs and RNNs, and LSTM and BiGRUs, these models can
learn from complex patterns within code sequences that traditional
static analysis tools are likely to miss. In addition, the integration
of advanced transformer-based embeddings, such as CodeBERT,
enables the incorporation of semantic understanding within the
models, providing a contextually rich layer enhancement to iden-
tify vulnerabilities associated with reentrancy. By combining these
architectures, each model offers a multidimensional approach to
vulnerability detection, addressing limitations of the models in iso-
lation and improving both the accuracy and precision of smart
contract security assessments.

In detecting reentrancy vulnerabilities in Ethereum smart con-
tracts, this study evaluates the performances of five distinct hybrid
deep learning models. These include, CNN-BiGRU, Autoencoder-
LSTM, CodeBERT-CNN-BILSTM, CodeBERT-Transformer Encoder,
and CodeBERT-GRU. To sum, the specific contributions are as fol-
lows:

Akoshile, et al.

e Development of five hybrid deep learning models for the
detection of reentrancy vulnerabilities in smart contracts on
Ethereum blockchain network. Each of the deep learning
architecture are uniquely selected and combined to capture
specific aspects of code structure and behaviour to identify
nuanced vulnerability patterns.

e Enhancing the performance of these hybrid models by per-
forming robust data preprocessing methods including the
use of semantic embedding extraction using CodeBERT to
capture the rich semantic content and pattern-based feature
engineering to identify specific constructs within the smart
contracts.

e Evaluating the models based on several key metrics, high-
lighting their usefulness, outcome and trade-offs, whilst pro-
viding recommendations based on their performances.

By conducting a detailed comparison across key metrics, this
paper seeks to provide insights into the effectiveness of each model,
offering a clearer understanding of the potential and limitations of
deep learning for advancing smart contract security.

The remaining sections of this paper are organised as follows:
Section 2 presents the architecture of the evaluated hybrid deep
learning models. Section 3 outlines the methodology and exper-
imental setup, providing details on the dataset composition and
preprocessing pipeline. It also describes the evaluation metrics
utilised to assess the effectiveness of the models in identifying reen-
trancy vulnerabilities. The results are presented in Section 4. This
section discusses the performance of the comparative analysis of
the five hybrid models using the key metrics discussed in Section 3,
highlighting each model’s strengths and limitations in the context
of vulnerability detection. Finally, the conclusion is presented in
Section 5 providing the summary of the findings and recommenda-
tions for future research aimed at advancing smart contract security
through DL innovations.

2 HYBRID LEARNING MODELS FOR
REENTRANCY DETECTION

Reentrancy vulnerabilities is illustrated in Fig. 1. This occurs when
an external call to another contract is made before updating the
internal state of a smart contract, allowing attackers to repeatedly
re-enter the function and manipulate the contract’s logic [25]. Func-
tions such as call.value, delegatecall, or fallback are some of the
targets being exploited by threat actors, enabling recursive calls
that drain funds or cause inconsistent state changes. To address
the complexity of reentrancy vulnerability detection in Ethereum
smart contracts using DL, in this section, five distinct hybrid DL
models are discussed.

2.1 CNN-BiGRU with Attention Model

The CNN-BiGRU with Attention model is effective in capturing both
spatial and sequential features in smart contract code. CNNs are
known to identify local dependencies and spatial hierarchies in code,
making them suitable for analysing the syntactic structure in code
sequences [14]. Thus, the CNN component in this hybrid model is
used to extract spatial patterns from the code, particularly relevant
for recognising structural code features. Following the CNN layers,
the model employs BiGRU, enabling it to process the code sequence

A Comparative Analysis of Hybrid Deep Learning Models for Reentrancy Vulnerability Detection in Ethereum Smart CA@FadDsS *24, December 11-12, 2024, Marakech, Morocco

Contract A Contract B (Attacker)
—1. Request withdraw() —
withdraw() . J _
updatebalance() 2. Send funds > fallback()
A Beanler wilhdraw]) e

Figure 1: An illustration of a reentrancy attack on a smart
contract.

bidirectionally capturing dependencies across both past and future
contexts in the contract. This bidirectional approach is crucial for
modeling the long-term dependencies that could signal reentrancy
vulnerabilities or other logical issues. Studies have shown that
BiGRU, when combined with CNN; can enhance the ability of the
model to learn both local and global patterns within code, which is
crucial for detecting complex vulnerabilities [21, 26].

