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Abstract

In the present work, a stabilized High-Order Spectral (HOS) model with adaptive residual-based artificial viscosity

(RAV) has been developed for performance enhancement about fully-nonlinear free-surface flow simulation. To suppress

the numerical instability caused by the nonlinear wave-wave interactions, i.e., the nonlinear mode-coupling between

eigen-modes, with explicit time-domain integrator, additional estimations about the numerical residuals of free-surface

elevation and free-surface potential with their backward histories have been carried out for stability-indicating and

artificial viscous terms have been suggested to balance such unphysical energy-accumulation, especially for under-resolved

wave components. Uppon the normalized free-surface residuals as the scales of artificial viscosity, even-order dissipation

term has been assembled for energy-suppression. To remain the overall explicit algorithm, such additional dissipation

has been considered in an operator-splitting manner. For the proposed dissipation algorithm, it has been shown that the

present residual-based artificial energy-suppression holds the spectral-vanishing property because of its wave-number-

related normalization in wave-number space. With such spectral normalization, the dissipation for the lower-wave-

number well-resolved wave components has been well-controlled with the increase of dissipation order. Compared with

the commonly-used spectral-filtering-based stabilization algorithm, where the energy-suppression within single-step free-

surface prediction shows independency to the temporal increment (δt), the developed residual-based algorithm holds

the solution-adaptive property, leading to an enhanced convergence performance of the free-surface model with its

stabilization term tightly coupled to δt. To check the performance of the present RAV-HOS model, series of classical

benchmarks, both numerical and experimental, have been reproduced, and a HOS-based Numerical-Wave-Tank (HOS-

NWT) has been built as a preparation for our further investigations about wave-wave and wave-structure interactions.

With the confirmation about both robustness and accuracy of the proposed stabilized HOS model, the promising prospect

for its further application in oceanic, offshore and marine engineering as an efficient free-surface simulator has been

expected.
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1 Introduction1

During the past decades, the hydrodynamics of free-surface flows, e.g., gravity waves and liquid sloshing in oceanic,2

offshore and marine engineering, have attracted plenty of attentions from both engineers and scientists. Because of the3

rich flow-physics it contains, such a nontrivial task has been treated as a longstanding scientific problem for theoretical,4

experimental, and computational fluid dynamics (Engsig-Karup et al., 2016).5

Along its history of development, the dimension-reduction models, which mainly include the shallow-water model6

(Vreugdenhil, 1994), Green-Naghdi model (Green and Naghdi, 1976) and Boussinesq model (Peregrine, 1967; Madsen7

et al., 1991), have been extremely popular, especially for shallow to medium water cases. With the increase of water-8

depth, the nonlinearity and dispersibility of free-surface flow lead to the necessity of the full-dimension potential-based9

nonlinear flow models for the balance between accuracy and efficiency (Tsai and Yue, 1996). Following the pioneering10

work by Longuet-Higgins and Cokelet (1976), the potential-based fully-nonlinear free-surface flow model has been well-11

developed (Grilli et al., 2001; Ferrant et al., 2003; Ning and Teng, 2007; Lin et al., 2021; Harris et al., 2022). Compared12

with the lower-order models, e.g., the Boundary Element model (BEM) (Teng and Eatock Taylor, 1995), Finite Volume13

model (FVM) (Lin et al., 2021) and Finite Element model (FEM) (Ma and Yan, 2006), spectral model has been well-14

developed in recent years because of its so-called spectral accuracy and the resulting numerical efficiency (Tian and15

Sato, 2008; Yates and Benoit, 2015; Raoult et al., 2019). Other than the high-order Finite Difference model (FDM)16

from Bingham and Zhang (2007) and Engsig-Karup et al. (2009), the vertical Chebyshev-fitting about the flow-potential17

improves the numerical performance of the Boundary-Value-Problem (BVP) solver considerably. Compared with the18

partial-spectral model, e.g., the vertical spectral model, as a full-spectral one, Dommermuth and Yue (1987) and Craig19

and Sulem (1993) have developed the High-Order Spectral (HOS) model with double Fourier-expansion to describe the20

free-surface elevation and to resolve the BVP about flow-potential by an eigen-expansion algorithm. With the help of21

Fast-Fourier-Transformation (FFT), quasi-linear complexibility has been achieved and such property leads to excellent22

efficiency of such free-surface model. As its extension to wave-structure interactions, Ducrozet et al. (2012) further23

assembled the wave-making algorithm to the HOS model and has built the HOS-based Numerical-Wave-Tank (HOS-24

NWT). Furthermore, for complicated cases with non-flat seabed in offshore engineering, Liu and Yue (1998), Guyenne25

and Nicholls (2008) and Gouin et al. (2016) developed the mode-coupling algorithm to resolve the fully-nonlinear free-26

surface flow and the arbitrary topography simultaneously. Different from the perturbation-based recursive algorithm to27

achieve the Dirichlet-to-Neumann (D2N) operator, with the separation of local and global nonlinear components in the28

projected Boundary-Integral-Equation (BIE), Clamond and Grue (2001) and Fructus et al. (2005) have also developed29

a spectral Boundary Element model to resolve the potential-related BIE in a spectral manner.30

As it has been mentioned, with global eigen-expansion about the free-surface potential and free-surface elevation,31

spectral accuracy can be reached with HOS algorithm. Compared with the lower-order model (Ma and Yan, 2006; Lin32

et al., 2021), the global higher-order approximations about both free-surface elevation and free-surface potential lead to33

quite a low numerical dissipation. On the other hand, for Zakharov’s equations (Zakharov, 1968), considerable energy for34

higher-wave-number wave components accumulates because of the nonlinear lower-order wave-wave interactions. With35

the explicit time-domain flow-predictor, higher-wave-number modes cannot be well-resolved because of the numerical36

stiffness and it leads to numerical issues to break the simulation without specified energy-suppression for such under-37

resolved wave components. Considering the complex higher-order nonlinearity and the iterative algorithm during D2N38

operation, an efficient implicit time-domain-integrator for HOS model is nontrivial to achieve due to the difficulty in39

Jacobi-evaluation for a rapid convergence during implicit nonlinear iterations, e.g., Newton-Raphson processes. As an40

alternative strategy, spectral-filtering has been commonly-used to filter out such undesirable higher-wave-number wave41

modes explicitly (Dommermuth and Yue, 1987; Guyenne and Nicholls, 2008). With such explicit filtering, the decoupling42

between temporal increment (δt) and filtering strength leads to a careful pre-determination about filtering parametres,43

which mainly include the filtering interval and energy-suppression rate. According to our numerical experiences, such44
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a case-by-case parametre selection is nontrivial and a careless configuration will break the convergence and accuracy of45

the free-surface model. Compared with the spectral-filtering strategy, artificial viscosity has also been well-developed46

following VonNeumann and Richtmyer (1950) to control the shock-wave-related numerical oscillations for compressible47

fluid flows. With the explicitly-defined dissipation term, the growth of undesirable higher-wave-number modes has been48

suppressed to maintain the numerical performance of the model. Inspired by such a pioneering work, Spectral-Vanishing-49

Viscosity (SVV) (Tadmor, 1989; Karamanos and Karniadakis, 2000; Xu and Pasquetti, 2004) has been developed either50

as a stabilization scheme or to drive a Large Eddy Simulation (LES) about viscous fluid flow. Similar with the spectral-51

filtering approach, artificial viscosity has been dominantly-defined in the higher-wave-number region and the vanishing52

viscosity for well-resolved flow components maintains the numerical performance of the model (Hesthaven and Kirby,53

2008; Engsig-Karup et al., 2016). Even spectral accuracy can be maintained with the mentioned dissipation model,54

there are still free parametres to be user-defined. To drive a solution-based dissipation, Guermond et al. (2011) and55

Dzanic and Witherden (2022) suggested the entropy-based stabilization strategy with entropy-residuals to measure the56

artificial viscosity adaptively. Recently, with the development of machine-learning, Schwander et al. (2021) and Coutinho57

et al. (2023) have further achieved the neural-network-based determination about the viscosity scale. Similar with the58

entropy-based model, with the numerical residuals of conservation laws as the discontinuity- (or instability-) indicator,59

residual-based artificial viscosity has been raised as an alternative strategy to control the shock-wave-induced numerical60

oscillation (Nazarov and Hoffman, 2013; Stiernstrom et al., 2021; Dao and Nazarov, 2022; Tominec and Nazarov, 2022).61

