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ABSTRACT
Recent research suggests that individuals with multiple sclerosis (MS) and cognitive impairment exhibit more effortful and less 
efficient transitions in brain network activity. Previous studies further highlight the increased vulnerability of specific regions, 
particularly the thalamus, to disease- related damage. This study investigates whether MS affects the controllability of specific 
brain regions in driving network activity transitions across the brain and examines the relationship between these changes and 
cognitive impairment in patients. Resting- state functional MRI and neuropsychological data were collected from 102 MS and 27 
healthy controls. Functional network controllability analysis was performed to quantify how specific regions influence transi-
tions between brain activity patterns or states. Disease alterations in controllability were assessed in the main dataset and then 
replicated in an independent dataset of 95 MS and 45 healthy controls. Controllability metrics were then used to distinguish MS 
from healthy controls and predict cognitive status. MS- specific controllability changes were observed in the subcortical network, 
particularly the thalamus, which were further confirmed in the replication dataset. Cognitively impaired patients showed sig-
nificantly greater difficulty in the thalamus steering brain transitions towards difficult- to- reach states, which are typically asso-
ciated with high- energy- cost cognitive functions. Thalamic network controllability proved more effective than thalamic volume 
in distinguishing MS from healthy controls (AUC = 88.3%), and in predicting cognitive status in MS (AUC = 80.7%). This study 
builds on previous research highlighting early thalamic damage in MS, aiming to demonstrate how this damage disrupts activity 
transitions across the cerebrum and may predict cognitive deficits. Our findings suggest that the thalamus in MS becomes less 
capable of facilitating broader brain activity transitions essential for high- energy- cost cognitive functions, implying a potential 
pathological mechanism that links thalamic functional changes to cognitive impairment in MS.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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1   |   Introduction

Cognitive impairment is common in multiple sclerosis 
(MS), with estimated prevalence ranging from 43% to 70% 
(Chiaravalloti and DeLuca 2008). Previous studies suggest that 
cognitive impairments in MS arise due to brain changes in 
specific neural networks (Eijlers et al. 2019; Meijer et al. 2017; 
Jandric et  al.  2021; d'Ambrosio et  al.  2020; Tona et  al.  2014; 
Schoonheim, Hulst, et  al.  2015; Carotenuto et  al.  2022; Yang 
et  al.  2023; Jandric et  al.  2022). A useful recent model indi-
cates that MS patients with cognitive impairment (CIMS), in 
comparison to cognitively preserved patients (CPMS), exhibit 
less frequent transitions between brain states (regional activity 
patterns) and show subcortical- related functional connectivity 
changes (d'Ambrosio et al. 2020). The subcortical network has 
gained wide attention in MS, with many studies reporting as-
sociations between cognitive impairment and network changes 
in subcortical regions, such as the thalamus (Tona et al. 2014; 
Schoonheim, Hulst, et al. 2015; Carotenuto et al. 2022; Jandric 
et al. 2022). Central to these findings is the idea that subcorti-
cal regions, particularly the thalamus, are affected early in the 
course of MS (Coupé et al. 2023; Eshaghi, Marinescu, et al. 2018; 
Tozlu et al. 2023; Azevedo et al. 2018; Fleischer et al. 2022); as 
the disease progresses, neurodegeneration and functional net-
work changes seem to spread from the thalamus towards the 
broader brain (Schoonheim 2020). This early involvement of the 
thalamus may drive the subsequent changes in the other parts 
of the brain, leading to a widespread disruption of brain activity 
and causing reduced efficiency in brain function.

An emerging approach that allows characterizing how spe-
cific brain regions influence network activity in the rest of 
the brain is ‘network controllability’ analysis (Lynn and 
Bassett 2019; Gu et al. 2015; Deng et al. 2022). This approach 
allows moving beyond assessing changes in regional activity, 
towards identifying the brain regions driving those changes 
and how they influence the transitions between brain states 
(regional activity patterns of the brain). Network controllabil-
ity has been validated as a powerful tool in exploring clinical 
biomarkers in neurological and neuropsychological diseases 
(Bernhardt et al. 2019; Zarkali et al. 2020; Hahn et al. 2023; Li 
et al. 2023; Parkes et al. 2021). In MS, a recent study showed 
that it became more effortful for cognitively impaired pa-
tients to transition between brain states (Broeders et al. 2024). 
However, current knowledge has not yet addressed whether 
and how MS alters the controllability of specific brain regions 
in facilitating transitions across the brain, and how these al-
terations predict cognitive impairment in patients.

