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Abstract—Change detection in very-high-resolution remote
sensing images has gained significant attention, particularly with
the rise of deep learning techniques such as convolutional neural
networks and Transformers. The Mamba structure, successful
in computer vision, has been applied to this domain, enhancing
computational efficiency. However, much of the research focuses
on improving global modeling, neglecting the role of local infor-
mation crucial for change detection. Moreover, there remains a
gap in understanding which structural modifications are more
suited for the change detection task. This article investigates the
impact of different scanning mechanisms within Mamba, eval-
uating five mainstream methods to optimize its performance in
change detection. We propose local bitemporal change detection
mamba (LBCDMamba), a novel architecture based on our pro-
posed local-global selective scan module, which effectively inte-
grates global and local information through a unified scanning
strategy. To address the lack of fine-grained details in current
models, we propose a multibranch patch attention module, which
captures both local and global features by partitioning data into
smaller patches. In addition, a bitemporal feature fusion module is
proposed to fuse bitemporal features, improving temporal-spatial
feature representation. Extensive experiments on three benchmark
datasets demonstrate the superior performance of LBCDMamba,
outperforming existing popular methods in change detection tasks.
This work also provides new insights into optimizing Mamba for
change detection, with potential applications across remote sensing
and related fields.

Index Terms—Change detection, feature fusion, mamba, remote
sensing, scanning methods.
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I. INTRODUCTION

ITH the development of the remote sensing imagery

field, sufficient research conditions have been provided
for related downstream tasks. One of these tasks is remote
sensing change detection, which refers to identifying changes in
content by comparing remote sensing images taken at different
times. This change information is of great significance to urban
planning, land use, and other areas [1]. However, remote sensing
images usually have an ultrahigh resolution, but due to natural
factors and technological complexity, they are often subject to
external interference [2], [3], traditional methods face significant
difficulties in achieving accurate detection.

With the development of deep learning, various structures
have gradually been used to build detection models. For change
detection, the extraction and processing of image features have
a significant impact on the overall detection performance of the
model. Initially, with the introduction of convolutional neural
networks (CNNs) [4], [5], most models adopted a twin structure
based on CNNs to extract features [6], [7], often using stacked
convolutional modules to enrich the extracted features. However,
such methods often lead to complex model structures. Some
researchers have also conducted research based on CNN from
semisupervised and other perspectives [8], [9], [10], achieving
good results. Although CNNs excel at extracting local features,
their ability to capture global dependencies is inherently limited
by the size of the receptive field.

Subsequently, researchers turned their attention to the trans-
former structure, relying on it to build encoder—decoder mod-
els [11], [12], [13]. This approach has seen significant improve-
ments compared to previous CNN-only architectures and has
been widely used in this field, becoming the mainstream re-
search direction for a considerable period. There have also been
studies combining CNNs and transformers, which have achieved
greater accuracy improvements compared to using a single
structure, such as MCTNet [14] and EHCTNet [15]. However,
despite these successes, the inherent quadratic complexity of
transformers in computation has led to increased computational
consumption, posing a challenge for model lightweight.

Recently, the Mamba structure has been proposed [16]. Com-
pared to transformers, Mamba’s significant advantage lies in
its ability to focus on global features while reducing compu-
tational consumption, providing a new way to balance compu-
tational cost and accuracy improvement. The proposal of this
structure has made new breakthroughs in the field of change
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detection [17], [18], [19]. However, current research is primarily
focused on its global modeling capabilities, often neglecting the
importance of effectively integrating local detail information. In
the field of change detection, global context information plays
a vital role in capturing large-scale spatial structures and under-
standing the overall semantic layout of a scene, which is crucial
for reducing false positives in cluttered or noisy environments.
Conversely, local details are essential for identifying subtle
or small-scale changes—such as the emergence or removal of
fine-grained objects such as small buildings or roads—that may
otherwise be overlooked by purely global models. Therefore,
researchers have conducted extensive studies on these two as-
pects. For example, Ma et al. [20] designed the TFF and SFF
modules to process detailed information. Noman et al. [21]
proposed the ELGC-Net, which extracts local features through
depthwise convolution and processes local and global features
through an aggregation module. Xiao et al. [22] designed the
DFC module to compensate for detailed information lost during
the extraction process. Wu et al. [23] proposed CDXLSTM,
which includes an XLSTM-based feature enhancement layer
and has a strong global context perception. Huang et al. [24]
proposed MFDS-Net, which employs a global semantic-based
approach to achieve more refined descriptions of changes. Thus,
effectively combining global and local information is critical
to achieving precise and comprehensive change detection per-
formance. There has been some exploration into the internal
scanning structure of Mamba [25], [26], [27], which has led to
noticeable performance improvements.

Yet, no work has so far discussed and analyzed the application
effects of different scanning methods in the field of change
detection. There is also no consensus on the optimal adaptability
of the Mamba architecture for capturing local features in change
detection. In change detection, there is still the issue of insuffi-
cient precision in detecting subtle changes. Accurate prediction
relies on both local details and global context information of the
image. Therefore, enabling the model to extract richer features
is key to further development in the field of change detection.
In this process, the computational cost of the model has also
attracted the attention of researchers, and achieving a balance
between computational cost and performance is also an impor-
tant research perspective.

In this article, we explore various scanning structures in the
Mamba architecture to assess their effects on change detection
tasks. We propose local bitemporal change detection Mamba
(LBCDMamba), which improves the integration of local and
global information in Mamba models. Our key contributions
are as follows.

1) After extensively exploring the effects of different scan-
ning structures on the change detection task, we propose a
novel change detection architecture, LBCDMamba, based
on our discoveries. We also compared the application
effects of various scanning methods in the Mamba archi-
tecture for the field of change detection. Based on the
characteristics of high-resolution images and the demand
for high-precision detection, we proposed a new scanning
method. This provides a new perspective for the further
exploration of Mamba applications and for other fields
that require the processing of high-resolution images.
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2) We present a multibranch patch attention (MBPA) module
that integrates local and global features, and a bitemporal
feature fusion (BTFF) module that enhances pixelwise
fusion of multiscale bitemporal image details for improved
temporal feature representation.