Without the selection of entropy pair, together with truncation wave-number and viscosity scale, the robustness and62

accuracy of such solution-adaptive artificial viscosity strategy has been shown to be satisfactory (Nazarov and Hoffman,63

2013; Tominec and Nazarov, 2022).64

Generally speaking, compared with the well-developed artificial viscosity approach for stable numerical simulation65

about conservation laws, its extension to potential-based free-surface flow simulation has not been addressed to the best66

of our knowledge. As it has been mentioned, such a combination meets difficulties in at least two aspects:67

(1) For conservation laws, the numerical instability relates to the strong flow discontinuity, i.e., the shock wave, which68

is obvious a local flow behaviour, leading to the locally-defined artificial viscosity. While, within the potential-based free-69

surface model, the incompressible fluid flow is always smooth (except the local singularities around geometrical-unsmooth70

domain corners). Therefore, it is believed that the main source of the numerical instability is the nonlinear mode-coupling71

between lower-order wave components. In this way, rather than its shock-wave-related local definition in physical space72

for conservation laws, the proposed artificial viscosity for potential flow should be globally designed to suppress the73

undesirable energy accumulation and the relating numerical instability within higher-wave-number region.74

(2) To avoid the scaling effect, or in other words, to make the free model-parametres dimensionless, the artificial75

viscosity should be scaled with some explicitly-defined flow variables. For conservation-law-simulation with residual-76

based artificial viscosity, the numerical residual has been normalized with local equal-dimension parametres, which relate77

to both their maximum and minimum values around neighboring elements and acts as the discontinuity-indicator. For78

the potential flow, because of its mode-by-mode definition about the artificial viscosity, such normalization should also be79

considered in a different way to meet the global property of stability-indicator. On the other hand, within the previous80

artificial-viscosity-based stabilization for conservation laws, the dissipation order has always been defined as p = 1 for81

its consistency with physical viscous effect. While, for potential-based free-surface model, higher-order coupling up to82

4th order exists in Zakharov’s equations. Therefore, the dissipation order selection and its effect on model performance83

should also be considered and confirmed with care.84

As it has been discussed, considering both its efficiency and accuracy in free-surface potential-flow-simulation, in the85

present work, an improved fully-nonlinear HOS-based free-surface model with residual-based artificial viscosity (RAV)86

for an enhanced numerical stability has been developed. To suppress the undesirable wave-energy within under-resolved87

wave-region caused by lower-order mode-coupling, a residual-based dissipation strategy has been raised. Within the88
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proposed stabilized HOS framework, explicit predictions about free-surface elevation and free-surface potential have89

been carried out with an explicit Runge-Kutta (RK) scheme. During each sub-stage of the explicit time-domain-RK-90

integrator, estimations about the free-surface numerical residuals have been carried out for stability-indicating and further91

to measure the artificial viscous coefficients. With the introduction of an even-order dissipation term, the solution-based92

artificial viscosity has been normalized in wave-number space with the corresponding modal-amplitudes of free-surface93

potential and free-surface elevation mode-by-mode. Within such energy-suppression model, spectral-vanishing property94

has been produced with the increase of dissipation order p, and its solution-based adaptive property leads to a convenient95

stabilization algorithm free from user-defined wave-number-truncation and dissipation strength determination. With96

the numerical experiments about various of benchmarks, it has been shown that the convergence performance of the97

proposed RAV-HOS model has been enhanced considerably, compared with the spectral-filtering-based ones, and the98

numerical accuracy of the model has also been maintained. Furthermore, with the developed RAV-HOS model as the99

flow solver, Numerical-Wave-Tank (NWT) has been built for both regular and irregular wave generation. With the100

preliminary simulation about regular waves, irregular focus waves and pressure-driven ship-waves, it shows the feasibility101

for the application of the present RAV-HOS-NWT model to our future research topics for both wave-dynamics and102

wave-structure interactions.103

In the remaining parts, the present research has been organized as following: In Sec. 2, the principle of the104

incompressible ideal fluid dynamics, including both the governing equations and corresponding boundary conditions,105

will be discussed briefly; In Sec. 3, the basic numerical algorithms for the HOS model to resolve the potential-related106

BVP, together with the residual-based adaptive stabilization strategy for higher-wave-number energy-suppression, will107

be introduced; In Sec. 4, numerical simulation about classical benchmarks will be carried out to check the performance108

of the proposed numerical model and the RAV-HOS-based Numerical-Wave-Tank (RAV-HOS-NWT) will be built for109

wave simulation; Lastly, in Sec. 5, the main findings and conclusions of the present work will be summarized.110

2 Governing Equations111

Presently, the fluid domain is bounded by the side-wall (not shown for briefness), the free-surface and the seabed,112

as shown in Fig. 1. To describe the geometry and the fluid flow, a Cartesian coordinate system o− xyz has been built113

with z axis pointing upward and z = 0 on the still water-level. With the single-value assumption about the free-surface114

elevation, which is available for gravity waves and liquid sloshing without violent deformation, the interface between fluid115

and atmosphere has been defined as z = η(x, y, t), where t denotes the time. At the same time, with identical assumption116

about the seabed as a material surface, such stationary boundary has been defined as z = −h(x, y). With the neglection117

about both viscosity and compressibility of the fluid flow, its motion free from initial vorticity can be described by a flow-118

potential φ, and the flow velocity can be defined as u = ∇φ = (∇hφ, ∂φ∂z ), where ∇ = (∇h, ∂∂z ) = ( ∂
∂x
, ∂
∂y
, ∂
∂z

) denotes119

the 3D gradient operator, and ∇h = ( ∂
∂x
, ∂
∂y

) denotes its horizontal component. On the seabed, the no-penetration120

condition should be satisfied and it has been modelled as a normal-flux-vanishing Boundary-Condition (BC) φn = 0.121

In the present work, only flat seabed has been considered, leading to φn = φz = 0 on the bottom of the fluid domain.122

On the free-surface z = η, the motion of fluid particle along tangential direction of the free-surface, together with the123

pressure balance between fluid flow and atmosphere, leads to the following BCs124

∂η

∂t
+∇hη · ∇hφ = φz, (1)

∂φ

∂t
+
∇φ · ∇φ

2
+ gη = 0. (2)

With Zakharov’s definition about the free-surface potential φs(x, y) = φ(x, y, z = η(x, y)) (Zakharov, 1968), evolution125

equations for free-surface elevation and free-surface potential can be reformulated from Eqs. (1) and (2) as126
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Fig. 1. Sketch diagram of the fluid domain, together with the collocation grid setting.

∂η

∂t
= (1 +∇hη · ∇hη)φz −∇hφs · ∇hη, (3)

∂φs
∂t

= −gη − ∇hφs · ∇hφs
2

+
1 +∇hη · ∇hη

2
(
∂φ

∂z
)2. (4)

It can be obviously observed from Eqs.(3) and (4) that, with the well-defined φs and η at certain temporal stage, their127

future states can be predicted by the time-domain-integration, with the determination of φz|z=η = w|z=η, i.e., the vertical128

flow velocity on the free-surface. For such D2N operation (φs → φz|z=η), considering the well-defined η(x, y) at certain129

time, the fluid domain can be defined as Ω = (x, y,−h(x, y) ≤ z ≤ η(x, y)). Meanwhile, the free-surface potential φs has130

also been obtained by time-domain integration. Therefore, a closed-form Boundary-Value-Problem (BVP) follows131

∇2φ = 0, (5)

with the boundary condition132

φ = φs, at z = η,

φn = 0, at z = −h. (6)

On the lateral boundaries, which have been assumed as vertical side-walls in the present research, Neumann-type bound-133

ary condition can be defined for the boundary flux φn, which is the case for free-surface flow within a closed container.134

In the present work, φn = 0 has been adopted to drive the double Fourier-expansion.135