To fill this gap, this study applied widely used controllability 
measures to two independent MS datasets to examine how dif-
ferent regions impact brain state transitions. These measures 
were further evaluated as predictors of cognitive impairment 
in MS and for their potential to support clinical diagnosis. We 
hypothesize that: (i) MS patients exhibit regions less effective in 
facilitating brain state transitions, as reflected in disease- related 
controllability changes; (ii) these changes are concentrated in 
those brain regions associated with cognitive dysfunction in 
MS, such as the thalamus; (iii) are more pronounced in cogni-
tively impaired patients; and (iv) can help predict cognitive im-
pairment and aid clinical diagnosis.

2   |   Materials and Methods

2.1   |   Participants

2.1.1   |   Main Dataset

The main dataset involved 102 patients with relapsing–re-
mitting MS recruited from the Helen Durham Centre for 
Neuroinflammation at the University Hospital of Wales and 27 
healthy controls (HC) recruited from the local community. All 
participants were aged between 18 and 60 years, right- handed, 
and devoid of contraindications for MR scanning. Additional 
eligibility criteria were required for the patients, including the 
absence of comorbid neurological or psychiatric disease, no 
modifications to their treatments within 3 months prior to the 
MRI scanning, and being in a relapse- free phase. All partic-
ipants underwent demographic information collection, clin-
ical and psychological assessments, and MRI scanning in one 
study session. This study was approved by the NHS South- West 
Ethics and the Cardiff and Vale University Health Board R&D 
committees. Written informed consent was obtained from each 
participant.

2.1.2   |   Replication Dataset

The replication dataset included 95 patients with relapsing–re-
mitting MS recruited from the Beijing Tiantan Hospital and 
45 HC recruited from the local community. The participants 
were aged between 17 and 80 years, right- handed, and devoid 
of contraindications for MR scanning. Additional exclusion cri-
teria were employed, including incomplete MRI images, poor 
image quality, and a history of comorbid neurological or psy-
chiatric disease. All participants underwent demographic infor-
mation collection, clinical assessments, and MRI scanning in 
one study session. This study was approved by the Institutional 
Review Board of the Beijing Tiantan Hospital, Capital Medical 
University, Beijing, China. Written informed consent was ob-
tained from each participant.

2.2   |   Demographic, Clinical 
and Neuropsychological Assessment

Demographic and clinical data for both datasets included 
age, sex, education level, disease duration, and the Expanded 
Disability Status Scale (EDSS) scores. The main dataset had 
additional clinical scores assessed using the Multiple Sclerosis 
Functional Composite (MSFC) as well as neuropsycholog-
ical scores of four cognitive domains assessed using the Brief 
Repeatable Battery of Neuropsychological Tests (BRB- N) as de-
scribed previously (Jandric et al. 2021). Patients from the main 
dataset were classified into CIMS and CPMS according to previ-
ous studies (Jandric et al. 2021; Sepulcre et al. 2006). Specifically, 
CIMS patients were defined as those who scored ≥ 1.5 SDs below 
the control mean on at least two subtests of BRB- N, while the 
others were defined as CPMS. The scores of each of the four 
cognitive domains were calculated by averaging the scores of all 
subtests assigned in that domain. The global cognitive function 
score (global BRB- N) was calculated by averaging the scores of 
all four cognitive domains.
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2.3   |   MRI Acquisition

2.3.1   |   Main Dataset

MRI data were acquired on a 3T MR scanner (General Electric 
HDx MRI System, GE Medical Devices, Milwaukee, WI) 
with an 8- channel receive- only head radiofrequency coil. 
A high- resolution 3D T1- weighted sequence (3DT1) was ac-
quired for identification of T1- hypointense MS lesions, seg-
mentation, and registration (voxel size = 1 mm × 1 mm × 1 mm, 
echo time [TE] = 3.0 ms, repetition time [TR] = 7.8 ms, matrix 
size = 256 × 256 × 172, field of view [FOV] = 256 mm × 256 mm, 
flip angle [FA] = 20°). A T2/proton density–weighted sequence 
(voxel size = 0.94 mm × 0.94 mm × 4.5 mm, TE = 9.0/80.6 ms, 
TR = 3000 ms, FOV = 240 mm × 240 mm, number of slices = 36, 
FA = 90°) and a fluid- attenuated inversion recovery (FLAIR) se-
quence (voxel size = 0.86 mm × 0.86 mm × 4.5 mm, TE = 122.3 ms, 
TR = 9502 ms, FOV = 220 mm × 220 mm, number of slices = 36, 
FA = 90°) were acquired for identification and segmentation of 
T2- hyperintense MS lesions. Resting- state functional MRI (rs- 
fMRI) was acquired with a T2*- weighted gradient- echo echo- 
planar imaging sequence (voxel size = 3.4 mm × 3.4 mm × 3 mm, 
TE = 35 ms, TR = 3000 ms, matrix size = 64 × 64 × 46, 
FOV = 220 mm × 220 mm, number of volumes = 100, number of 
slices = 46, interleaved order). All participants were instructed 
to relax with their eyes closed during rs- fMRI scanning.