The attention mechanism in the hybrid model is used to refine
the model’s focus within the sequence and is integrated with the
BiGRU layer. This mechanism assigns weights to different parts of
the sequence, enabling the model to focus on critical sections of
the code that are more likely to contain vulnerabilities. Attention
mechanisms have proven highly effective in vulnerability detection
tasks, as they allow the model to dynamically allocate resources
to sections of code with high-risk constructs, such as call.value
or delegatecall functions commonly associated with reentrancy
risks [14]. The combined CNN-BiGRU with Attention model offers
a balanced approach to capture both the structural and semantic
patterns in smart contract code, resulting in a model that is well-
suited for precise detection of reentrancy vulnerability.

2.2 Autoencoder-LSTM Model

Both autoencoder and LSTM architectures are combined in the
hybrid Autoencoder-LSTM model for reentrancy vulnerability de-
tection in smart contract. This model is effective in reducing the
dimensionality of the input data while capturing temporal patterns
essential for analysing sequential dependencies in smart contracts.
Specifically, autoencoders compress the contract representations
by encoding input data into a reduced-dimensional space, thereby
retaining only the essential features relevant for detecting vulner-
abilities. The resulting lower-dimensional embedding is further
processed by the LSTM layers, which are well-suited for captur-
ing temporal relationships in sequential data. Studies, such as [16],
have demonstrated that LSTM-based models can capture sequential
dependencies in code, which is especially valuable for modeling
smart contract behaviour to identify reentrancy vulnerabilities.
The ability to process and reconstruct sequential data efficiently,
has made Autoencoder-LSTM model widely adopted in detecting
various types of anomalies and vulnerabilities across different do-
mains [22]. For instance, in network security, autoencoder-LSTM ar-
chitectures have been successfully employed to distinguish between
normal and malicious patterns by analysing the reconstruction er-
ror across input sequences [17]. The autoencoder compresses the

input, while the LSTM identifies sequence patterns, which enable
the model to detect deviations that may be an indication of vulnera-
bilities, such as unchecked state updates or improper use of external
calls in smart contracts. In this study, the Autoencoder-LSTM model
contributes to the detection of reentrancy vulnerabilities by allow-
ing the model to process both the compressed and sequentially
contextualised data from the smart contracts, which are essential
for identifying complex vulnerabilities in decentralised systems.

2.3 CodeBERT-CNN-BiLSTM Model

The CodeBERT-CNN-BiLSTM model combines CodeBERT embed-
dings with CNN and BiLSTM layers. This combination enhances the
model to capture both semantic and structural information in smart
contract code, reflecting its effectiveness in detecting reentrancy
vulnerabilities. In smart contract vulnerabilities detection, under-
standing context and interdependencies between code sections is
essential for identifying risks associated with external calls and state
changes. CodeBERT is well-suited for this task. It is a transformer-
based model that is trained on programming languages. It provides
deep contextual embeddings by capturing semantic relationships
and the functional intent of code segments. This is particularly
valuable for understanding the intricate structures in smart con-
tracts [7]. This embedding allows the model to interpret complex
patterns and identify potential vulnerabilities, such as insecure calls
and unchecked conditions that are common in reentrancy-prone
contracts [28].

CNN layer follows the embedding layers and are applied to detect
spatial features in the code. The CNNs are effective in recognis-
ing local patterns, making them suitable for identifying syntactic
elements and structural patterns that signal potential vulnerabil-
ities [14]. In this model, the CNN layers captures code-specific
patterns, thereby enhancing the detection of structural irregular-
ities that can contribute to security risks in smart contracts. To
further improve vulnerability detection, BILSTM layers are then ap-
plied after the CNN layers to capture temporal dependencies within
the code, essential for understanding execution order and opera-
tional flow. The bidirectional nature of BiLSTM allows it to capture
dependencies in both the forward and backward direction through
code sequences, making it especially useful for identifying reen-
trancy vulnerabilities that depend on specific execution paths [25].
The nybrid CodeBERT-CNN-BiLSTM model provides a comprehen-
sive approach for detecting multi-layered signals associated with
reentrancy vulnerabilities in Ethereum smart contracts.

2.4 CodeBERT-Transformer Encoder Model

The CodeBERT-Transformer Encoder Model integrates CodeBERT
embeddings with a transformer encoder architecture, thereby com-
bining both semantic understanding with the ability to model com-
plex relationships and dependencies within the smart contract code.
The CodeBERT captures both syntactic and semantic nuances of
code segments to represent the functional and structural context of
smart contract code effectively [7]. The transformer encoder compo-
nent further processes the embeddings from CodeBERT, leveraging
multi-head self-attention mechanisms to capture intricate patterns
and long-range dependencies in the code, examining different parts

ICFNDS ’24, December 11-12, 2024, Marakech, Morocco

Akoshile, et al.