As it has been observed, the key component to drive the evolution of φs and η is the determination of φz|z=η. To136

obtain such values, the BVP defined by Eq. (5) and boundary conditions Eq. (6) should be resolved. As it has been137

discussed in Sec. 1, various approaches, e.g., BEM, FEM and FVM, can be adopted as the flow-potential solver. For138

the fully-nonlinear free-surface flow, all the mentioned schemes share the so-called Mixed-Euler-Lagrange or Semi-Euler-139

Lagrange approach to predict the changeable free-surface. To obtain a solution domain with unchanged geometry for the140

purpose of simplification on the overall algorithm and to improve the numerical performance of the model, perturbation141
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approach has been adopted in the present work to map the free-surface potential to its mean location, i.e., z = 0. To142

drive such perturbation-based BVP-resolving algorithm, assumption has been made about the free-surface elevation, i.e.,143

η = O(ε), considering the fact that the wave-steepness ε = kA is small. Furthermore, for the fluid flow driven by the144

O(ε) free-surface elevation, identical assumption can be made about the free-surface potential, i.e., φs = O(ε). With O(ε)145

assumption about both free-surface elevation and free-surface potential, the detailed iterative algorithm to resolve the146

BVP (Eqs. (5) and (6)) will be described in the following section, together with the residual-based artificial dissipation147

strategy for performance enhancement about the time-domain integrator.148

3 Numerical Methods149

In this section, the numerical algorithms for the proposed HOS-based free-surface model will be discussed. As it has150

been mentioned in Sec. 1, to suppress the undesirable energy accumulation because of the nonlinear mode-coupling for151

higher-wave-number wave components, the residual-based artificial viscosity has been raised for stability enhancement152

and the relating performance analysis will also be carried out in detail.153

3.1 High-Order Spectral (HOS) Method154

As it has been discussed in Sec.2, the D2N operator, which relates to the resolving of a potential-related BVP,155

should be achieved in an efficient manner to drive the evolution of free-surface. Unlike the linear case, where all the156

linearized BCs are defined on the mean free-surface and the matrix-reversion operation can be done once only for157

efficiency enhancement, for the nonlinear case, the relating linear-algebra should be re-defined to match the varying158

free-surface. For the spectral model, even eigen-expansion algorithm, as it has been developed in Fenton (1988) and159

Ferrant and Le Touzé (2001), can be adopted to resolve the modal coefficients by matching the free-surface BC (Eq.160

(6)) in a collocation manner, the iterative dense-matrix re-assembling and reversion operation limit the efficiency of the161

fully-nonlinear free-surface simulation.162

In the HOS framework, eigen-expansion has also been executed to resolve the BVP with spectral accuracy, as it163

has been done by Ferrant and Le Touzé (2001). To match the instantaneous free-surface to its mean status for domain-164

regulation, perturbation expansion has also been carried out. Assuming the flow-potential is in the form φ = Σmφ
(m),165

where φ(m) = O(εm), the flow-potential on the free-surface, i.e., the free-surface potential φs, can be obtained by its166

Taylor-expansion about z = 0 as φs = φ+ 1
1!
∂φ
∂z
η+ 1

2!
∂2φ
∂z2 η

2 + ..., where the RHS terms are all evaluated on z = 0. With167

a further assumption η = O(ε), such expansion can be further rewritten as168

φs = φ(1)

+
1

1!

∂φ(1)

∂z
η + φ(2) (7)

+
1

2!

∂2φ(1)

∂z2
η2 +

1

1!

∂φ(2)

∂z
η + φ(3) + ....

It has been mentioned in Sec.2 that φs = O(ε). Therefore, the mean-free-surface potential can be obtained by the169

order-clustering algorithm about ε and the recursive BVP can be defined order-by-order. For a certain lth order BVP, it170

follows171

∇2φ(l) = 0, (8)

with the boundary condition172
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φ(l) = φ(l)
mean, at z = 0,

φ(l)
n = 0, at z = −h. (9)

For the fluid flow within a closed container, i.e., x0 ≤ x ≤ x0 + Lx and y0 ≤ y ≤ y0 + Ly, such flow potential can be173

expanded with eigen-functions as174

φ(l) = Σm,nA
(l)
m,n(z)cos[km(x− x0)]cos[kn(y − y0)]. (10)

To satisfy Eq.(8), the modal-amplitude A
(l)
m,n(z) should follow175

A(l)
m,n(z) =

 C
(l)
1,0,0 + C

(l)
2,0,0z m = 0 and n = 0

C
(l)
1,m,ne

km,nz + C
(l)
2,m,ne

−km,n(z+d) otherwise
, (11)

where the factor e−km,nd has been introduced to avoid the numerical blowing up of exponential function and km,n =176

√
k2
m + k2

n, with km = mπ
Lx

and kn = nπ
Ly

the horizontal eigen-values of the BVP with Neumann-type homogeneous BCs177

on the side-walls. To match BCs shown as Eq.(9), Galerkin approach has been adopted, considering the orthogonality178

between Fourier components. With cosine-transformation to Eq.(9), it can be obtained that179

FFTCOS(φ(l)
mean)m,n =

 C
(l)
1,0,0 m = 0 and n = 0

C
(l)
1,m,n + C

(l)
2,m,ne

−km,nd otherwise
, (12)

and180

0 =

 C
(l)
2,0,0 m = 0 and n = 0

C
(l)
1,m,nkm,ne

−km,nd − C(l)
2,m,nkm,n otherwise

. (13)

It should be noted that, the present vertical-eigen-functions have been defined as the normal exponential function181

for its extention to non-flat seabed and multi-layer-fluid cases and it is equivalent to the cosh(km,nz) and sinh(km,nz)182

pair. To achieve an efficient cosine-type transformation, FFT routine provided by FFTW library (Frigo and Johnson,183

2005) has been used to reach quasi-linear complexibility. With the well-resolved BVP, the D2N operator can be achieved184

as185

∂φ

∂z
|z=η =

∂φ(1)

∂z

+
1

1!

∂2φ(1)

∂z2
η +

∂φ(2)

∂z
(14)

+
1

2!

∂3φ(1)

∂z3
η2 +

1

1!

∂2φ(2)

∂z2
η +

∂φ(3)

∂z
+ ....

With such vertical velocity on the free-surface, the evolution equations Eqs.(3) and (4) can be integrated in the time-186

domain. In the present work, explicit TVD-RK3 scheme (Shu and Osher, 1988) has been adopted for an improved187

numerical performance and such scheme consists three sub-stages188

Ψ(0) = Ψ(n), Ψ(1) = Ψ(0) +
∂Ψ(0)

∂t
δt,

Ψ(2) =
3

4
Ψ(0) +

1

4
(Ψ(1) +

∂Ψ(1)

∂t
δt), (15)

Ψ(3) =
1

3
Ψ(0) +

2

3
(Ψ(2) +

∂Ψ(2)

∂t
δt),

Ψ(n+1) = Ψ(3),

7



where Ψ(n) represents either the free-surface elevation or the free-surface potential at t = tn, and δt denotes the temporal189

increment. Furthermore, to evaluate the horizontal derivation terms in Eqs.(3) and (4), their physical values have been190

mapped to the modal-amplitudes in the wave-number space firstly, followed by the horizontal derivative operations, and191

then mapped back to the physical space. For the nonlinear terms in Eqs. (3) and (4), recursive 2
3

rules have been used192

for dealiasing, if necessary.193

3.2 Residual-based Artificial Viscosity Model194

For linearized free-surface flow, Eqs.(3) and (4) can be reduced to ∂η
∂t

= φz and ∂φs
∂t

= −gη. It is obvious that195

there are no mode-couplings with such linearization. In this case, the under-resolved wave components only come from196

their initial values and have no coupling with lower-wave-number well-resolved ones. Therefore, stability issue is not that197

obvious because of the lack of initial energy within the higher-wave-number region. While, for the fully-nonlinear cases,198

interactions between lower-wave-number components occur as the source of sum-wave-number components. With the199

accumulation for such higher-wave-number energy, numerical instability occurs. As it has been shown in Dommermuth200

and Yue (1987), spectral-filtering is an effective way to remove such numerical instability by filtering out the unstable201

higher-wave-number modes explicitly. Within such stabilized algorithm, the highest-wave-number component has been202

suppressed to 0 with the remaining components filtered by ψ̃m,n = ψ̃∗m,nΛ(km)Λ(kn) in wave-number space with203