2.3.2   |   Replication Dataset

MRI data were acquired on a 3T MR scanner (Philips CX, 
Best, The Netherlands) including 3DT1, FLAIR, and rs- fMRI. 
The 3DT1 image was acquired using sagittal acquisition with 
magnetization- prepared rapidly acquired gradient echo (voxel 
size = 1 mm × 1 mm × 1 mm, echo time [TE] = 3.0 ms, repeti-
tion time [TR] = 6.6 ms, matrix size = 196 × 256 × 170, inversion 
recovering = 880 ms, FA = 8°). The FLAIR sequence was ac-
quired using 3D sagittal acquisition with inversion recovering 
fast spin echo (voxel size = 1 mm × 1 mm × 1 mm, TE = 228 ms, 
TR = 4800 ms, inversion time = 1650 ms, FA = 90°). The rs- fMRI 
image was acquired using 2D axial acquisition with field echo EPI 
(voxel size = 3 mm × 3 mm × 3 mm, TE = 30 ms, TR = 2000 ms, 
matrix size = 80 × 80 × 40, number of volumes = 180, number 
of slices = 40, interleaved order, slice thickness = 3 mm, slice 
gap = 0.3 mm, FA = 78°) during which all participants were in-
structed to relax with their eyes closed.

2.4   |   MRI Preprocessing

Lesion filling was performed on the structural 3DT1 images of 
patients as previously described (Jandric et al. 2021), followed 
by segmentation into grey matter, white matter, and cerebro-
spinal fluid using SPM12 (v7771) toolbox (http:// www. fil. ion. 
ucl. ac. uk/ spm/ softw are/ spm12/  ). The quality of segmentation 
was assessed manually. rs- fMRI preprocessing was also per-
formed using SPM12. Briefly, individual functional images 
were first corrected for head motion and acquisition time 
offsets between slices. No significant differences were found 
in the maximum and mean frame- wise displacement of head 

motion between groups in both the main and replication data-
sets (p > 0.05, permutation test). The corrected images were 
then spatially normalized to the MNI space by applying defor-
mation fields derived from tissue segmentation of structural 
images. All normalized images further underwent spatial 
smoothing by a Gaussian kernel with 6- mm full width at half 
maximum.

2.5   |   Functional Network Controllability Analysis

We included 400 cortical (Schaefer et  al.  2018) and 54 sub-
cortical regions (Tian et  al.  2020) to calculate functional 
connectivity networks based on pair- wise Pearson correla-
tion between the time series of all regions. Then, network 
controllability measures, including average controllability, 
modal controllability, and activation energy, were calculated 
to quantify how a specific region can influence brain- wide dy-
namics (Figure 1; See Supplementary Methods for details) (Gu 
et al. 2015; Deng et al. 2022). Specifically, average controlla-
bility measures how easily a brain region moves the brain into 
nearby or easily reachable states, which reflects the brain's 
capacity for low- energy- cost and frequent small adjustments 
in brain states (Lynn and Bassett 2019; Gu et al. 2015; Deng 
et al. 2022). Modal controllability, on the contrary, measures 
a region's ability to move the brain into difficult or unstable 
states, which is important for executing high- energy- cost 
large transitions in brain activity (e.g., between resting and 
active states) (Lynn and Bassett  2019; Gu et  al.  2015; Deng 
et al. 2022). Regional activation energy captures the feasibility 
or minimum energy required by the given region to induce a 
transition between brain states (Lynn and Bassett  2019; Gu 
et al. 2015; Deng et al. 2022). To facilitate interpretation and 
comparison, region- level controllability measures were aver-
aged into global (whole brain), cortical, and subcortical net-
work levels. Cortical network controllability measures were 
averaged into seven resting- state functional networks (Yeo 
et al. 2011), including the visual network (VN), somatomotor 
network (SMN), dorsal attention network (DAN), ventral at-
tention network (VAN), limbic network (LN), frontoparietal 
network (FPN) and default mode network (DMN). Similarly, 
subcortical network controllability measures were averaged 
into seven anatomical nuclei, namely the hippocampus, thal-
amus, amygdala, caudate, nucleus accumbens, putamen, and 
globus pallidus (Tian et al. 2020).

2.6   |   Statistical Analysis

Statistical analyses were performed using MATLAB soft-
ware version R2022b (MathWorks Inc). A 95% confidence 
interval was used for each effect. Chi- squared tests were 
used to compare dichotomous variables (sex). The group 
comparisons of continuous demographic, clinical, neuropsy-
chological, and network controllability variables were per-
formed by permutation tests (10,000 permutations). Age and 
sex were considered as covariates for neuropsychological and 
network controllability variables. FDR corrections were per-
formed for multiple comparisons. See Supplementary Methods 
for details.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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2.7   |   Classification Analysis

We trained linear SVM classifiers to distinguish between MS 
and controls, as well as between MS with different cognitive 
status (CIMS vs. CPMS) and between MS with different levels 
of disability (EDSS < 4.0 vs. EDSS ≥ 4.0). Controllability and/or 
volumetric measures were used as predictive features. A set of 
performance metrics, including accuracy, precision, sensitivity, 
specificity, and area under the curve (AUC), was computed to 
assess the performance of the classifiers. See Supplementary 
Methods for details.