Keyword-Based Pattern
Analysis: Pattern
Features

Source Code

Labels

INPUT PREPROCESSING NAPPING e ACTON DETECTION
Semantic Feature (o) o B A
4 Extraction (CodeBERT): - (v] o O
< > Embeddings 0 \\ o0 ® %o f g O i
a . @ @9 0O
Embedding - 0 o pee) (W

appmf/ +

ol Pattern Mapping

Classifier

Hybrid Deep

Learning Models Safe (0) or

Vulnerable (1)

Figure 2: Flowchart illustration of the workflow architecture.

simultaneously. This is a critical feature for detecting vulnerabili-
ties like reentrancy, which often depend on multi-step interactions
across various contract functions. Research has demonstrated that
transformer architectures can model complex control flows and data
dependencies between various function calls, making them highly
effective for vulnerability detection through capturing context and
cross-token dependencies. This feature enables more accurate iden-
tification of code vulnerabilities compared to sequential models [8].

Study [5] argues that transformer-based approaches leverages
semantic embeddings from models like CodeBERT to enhance the
accuracy of vulnerability detection by capturing both structural
and functional aspects of smart contracts. Ultimately, the model
captures a broad spectrum of vulnerability indicators by integrating
semantic embeddings with sophisticated attention mechanisms.
This combination allows it to detect vulnerabilities that manifest in
both the underlying logic and explicit code structure. This multi-
layered capability positions the model as a strong candidate for
reentrancy vulnerability detection in high-stakes environments like
DeFi, where code reliability and security are paramount.

2.5 CodeBERT-GRU with Pattern Embeddings
Model

In providing a comprehensive approach to smart contract vulner-
ability detection, the CodeBERT-GRU with Pattern Embeddings
Model combines the semantic representation of CodeBERT with
a GRU layer and an additional pattern-based embedding. Code-
BERT provides the foundational embedding layer by capturing the
contextual meaning and functional nuances of code. This helps
in identifying complex vulnerability patterns through recognising
both high-level code semantics and the structural flow needed to
understand critical functions. While the GRU layer captures se-
quential dependencies across code segments, enabling the model
to effectively process token sequences in smart contracts where
order and function calls play a key role in detecting vulnerabilities.
GRUs also captures dependencies in code sequences with reduced
computational load compared to other recurrent models, making
them efficient without sacrificing performance [23].

The pattern-based embedding layer of this hybrid model, en-
codes the frequency and presence of specific Solidity constructs
commonly associated with reentrancy risks. This pattern-based
feature engineering complements the deep embeddings from Code-
BERT by adding a layer of vulnerability-specific insights, that flags
reentrancy-prone constructs and functions in the smart contract

code. The study by [28] showed the effectiveness of such targeted
pattern embeddings in highlighting high-risk segments within con-
tracts, further improving detection rates.

3 EVALUATION OF THE HYBRID MODELS

The methodology used in developing and evaluating the hybrid DL
models for reentrancy vulnerability detection is described in this
section. It also includes details on data collection, data preparation,
preprocessing pipeline, model architectures, and evaluation metrics.
Fig 2 illustrates the overall workflow flowchart of this work.

3.1 Data Collection and Dataset Composition

To build a high-quality and comprehensive dataset for reentrancy
vulnerability detection, this study sourced

Two major repositories: the SmartBugs (SB) Curated Dataset [6]
and the Messi-Q Smart Contract Dataset [19] are the sources of
dataset used for this study. The SB Curated Dataset is an integral
part of the SmartBugs framework that is widely recognised for its
extensive vulnerability tagging based on the DASP (Decentralised
Application Security Project) taxonomy. This dataset covers critical
issues in smart contracts such as reentrancy, unchecked low-level
calls, and access control weaknesses. These detailed annotations
make it a fundamental resource in blockchain security research
for benchmarking the comparative analysis of smart contract vul-
nerability detection tools. The Messi-Q Smart Contract Dataset
complements this by offering a substantial collection of real-world
Ethereum smart contracts. The size and diversity of this dataset,
capturing a broad spectrum of contract structures and operational
contexts makes it invaluable in security research on Ethereum
blockchain. This enables the analysis of vulnerability patterns, es-
pecially the frequent use of Solidity’s call.value and delegatecall
functions, which are well-known indicators of reentrancy risks in
smart contracts.

The collected smart contract dataset were manually reviewed to
eliminate duplicates and retain only the core code, ensuring data
integrity and relevance for model training. Ultimately, this dataset
comprises 1,563 reentrancy-vulnerable contracts and 3,126 non-
vulnerable contracts, totalling 4,689 contracts. This balanced 2:1
ratio provides a suitable foundation for training DL models, offering
a well-rounded dataset that captures both real-world complexity
and specific vulnerability indicators.