Λ(k) =
1

8
[5 + 4cos(

πk

kmax
)− cos( 2πk

kmax
)], (16)

or its simple extention ψ̃m,n = ψ̃∗m,nΛ̂(km)Λ̂(kn) with204

Λ̂(k) = 1− (1− αs)(1− Λ(k)), (17)

where the free parametre αs has been adopted for dissipation controlling. Furthermore, within the spectral element205

framework from Engsig-Karup et al. (2016), an enhanced exponential filter (Hesthaven and Kirby, 2008) has been206

developed with similar free parametre to control the numerical dissipation for highest-wave-number component. Beyond207

the goal of present research, such topic will not be discussed further in detail. For the spectral-filtering strategy, free208

parametres exist and need to be pre-defined. With the well-selected parametres, they are kept as fixed values during209

the entire simulation. With the temporal duration for free-surface flow prediction fixed as ∆T , it is assumed that no210

external excitation (free-surface pressure or free-surface mass source/sink) exists and the filtering operation has been211

executed at the end of each single-step explicit Euler prediction t = nδt. Denoting the mapping operator between (η(n)
212

, φ
(n)
s ) and (η(n+1) , φ

(n+1)
s ) as T , then the final state of the free-surface flow at t = ∆T can be obtained as (η∆T ,213

φ∆T
s ) = (D · T )

∆T
δt · (η0 , φ0

s), with D the filtering operator. Considering that the filtering operator can be splitted214

into D = F−1ΛF , i.e., a forward Fourier transformation followed by a diagonal wave-number-space filtering and a215

backward Fourier transformation, for linear cases, the order of D and T can be exchanged because of the splitting216

T = I + δtF−1∆T̃ F , where ∆T̃ denotes the block anti-diagonal matrix consisting of identical mapping and the217

wave-number-space diagonal D2N operators, as shown in Eqs. (3) and (4). In this situation, the mentioned free-surface218

prediction can be rewritten as (η∆T , φ∆T
s ) = T

∆T
δt · [D

∆T
δt · (η0 , φ0

s)], i.e., the unfiltered one with [D
∆T
δt · (η0 , φ0

s)] as the219

‘filtered’ initial condition. With the decrease of δt, ∆T
δt

increases. It is obvious that the ‘filtered’ initial wave components220

will be dampened to zero except the spacial uniform one with the filters Eqs. (16) and (17). With such ‘filtered’ initial221

wave elevation and free-surface potential, the free-surface prediction will be obviously over-dissipative. For nonlinear222

cases, although the exchanging of D and T cannot be executed, similar phenomenon can be also expected with the223

increase of filtering iterations. As it will be shown in the next section, unsuitable parametres lead to convergence issues224

with δt→ 0. To launch the simulation, such pre-parametre-selection is obvious a nontrivial task.225

8



As another effective strategy to provide energy-suppression for higher-wave-number flow components, artificial226

viscosity has been widely adopted to remove the shock-wave related numerical oscillation for conservation laws as it has227

been mentioned in Sec. 1. Inspired by VonNeumann and Richtmyer (1950), Tadmor (1989) and Guermond et al. (2011),228

in the present work, viscous terms have been assembled to Eqs. (3) and (4) to provide wave-number-related dissipation.229

Consistent with the previous ones, such term is in the form of (νx⊗ ∂2pΨ
∂x2p + νy ⊗ ∂2pΨ

∂y2p ), where ⊗ denotes the convolution230

operator, and in the wave-number space, it takes the normal ‘×’ form. In the present artificial dissipation model, free231

parametre p exists to achieve controlling about ‘dissipation region’ and further for the spectral-vanishing property of the232

energy-suppression model. With the increase of p, narrower filtering-higher-wave-number region can be obtained and233

the dissipation for the well-resolved wave components tends to 0. To achieve dimension-balancing, it is obvious that the234

viscosity parametres νx and νy are in the dimension of L
2p

T
. As a natural choice, the length part for such balancing can be235

selected as δx2p and δy2p respectively. In this way, with the increase of model resolution, the dissipation will be weakened236

simultaneously. As it will be shown later, such dimension can also be selected as 1

k
2p
x,max

and 1

k
2p
y,max

for a consistent237

dissipation. Furthermore, the remaining time-scale will be selected as δt, and it has been merged to the definition about238

numerical residuals of Eqs. (3) and (4). It should be mentioned that, even with the decrease of δt, inconsistency seems239

to exist because of the 1
δt

term in the viscosity definition, as it will be discussed later, the higher-order property of the240

residual term with respect to the temporal increment leads to the reproduction of vanishing viscosity with δt→ 0.241

For the purpose to remove the priori determination about the dissipation strength, it is essential to achieve an242

adaptive algorithm to control the rate of energy-suppression, without breaking the accuracy of the original model,243

if possible. For HOS model, the relative ‘large’ temporal increment for higher-wave-number wave components leads244

to the stability issue, compared with the resolution-related mechanism about the shock-wave-related discontinuity for245

conservation laws. Considering such observation, a suitable stability-indicator is the key component to drive the artificial246

viscosity determination. In the present algorithm, the numerical residuals of Eqs.(3) and (4) are selected for such stability-247

indicating. For the general model equation ∂Ψ
∂t

= R(Ψ, t), TVD-RK3 algorithm, i.e., Eq.(15), can be adopted as the248

time-domain integrator to obtain its explicit prediction Ψ∗ with a local O(δt4) error. With a multi-step backward formula249

to evaluate the ∂
∂t

term, such an explicit prediction leads to a numerical residual250

D∂t(Ψ∗,Ψ(n),Ψ(n−1), ...) = R(Ψ∗, tn+1) +Res, (18)

where the backward temporal derivation D∂t(·) can be built with a polynomial-fitting algorithm in the time-domain. In251

the present research, considering the fact that only the local error for the final Ψ∗ can be estimated as O(δt4), while the252

errors for its auxiliary predictions during the sub-integrator are only O(δt2) for a conservative estimation, only backward253

Euler scheme, i.e., the single-step BDF formula, has been adopted, that is254

D∂t(Ψ∗,Ψ(n),Ψ(n−1), ...) =
Ψ∗ −Ψ(n)

δt
. (19)

It is obvious that the implicit scheme is unconditional stable mostly. For the ‘true’ solution of such implicit formula, it255

can be obtained that256

D∂t(Ψimplicit,Ψ(n),Ψ(n−1), ...) = R(Ψimplicit, tn+1). (20)

From Eqs. (18) and (20), the numerical residual follows257

9



Res =
α

δt
(Ψ∗ −Ψimplicit) +R(Ψimplicit, tn+1)−R(Ψ∗, tn+1)

=(
α

δt
− ∂R

∂Ψ∗
)(Ψ∗ −Ψimplicit) (21)

=(α− ∂R

∂Ψ∗
δt)

Ψ∗ −Ψimplicit

δt
.