3   |   Results

3.1   |   Demographic, Clinical, 
and Neuropsychological Characteristics

3.1.1   |   Main Dataset

The MS group was significantly older, had lower education 
levels, and exhibited worse performance on all subtests of the 
MSFC as well as all four cognitive domains of the BRB- N than 
the HC group (p < 0.05, FDR corrected). Across all patients, 
55 were identified as CIMS and 47 as CPMS. CIMS showed 
worse performance on 9- HPT, PASAT3, and all four cognitive 
domains than CPMS and HC (p < 0.05, FDR corrected). No 
differences were found between CPMS and HC on cognitive 
performance (Table 1).

3.1.2   |   Replication Dataset

The MS group was significantly younger and had a lower educa-
tion level than the HC group (p < 0.05, FDR corrected; Table S1). 

Due to the differences in the cognitive assessment scales be-
tween the main and replication datasets, further subgroup 
splitting in terms of CIMS and CPMS was not available on the 
replication dataset.

3.2   |   Network Controllability Changes in MS

3.2.1   |   Main Dataset

Significant controllability changes in MS were predominately 
localized in the subcortical network, particularly in the thal-
amus. Specifically, at the global (whole brain) level, the MS 
group showed increased average controllability (p < 0.001), 
decreased modal controllability (p = 0.008) and decreased ac-
tivation energy (p = 0.016) compared to the HC group. When 
looking at the eight resting- state networks, controllability 
changes were primarily localized within the subcortical net-
work. Specifically, the MS group exhibited increased average 
controllability (p = 0.001), decreased modal controllability 
(p = 0.002) and decreased activation energy (p < 0.001) in the 
subcortical network, compared to the HC group (Figure  2). 
When looked at each of the seven nuclei within the subcorti-
cal network separately, the subcortical changes were predom-
inately due to the changes within the thalamus. Specifically, 
the MS group showed increased average controllability 
(p < 0.001), decreased modal controllability (p = 0.005) and 
decreased activation energy (p = 0.007) in the thalamus com-
pared to the HC (Figure 3). Decreased activation energy was 
also found in the globus pallidus in MS (p = 0.004; Figure S1). 
For the cortical networks, MS- related controllability changes 
were only found regarding average controllability (VN, SMN, 
DAN, VAN, FPN and DMN: p < 0.05); no differences were ob-
served in any cortical networks regarding modal controllabil-
ity or activation energy (Figure S2).

FIGURE 1    |    Overview of network controllability calculation. Based on rs- fMRI data from 129 participants and using combined cortical and sub-
cortical parcellations, we extracted regional mean time courses and calculated functional connectivity between pairs of regions to construct brain 
networks. We then calculated the most commonly used controllability measures to quantify how specific regions influence brain activity transitions 
throughout the brain. Specifically, average controllability measures how easily a brain region moves the brain into nearby or easily reachable states, 
which reflects the brain's capacity for low- energy- cost and frequent small adjustments in brain states. Modal controllability, on the contrary, mea-
sures a region's ability to move the brain into difficult or unstable states, which is important for executing high- energy- cost large transitions in brain 
activity (e.g., between resting and active states). Regional activation energy captures the feasibility or minimum energy required by the given region 
to induce a transition between brain states.
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3.2.2   |   Replication Dataset

Consistent with the main dataset, significant controllability 
changes in MS were primarily localized in the subcortical net-
work and thalamus in the replication dataset. Specifically, MS ex-
hibited replicated increases in average controllability (p = 0.005) 
in the subcortical network compared to HC (Figure  2). When 
looked at each of the seven nuclei within the subcortical net-
work separately, the MS group showed replicated increases in 
average controllability (p = 0.027) in the thalamus compared to 
HC (Figure  3). Additionally, increases in average controllabil-
ity were also observed in other subcortical nuclei, including the 
caudate, nucleus accumbens, and putamen (p < 0.05, Figure S3). 
No MS- related controllability changes were found in any of the 
cortical networks.