A Comparative Analysis of Hybrid Deep Learning Models for Reentrancy Vulnerability Detection in Ethereum Smart CA@FadDsS *24, December 11-12, 2024, Marakech, Morocco

3.2 Data Preprocessing

The preprocessing pipeline uses CodeBERT with pattern-based
feature engineering to combine semantic embedding extraction
and capturing both the structural and contextual aspects essential
for identifying vulnerability risks in Ethereum smart contracts.

3.2.1 Semantic Embedding Extraction Using CodeBERT. In our pipeline,

we used CodeBERT’s AutoTokeniser for tokenisation and Auto-
Model for embedding generation. The AutoTokeniser from Code-
BERT was used to convert each Solidity contract into a sequence
of tokens. Tokenisation is a critical step, as it breaks down the
code into interpretable units while preserving context. Each se-
quence was configured to a maximum token length of 512, using
the max_length parameter, which ensures uniformity across inputs
by truncating longer sequences and padding shorter ones. This
padding enables each contract to maintain context completeness
within the model’s capacity, eliminating computational inefficien-
cies that arise from variable-length sequences. Padding also sup-
ports batched processing by ensuring consistent input dimensions,
crucial for large-scale embeddings.

After tokenisation, each tokenised sequence was passed through
CodeBERT’s AutoModel to produce contextual embeddings. Auto-
Model outputs high-dimensional vector representations by captur-
ing relationships between tokens in each sequence, derived from the
final hidden layer of the transformer. The embeddings generated are
high-dimensional matrices (tensor representations), converted to
fixed-size matrices using PyTorch tensor operations for consistency
in downstream model processing. By preserving these hierarchi-
cal and bidirectional contexts, the output embeddings reflect both
high-level code logic and intricate syntax.

3.2.2 Pattern-Based Feature Engineering . In addition to semantic
embeddings, the preprocessing pipeline includes a pattern-based
feature engineering step that identifies specific Solidity constructs
known to increase susceptibility to reentrancy vulnerabilities. This
targeted approach highlights syntactic indicators directly related
to common reentrancy attack patterns, providing explicit cues that
aid the model in recognising vulnerable code structures.

Six Solidity constructs; call, delegatecall, send, transfer, fallback,
and modifier were identified as key indicators of reentrancy risks.
These constructs facilitate external calls and state changes, which,
if not adequately protected, can lead to exploitation through reen-
trancy. Specifically, functions like call.value and delegatecall are
critical in reentrancy attacks because they allow external code exe-
cution within the calling contract’s context. Unprotected usage of
these functions can open vulnerabilities to reentrant calls, allowing
repeated or recursive function calls before the initial execution
completes [27].

To quantify these reentrancy-prone constructs, a custom fea-
ture extraction function was implemented to count occurrences
of each target pattern within each contract. This process gener-
ates a fixed-length vector, with each position representing the fre-
quency of a particular construct. This vectorised representation
provides a syntactic footprint of each contract, capturing structural
details that signal potential vulnerabilities. By storing this vector
alongside CodeBERT embeddings, the model gains access to both

implicit (contextual) and explicit (pattern-based) reentrancy indica-
tors, creating a well-rounded feature set that enhances vulnerability
detection.

3.2.3 Data Cleansing and Integrity. Following embedding extrac-
tion and feature engineering, a data cleansing process was applied
to improve dataset relevance and integrity. Duplicates were re-
moved to prevent redundancy, and non-essential elements such as
comments and excessive whitespace were stripped. This stream-
lined each contract to its executable logic, ensuring that the model
focuses exclusively on vulnerability-relevant patterns and reducing
noise from extraneous content.

3.24 Feature Normalisation. The final preprocessing step involved
feature normalisation, applied to both semantic embeddings and
pattern-based feature vectors to ensure uniform scaling across all
features. Normalisation is critical in deep learning, as it standardises
feature values, preventing any single feature from disproportion-
ately influencing the model during training and improving overall
training stability [24]. For this study, we applied z-score normalisa-
tion, adjusting each feature by subtracting its mean p and dividing
by the standard deviation o, as defined by xf;”

This process results in each feature having a mean of zero and a
standard deviation of one, standardising the scale across features.
By applying z-score normalisation, we optimised the convergence
rate of gradient-based optimisers, which benefit from consistent
gradient updates across features. This regularity in feature scaling
enhances model stability and improves learning efficiency, con-
tributing to balanced training dynamics and a more effective overall
learning process.

3.3 Simulation setup and Evaluation Metrics

In this study, model training and evaluation were carried out us-
ing Google Colab Pro [9], employing a TPU v2-8 configuration
with 334.6 GB RAM to handle computationally intensive tasks such
as the generation of CodeBERT embeddings and the training of
deep learning models. This setup provided the necessary compu-
tational resources for managing the large and complex datasets
characteristic of smart contract code analysis.