Considering the numerical accuracy of Eq. (20), compared with Eq. (15), Ψ∗−Ψimplicit = O(δth) with h ≥ 2 holds and it258

leads to the linearization in Eq.(21). For an explicit time-domain integrator, its conditional stability for the lower-wave-259

number well-resolved wave components leads to (α − ∂R
∂Ψ∗ δt) = O(1). Therefore, within the well-resolved wave-number260

region, such numerical residual is O(δth−1), while with the increase of wave-number, the numerical stiffness leads to the261

failure of such estimation. With Res as the stability-indicator, the viscous coefficients νx,y can be well-scaled. Within262

the numerical residual defined in Eq. (18), time-scale exists naturally. Therefore, for dimension-balancing, such residual263

should be further normalized with a Ψ-scaled variable. As it has been shown in the appendix, |Ψ| itself is a reasonable264

choice. In wave-number space, to avoid numerical blowing up, such normalization factor has been reformulated as265

(
∣∣∣Ψ̃∣∣∣+

∣∣∣R̃∣∣∣ δt+ ε), with ε = 10−8. According to the mentioned discussion, with a consistent nondimensional factor β for266

both νx and νy, the dissipation term can be written as267

D(Ψ) = βR̂es⊗ (
1

kx,max
2p

∂2pΨ

∂x2p
+

1

ky,max
2p

∂2pΨ

∂y2p
), (22)

with kx,max and ky,max the wave-number bounds for 2
3

dealiasing or dealiasing-free rule. Within the wave-number space,268

it can be formulated as269

D̃(Ψ)m,n = β((
km

kx,max
)2p + (

kn
ky,max

)2p)× R̃esm,n

(
∣∣∣Ψ̃m,n

∣∣∣+
∣∣∣R̃m,n∣∣∣ δt+ ε)

× Ψ̃m,n

= β[σ(
km

kx,max
) + σ(

kn
ky,max

)]× R̃esm,n

(
∣∣∣Ψ̃m,n

∣∣∣+
∣∣∣R̃m,n∣∣∣ δt+ ε)

× Ψ̃m,n, (23)

with σ(·) acts as the spectral filter for the artificial viscosity. In the present work, to make such term always dissipative,270 ∣∣∣R̃esm,n∣∣∣ has been used instead of R̃esm,n.271

As it can be observed from Eq. (23), the artificial dissipation term in the wave-number-space can be splitted into the272

residual component and the filter component relating to dissipation order p. To show the effect of such dissipation order273

on the performance of RAV algorithm, Fig. 2 shows the strength of spectral filter with different ps and its comparison274

with the enhanced exponential filter proposed by Hesthaven and Kirby (2008). It can be observed from Fig. 2 that, with275

the normalized wave-number, dissipation within the lower-wave-number region can be suppressed to an arbitrary small276

value with the increase of p because of the vanishing of σ. In this case, the lower-wave-number wave components can277

be kept unfiltered and only the higher-wave-number ones are suppressed to keep the numerical stability, leading to the278

spectral-vanishing property of the proposed residual-based artificial viscosity model.279

With such dissipation term, the present stabilized RAV-HOS algorithm has been built with an operator-splitting280

strategy to keep its explicit property. For a certain sub-stage in Eq.(15), it follows281

Ψ∗ = Ψ(i) +
∂Ψ(i)

∂t
δt,

Ψ∗∗ = Ψ∗ +D(Ψ∗∗)δt, (24)

Ψ(i+1) = γΨ(0) + (1− γ)Ψ∗∗,

where implicit Euler scheme has been adopted for the stabilization-step, which can be easily resolved in the wave-number282

space because of its linear property about Ψ∗∗, and γ depends on the corresponding sub-stage within Runge-Kutta scheme.283
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Fig. 2. Strength of the present spectral-filter with p = 0 − 3 (2p = 0 − 6) and the enhanced exponential filter

with p = 4 − 16 from Hesthaven and Kirby (2008) (H&K).

Furthermore, for Ψ(1)-predictor, Ψ(n), Ψ(n−1), ... have been adopted for temporal polynomial fitting with constant δt.284

While, for Ψ(2)- and Ψ(3)-predictors, Ψ(1)(Ψ(2)),Ψ(n),... have been used with the first temporal increment δt and 0.5δt285

respectively. Except the solitary wave simulation with larger amplitudes in Sec. 4.2.1 (A0
d
≥ 0.9), the dissipation286

parametre β has been set as β = (2π)2.287

4 Numerical Results288

In the previous sections, the overall numerical algorithms for the proposed RAV-HOS model have been presented.289

In this section, numerical simulations with the present potential-based stabilized free-surface model will be carried out290

to check the relating efficiency and accuracy.291

4.1 Wave Sloshing in a Rectangular Tank292

4.1.1 Two Dimensional Free Sloshing with Single-Mode Initial Profile293

Firstly, to confirm the accuracy of the present RAV-HOS model, two dimensional sloshing in a rectangular tank294

has been simulated. To launch the gravity-driven free sloshing without external excitation, the initial profile of the295

free-surface has been set as its 2nd natural mode, i.e., η(x, 0) = acos(2π(x − x0)/l), with l the width of the tank. To296

check both linear and nonlinear performance of the model, three sets of a/d = 0.001− 0.100 have been adopted and the297

mid-tank wave elevation has been shown in Fig. 3(b), where t has been normalized with
√
g/d
−1

.298

As it can be observed in Fig. 3(b), the present RAV-HOS model has shown satisfactory performance for such single-299

mode free sloshing problem. As it has been expected, when the initial wave amplitude a/d is small, linear behaviour has300

been obtained. In this case, the natural frequency of free-surface motion can be well-approximated by ω2
2 = gk2tanh(k2d),301

with k2 = 2π
l

. As shown in Fig. 3(b), for such linear case, obvious agreement has been reached for both wave amplitude302

and oscillation frequency. With the increase of a/d, the nonlinearity of the fluid sloshing becomes dominant. In this case,303

the temporal symmetry of wave elevation has been broken, because of the mode-coupling between different eigen-modes.304
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(a) (b)

Fig. 3. Sketch of the 2D free sloshing in a rectangular container with 2nd natural mode as the initial

condition ((a)), and the prediction about normalized mid-tank free-surface elevation ((b)).

With such wave-wave interaction, which can be omitted for the linear case, non-periodical behaviour can be observed.305

In Turnbull et al. (2003), to capture such nonlinear behaviour of fluid motion, σ-coordinate-transformation-based Finite306

Element model has been developed. It can be observed that the present results match well with their nonlinear FEM307

ones.308

(a) (b)

Fig. 4. Free-surface predictions with the present RAV-HOS model for 2nd mode free sloshing (a/d = 0.100,

p = 1 − 3) ((a)) and the convergence performance based on Richardson estimation ((b)).

In the present research, details about the selection for BDF-order has been omitted and has been left as our future309

research topic. Presently, backward Euler scheme has been adopted and the local error is O(δt2), which is inconsistent310

with the O(δt4) one for TVD-RK3 integrator. To check how such lower-order residual estimation affects the numerical311

accuracy of the free-surface prediction, Fig. 4(a) shows the convergence performance of the present RAV-HOS model312

for mode-2 sloshing with a/d = 0.100 and it can be observed that the overall performance of the model is satisfactory313

with consistent prediction about the wave elevation without noticeable difference. As it has been mentioned in Sec. 3.2,314

free parametre p = 1, 2, ... exists to enhance the performance of artificial dissipation. In compressible flow simulation,315
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such parametre has been set as p = 1 to match the physical viscous effect. Following Eq. (23), in the wave-number316

space, with the well-evaluated numerical residual R̃es, the normalized wave-numbers ( kx
kx,max

)2p and (
ky

ky,max
)2p act as317

the spectral-filters ranging from 0 to 1, as shown in Fig. 2. With the increase of p, such filter in lower-wave-number318

region tends to 0 rapidly. As shown in Fig. 4(a), for the traditional selection of p = 1, the appearance of the additional319

dissipation has broke the O(δt4) local convergence, i.e., the O(δt3) global convergence, of the TVD-RK3 scheme. For320

TVD-RK3 integrator, although only O(δt2) local accuracy can be obtained for the auxiliary Euler-predictors, the weight321

factors in Eq. (15) have been designed with care to cancel-out such residuals to reach the overall O(δt4) local accuracy,322

considering the coupling between Euler-predictors in detail. Within the present RAV-HOS model, such coupling has323

been disregarded during the estimation about the artificial dissipation. Therefore, additional errors have been introduced324

to break the O(δt4) local accuracy of the TVD-RK3 predictor. To confirm such hypothesis, convergence histories have325

been obtained as shown in Fig. 4(b). Because of the unavailability for the ‘exact’ free-surface motion, Richardson-326

algorithm has been adopted to estimate the convergence rate, as it has been recommended by Celik et al. (2008). As327

it has been expected, only O(δt) global accuracy (O(δt2) local accuracy) can be reached for p = 1 cases. With the328

increase of p = 2, the convergence performance of such explicit 3rd-order integrator has been reproduced , as the result of329

vanishing dissipation for lower-wave-number wave components. For such mode-2 sloshing, dominant contribution from330

lower-wave-number components ( kx
kx,max

� 1) can be expected. Therefore, a further increase of p = 3 makes no obvious331

improvement about the results. Generally speaking, for the consideration about temporal convergence, p = 2 is preferred332

and such configuration, together with the residual estimation with 1st order backward Euler formula, have been adopted333

in the remaining parts of the present work, unless otherwise stated.334

4.1.2 Three Dimensional Free Sloshing with Gauss-Shaped Initial Profile335

As it has been simulated in Sec. 4.1.1, during the initial stage, the lower-order single-mode profile has been selected.336