3.3   |   Network Controllability Changes in CIMS 
and CPMS

Significant controllability differences between CIMS and 
CPMS were only observed in the thalamus. Specifically, at the 
whole- brain level, both CIMS and CPMS showed increased av-
erage controllability (CIMS: p = 0.002; CPMS: p < 0.001), while 
CIMS additionally exhibited decreased modal controllability 
(p = 0.009) and decreased activation energy (p = 0.016) compared 
to HC. When looked at the eight networks, both CIMS and CPMS 
showed increased average controllability (CIMS: p < 0.001; CPMS: 
p = 0.008), decreased modal controllability (CIMS: p = 0.006; 
CPMS: p = 0.008) and decreased activation energy (CIMS: 
p = 0.007; CPMS: p = 0.003) in the subcortical network compared 
to HC (Figure 4). When further looked at the seven nuclei within 

FIGURE 2    |    Controllability changes in the subcortical network in MS. Increased average controllability but decreased modal controllability 
and decreased activation energy in the subcortical network (averaged across the 54 subcortical ROIs) were observed in MS from the main dataset. 
Replicated increased average controllability in the subcortical network was observed in MS from the replication dataset. Brain network visualiza-
tions were generated using BrainNet Viewer (Xia et al. 2013) and GRETNA (Wang et al. 2015). The nodes and edges illustrate the connections of sub-
cortical regions with other parts of the brain. Specifically, the nodes represent the subcortical regions and the regions to which they are connected. 
The edges depict the top 200 connections with the highest functional connectivity strength among the whole brain connections. SubCor = subcortical 
network; *p < 0.05, FDR corrected.
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the subcortical network, while both CIMS and CPMS showed in-
creased average controllability in the thalamus (CIMS: p < 0.001; 
CPMS: p = 0.009), CIMS exhibited significantly higher increases 
in thalamus than CPMS (p = 0.016, Figure 5). Additionally, only 
the CIMS group, but not CPMS, showed significant decreases in 
modal controllability (p = 0.002) and activation energy (p = 0.006) 
in the thalamus compared to HC (Figure 5). No significant differ-
ences were observed between CIMS and CPMS when examining 
any other parts of the brain aside from the thalamus.

3.4   |   Classification Performance

Thalamic network controllability measures demonstrated supe-
rior classification performance compared to thalamic volume in 
distinguishing between MS and controls, as well as between MS 
with different cognitive status and between MS with different 
levels of disability (Figure  6, Table  2). Specifically, classifiers 

based on both thalamic network controllability and thalamic 
volume achieved an AUC of 88.3% in distinguishing MS from 
HC (precision = 93.9%; accuracy = 80.9%; sensitivity = 81.1%; 
specificity = 80.2%), outperforming those based on thalamic vol-
ume alone, which achieved an AUC of 74.5% (precision = 88.8%; 
accuracy = 68.1%; sensitivity = 68.3%; specificity = 67.6%). 
Moreover, in differentiating CIMS and CPMS, classifiers based 
on the thalamic network controllability measures alone achieved 
an AUC of 80.7% (precision = 75.4%; accuracy = 72.4%; sensitiv-
ity = 72.7%; specificity = 72.0%), outperforming those based on 
the combination of both controllability and volume classifiers 
(AUC = 68.2%; precision = 64.6%; accuracy = 61.7%; sensitiv-
ity = 64.5%; specificity = 58.4%), whereas volumetric classifiers 
alone failed to differentiate CIMS and CPMS (AUC = 38.2%; pre-
cision = 45.3%; accuracy = 41.6%; sensitivity = 41.2%; specific-
ity = 42.1%). Besides, in differentiating MS with different levels 
of disability, classifiers based on the thalamic network control-
lability measures achieved an AUC of 82.9% (precision = 77.2%; 

FIGURE 3    |    Controllability changes in the thalamus in MS. Increased average controllability but decreased modal controllability and decreased 
activation energy in the thalamus (averaged across the 16 thalamic ROIs) were observed in MS from the main dataset. Replicated increased average 
controllability in the thalamus was observed in MS from the replication dataset. Brain network visualizations were generated using BrainNet Viewer 
(Xia et al. 2013) and GRETNA (Wang et al. 2015). The nodes and edges illustrate the connections of thalamic regions with other parts of the brain. 
Specifically, the nodes represent the thalamic regions and the regions to which they are connected. The edges depict the top 200 connections with the 
highest functional connectivity strength among the whole brain connections. SubCor = subcortical network; *p < 0.05, FDR corrected.
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accuracy = 76.3%; sensitivity = 82.4%; specificity = 68.2%), out-
performing those based on thalamic volume, which achieved 
an AUC of 67.8% (precision = 69.3%; accuracy = 64.7%; sensitiv-
ity = 67.4%; specificity = 61.2%).

4   |   Discussion

Our study demonstrated altered functional network control 
from the thalamus in people with MS, which can be used to pre-
dict both MS and cognitive status. Specifically, people with MS 
showed higher average controllability, lower modal controlla-
bility, and lower activation energy in the thalamus. Thalamic 
network controllability measures proved more effective than tha-
lamic volume alone in distinguishing MS from healthy controls 

and in predicting cognitive status. Overall, this study reveals po-
tential mechanisms by which MS- related changes in resting- state 
functional connectivity impair the thalamus' ability to drive brain 
state dynamics and contribute to cognitive impairment in MS.