The dataset was split into 70% for training, 15% for validation,
and 15% for testing, with a fixed random_state = 42 to ensure
consistent reproducibility of results across each split. Two distinct
code implementations were used for data splitting to address differ-
ent feature structures. The first split configuration was applied to
multi-feature data scenarios, where multiple feature arrays, such
as semantic embeddings and pattern-based feature vectors, were
maintained in alignment across all data subsets. This ensured that
training, validation, and testing sets contained matching rows for
each feature array, thus preserving consistency across model inputs.
In cases involving a single feature set and label array, a streamlined
single-feature split code was used, simplifying the process for effi-
cient handling when no additional feature sets were present.

The effectiveness of each model in detecting reentrancy vulner-
abilities was evaluated using five core metrics: accuracy, precision,
recall, F1-score, and ROC-AUC, each providing insights into differ-
ent aspects of the model’s performance.

ICFNDS ’24, December 11-12, 2024, Marakech, Morocco

Accuracy, calculated as the ratio of correctly predicted instances
to the total predictions, offers an overview of overall model perfor-

mance:
TP+TN

" TN +FN +TP +FP M
where TN is true negatives, which is the number of correctly pre-
dicted vulnerabilities. FP is the false positives and depicts the num-
ber of non-vulnerabilities incorrectly predicted as vulnerabilities.
FN is false negatives, which is the number of reentrancy vulnera-
bilities incorrectly predicted as non-vulnerabilities; TP is true pos-
itives that predicts the number of correctly predicted reentrancy
vulnerabilities.

Precision, P, measures the proportion of true positive predictions
out of all positive predictions, making it particularly relevant for
assessing the model’s ability to minimise false positives in a security-
sensitive application. It is defined as:

P= _TIr ()
TP+ FP

Recall, R, or sensitivity, calculates the proportion of actual posi-
tive cases that are correctly identified by the model. This metric is
crucial in vulnerability detection to minimise missed cases (false
negatives):

TP
= TN ®)
TP+ FN
The F1-score, which is the harmonic mean of precision and recall,
offers a balanced measure that is particularly informative when
both false positives and false negatives carry significant costs. The
F1-score is given by:

R

2 x Precision * Recall
F1=

Precision + Recall)
Finally, the ROC-AUC (Receiver Operating Characteristic Area
Under the Curve) metric was used to evaluate the model’s ability to
distinguish between vulnerable and non-vulnerable classes across
various threshold settings. The ROC curve plots the true positive
rate (sensitivity) against the false positive rate (1-specificity) at
different threshold levels, with the AUC providing a single value to
assess the model’s separability. The ROC-AUC is formally repre-
sented as:

ROC=1- _IN (5)

TN +FP
Each of these metrics was chosen for its relevance to security-
sensitive applications where classification accuracy, especially re-
garding false positives and negatives, is critical. The combination of
these metrics offers a comprehensive view of model performance,
ensuring that both general accuracy and nuanced vulnerability

detection capabilities are accounted for in the evaluation.

4 RESULTS AND DISCUSSION

The discussed five deep learning models for detecting reentrancy
vulnerabilities in Ethereum smart contracts are evaluated in this
section using the defined key metrics. The models were evaluated
using five core metrics: accuracy, precision, recall, F1-score, and
ROC-AUC, and the results are discussed.

Table 1 presents the summary of the performance metrics for
each model. This table shows that the Autoencoder-LSTM model

Akoshile, et al.

Table 1: Performance Metrics of all Models

Model Accuracy Precision Recall F1-
Score

CNN-BiGRU- 0.9474 0.9458 0.8807 0.9121

Attention

Autoencoder-LSTM 0.9830 0.9905 0.9541 0.9720

CodeBERT-CNN- 0.9261 0.8144 0.9862 0.8921

BiLSTM

CodeBERT- 0.9801 0.9904 0.9450 0.9671

Transform-Encoder

CodeBERT-GRU 0.9517 0.9340 0.9083 0.9209

achieved the highest accuracy (98.30%) and F1-score (97.20%), sug-
gesting that its architecture is particularly effective at learning
compact and informative representations, which may capture sub-
tle patterns indicative of vulnerabilities. Similarly, the CodeBERT-
Transformer Encoder model demonstrated resilient performance
with an accuracy of 98.01% and an F1-score of 96.71%. This model’s
use of attention mechanisms appears to enhance its ability to cap-
ture complex contextual relationships in code, providing both high
recall (94.50%) and high precision (99.04%). The CNN-BiGRU with
Attention model also showed a strong balance in performance, with
an accuracy of 94.74% and an F1-score of 91.21%, making it a viable
option for initial vulnerability detection stages. The CodeBERT-
CNN-BiLSTM model, while scoring the highest recall at 98.62%,
showed a trade-off in precision 81.44%, resulting in more false
positives. This characteristic could be advantageous in settings
where detecting all potentially vulnerable contracts is prioritised,
allowing a secondary model to refine results by filtering false pos-
itives. Finally, the CodeBERT-GRU model achieved competitive
accuracy (95.17%) and balanced precision and recall, making it ver-
satile for scenarios requiring balanced sensitivity and specificity.