Through extensive experiments conducted on three widely
used benchmark datasets, we demonstrate that LBCD-
Mamba consistently outperforms existing state-of-the-art
(SOTA) models, achieving superior performance across
multiple evaluation metrics.

The rest of this article is organized as follows. Section II
reviews the related work. Section III focuses on the overall ar-
chitecture of the proposed model and the innovative approaches.
Section IV presents the datasets used and the experimental
setup, along with comparative experimental results and anal-
ysis. Section V explains the limitations of the method in the
field of change detection and future research directions. Finally,
Section VI concludes this article.

3)

II. RELATED WORKS
A. CNN-Based Models

CNNs have become a cornerstone in change detection tasks
due to their strong ability to extract spatial features from images.
Daudt et al. [28] introduced FC-Siam-diff, which brought fully
convolutional networks into the realm of change detection, pro-
viding a new approach to spatial feature extraction. Similarly,
Fang et al. [29] proposed SNUNet-CD, utilizing information
transmission to mitigate the challenge of local information loss
inherent in deep neural networks. Ye et al. [30] proposed an
end-to-end change detection method, utilizing 3-D convolution.
Zhang et al. [7] detected changes in buildings and trees through
a Siamese CNN. Zhang et al. [31] proposed CAMixer, applying
both convolution and attention mechanisms in the model, being
the first to explore a Transformer-like network for the interpre-
tation of multitemporal SAR data.

B. Transformer-Based Models

Vaswani et al. [11] proposed transformer, transformer offers
a more robust solution for global modeling by capturing long-
range dependencies. In the field of change detection, research
is gradually being conducted around it. For instance, Chen
et al. [12] proposed BIT, effectively leveraging transformers
to extract features and model spatial-temporal contextual in-
formation. In addition, Bandara et al. [13] introduced Change-
Former, which integrates a transformer encoder with an MLP
decoder in a unified architecture. Lu and Huang [32] pro-
posed the relational change detection transformer based on the
Transformer, achieving superior change detection performance
on multiple datasets through a shared-weight backbone net-
work, cross-attention module, and feature constraint module. Xu
et al. [33] proposed UCDFormer and applied it to unsupervised
change detection, taking into account the style and seasonal
differences in bitemporal images, achieving good results in such
applications. Jiang et al. [34] proposed VcT, constructing the
backbone network based on the Transformer and combining
it with graph neural networks for modeling to achieve the



14944

s )

1 3

8
3
1

Fig. 1.

prediction of change graphs. Zhu et al. [35] proposed
ChangeViT, addressing the disadvantage of CNNs in dealing
with large-scale changes.

Some researchers have attempted to combine CNNs with
Transformers. Li et al. [14] proposed MCTNet, which fuses
CNNs and Transformers in a multiscale manner and achieves
good detection performance for changes of different sizes. Yang
et al. [15] proposed EHCTNet, which enhances the hybrid of
CNN and Transformer to achieve more complete detection of
changed regions. Other researchers have focused on general
functional modules based on backbone networks constructed by
CNNs or Transformers. Wang et al. [36] proposed CAT, which
is used to perceive feature differences and can be integrated with
both Transformers and CNNs.

C. Mamba-Based Models

After the introduction of Mamba, it has been applied
in multiple fields. Liu et al. [37] introduced VMamba,
a visual backbone based on the Mamba structure that
achieved exceptional results in classification, detection, and
segmentation. Ma et al. [38] proposed BS-Mamba for black soil
area assessment. Xie et al. [39] proposed ProMamba for the
field of image segmentation, achieving accurate segmentation of
polyps. Zhang et al. [40] proposed Point Cloud Mamba, which
more effectively processed point cloud data and surpassed the
SOTA methods at that time. Ghazaei and Aptoula [41] proposed
a change detection model by combining a lightweight CNN
encoder and Vision Mamba, effectively reducing the number of
parameters and improving computational efficiency. Based on
the Mamba structure, researchers have gradually applied it to the
field of change detection. Wu et al. [42] proposed CD-Lamba,

Efficient 2D Scanning
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Ilustrations of five distinct scanning direction structures, namely Local Scan, Efficient Scan, CSM, OSSM, and Zigzag Scan.

which employs local enhancement, a cross-temporal state-space
model (SSM) scanning strategy, and enhanced interaction
between segmentation windows to improve its performance in
change detection. Paranjape et al. [19] proposed M-CD and
introduced a different module to combine image features. Kuang
and Ge [43] proposed 2DMCG based on a variant of Vision
Mamba, enhancing Mamba’s ability to capture 2-D spatial
information. Zhang et al. [17] proposed CDMambea, effectively
combining local and global features. Chen et al. [18] proposed
ChangeMamba, which successfully applied the Mamba
architecture to remote sensing change detection, achieving
SOTA performance across multiple datasets. Zhao et al. [44]
further enhanced this architecture with RS-Mamba, utilizing an
omnidirectional scanning approach to improve spatial feature
extraction and enhance global modeling capacity.

D. Selected Mamba Scanning Structures

As Mamba evolves in the field of imaging, most research has
focused on employing different scanning methods [37], [44],
[25], [26], [27] to learn spatial relational features of images.
Despite some progress, the ideal scanning structure for change
detection remains underexplored. This article aims to fill this gap
by systematically evaluating five mainstream Mamba scanning
structures, as illustrated in Fig. 1.

Local Scan [25] divides the input image into multiple inde-
pendent small windows, where each window is scanned inde-
pendently, thereby avoiding the loss of local dependencies when
tiling spatial data. In addition, the scanning order within each
window follows a left-to-right and top-to-bottom pattern. By
combining window scanning with horizontal and vertical scan-
ning directions, LocalScan enhances the ability to capture local
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Fig. 2.