Because of the nonlinear property of wave sloshing and the corresponding nonlinear mode-coupling, higher-order-modes337

have been activated, despite of their weaker strength to the main mode. With the present artificial dissipation strategy,338

lower dissipation occurs within the well-resolved lower-wave-number region, while such artificial energy-suppression339

becomes dominant with the increase of wave-number. To confirm how the artificial viscous term affects the wave340

behaviour within the higher-wave-number region, 3D wave sloshing free from excitation has also been simulated in this341

section.342

In this part, general Gauss-shaped wave profile η(x, y, 0) = H0e
−κr2 , where r =

√
(x− xc)2 + (y − yc)2 with (xc, yc)343

the free-surface centre, has been adopted as the initial condition (Wei and Kirby, 1995; Kang and Sotiropoulos, 2012). To344

confirm both the accuracy and dissipation performance of the present RAV algorithm, linear results have also been shown.345

For the present nonlinear HOS model, linear behaviour can be reached with an initial wave amplitude small enough,346

i.e., H0/L = 0.005 with the width of the square-shaped container L = 20m. Consistent with Kang and Sotiropoulos347

(2012), the water depth in this section has been set as D = 1.0m, and the remaining parametres are κ = 0.25/m2 and348

g = 9.8m/s2. As shown in Figs. 5 and 6, with both the spectral-filtering and the present residual-based artificial viscosity349

models, reasonable numerical results have been obtained, but with different accuracy. For the spectral-filtering strategy350

and its extension, the sensitivity about the filtering parametres to the numerical results has been observed, as shown in351

Fig. 5. As it has been discussed in Sec. 3.2, the lack of coupling between dissipation rate and the temporal increment352

leads to the over-dissipation of the model, especially with small δt (Fig. 5(a)). With the decrease of δt, during the353

numerical simulation within a fixed temporal duration, the increase of filtering iterations, which can be approximated354

as ∆T
δt

, is believed to be the main source of the observed over-dissipation, as it has been mentioned in Sec. 3.2. To355

confirm such hypothesis, as shown in Fig. 5(c), with certain δt (0.50δt case in Fig. 5(a)), the filtering interval has been356

increased to ∆n = 5 and ∆n = 10. As it can be observed, obvious improvement has been reached with such parametre357

optimization. Furthermore, as shown in Fig. 5(b), the numerical results also show sensitivity to the filtering strength358
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αs. As it can be observed from Eqs. (16) and (17), the numerical dissipation is defined by the normalized wave-number.359

With the decrease of such normalized wave-number, vanishing artificial dissipation can be obtained. With the increase of360

grid resolution, as shown in Fig. 5(d), obvious improvement has been reached about the free-surface prediction, because361

of the larger normalization wave-number, which demonstrates the necessity of enough wave components for an acceptable362

numerical dissipation with the spectral-filtering based free-surface stabilization. Generally speaking, for the commonly-363

used spectral-filtering strategy for stability enhancement about the free-surface flow simulation, model parametres should364

be designed carefully to avoid the over-dissipation. Compared with the spectral-filtering model, the present residual-365

based artificial viscosity model shows attractive convergence performance. As shown in Fig. 6, the temporal increment366

shows no obvious effect on the numerical prediction about the free-surface elevation, because of its adaptive coupling to367

the artificial dissipation as it has been mentioned in Sec. 3.2. As another free parametre, consistent with Sec. 4.1.1, the368

numerical results are also not sensitive to the dissipation order, because of its spectral-vanishing property. As shown in369

Fig. 6(d), compared with the spectral-filtering approach, even with the coarse free-surface discretization, satisfactory370

free-surface prediction can be also obtained with the proposed residual-based stabilization strategy, and such property371

is attractive for potential efficiency improvement without the introduction of redundant wave components to achieve372

dissipation optimization within the spectral-filtering algorithm. Although the present case is quite a special one, it373

still shows the performance enhancement of the present adaptive artificial dissipation model to the traditional one with374

spectral-filtering.375

4.1.3 Two Dimensional Forced Sloshing in a Rectangular Tank376

Within the previous sections, free sloshing has been simulated to confirm the performance enhancement of the377

present RAV-HOS model to the traditional spectral-filtering one. In the fields of both academic research and realistic378

industrial application, compared with the free sloshing, the forced sloshing caused by either container oscillation or even379

earthquake is always an attractive topic. In this section, 2D forced sloshing within a rectangular container has been380

simulated to further confirm the performance of the present stabilized free-surface model. To model the wave sloshing381

within a container with forced oscillation, the boundary condition on the container surface becomes non-homogeneous.382

Within the present RAV-HOS model, such non-homogeneous BCs lead to the failure of eigen-expansion with double383

Fourier-modes. To remedy such inconsistency, the wave sloshing has been modelled with the container-fixed coordinate384

system. With such coordinate transformation, the local flow-potential also satisfies Eq. (5) and the local wave elevation385

follows Eq. (1), while Eq. (2) should be modified to consider the effect of container motion386

∂ηl
∂t

+∇hηl · ∇hφl = φl,z, (25)

∂φl
∂t

+
∇φl · ∇φl

2
+ axxl + ayyl + (g + az)ηl = 0, (26)

where ax,y,z denote the container accelerations. Similar with the previous discussion, such formulas can be further387

transformed to their Zakharov’s forms without difficulties.388

Firstly, wave sloshing within a container oscillating horizontally with 0.0186sin(0.999ω1t) has been simulated, where389

ω1 denotes the 1st order eigen-frequency ω2
1 = gk1tanh(k1d) with k1 = π

l
and l/h = 2. For accuracy confirmation, wave390

profiles at t∗ = 13.0667 and t∗ = 15.725 have been shown in Fig. 7. According to the linear theory, with the excitation391

frequency matching that of the eigen-mode, the single-mode resonance can be obtained. As shown in Figs. 7(a) and 7(b),392

because of such resonance, the increase of wave elevation leads to the nonlinear behaviour of the free-surface. Even with393

such small amplitude oscillation, the symmetry-breaking of the large amplitude response still occurs. It can be observed394

that the present results match well with both the experimental and numerical results from Okamoto and Kawahara395

(1990) and Shao and Faltinsen (2014).396

Other than the horizontal excitation, vertical component of the container motion has also been considered in this397
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(a) (b)

(c) (d)

Fig. 5. Free-surface elevation for Gauss-shaped free sloshing about the container centre with different filtering

strategies: (a) ∆n = 1 with filter Eq. (16); (b) ∆n = 1 with filter Eq. (17); (c) multi-step filtering with filter

Eq. (16); (d) identical to (a) with various spacial configurations.
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(a) (b)

(c) (d)

Fig. 6. Free-surface elevation for Gauss-shaped free sloshing about the container centre with different

residual-based artificial viscosity orders: (a) p = 1; (b) p = 2; (c) p = 3; (d) identical to (b) with various

spacial configurations.