To further interpret these results, confusion matrices in Fig. 3
were generated for each model, providing insight into their han-
dling of true positives, true negatives, false positives, and false
negatives. For instance, the Autoencoder-LSTM model produced
minimal false negatives, reinforcing its utility as a high-precision
model that could reduce the risk of missed vulnerabilities. In con-
trast, the CodeBERT-CNN-BiLSTM model, while capturing nearly
all vulnerable contracts, demonstrated a tendency for higher false
positives, suggesting its application as an initial screening layer to
maximise recall, followed by a refinement layer to filter false alerts.

The ROC-AUC scores, illustrated in the ROC curves of Fig. 4
for each model, provide a visual assessment of class separability.
The Autoencoder-LSTM and CodeBERT-Transformer Encoder mod-
els achieved high ROC-AUC values, reflecting their ability to dis-
tinguish between vulnerable and non-vulnerable contracts across
varying decision thresholds. This high separability indicates that
these models are less likely to misclassify contracts in real-world
applications where such errors could lead to significant security
risks.

These results reveal that each model offers distinct advantages
depending on the specific requirements of a reentrancy detection
pipeline. The CodeBERT-CNN-BiLSTM, with its high recall, could

A Comparative Analysis of Hybrid Deep Learning Models for Reentrancy Vulnerability Detection in Ethereum Smart CA@FadDsS *24, December 11-12, 2024, Marakech, Morocco

Confusion Matrix for cnn_bigru_attention Confusion Matrix for autoencoder_Istm
400 400
1 0 2
300 300
] ©
2 2
[(]
- -
L))
3 3
= +200 = F200
1 26 192 1 10 208
L 100 F 100
0 1 - 0 1 o
Predicted Label Predicted Label
(a) CNN_BiGRU with Attention Model (b) Autoencoder_LSTM Model

Confusion Matrix for codebert_cnn_bilstm Confusion Matrix for codebert_transformer_encoder

400
350 400
49 2
300
- _ 300
250 [
= ®
e t200 o
= = 200
r 150
1 3 215 L 100 1 12 206
100
r50
0 1 0 1
Predicted Label Predicted Label
(c) CodeBERT_CNN_BiLSTM Model (d) CodeBERT _Transformer Encoder Model

Figure 3: Confusion matrix of four different hybrid models.

ROC Curves for Reentrancy Vulnerability Detection Models

serve as a preliminary detection layer to ensure that potentially vul-
nerable contracts are flagged for further scrutiny. Subsequently, the
Autoencoder-LSTM or CodeBERT-Transformer Encoder models,
with their higher precision, could refine these initial predictions,
minimising false positives and thereby enhancing the accuracy
of the final output. This layered approach to vulnerability detec-
tion would allow the integration of multiple models, optimising
detection while managing computational resources effectively.

True Positive Rate

5 CONCLUSION

02 cnn_bigru_attention (AUC = 0.99) This paper presents a comparative analysis of hybrid deep learning
— autoencoder Istm (AUC = 0.99) models for detecting reentrancy vulnerabilities in Ethereum smart

codebert_cnn_bilstm (AUC = 0.99) . . .
codebert_transformer_encoder (AUC = 1.00) contracts, employing architectures that leverage both semantic and

00 —— codebert_gru (AUC = 0.99)

structural information within the code. Among the models evalu-
ated, the Autoencoder-LSTM and CodeBERT-Transformer Encoder
demonstrated the highest overall performance, excelling in both
Figure 4: Receiver Operating Characteristic (ROC) curve for accuracy and F1-score. These findings suggest that deep learning
the ML models. models integrating both sequence processing (e.g., LSTM, GRU)
and contextual embeddings (e.g., CodeBERT) are particularly well-
suited for the nuanced task of smart contract vulnerability detec-
tion, where both code structure and context-specific patterns play

04 i o8 10
False Positive Rate

ICFNDS ’24, December 11-12, 2024, Marakech, Morocco

a critical role. The implications of this study are significant for ad-
vancing smart contract security. By providing a reliable method for
detecting reentrancy vulnerabilities, these models can be effectively
integrated into blockchain development pipelines to proactively
identify and mitigate potential security threats.