Complete structure of LBCDMamba. The BTFF module and the MBPA module play crucial roles in the LBCDMamba. The input images are divided

into multiple patches by the STEM module, and then, fed into the encoder. At each encoder stage, bitemporal features { F, il }?:1 and {F 12 }‘il: 1 are extracted. These
features are further processed by the BTFF module to obtain more comprehensive global features {Fl.b ;1: 1 - In the decoder, each stage refines these features through

the MBPA module to produce finer grained representations.

details while maintaining a global perspective. This approach
allows for more precise modeling of local features without
sacrificing the global context.

Efficient Scan [26] differs from other methods that focus on
scan order by utilizing varying dilation rates to skip a certain
number of pixels on the feature map, thereby reducing the
number of feature points that need to be processed. During
the scanning process, pixels are selectively skipped based on
the dilation rate, allowing for feature extraction and group
reorganization. By reducing the number of feature points, the
computational complexity is significantly lowered from O(N)
to O(N/p?), where pis the dilation rate. Efficient Scan enhances
the model’s global perception capability without sacrificing
spatial resolution, making it suitable for lightweight models in
resource-constrained computational environments while main-
taining high resolution.

CSM [37] addresses the limitations of traditional SSMs in
visual tasks due to the nonsequential nature of image data.
CSM adopts a four-way scanning strategy to expand along both
rows and columns: scanning from top-left to bottom-right, from
bottom-right to top-left, from top-right to bottom-left, and from
bottom-left to top-right. By unfolding image patches in different
spatial directions, the features obtained from each direction
are then fused to model the global contextual information of
the image. This approach ensures comprehensive integration
of information across different directions, allowing for more
robust modeling of the image’s global context.

OSSM [44] combines eight different scanning sequences to
achieve global scanning. Specifically, it includes scanning from
left to right, from right to left, from top to bottom, from bottom to
top, two along the main diagonal, and two along the antidiagonal.
The input image is scanned in all these directions, and the feature
sequences obtained from the scans are stacked and input into
the SSM block for processing. The processed features are then
merged to extract comprehensive global spatial features.

Zigzag Scan [27] takes into account the spatial continuity that
was not considered in traditional Mamba frameworks during im-
age scanning. The Zigzag scan employs a “Z”-shaped structure
to perform the image scan, preserving spatial continuity. This
approach leverages inductive bias in visual data, enhancing the
model’s ability to model the data. The specific scanning schemes
can be categorized into 1 to 8 types, depending on the starting
point and direction of the scanning.

III. PROPOSED METHOD

Fig. 2 illustrates our change detection framework, LBCD-
Mamba, which is constructed on the Mamba architecture. Given
two very-high-resolution (VHR) images 77 and 75, their features
are extracted through a vision transformer (ViT)-like stem mod-
ule followed by encoders. Then, the BTFF module is proposed
to fuse the multiscale features from both images. In the decoder
stage, four MBPA modules are proposed to integrate local and
global features, which are crucial for achieving the final result.
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Fig. 3. Illustration of the proposed scanning structure. (a) LGSS block.
(b) Local—global selective scan module (LGSSM).

A. Preliminaries

1) State-Space Models (SSMs): SSMs are mathematically
defined as a 1-D function or sequence z(t) € R is mapped
to a response y(t) € R through a hidden state h(t) € RY,
which is typically represented as a linear ordinary differential
equation

h'(t) = Ah(t) + B(t) (1)
y(t) = Ch(t) 2)

where A € RV*N B e RV*! and C € RPN,

2) Discretization: The discretization process of SSMs in-
volves converting continuous ordinary differential equations
into discrete functions. Based on the discretization technique
described in [45], the continuous parameters (A, B) can be
discretized using the ZOH method

A=enA 3)
B~ (AA)(AA)'AB = AB )
h(t) = Ah(t — 1) + Bx(t) 5)
y(t) = Ch(t) (6)

where A € RP, A e RV*N B e RV*L and C € RV,
3) Output: The model computes the output in parallel via
global convolution

K = (CB,CAB,...,CA" 'B) %)
y=zxK ®)

where L represents the length of the input sequence x, and K €
R” is the SSM convolution kernel.

B. Architecture Overview

Considering the current limitations of the Mamba model in
effectively integrating global and local information for change
detection, we propose an innovative local-global selective scan
module (LGSSM), as illustrated in Fig. 3(b). This module com-
bines local window scanning with a four-directional strategy,
thereby enhancing the model’s ability to capture fine-grained
local details while maintaining a global perspective.
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To address the challenges in VHR remote sensing change
detection, based on the scanning comparison experiments pre-
sented in Section IV, we propose a novel network framework
named LBCDMamba, built upon the Mamba architecture, as
illustrated in Fig. 2. Given a pair of bitemporal VHR remote
sensing images 77 and 75, the inputs are first divided into
multiple patches using a ViT-like stem module. These patches
are then fed into the encoder to extract representative features.
Considering the need for temporal feature interaction, the ex-
tracted features from 7' and 75 are processed through a BTFF
module to generate a fused feature map, which is subsequently
passed to the decoder to predict the final change detection result.

The encoder consists of four hierarchical stages, each com-
posed of multiple local-global state-space (LGSS) blocks that
incorporate the proposed LGSSM while maintaining consistent
feature dimensionality. At each stage, the input is initially down-
sampled, followed by a sequence of LGSS blocks for progressive
feature extraction. This process yields fine-grained bitemporal
features {F1}1_, and {F?}?_, for stages i = 1,2,3,4. Com-
pared with the conventional VSS module, LGSSM enhances
the capability of the model to integrate both local and global
contextual cues via local scanning, thereby improving feature
expressiveness. Our prior experiments have demonstrated the
effectiveness of this strategy within the Mamba framework.

After feature extraction by the encoder, the BTFF module
performs pixelwise fusion of the corresponding feature maps
{F!}4 | and {F?}%_,, rather than simple concatenation, to ob-
tain a set of globally enhanced feature representations { F’}4_,
that capture richer semantic information across time.