The observed changes in network controllability in this work 
align with previous studies reporting changes in brain activity 
dynamics in MS. (d'Ambrosio et al. 2020; Broeders et al. 2024; 
Romanello et al. 2022) The present work, however, extends prior 
studies by elucidating potential mechanisms through which MS 
pathology disrupts brain activity dynamics. The controllabil-
ity measures used in this study provide a holistic view of how 
specific brain regions drive both subtle and dramatic shifts in 
cognitive and neural states. Specifically, average controllability 
measures how easily a brain region moves the brain into nearby 

FIGURE 4    |    Controllability changes in the subcortical network in CIMS and CPMS. Increased average controllability but decreased modal con-
trollability and decreased activation energy in the subcortical network (averaged across the 54 subcortical ROIs) in both CIMS and CPMS when com-
pared to HC. Brain network visualizations were generated using BrainNet Viewer (Xia et al. 2013) and GRETNA (Wang et al. 2015). The nodes and 
edges illustrate the connections of subcortical regions with other parts of the brain. Specifically, the nodes represent the subcortical regions and the 
regions to which they are connected. The edges depict the top 200 connections with the highest functional connectivity strength among the whole 
brain connections. SubCor = subcortical network; *p < 0.05, FDR corrected.

FIGURE 5    |    Controllability changes in the thalamus in CIMS and CPMS. Both CIMS and CPMS showed increased average controllability in the 
thalamus (averaged across the 16 thalamic ROIs) when compared to HC, while CIMS exhibited significantly greater changes than CPMS. Besides, 
CIMS showed additional decreases in modal controllability and activation energy in the thalamus compared to HC. Brain network visualizations 
were generated using BrainNet Viewer (Xia et al. 2013) and GRETNA (Wang et al. 2015). The nodes and edges illustrate the connections of thalamic 
regions with other parts of the brain. Specifically, the nodes represent the thalamic regions and the regions to which they are connected. The edges 
depict the top 200 connections with the highest functional connectivity strength among the whole brain connections. SubCor = subcortical network; 
*p < 0.05, FDR corrected.
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or easily reachable states, which reflects the brain's capacity 
for low- energy- cost and frequent small adjustments in brain 
states (Lynn and Bassett 2019; Gu et al. 2015; Deng et al. 2022). 
Modal controllability, on the contrary, measures a region's abil-
ity to move the brain into difficult or unstable states, which is 
important for executing high- energy- cost large transitions in 
brain activity (e.g., between resting and active states) (Lynn and 
Bassett 2019; Gu et al. 2015; Deng et al. 2022). Regional activa-
tion energy captures the feasibility or minimum energy required 
by the given region to induce a transition between brain states 
(Lynn and Bassett 2019; Gu et al. 2015; Deng et al. 2022). The di-
rections of the observed controllability changes followed a con-
sistent pattern (e.g., increased average controllability, decreased 
modal controllability, and decreased activation energy), regard-
less of whether we examined all cortical regions or specific 
cortical or subcortical nodes. This implies that MS pathology 
does not induce random changes in brain activity transitions; 
instead, it produces a disease- related pattern across the brain, 
consistently characterized by greater difficulties in supporting 
high as opposed to low- energy- cost transitions.

Our results revealed a selective involvement in controlla-
bility changes in MS, wherein the subcortical network and 

particularly the thalamus exhibited the most pronounced 
changes among the whole brain. A previous controllability study 
in healthy people found that the subcortical network showed 
the most imbalance between average controllability and modal 
controllability—it contributed the most to low- energy- cost state 
transitions (highest average controllability) while the least to 
high- energy- cost state transitions (lowest modal controllability) 
(Deng et al. 2022). The healthy cohort in our study conformed 
to that pattern. However interestingly, MS pathology seems to 
exacerbate this imbalance in the subcortical network, that is, in 
MS, the highest average controllability further increased, while 
the lowest modal controllability further decreased. A recent 
study in healthy people observed higher average controllability 
at resting state while higher modal controllability during cogni-
tive tasks (Deng and Gu 2020). This was interpreted as the rest-
ing state being a ‘ground state’ that maintains the energy cost at 
a relatively low level, whereas performing cognitive tasks rep-
resents an ‘excited state’ that consumes a large amount of energy 
to facilitate cognitive functions (Deng and Gu 2020). Given that 
the subcortical network, particularly the thalamus, is one of the 
most vulnerable brain areas affected by MS (Tona et al. 2014; 
Schoonheim, Hulst, et al. 2015; Carotenuto et al. 2022; Jandric 
et al. 2022; Coupé et al. 2023; Eshaghi, Marinescu, et al. 2018; 

FIGURE 6    |    Classification ROC curve derived from volumetric, controllability, combined, and random classifiers. In distinguishing MS from HC, 
classifiers based on the thalamic network controllability alongside thalamic volume achieved the best performance (AUC = 88.3%) among all four 
types of classifiers. In distinguishing CIMS from CPMS, classifiers based on the thalamic network controllability measures alone achieved the best 
performance (AUC = 80.7%) among all four types of classifiers. AUC, area under curve; ROC, receiver operating characteristic.