Our future work will focus on expanding the scope of this work
beyond the specific subset of vulnerabilities and Ethereum con-
tracts examined, which limits the generalisability of findings to
other blockchain platforms and smart contract programming lan-
guages. The inclusion of a variety of dataset and vulnerabilities
across different blockchain environments would enhance the effi-
ciency and applicability of the models. Likewise, exploring different
scalability options could address the computational demands inher-
ent in training DL models for blockchain security, making these
approaches more accessible in resource-constrained settings, such
as internet of things devices. This broader approach could support
a more comprehensive and adaptive framework for smart contract
vulnerability detection, ultimately advancing security practices
across diverse blockchain ecosystems.

REFERENCES

[1] Shikah J Alsunaidi, Hamoud Aljamaan, and Mohammad Hammoudeh. 2024.
MultiTagging: A Vulnerable Smart Contract Labeling and Evaluation Framework.
Electronics 13, 23 (2024), 4616.

[2] Nami Ashizawa, Naoto Yanai, Jason Paul Cruz, and Shingo Okamura. 2022.
Eth2Vec: Learning contract-wide code representations for vulnerability detection
on Ethereum smart contracts. Blockchain: Research and Applications (2022).

[3] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized
application platform. white paper 3, 37 (2014), 2-1.

[4] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. SMARTIAN: Enhancing Smart Contract Fuzzing with Static
and Dynamic Data-Flow Analyses. In 36th IEEE/ACM Intl. Conf. Automated Soft-
ware Engineering (ASE). 227-239.

[5] LiDuan, Liu Yang, Chunhong Liu, Wei Ni, and Wei Wang. 2023. A New Smart
Contract Anomaly Detection Method by Fusing Opcode and Source Code Features
for Blockchain Services. IEEE Trans. Network and Service Management 20, 4 (2023),
4354-4368.

[6] Thomas Durieux, Jodo F Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
review of automated analysis tools on 47,587 ethereum smart contracts. In Pro-
ceedings of the ACM/IEEE 42nd Intl. conference on software engineering. 530-541.

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[8] KeXin Gong, Xiangmei Song, Na Wang, Chunyang Wang, and Huijuan Zhu. 2023.

SCGformer: Smart contract vulnerability detection based on control flow graph

and transformer. IET Blockchain 3, 4 (2023), 213-221.

Google. 2024. Welcome to Colaboratory. Available at https://colab.research.

google.com/, Accessed: 2024-10-16.

Liuqing Han. 2024. Smart Contract Reentrancy Vulnerability Detection Based on

CNN and LSTM-Attention. In 5th Intl. Seminar on Artificial Intelligence, Network-

ing and Information Technology (AINIT). IEEE, 147-151.

[11] Tengyun Jiao, Zhiyu Xu, Minfeng Qi, Sheng Wen, Yang Xiang, and Gary Nan.

2024. A Survey of Ethereum Smart Contract Security: Attacks and Detection.

=
X0

[10

[12

[13

[14

[15

[16

[17

[18

(19]

™
=

[21

[22

[23

[24

[25

[26

[27

&
2

Akoshile, et al.

Distrib. Ledger Technol. 3, 3, Article 23 (Sept. 2024), 28 pages. https://doi.org/10.
1145/3643895

Olamide Jogunola, Bamidele Adebisi, Thokozani Shongwe, and Akilu Yunusa-
Kaltungo. 2024. Security of Blockchain-Based Applications: A Case of Distributed
Energy Systems. In Key Themes in Energy Management: A Compilation of Current
Practices, Research Advances, and Future Opportunities. Springer, 397-414.
Ningran Li, Minfeng Qi, Zhiyu Xu, Xiaogang Zhu, Wei Zhou, Sheng Wen, and
Yang Xiang. 2025. Blockchain Cross-Chain Bridge Security: Challenges, Solutions,
and Future Outlook. Distrib. Ledger Technol. 4, 1, Article 8 (Feb. 2025), 34 pages.
https://doi.org/10.1145/3696429

Jiayu Liang and Yuqing Zhai. 2023. SCGRU: A Model for Ethereum Smart Contract
Vulnerability Detection Combining CNN and BiGRU-Attention. In 8th Intl. Conf.
Signal and Image Processing (ICSIP). IEEE, 831-837.

Jian-Wei Liao, Tsung-Ta Tsai, Chia-Kang He, and Chin-Wei Tien. 2019. Soliaudit:
Smart contract vulnerability assessment based on machine learning and fuzz

testing. In Sixth Intl. Conf. Internet of Things: Systems, Management and Security
(IOTSMS). IEEE, 458-465.