The decoder also comprises four stages. In each stage, the
fused bitemporal features are fed into the MBPA module, which
partitions the features into multiple small patches and employs
parallel branches to attend to both local and global regions.
This structure enhances the expressive capacity of the feature
maps by integrating multiscale contextual information. The
initial decoding stage processes only the features from the two
deepest encoder stages. Each stage employs a spatiotemporal
interaction mechanism, where multiple parallel LGSS blocks
are used to model the temporal relationships between { F1 }1
and {F?}}_,, and the learned features are combined with those
from the previous decoder stage.

During upsampling, the globally fused features {F’}1_, are
introduced to enhance semantic representation from a global
perspective. The output features at each stage are then forwarded
to the subsequent decoder layer to progressively refine the final
change detection prediction.

C. LGSS Block

Given the limitations of the current Mamba model in
effectively integrating global and local information for change
detection, we propose an innovative selective scanning mech-
anism termed LGSSM. This mechanism combines the four-
directional scanning strategy from CSM with a local scan,
forming multiple distinct scanning branches capable of inde-
pendently processing features from each input image. The out-
puts from these branches are subsequently fused into a unified
representation within the SSM. By integrating both local and
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directional global scanning, this method enhances the model’s
ability to capture fine-grained spatial details while preserving
global contextual information.

As illustrated in Fig. 3(a), the LGSS block serves as a fun-
damental component of the proposed LBCDMamba model.
In this module, the input feature map first undergoes layer
normalization to ensure numerical stability during subsequent
computations. The normalized features are then split into two
information streams and processed along separate paths. One of
these streams is passed through a linear projection, followed by
a 3 x 3 depthwise convolution and a SiLU activation function.
During this process, enhanced features are extracted and passed
to the proposed LGSSM module, whose primary function is to
jointly extract both local and global representations from the
input, thereby enriching the expressive power of the learned
features.

After LGSSM processing, the output feature map is again
normalized via a second layer normalization step, and then
fused, with the output of the other information stream. The
fused features are passed through another linear transformation
to enable a deeper mixing of semantic information. Finally,
a residual connection adds the original input features back to
the transformed output, which helps stabilize gradient flow and
enhances the model’s training capacity.

As shown in Fig. 3(b), the LGSSM effectively integrates
the four-directional scan with the local scanning mechanism to
simultaneously extract global and local features from the input
imagery. Specifically, it constructs multiple scan branches—
each designed to independently process different spatial aspects
of the input data. These independently processed features are
then aggregated within the LGSS block into a unified output.
This hybrid scanning design significantly enhances the model’s
capability to detect subtle spatial changes while maintaining
awareness of the broader scene context.

Within the LGSS block, the features processed through
each individual scan branch are merged into a unified output
through a fusion operation. This architectural design enables
LGSSM to efficiently combine local window scanning with
directional global strategies, thereby improving the model’s
capacity to capture both localized details and long-range de-
pendencies. Global information is essential for recognizing
large-scale scene-level changes, while local scanning ensures
that small, fine-grained variations are not overlooked—an espe-
cially critical requirement in remote sensing applications where
such changes may signify meaningful land surface transforma-
tions. Thus, by jointly modeling local and global dependencies,
LGSSM becomes particularly well-suited for high-precision
remote sensing change detection, allowing the model to focus
on both coarse-scale and fine-scale alterations within complex
imagery.

D. BTFF Module

Considering spatial-temporal relationships and scale vari-
ations in dual-temporal images, we introduce a novel BTFF
module. This module applies convolution and batch normal-
ization to the features extracted by the encoder. Elementwise
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weighted
fusion

Fig. 4. Operation process of the BTFF module.

multiplication is used to integrate the features and generate a
similarity map for weighted fusion. The Sigmoid function is
employed to compute attention coefficients, which dynamically
assign weights and prioritize key regions. The structural design
of this module is illustrated in Fig. 4.

Initially, convolution operations are performed to extract con-
textual information from the bitemporal images. Subsequently,
the features at each pixel location are fused through a weighted
mechanism, where the attention coefficients are calculated using
the Sigmoid function. This allows the module to determine how
to allocate weights between the features of 7 and 7% adaptively

o = Sigmoid (f(T1[t]) - f(T2li])) )

Here, f(7T1[i]) and f(T%[i]) denote the feature representations
of the ith pixel extracted from 7} and 7%, respectively. The
symbol “-” denotes elementwise multiplication. «; represents
the attention coefficient corresponding to the ¢th pixel, with its
value constrained within the range [0, 1]. It is used to control the
degree of reliance on the features from each temporal instance.

Using the computed attention coefficient «;, the features from
Ty and T, are fused in a weighted manner to generate the final
feature representation. The fusion process is formally defined as

Outfi] = a; - Th[i] + (1 — o) - T5[d]. (10)

Based on the fused feature map Out[i], the BTFF module
further computes the differences between the two temporal in-
stances. These differences are then processed through a Sigmoid
function to produce the change feature map

Change Map = Sigmoid(||T} — Ta|| + || Fow — T1]]).  (11)

Here, | T} — T3|| represents the difference between the two tem-
poral inputs 77 and 75, while || F,,, — 71| denotes the difference
between the fused features and the features from 7. The final
output feature map is obtained through the weighted fusion
operation.

E. MBPA Module

In the current Mamba models applied to change detection,
there is often a focus on global modeling, which neglects the
critical information provided by detail cues. To address this,
we propose the MBPA module, which extracts features through
three parallel branches: the local branch, the global branch,



14948

;

Fig. 5. Operation process of the MBPA module.

and the dilated convolution branch. By leveraging this parallel
architecture, the mechanism effectively captures both global and
local information present in the image. Meanwhile, it adaptively
enhances discriminative features and suppresses irrelevant con-
tent through attention modulation. The structure of this module
is illustrated in Fig. 5.