(a) (b)

Fig. 7. Free-surface profiles for 2D forced sloshing within a rectangular container at (a) t∗ = 13.0667 and (b)

t∗ = 15.725.
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section. Consistent with Frandsen (2004), purely vertical excited sloshing (case I) with kv = 0.5, ωv
ω1

= 0.798, ε = 0.0014398

and kv = 0.5, ωv
ω1

= 0.798 coupled with kh = 0.0014, ωh
ω1

= 0.98 and ε = 0.0 (case II) have been simulated, where the399

details about parametre definition can be found in Frandsen (2004). It can be observed from Fig. 8 that for both cases,400

the present prediction about the free-surface elevation matches well with that obtained by the FDM model from Frandsen401

(2004), and for case II, the resonance property of the horizontal mode leads to the large amplitude wave motion.402

According to the above results for liquid sloshing, the accuracy and performance enhancement of the present RAV-403

HOS model has been confirmed. In the next section, the present stabilized free-surface model will be adopted as the404

flow-resolving component of the Numerical-Wave-Tank for wave simulation.405

(a) (b)

Fig. 8. Free-surface elevation for 2D forced sloshing within a rectangular container with (a) horizontal

excitation (case I) and (b) coupled vertical-horizontal excitation (case II).

4.2 RAV-HOS based Numerical-Wave-Tank (RAV-HOS-NWT)406

As it has been discussed in Sec. 4.1, the present residual-based artificial dissipation acts as an adaptive spectral-filter407

to enhance the numerical performance of the HOS-based free-surface model, while remaining its accuracy. In this section,408

the developed RAV-HOS model will be adopted for the development of the Numerical-Wave-Tank (NWT), which has409

been commonly-used in the field of offshore and oceanic hydrodynamic research.410

4.2.1 Solitary Wave Generation411

As the first step for the NWT development, wave run-up of solitary wave has been simulated to check the performance412

of the present RAV-HOS model for long-range wave propagation. To launch the solitary wave evolution, initial free-413

surface profile has been set as η(x, 0) = Aw

cosh2(
√

3
4
Aw
d

x
d

)
(Lin et al., 2005). To evaluate the amplitude of the solitary414

wave within a NWT with L/d = 20.0, the wave-peak at x/d = 10.0 has been extracted as A0. As shown in Fig.415

9(a), for such shallow-water case, the wave velocity can be approximated well with c =
√
gd. For t∗ > 6.0, solitary416

wave can be obtained, which confirms the reliability for the selection of mid-tank wave-peak as the solitary wave scale.417

With the increase of Aw, wave tail becomes obvious (Figs. 9(b) and 9(c)). As it will be discussed later, the increase418

of wave velocity leads to earlier wave reflection compared with the smaller amplitude case (Fig. 9(a)). As it can be419

observed, the complex behaviour of solitary wave has been enhanced with the increase of wave amplitude. Actually,420

during the solitary-wave-generation with piston-type wave-makers, similar wave tails have also been observed, as it has421

been mentioned in Tong et al. (2019). During their wave-making processes, such flow behaviour can be traced back to422
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the inconsistent definition about the inlet boundary-condition and the unwanted wave components can be removed with423

the piston-type inlet-boundary replaced by a stationary one with fully-nonlinear solitary wave elevation and horizontal424

velocity profile (Clamond and Dutykh, 2013) as the boundary conditions. During the present solitary-wave-generation,425

the source of the wave tail is different. In the present simulation, the initial wave profile has been set as the analytical426

solution from Laitone (1960) with vanishing flow velocity in the fluid domain. For the shallow water cases, the wave427

evolution can be obtained by η(x, t) = η̂(x−ct)+η̂(x+ct)
2

with η̂(x) the reflection of initial wave profile about x/d = 20.0428

followed by its periodical extension. As it can be observed in Fig. 9(a), when the initial wave amplitude is small, the429

wave profiles match the shallow water ones well. With the increase of Aw, both the nonlinearity (Aw
d

) and dispersibility430

( d
Lw

) increase. The nonlinearity leads to the increase of wave velocity, while the dispersibility leads to the separation of431

long- and short-Fourier-wave-components. With a larger Aw, the initial wave profile becomes narrower, leading to more432

Fourier-wave-components within the initial wave elevation. It is believed that the dispersibility leads to the separation of433

Fourier-wave-components and the formation of complex wave tail, while the nonlinearity leads to a faster wave-travelling434

(Figs. 9(a) - 9(c)). Furthermore, with the Fourier-wave-separation, the Linear-Shallow-Water-Equation (LSWE) over-435

estimates the solitary-wave-amplitude, as shown in Figs. 9(b) and 9(c), because of the energy transfer. Although such436

topic is attractive, it is obvious beyond the goal of present research and will not be discussed further. As shown in Fig.437

9(d), the present results about solitary wave run-up match well with the previous ones (Chan and Street, 1970; Yue438

et al., 2003; Lin et al., 2005). With the adopted wave amplitudes, linear behaviour about the wave run-up has been439

observed, which can be traced back to the long-wave property of the wave motion. With such validation, preliminary440

confirmation about the feasibility of the present RAV-HOS model as the flow solver for NWT has been reached.441

4.2.2 Regular and Irregular Focus Wave Generation442

Uppon the solitary wave, in this section, wave-maker has been equipped to the RAV-HOS-NWT for both regular443

and irregular wave simulation. As it has been discussed in Clamond et al. (2005), compared with the relaxation-zone444

approach, pneumatic wave-maker shows much better performance. In the present research, linear wave-making theory445

has been adopted to match such pressure distribution to the far-field wave generation (Clamond et al., 2005). For446

multichromatic wave with N components, superposition of wave-making pressure sources has been carried out following447

PG
ρ

= ΣNi=1sin(ωit+ θi)Pi(x), (27)

Pi(x) = gAi

√
e

2π
(1 +

2kid

sinh(2kid)
)e−x

2/2λ2
i , (28)

where the wave number ki follows the dispersion relationship with ωi by ω2
i = gkitanh(kid) , θi denotes the wave phase448

and λi = k−1
i . During the present numerical simulations, it has been observed that the mentioned linear wave-making449

theory works well for small wave amplitude cases. With the increase of wave amplitude, undesirable higher-order wave450

deformation has been encountered, leading to the failure of large amplitude wave-making and such an issue has been left451

as one of our future research directions. Although such issue exists, for the focus wave, because of the wave focusing at452

the focal point far away from the wave-making zone, linear behaviour around the wave-maker has been observed, leading453

to the feasibility of focus wave generation with the present linear wave-making model.454

Firstly, two sets of regular waves have been simulated as the preparation for the irregular focus ones. In this part,455

constant water depth of d = 0.7m has been adopted to reproduce the experimental work about wave-focusing by Baldock456

et al. (1996) and the corresponding numerical simulation from Johannessen and Swan (1997). For the regular waves,457

T = 1.4s and T = 0.6s cases with A = 0.005m are selected to check the performance of the present RAV-HOS-NWT.458

Furthermore, with these two simulations, focal point and focal time are determined to guaranteen that all the wave459

components for the following irregular focus wave simulation have been well developed. As shown in Fig. 10, both the460

wave histories at x = 5.0m and x = 10.0m for T = 1.4s case match well with the nonlinear 5th order Stokes’ solution.461
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(a) (b) (c)

(d)

Fig. 9. Wave profiles and wave run-up for 2D solitary wave caused by initial wave elevation: (a) Aw/d = 0.10;

(b) Aw/d = 0.40; (c) Aw/d = 0.80; (d) wave run-up on the right side-wall x/d = 20.0 and its comparison with

previous experimental and numerical results.
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For such wave configuration, the wave steepness is small compared with that of T = 0.6s case. As it can be observed462

from Fig. 10(b), the wave length and wave phase also match the theoretical ones well. Furthermore, as shown in Fig. 11,463

the wave histories (Fig. 11(a)) and wave profile (Fig. 11(b)) for a shorter wave with T = 0.6s have also been simulated464

with the present RAV-HOS-NWT model. With the increase of wave steepness, the performance of the present model is465

also satisfactory.466

(a) (b)

Fig. 10. Time history of wave elevation and the free-surface profile for 2D regular wave with T = 1.4s.

(a) (b)

Fig. 11. Time history of wave elevation and the free-surface profile for 2D regular wave with T = 0.6s.