Ruijie Luo, Feng Luo, Bingsen Wang, and Ting Chen. 2022. Smart contract
vulnerability detection based on variant LSTM. In Proceedings of the 2022 Intl.
Conf. Big Data, I0T, and Cloud Computing. 1-4.

Mohamed Mahmoud, Mahmoud Kasem, Abdelrahman Abdallah, and Hyun Soo
Kang. 2022. Ae-Istm: Autoencoder with Istm-based intrusion detection in iot. In
Intl. Telecomms. Conf. (ITC-Egypt). IEEE, 1-6.

Chibuzo Obi-Okoli, Olamide Jogunola, Bamidele Adebisi, and Mohammad Ham-
moudeh. 2023. Machine Learning Algorithms to Detect Illicit Accounts on
Ethereum Blockchain. In Proceedings of the 7th Intl. Conf. Future Networks and
Distributed Systems. 747-752.

Peng Qian, Zhenguang Liu, Yifang Yin, and Qinming He. 2023. Cross-modality
mutual learning for enhancing smart contract vulnerability detection on bytecode.
In Proceedings of the ACM Web Conference 2023. 2220-2229.

Elnaz Rabieinejad, Abbas Yazdinejad, Reza M. Parizi, and Ali Dehghantanha.
2023. Generative Adversarial Networks for Cyber Threat Hunting in Ethereum
Blockchain. Distrib. Ledger Technol. 2, 2, Article 9 (June 2023), 19 pages. https:
//doi.org/10.1145/3584666

Youcheng Shan. 2023. Social Network Text Sentiment Analysis Method Based on
CNN-BiGRU in Big Data Environment. Mobile Information Systems (2023).
Danish Vasan, Ebtesam Jubran S Alqahtani, Mohammad Hammoudeh, and Adel F
Ahmed. 2024. An AutoML-based security defender for industrial control systems.
International Journal of Critical Infrastructure Protection 47 (2024), 100718.
Meiying Wang, Zheyu Xie, Xuefan Wen, Jianmin Li, and Kuanjiu Zhou. 2023.
Ethereum smart contract vulnerability detection model based on triplet loss and
BiLSTM. Electronics 12, 10 (2023), 2327.

Zhigiang Wang, Qingyun She, PengTao Zhang, and Junlin Zhang. 2020. Correct
normalization matters: Understanding the effect of normalization on deep neural
network models for click-through rate prediction. arXiv preprint arXiv:2006.12753
(2020).

Guangxia Xu, Lei Liu, and Zhaojian Zhou. 2022. Reentrancy vulnerability de-
tection of smart contract based on bidirectional sequential neural network with
hierarchical attention mechanism. In 2022 Intl. Conf. Blockchain Technology and
Information Security (ICBCTIS). IEEE, 56-59.

Lejun Zhang, Weijie Chen, Weizheng Wang, Zilong Jin, Chunhui Zhao, Zhennao
Cai, and Huiling Chen. 2022. Cbgru: A detection method of smart contract
vulnerability based on a hybrid model. Sensors 22, 9 (2022), 3577.

Zibin Zheng, Neng Zhang, Jianzhong Su, Zhijie Zhong, Mingxi Ye, and Jiachi
Chen. 2023. Turn the rudder: A beacon of reentrancy detection for smart contracts
on ethereum. In IEEE/ACM 45th Intl. Conf. Software Engineering (ICSE). IEEE,
295-306.

Huijuan Zhu, Kaixuan Yang, Liangmin Wang, Zhicheng Xu, and Victor S Sheng.
2023. GraBit: A Sequential Model-Based Framework for Smart Contract Vulnera-
bility Detection. In EEE 34th Intl. Symposium on Software Reliability Engineering
(ISSRE). IEEE, 568-577.

https://colab.research.google.com/
https://colab.research.google.com/
https://doi.org/10.1145/3643895
https://doi.org/10.1145/3643895
https://doi.org/10.1145/3696429
https://doi.org/10.1145/3584666
https://doi.org/10.1145/3584666

	Abstract
	1 Introduction
	2 Hybrid Learning Models for Reentrancy Detection
	2.1 CNN-BiGRU with Attention Model
	2.2 Autoencoder-LSTM Model
	2.3 CodeBERT-CNN-BiLSTM Model
	2.4 CodeBERT-Transformer Encoder Model
	2.5 CodeBERT-GRU with Pattern Embeddings Model

	3 Evaluation of the Hybrid Models
	3.1 Data Collection and Dataset Composition
	3.2 Data Preprocessing
	3.3 Simulation setup and Evaluation Metrics

	4 Results and Discussion
	5 Conclusion
	References