Let the input feature map be denoted as Y € RH*WxC,
which is first processed using layer normalization to obtain a
normalized feature representation. Subsequently, 1 x 1 convo-
lutions with learnable weights W&, WX, and WY, together
with 3 x 3 depthwise convolutions parameterized by we, Wk,
and W(}/ , are employed to compute the ), K, and V feature
maps. Each branch extracts features at a distinct spatial scale
using convolutional operations, allowing the module to adapt
to changes of varying sizes and capture both fine-grained local
details and broader contextual cues. The attention mechanism is
applied within each branch to dynamically weight features. The
computation process is formulated as follows:

Q=wW¢ wl.y (12)
K=w§K.-wk.y (13)
V=w)y -wY.v (14)

The 1 x 1 convolution is responsible for aggregating infor-
mation along the channel dimension. To enhance local context
representation, each channel is further processed by a 3 x 3
depthwise convolution prior to the computation of feature co-
variance. This depthwise convolution enables the incorporation
of spatial context while preserving local feature integrity.

Subsequently, the attention map A is obtained by computing
the dot product between the (Q and K, which encodes global
contextual dependencies

-
A = Softmax (KQ> .
o

In this context, a is a learnable scaling parameter that controls
the magnitude of the dot product. This attention feature map
highlights the regions of change through weighted enhancement
while simultaneously suppressing background noise interfer-
ence.

Subsequently, as shown in (16), the attention map A is multi-
plied with the value matrix V to obtain the weighted feature map
X. This process adaptively adjusts the weights of the features
to emphasize important regions, thereby assisting the MBPA
module in focusing on areas of change.

s5)
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Finally, a residual connection is employed to integrate the
input feature map X with the weighted output X through ele-
mentwise addition, ensuring effective information propagation
and preventing information loss in deeper network layers.

X=A.V (16)

X = X + X. (17)

The final input feature map X corresponds to the original
feature map Y after undergoing a series of transformations
through the attention mechanism.

FE. Optimization With Combined Loss

Since this study aims to explore which type of scanning
structure is more suitable for change detection in remote sensing
imagery, and considering that change detection is essentially
a specific form of semantic segmentation [46], the commonly
used cross-entropy (CE) loss is adopted as the loss function. The
objective is to minimize the discrepancy between the predicted
class probabilities and the ground truth labels. The CE loss
function is defined as follows:

fem kLY S

i=1 x=0

)log (P, (18)

i(x)) -

Here, f’l is the one-hot encoded representation of Y;, where each
sample is assigned a class label (1 for change, O for no change).
P; denotes the predicted probability for binary change detection,
obtained through the softmax activation function, indicating the
likelihood that each pixel belongs to either the change or no-
change class.

In change detection tasks, pixels belonging to changed areas
are typically considered positive samples, while those in un-
changed areas are treated as negative samples. However, due to
the extreme class imbalance between changed and unchanged
pixels in remote sensing images, the CE loss function is prone
to bias the model toward the majority class, potentially ignor-
ing minority classes. This class imbalance problem becomes
particularly severe when the dataset is unevenly distributed,
which may lead to a decline in model performance. To ad-
dress this issue, we incorporate the Lovész-softmax loss [47]
to effectively mitigate the performance degradation caused by
sample imbalance during training. In remote sensing change
detection, changed pixels are often much fewer than unchanged
pixels, and conventional loss functions may fail to capture the
distinctive features of the changed regions. The Lovasz-softmax
loss optimizes the objective function in a way that better handles
class imbalance, enhances the model’s ability to learn from mi-
nority classes (i.e., change regions), and consequently, improves
performance on imbalanced datasets. The overall loss can be
represented as follows:

Lfna = Al Lee + '72L10v (19)

where L. is used for category recognition. L;,, is used to
mitigate the impact of the sample imbalance between changed
and unchanged pixels. Loss items factors, {v1,72} are set as
{1.0, 0.75}.
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IV. EXPERIMENTS
A. Datasets Introduction

We conducted experimental evaluations on three publicly
available benchmark remote sensing datasets: LEVIR-CD,
LEVIR-CD+ [48], and WHU-CD [49]. The first two datasets
primarily focus on diverse building changes in urban areas,
emphasizing fine-grained variations within dense scenes. In
contrast, WHU-CD includes a variety of complex land cover
scenarios and mainly targets large-scale change objects that are
generally sparse and irregular in distribution. Detailed informa-
tion about these datasets is provided as follows.

1) LEVIR-CD: This dataset features 637 high-resolution im-
age pairs from Google Earth, showing building changes across
the U.S. over 5-14 years. Each image has a size of 1024 x 1024
pixels with 0.5-m resolution, encompassing various changes,
such as building additions and demolitions, road expansions,
vegetation changes, etc. The urban-centric nature of LEVIR-CD
and its well-annotated binary change masks make it an ideal
benchmark for evaluating model performance in structured and
high-density environments. Following the official protocol, the
dataset is divided into nonoverlapping patches of 256 x 256
pixels, which are randomly allocated to the training, validation,
and testing sets in a ratio of 7:1:2.

2) LEVIR-CD+: This dataset is an extended version of the
LEVIR-CD, comprising 985 pairs of VHR images obtained from
Google Earth. This dataset retains the images from LEVIR-
CD and highlights a diverse array of buildings such as urban
homes, compact garages, and expansive warehouses, featuring
31 333 building instances. This dataset introduces additional
urban scenes with more diverse building types, providing a more
comprehensive evaluation of the model’s robustness and gener-
alization capability in complex urban environments. Following
the official protocol, the dataset is divided into nonoverlapping
patches of 256 x 256 pixels, with 10 192 samples used for
training and 5 568 for testing.

3) WHU-CD: This dataset comprises a pair of high-
resolution images from New Zealand, measuring 32507 X
15354 pixels with a resolution of 0.2 m per pixel. Captured
in April 2012 and April 2016, it covers an area of 20.5 km?.
This dataset contains 12 796 buildings in the image acquired in
2012 and 16 077 buildings in the corresponding image acquired
in 2016, reflecting a wide range of complex land-cover and
structural changes. Following commonly adopted practices in
recent studies, the image pair is divided into nonoverlapping
patches of 256 x 256 pixels and split into training, validation,
and testing sets with a ratio of 6:2:2.