In recent years, focus waves have become one of the popular topics for oceanic and offshore engineering, due to467

the rich flow physics it contains and the potential damages to the marine structures. Adopting the phase superposition468

algorithm, in this section, two sets of focus waves (case B and case D), which have also been reported in Baldock et al.469

(1996) and Johannessen and Swan (1997), have been reproduced for performance confirmation about the RAV-HOS-470

NWT model. To launch such irregular focus wave simulation, total wave amplitude A = 0.055m has been divided into471

29 wave components with case B: 0.6s ≤ T ≤ 1.4s and case D: 0.8s ≤ T ≤ 1.2s. As it has been shown for regular472

waves, focal time tf = 50.0s and focal location xf = 10.0m have been selected for the adequate growth of all the wave473

components.474

It should be mentioned that, with the nonlinear wave-wave interactions during propagation, the focal time and475
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(a) focal point (b) upstream side

Fig. 12. Time history of 2D focus wave elevation for case B with 0.6s ≤ T ≤ 1.4s.

(a) focal point (b) upstream side

Fig. 13. Time history of 2D focus wave elevation for case D with 0.8s ≤ T ≤ 1.2s.
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focal location of the focus wave will be different from the linear ones. In this section, the numerical results at the real476

focal point have been shifted to make the focal time tf = 0. As it can be observed from Figs. 12 and 13, the present477

predictions about the wave elevation match well with the experimental ones from Baldock et al. (1996). Because of the478

nonlinearity, the wave elevation shows difference from the linear one. For the peak, the linear model under-estimates479

the wave amplitude and for the trough, such wave elevation has been over-estimated. Generally speaking, the present480

RAV-HOS-NWT model has produced accurate predictions about the nonlinear focus wave elevation with over-estimation481

about the focus-wave-peak compared with the experimental results, and such difference can be probably traced back to482

the rough selection about the focal location and the focal time within the present numerical configuration.483

4.2.3 Ship-Wave Generation484

Lastly, other than the 2D wave-simulations with the present RAV-HOS-NWT model, 3D simulations about the ship-485

wave with moving pressure source have also been carried out. Consistent with Clamond et al. (2005), a local pressure486

source in the form PG
ρ

= p0 − p̄0 with p0 = Ae
−( x

2

λ2
x

+ y2

λ2
y

)

has been added to Eq. (4). On the other hand, other than the487

moving pressure on the fixed free-surface, coordinate transformation has been carried out in this section to make the488

moving pressure source a fixed one. To remedy the relating inconsistency in the definition about the D(·)
Dt

term, both Eqs.489

(3) and (4) are modified to their ALE forms with D(·)
Dt

= ∂(·)
∂t

+Up ·∇h(·) with Up the moving velocity of the free-surface490

pressure. Considering the spectral accuracy of the proposed double Fourier-expansions about both free-surface elevation491

and free-surface potential, unlike the commonly used upwind schemes to avoid negative dissipation, in the present work,492

the horizontal gradient operators within the mentioned ALE formulas have been achieved in a spectral way as it has493

been done in Sec. 3.1.494

As shown in Fig. 14, the present RAV-HOS-NWT model has succeeded to reproduce the moving-pressure-caused495

ship-wave with λx = λy = 1.0m, Up = 1.0m/s and A/gλx = 0.15. As it has been discussed in Clamond et al. (2005), the496

initial wave profile is a local trough because of its initial hydro-static balancing with the pressure distribution. Therefore,497

with the moving of such pressure source, a ring-like profile has been obtained. As shown in Figs. 14(b)-14(e), the wave498

length of such ring-like wave is smaller compared with the main ship-wave profile. With the moving of free-surface499

pressure, both long- and short-waves have been captured well with the present RAV-HOS model, due to its spectral500

accuracy and the relating high resolution. Furthermore, at the end of the simulation with t∗ = 100, the sliced wave501

elevation has been compared with that from Clamond et al. (2005) by the spectral BEM model (Fig. 15). With the502

re-definition about x-coordinate, all the sliced wave profiles match well with the previous ones, even for the steep-wave503

right behind the pressure source, which further confirms the capacity of the present stabilized free-surface model for504

large-scale wave simulation.505

5 Conclusions506

In the present research, a stabilized High-Order Spectral (HOS) model has been developed for an efficient prediction507

about fully-nonlinear free-surface flow. To enhance the numerical performance of the model, a residual-based artificial508

viscosity has been adopted to achieve artificial dissipation for under-resolved wave components adaptively. Within509

the proposed stabilization algorithm, spectral-vanishing property has been produced, with the additional dissipation510

scaled with wave-numeber bound and the normalized numerical residual, which has been estimated with a Backward511

Differentiation Formula (BDF) in the time-domain. With the coupling of such dissipation to the temporal increment512

δt with certain dissipation order p, the proposed energy-suppression strategy acts as an adaptive spectral filter. With513

such δt-related filtering, convergence enhancement has been reached, compared with the commonly-used spectral-filtering514

approach. Furthermore, it has been shown that the dissipation order p plays an important role to suppress the undesirable515

energy-decaying for well-resolved wave components with lower wave-numbers. To check the performance of the proposed516

22



(a) t∗ = 0 (b) t∗ = 30

(c) t∗ = 50 (d) t∗ = 70

(e) t∗ = 100

Fig. 14. Wave profiles for the ship-wave modelled with the moving pressure source at t∗ = 0 − 100.
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(a) (b)

(c)

Fig. 15. Wave elevation for the ship-wave modelled with the moving pressure source at t∗ = 100 and (a)

y∗ = 0, (b) y∗ = 10, (c) y∗ = 20.
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RAV-HOS model, liquid sloshing has been simulated, which confirms both accuracy and robustness of the present artificial517

dissipation algorithm. For its extension to wave-wave and further wave-structure interactions, a Numerical-Wave-Tank518

(NWT) has been built with the pneumatic wave-making theory. With the reproduction about the evolution of solitary519

waves, regular waves, irregular focus waves and further ship-waves, it demonstrates the feasibility for the application of520

our RAV-HOS-NWT model to oceanic, offshore and marine engineering researches. Even the present model is still in its521

series version, the overall algorithm can be extended to its parallel one without technical difficulties.522
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Appendix529

As it has been discussed in Sec. 3.2,
∣∣∣ψ̃∣∣∣ has been adopted as the normalization factor to achieve dimension-balancing530

for the artificial viscosity. In this section, the rationality about such choice will be discussed preliminarily.531

For a simple ODE with single DoF, e.g., ẏ = R(y, t), its unconditional-stable implicit Euler predictor follows532

yn+1 − yn

δt
= R(yn+1, tn+1). (29)

While, for explicit Euler predictor, such explicit estimation about yn+1 (denoting as y∗) can be obtained as533

y∗ − yn

δt
= R(yn, tn), (30)

which leads to a numerical residual of Eq. (29) as534

y∗ − yn

δt
= R(y∗, tn+1) +Res. (31)

With the assumption of Rt ≈ 0, i.e., R varies slower than y itself with respect to t (available for higher-wave-number535

wave components in the present research, where t has been only explicitly-defined in external excitation), and the fact536

that yn+1 − y∗ = O(δt2) (2nd order temporal accuracy for both implicit and explicit Euler schemes), Eq. (29) can be537

reformulated as538

yn+1 − yn

δt
= R(yn, tn+1) +R(yn+1, tn+1)−R(yn, tn+1)

= R(yn, tn+1)−Res+ [R(yn+1, tn+1)−R(y∗, tn+1)]

≈ R(yn, tn+1)−Res (32)

≈ R(yn, tn)−Res

≈ R(yn, tn)− Res

y∗
yn+1.
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To make it always dissipative, the residual term should take its absolute value form |Res|
|y∗| y

n+1, leading to the rationality of539

the present residual normalization. Within the present RAV-HOS model for free-surface flow, in principle, such formula540

can be used in either physical space or wave-number space. Obviously, the mentioned numerical approximations in Eq.541

(32) have introduced considerable errors. Therefore, it should be used only for under-resolved wave components. Within542

the physical space, all the collocation grid points and the relating DoFs are equivalent and it is hard to determine which543

DoF has been well-resolved and which DoF has been under-resolved. In this way, such formula should be applied in544

the wave-number space, where the wave components with larger wave-number have been predicted with poor accuracy545

compared with smaller wave-number ones. Compared with Eq. (23), the normalized wave-number term acts as such546

spectral-vanishing filter to avoid the over-dissipation to the well-resolved wave components.547
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