TABLE 2    |    Classification performance using different features.

Features AUC Precision Accuracy Sensitivity Specificity

MS versus HC

Thalamic controllability 80.1% (1.7%) 90.5% (1.4%) 74.5% (2.2%) 75.7% (2.3%) 70.0% (4.8%)

Thalamic volume 74.5% (0.9%) 88.8% (0.8%) 68.1% (1.3%) 68.3% (1.5%) 67.6% (2.6%)

Combination 88.3% (1.1%) 93.9% (1.1%) 80.9% (1.8%) 81.1% (1.8%) 80.2% (3.9%)

CIMS versus CPMS

Thalamic controllability 80.7% (2.2%) 75.4% (3.6%) 72.4% (3.1%) 72.7% (3.5%) 72.0% (5.1%)

Thalamic volume 38.2% (3.6%) 45.3% (3.8%) 41.6% (3.6%) 41.2% (5.1%) 42.1% (5.0%)

Combination 68.2% (2.5%) 64.6% (3.5%) 61.7% (3.4%) 64.5% (3.7%) 58.4% (5.9%)

Note: Data are represented as mean (standard deviation).
Abbreviations: CIMS, cognitively impaired MS; CPMS, cognitively preserved MS; HC, healthy controls; MS, multiple sclerosis.
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Tozlu et  al.  2023; Azevedo et  al.  2018; Fleischer et  al.  2022; 
Eshaghi, Prados, et  al.  2018; Mahajan et  al.  2020; Houtchens 
et al. 2007), the controllability imbalance might be a manifesta-
tion of disease attacks in these areas. This provides a potential 
mechanism explaining increased cognitive impairment with 
disease progression. The thalamus increasingly ‘drives’ the 
brain transitions towards low- energy- cost states (like the rest-
ing state) while relinquishing transitions towards high- energy- 
cost states (like the cognitive task state). This process might help 
preserve fundamental neural activities against disease attacks 
but, on the other hand, impact brain functioning associated with 
high- energy- cost activities, typically cognitive processes.

The analysis of cognitive subgroups further supported this 
view that thalamic controllability changes may impact cog-
nitive performance in patients. While both CIMS and CPMS 
showed controllability changes compared to HC, CIMS ex-
hibited significantly greater changes in the thalamus than 
CPMS. This indicated that CIMS experiences greater diffi-
culty in the thalamus supporting brain transitions towards 
difficult- to- reach states, which are typically associated with 
high- energy- cost cognitive functions (Lynn and Bassett  2019; 
Gu et  al.  2015; Deng et  al.  2022; Deng and Gu  2020). As a 
key hub with strong connections across the brain and with 
known roles in cognition (e.g., the anterior thalamic nuclei is 
critical for memory), thalamic damage has received consid-
erable attention in MS as a predictor of cognitive impairment 
(Tona et al. 2014; Schoonheim, Hulst, et al. 2015; Carotenuto 
et  al.  2022; Houtchens et  al.  2007). Several studies converge 
to show that the thalamus is an early site of pathology in MS 
(Coupé et  al.  2023; Eshaghi, Marinescu, et  al.  2018; Tozlu 
et  al.  2023), while its structure and function have been re-
ported to determine the severity of cognitive impairment in 
patients (Schoonheim, Hulst, et al. 2015; Lorefice et al. 2020). 
These findings strongly suggest thalamic changes as promising 
biomarkers for cognitive dysfunction in MS. However, a key 
question would be: how does MS pathology progress from only 
localized damage in the thalamus (and a few neighbouring re-
gions) in the early disease phase (Coupé et al. 2023; Eshaghi, 
Marinescu, et al. 2018; Tozlu et al. 2023; Azevedo et al. 2018; 
Fleischer et al. 2022; Schoonheim 2020; Schoonheim, Broeders, 
and Geurts  2022) towards the widespread ‘network collapse’ 
across the brain in the late disease phase (Schoonheim  2020; 
Schoonheim, Broeders, and Geurts 2022; Schoonheim, Meijer, 
et al. 2015), culminating in cognitive dysfunction. The present 
study considering control processes from a bioengineering per-
spective sheds light on this. Recent evidence showed that CIMS, 
compared to CPMS, required more control energy to transition 
between brain states (Broeders et al. 2024). In light of this evi-
dence, our findings suggest that early disease attacks produce a 
shift in controllability in the thalamus that promotes brain net-
work changes towards low- energy- cost activity patterns, which 
would preserve energy for essential neural activities. However, 
this ‘energy- saving’ mode restricts the brain's efficiency to sup-
port high- energy- cost cognitive functions in patients, gradually 
leading to impaired performance in cognitive functions. This 
highlights a potential pathobiological mechanism linking tha-
lamic changes to cognitive impairment in MS.