B. Experimental Setup

1) Implementation Details: All experiments were conducted
on a workstation equipped with an Intel(R) Xeon(R) Platinum
8352 V CPU at 2.10 GHz and a GeForce RTX 4090 GPU(with
24-GB memory). The proposed LBCDMamba was implemented
using Python 3.8 and PyTorch 2.0.0. We optimized the network
using the AdamW optimizer [50], and hyperparameter settings
were summarized as follows. The initial learning rate, weight
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decay, and momentum were set to 0.0001, 0.0005, and 0.9,
respectively, without employing any learning rate scheduling
strategies. The batch size was set to 6, and training was con-
ducted for 120 000 iterations. Data augmentation techniques,
including random horizontal flipping, vertical flipping, and
90°rotation, were applied to enhance model generalization.

2) Evaluation Metrics: In our experiments, we employed
five evaluation metrics to assess the model performance: recall
(Rec), precision (Pre), overall accuracy (OA), Fl-score (F1),
intersection over union (IoU), and Cohen’s Kappa. Pre measures
the proportion of correctly predicted change pixels among all
pixels predicted as changed. Rec indicates the proportion of
actual change pixels that were successfully detected. OA reflects
the ratio of correctly classified pixels to the total number of
pixels. F1 is the harmonic mean of Pre and Rec, balancing
both metrics. IoU evaluates the degree of overlap between the
predicted change regions and the ground truth. Cohen’s Kappa
is used to evaluate the agreement between predicted and ground
truth change labels. Notably, Cohen’s Kappa is only employed in
the ablation study of different scanning structures. The detailed
formulas for these metrics are presented as follows:

TP

Pre=—— 2
= TP P (20)
TP
Rec= —— Q1)
TP + FN
2. Pre-R
pl = 2 Tre-Ree (22)
Pre + Rec
TP
ol —————— 2
°U= 51N 23
TP + TN
OA = 24
TP + FP + TN + EN (24
P,—P,
kappa = = 2
appa = = ©5)

where TP, TN, FP, and FN denote the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
P, denotes the observed agreement between the prediction
and ground truth, while P, represents the expected agreement
occurring by random chance.

C. Comparative Experiments

To rigorously evaluate the effectiveness of the proposed
LBCDMamba, we conducted a comparative study against sev-
eral representative and SOTA change detection methods. Our
benchmark tests utilized the same datasets with identical data
splits and uniform data settings. The comparative models are
grouped into three categories: first, CNN-based approaches
such as FC-Siam-Conc [28], HANet [51], SNUNet [29], and
HCGMNet [52]; second, Transformer-based strategies includ-
ing ChangeFormer [13] and BIT [12]; and third, Mamba-
inspired methods such as ChangeMamba [18], RSM-CD [44],
and MambaCD [17].

For the comparison methods, we utilized the performance
metrics reported in their original publications whenever avail-
able. If such metrics were not provided, we trained and evaluated
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TABLE I
PERFORMANCE COMPARISON ON LEVIR-CD DATASET

Method Rec. Pre. OA F1 IoU
FC-Siam-Conc [28] 76.77 9199 9849 83.69 71.96
HANet [51] 89.36  91.21 99.02 90.28  82.27
SNUNet [29] 87.17 89.18 9882 88.16 78.83
HCGMNet [52] 90.61 9296 99.18 91.77 84.79
ChangeFormer [13]  88.80 92.05 99.04 90.40 8248
BIT [12] 89.37 89.24 9892 89.31 80.68
ChangeMamba [18]  90.41 91.15 99.06 90.74 83.12
RSM-CD [44] 89.73  92.52 - 91.10  83.66
MambaCD [17] 90.08 9143 99.06 90.75 83.07
Ours 91.64 9292 99.26 92.25 85.71

The highest score is marked in bold. All the scores are described in percentage (%).

(b) (©)

Fig. 6. Some inference results of LBCDMamba on the LEVIR-CD dataset.
(a) T1 images. (b) T2 images. (c¢) Ground-truth images. (d) Baseline. (e) Ours.

the models using their official code repositories under consistent
conditions, including the same loss function and data augmen-
tation strategies, to ensure a fair comparison.

1) Experimental Results on LEVIR-CD: Table I illustrates
the quantitative comparison on the LEVIR-CD dataset. As ob-
served, although LBCDMamba yields a slightly lower precision
compared to HCGMNet, it surpasses all competing methods in
key performance metrics, including Rec, Fl-score (92.25% ),
IoU (85.71% ), and overall accuracy. This clearly demonstrates
the effectiveness of the proposed method in change detec-
tion tasks. Notably, even when compared with representative
CNN-, Transformer-, and Mamba-based methods, LBCD-
Mamba achieves consistent improvements in Fl-score by
0.46%, 1.85%, and 1.15%, respectively.

Fig. 6 presents some qualitative comparisons results on the
LEVIR-CD dataset. For both dense and subtle building changes,
the proposed LBCDMamba demonstrates superior capability in
accurately identifying changed regions compared to the baseline
method. By enhancing the representation of both global and local
features, LBCDMamba effectively mitigates false negatives and
false positives, thereby improving the precision of building
change detection.
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TABLE II
PERFORMANCE COMPARISON ON LEVIR-CD+ DATASET

Method Rec. Pre. OA F1 IoU
FC-Siam-Conc [28] 78.49 7839 9824 7844 64.53
HANet [51] 75.53  79.70  98.22 7756 63.34
SNUNet [29] 7873  71.07 97.83 7470 59.62
HCGMNet [52] 81.94 8281 98.57 8237 70.03
ChangeFormer [13]  79.97 81.34 9844 80.65 67.58
BIT [12] 81.84 85.02 98.67 8340 71.53
ChangeMamba [18] 81.08 83.36 98.57 8220 69.79
RSM-CD [44] 80.27 84.49 - 82.32  69.96
MambaCD [17] 81.00 85.11 98.65 83.01 70.95
Ours 83.34 8642 98.79 8485 7343

The highest score is marked in bold. All the scores are described in percentage (%).

)

Fig. 7. Some inference results of LBCDMamba on the LEVIR-CD+ dataset.
(a) T1 images. (b) T2 images. (c¢) Ground-truth images. (d) Baseline. (e) Ours.

2) Experimental Results on LEVIR-CD+: Table II shows the
quantitative comparison results on the LEVIR-CD+ dataset. Ex-
perimental results demonstrate that our method achieves optimal
performance in terms of Rec, Pre, OA, F1, and IoU, indicating
its strong capability in accurately detecting changes in both
densely and sparsely distributed target regions. This comprehen-
sive improvement highlights the effectiveness of our approach
in enhancing overall model performance for change detection
tasks. Notably, LBCDMamba exceeds other methods with the
Mamba structure by nearly 3% in IoU, further confirming the
effectiveness of our designed Mamba structure.

Fig. 7 presents some qualitative comparisons on the LEVIR-
CD+ dataset. The LEVIR-CD+ dataset comprises more complex
and diverse building change types, posing higher demands on
the model’s generalization capability and boundary delineation
accuracy. The visualization results demonstrate that LBCD-
Mamba significantly outperforms the baseline method in terms
of change region localization and boundary detail restoration.
By leveraging superior global-local modeling capabilities in
conjunction with a BTFF mechanism, our method achieves
precise localization of object boundary changes while effectively
reducing false positives and missed detections.
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TABLE III

PERFORMANCE COMPARISON ON WHU-CD DATASET
Method Rec. Pre. OA F1 IoU
FC-Siam-Conc [28] 87.72 84.02 9894 8583 75.18
HANet [51] 88.30 88.01 99.16 88.16 78.82
SNUNet [29] 87.36  88.04 99.10 87.70  78.09
HCGMNet [52] 90.31 9393 9945 92.08 85.33
ChangeFormer [13] 85.55 8825 99.05 86.88 76.80
BIT [12] 90.33  89.70  99.26 90.01 81.84
ChangeMamba [18] 9149 9491 9947 93.18 88.07
RSM-CD [44] 90.42  93.37 - 91.87 84.96
MambaCD [17] 92.01 9558 99.51 9376  88.26
Ours 92.54 9575 99.57 94.13 88.94

14951
TABLE IV
COMPARISON RESULTS OF COMPUTATIONAL EFFICIENCY ACROSS DIFFERENT
MODELS

Method Params(M) FLOPs(G)
FC-Siam-Conc [28] 1.55 2.99
HANet [51] 2.61 17.67
SNUNet [29] 12.04 54.83
HCGMNet [52] 47.32 318.42
ChangeFormer [13] 33.61 213.13
BIT [12] 9.02 23.06
ChangeMamba [18] 49.94 28.70
RSM-CD [44] 49.97 17.43
LBCDMamba(ours) 28.57 16.39

The highest score 1s marked in bold. All the scores are described in percentage (%).

k.
(d)

Fig. 8. Some inference results of LBCDMamba on the WHU-CD dataset.
(a) T1 images. (b) T2 images. (c) Ground-truth images. (d) Baseline. (e) Ours.

3) Experimental Results on WHU-CD: Table III presents
the quantitative comparison results on the WHU-CD dataset
in comparison with other methods. LBCDMamba demonstrates
superior performance across all the metrics. Notably, LBCD-
Mamba achieves 94.13% in F1-score and 88.94% in IoU. These
enhancements result from the model’s ability to selectively scan
and integrate spatial and temporal data from VHR imagery,
ensuring precise segmentation.

Fig. 8 presents some qualitative comparisons on the WHU-
CD dataset.our method demonstrates superior change detection
performance on the WHU-CD dataset compared to the Base-
line method. It achieves more accurate localization of changed
regions, with smoother and more precise boundary delineation,
significantly reducing false alarms and missed detections. In
particular, our method shows strong capability in recovering
fine-grained changes, especially in complex building struc-
tures. This improvement is primarily attributed to our proposed
method’s effective integration of local and global information,
which enhances spatial modeling and temporal feature fusion,
leading to a more robust and detailed change representation.

D. Complexity Analysis

As shown in Table IV, we compare the parameter size and
computational cost (FLOPs) of our proposed LBCDMamba with

several representative change detection models. The proposed
LBCDMamba contains only 28.57 M parameters and requires
16.39 GFLOPs, which is significantly more efficient than recent
Transformer-based and Mamba-based architectures. For exam-
ple, compared to ChangeFormer, which has 33.61 M parameters
and 213.13 GFLOPs, LBCDMamba reduces the FLOPs by over
90% while also decreasing the parameter count by approx-
imately 15% . Likewise, when compared to ChangeMamba,
which contains 49.94 M parameters and 28.70 GFLOPs, LBCD-
Mamba reduces the computational cost by about 43%, demon-
strating superior efficiency. Despite having a significantly lower
computational burden, our model achieves competitive or even
superior performance in accuracy metrics, indicating a better
tradeoff between model complexity and detection accuracy.

E. Ablation Studies

1) Effectiveness of Different Scan Structures: Table V shows
the change detection performance with different mamba scan-
ning strategies on the LEVIR-CD+ dataset, such as CSM [37],
OSSM [44], Local Scan [25], Zigzag Scan [27], Efficient
Scan [26], as well as our proposed LGSSM. The experimental
results demonstrate that the proposed scanning strategy outper-
forms all compared methods, achieving an F1-score of 83.86%
and an IoU of 72.21% . Notably, compared with other scanning
mechanisms, our LGSSM improves the Fl-score by 3.40%,
2.32%, 1.66%, 0.83%, and 0.56%, respectively. As illustrated
in Fig. 1, Zigzag Scan [27], constrained by computational re-
sources, adopts a single-directional strategy but performs poorly
in the complex and diverse scenes encountered in change de-
tection tasks. Efficient Scan [26] incorporates dilated convo-
lutions and jump sampling to reduce the computational cost,
making it suitable for large-scale image processing in resource-
constrained environments. However, this approach is less robust
in detecting fine-grained changes. CSM [37] enhances global
feature integration through four-directional scanning but lacks
the capacity for detailed local feature representation, leading
to missed and false detections. OSSM [44] captures large-scale
spatial features via bidirectional selective scanning, improving
global modeling capacity. Nevertheless, it still struggles with
local detail modeling and poses challenges for practical deploy-
ment due to its high computational overhead. Local Scan [25]
preserves local dependencies via small-window scanning, yet its
lack of global context modeling results in limited performance.
In contrast, our proposed LGSSM integrates global and local
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TABLE V
COMPARATIVE EXPERIMENTAL RESULTS OF THE DIFFERENTIAL SCANNING STRUCTURES