Our results demonstrate that thalamic network controllability 
can help distinguish MS patients from healthy controls and 

differentiate between patients with different levels of disability 
and cognitive impairment, with better performance compared 
to previously reported classification analyses in this disease 
(Tozlu  2022). While both thalamic volume and controllability 
contribute to classifying patients with different levels of dis-
ability, only thalamic controllability achieves high classifica-
tion performance in distinguishing between CIMS and CPMS. 
These findings suggest that thalamic controllability offers 
complementary information to volumetric measures in distin-
guishing patient groups. In particular, controllability appears 
to be more specifically associated with cognitive impairment, 
rather than just reflecting a general marker of network collapse. 
Importantly, the mechanistic interpretation of controllability 
changes potentially allows for explainable diagnosis. This is a 
key advantage compared to typical diagnostic tools based on sta-
tistical classification, which only allow for a yes or no answer.

Notably, a recent longitudinal study in MS reported that vol-
ume changes in deep grey matter regions, including the thala-
mus, were correlated with worsening clinical disability over the 
course of the disease (Eshaghi, Prados, et al. 2018). In parallel, 
altered functional dynamics in the subcortical areas, particu-
larly a hyperflexible reorganization of brain activity, have also 
been observed in MS, showing significant associations with 
the development of clinical impairment (von Schwanenflug 
et al. 2023). These findings underscore the potential importance 
of the dynamic profiles of subcortical regions, like the thala-
mus, in understanding the progression of clinical dysfunctions 
in MS. Emerging evidence highlights a complex and dynamic 
interplay between cognitive impairment, physical disability 
progression, and thalamic structural and functional changes in 
MS. Longitudinal studies have demonstrated that cognitive im-
pairment at diagnosis can serve as a predictor of subsequent dis-
ability milestones, including faster physical decline and poorer 
clinical outcomes (Pitteri et al. 2017; Deloire et al. 2010; Moccia 
et  al.  2016). Likewise, thalamic structural and functional 
changes at baseline have been shown to predict not only future 
cognitive dysfunctions but also worsening disability, underlin-
ing the thalamus as a central region implicated in broader neu-
rodegenerative processes in MS. (Tona et al. 2014; Schoonheim, 
Hulst, et al. 2015; Carotenuto et al. 2022) Conversely, individu-
als with more severe disability tend to exhibit greater degrees 
of cognitive dysfunction and more pronounced thalamic alter-
ations (Schoonheim, Pinter, et  al.  2022). These  findings sug-
gest that cognitive impairment, thalamic changes, and clinical 
disability may not occur in isolation but rather reflect shared 
pathological pathways or processes. Taken together, the above 
evidence supports the hypothesis that changes in thalamic con-
trollability may serve as an early biomarker of cognitive decline 
and potentially contribute to the progression of cognitive dys-
function in MS. Future longitudinal studies tracking network 
controllability alongside cognitive outcomes in MS will be es-
sential to formally test this hypothesis.

This study has several limitations. First, although the CIMS 
and CPMS groups did not differ significantly in age or sex, the 
overall MS group was older than the healthy control group. To 
mitigate the potential influence of these demographic differ-
ences on our findings, we included age and sex as covariates in 
all relevant statistical models. Second, the imaging scanning 
parameters and cognitive assessments differed between the two 
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independent datasets. However, the observed similar pattern of 
results demonstrates the robustness of the findings despite these 
differences in acquisition and scanner between datasets. Future 
studies with multiple MS cohorts using paired scanning param-
eters and cognitive assessments are warranted to better replicate 
the controllability changes in patients with different cognitive 
statuses. Third, our study is cross- sectional; further longitudi-
nal studies are needed to determine how network controllability 
develops with disease progression in MS.

5   |   Conclusion

This study moves beyond confirming thalamic changes in MS 
by characterizing how the MS- related damage significantly im-
pacts the thalamus ability to drive brain- wide dynamic activity, 
and how this helps explain cognitive impairment in this condi-
tion. Our results demonstrate that the thalamus in cognitively 
impaired MS patients is less able to facilitate brain transitions 
crucial for high- energy- cost cognitive functions, providing 
novel insights into the pathological mechanisms linking tha-
lamic functional changes to cognitive impairment in MS.
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