Scan Method Rec. Pre. OA F1 IoU KC
Zigzag Scan 79.88 80.64 98.43 80.26 67.23 79.25
Efficient Scan 81.20 81.88 98.50 81.54 68.83 80.76
CSM 81.08 83.36 98.57 82.20 69.79 81.46
OSSM 81.64 84.47 98.64 83.03 70.98 82.32
Local Scan 81.88 84.77 98.66 83.30 71.38 82.60
LGSSM 81.95 85.87 98.72 83.86 72.21 83.20
TABLE VI the integration of each key component provides a powerful
EFFECTIVENESS OF EACH COMPONENT OF LBCDMAMBA ON LEVIR-CD+ . . L1
DATASET mechanism for robust change detection, further validating the
effectiveness of the proposed LBCDMamba framework.
Baseline LGSSM BMPA BTFF F1 IoU
v 8220 69.79 V. DISCUSSION
v v 83.86 7221 The proposed LBCDMamba method demonstrates superior
5 i v v gig %?3 detection performance in the bitemporal remote sensing change
- - detection task and exhibits good generalization across diverse
v v v v 84.85 7343

“V"“ means appending. (%)

scanning strategies to achieve more efficient information aggre-
gation and feature modeling. This design not only enhances the
model’s ability to preserve global contextual information while
capturing local details, but also demonstrates strong adaptability
in handling complex structures and varying change scales in
remote sensing scenarios, resulting in an F1-score improvement
of 1.66% and an IoU gain of 2.42% over traditional scanning
methods.

2) Effectiveness of Different Components in LBCDMamba:
To gain a deeper understanding of our method, we conducted
ablation experiments on the LEVIR-CD+ dataset to evaluate
the impact of each component on model performance. The
experimental results, as shown in Table VI, indicate that whether
adding components individually or in pairs, all configurations
outperform the baseline model.

In the ablation study, the introduction of LGSSM into the
baseline significantly improved model performance, indicating
that it enhances the ability to capture local information from a
global perspective, thereby optimizing the integration of global
and local information. Building upon this, the addition of the
MBPA module further improved the F1 score and IoU by 0.41%
and 0.68%, respectively. This demonstrates that MBPA’s multi-
branch structure, designed to extract both global context and
fine-grained spatial features, is beneficial for detecting complex
change patterns. Furthermore, the standalone incorporation of
the BTFF module led to additional performance gains, with F1
and IoU increasing by 0.65% and 0.96%, respectively, highlight-
ing the advantages of pixelwise fusion of bitemporal features.
When MBPA and BTFF were combined, the model achieved a
notable improvement over the baseline, with increases of 2.65%
in F1 score and 3.64% in IoU. This suggests that the two modules
provide complementary strengths—MBPA enhances feature
representation while BTFF strengthens temporal interaction and
suppresses irrelevant content—an effect more clearly reflected in
the quantitative and qualitative analyses in Section IV. Overall,

land cover scenes. However, there are still some limitations. As
shown in Figs. 6-8, our method effectively avoids boundary
blurring and fragmentation of the change regions, significantly
reducing false negatives and false positives. Nevertheless, the
model’s performance declines in areas where the transition
between change and nonchange regions occurs, and in regions
where it is difficult to distinguish color differences between
the bitemporal images. To address these issues, future research
could focus on improving edge detection techniques, as well
as investigating the impact of factors such as color differences
and lighting changes on model performance to enhance its
effectiveness. Furthermore, we suggest exploring how to com-
bine supervised and unsupervised learning methods to reduce
dependency on large labeled datasets, improving model perfor-
mance and generalization. Furthermore, research should focus
on utilizing deeper Mamba models to fully exploit the poten-
tial of SSM and explore more suitable Mamba architectures
for bitemporal remote sensing image change detection tasks.
Given its robust performance and strong generalization across
diverse scenarios, the proposed method also shows potential for
practical deployment in real-world applications such as urban
development monitoring, postdisaster damage assessment, agri-
cultural change analysis, and infrastructure management, where
timely and accurate change information is essential for decision
making.

VI. CONCLUSION

In this article, we propose the LBCDMamba model for dual-
temporal remote sensing change detection tasks to address the
limitations of CNN-based methods in global modeling capa-
bility and the secondary computational complexity issues of
Transformer-based approaches. Specifically, we compare the
performance of five mainstream scanning mechanisms: CSM,
Local Scan, OSSM, Zigzag Scan, and efficient 2-D scanning.
The results show that the combination of global scanning and the
Local Scan mechanism significantly improves the performance
of CD tasks on ultrahigh-resolution remote sensing images. The
proposed LBCDMamba network effectively integrates global
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and local information by combining global scanning and local
scanning. This approach captures local dependencies in tiled
data from a global perspective, mitigating the issue of losing
fine-grained details. In addition, the MBPA module is employed,
utilizing a multibranch feature extraction mechanism to paral-
lelly capture both global and local information, and an attention
mechanism is applied to adaptively enhance the extracted fea-
tures. This enables the model to focus on high-resolution features
while balancing the interaction of features across various sizes.
Moreover, considering the simple interaction capabilities of
current dual-temporal images, we introduce the BTFF module
to account for the spatial and scale variations of different ob-
jects, ensuring accurate global modeling of bitemporal features.
Ablation studies were conducted to validate the importance of
each key component. Extensive experiments demonstrate that
the proposed method achieves superior performance on both
the LEVIR-CD and LEVIR-CD+ datasets. These findings not
only advance the application of the Mamba structure in remote
sensing but also pave the way for further research into enhancing
change detection capabilities.
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