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Deep Multi-Source Visual Fusion with Transformer
Model for Video Content Filtering

Senthil Murugan Nagarajan, Senior Member, IEEE, Ganesh Gopal Devarajan Senior Member, IEEE, Asha Jerlin
M, Daniel Arockiam, Ali Kashif Bashir, Senior Member, IEEE, Maryam M. Al Dabel

Abstract—As YouTube content continues to grow, advanced
filtering systems are crucial to ensuring a safe and enjoyable
user experience. We present MFusTSVD, a multi-modal model
for classifying YouTube video content by analyzing text, audio,
and video images. MFusTSVD uses specialized methods to extract
features from audio and video images, while processing text
data with BERT Transformers. Our key innovation includes two
new BERT-based multi-modal fusion methods: B-SMTLMF and
B-CMTLRMF. These methods combine features from different
data types and improve the model’s ability to understand each
type of data, including detailed audio patterns, leading to better
content classification and speech-related separation. MFusTSVD
is designed to perform better than existing models in terms
of accuracy, precision, recall, and F-measure. Tests show that
MFusTSVD consistently outperforms popular models like Mem-
ory Fusion Network, Early Fusion LSTM, Late Fusion LSTM,
and multi-modal Transformer across different content types
and evaluation measures. In particular, MFusTSVD effectively
balances precision and recall, which makes it especially useful
for identifying inappropriate speech and audio content, as well
as broader categories, ensuring reliable and robust content
moderation.

Index Terms—multi-modal Fusion, Transformer Model, Deep
Learning, Content Filtering, Speech Enhancement

I. INTRODUCTION

In recent years, the multimedia industry becomes the top
service for day-to-day life and its volatile growth occurred
when the latest developments emerged for super-fast machines
and digital devices. This impact leads to an increase in large
volume of multi-modal and sensor data generation. Different
types of data are included in this collection of information,
such as unstructured text documents, images, audios, videos,
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and networking statistics. The main content of multi-media-
based data generation is occupied by short and long videos
that make systems face complex problems toward users [1],
[2]. Different types of human emotions and feelings can be
triggered by various types of video clips [3], [4]. As video
clips can evoke a wide range of human emotions and reactions,
effective content filtering and classification have become crit-
ical. The integration of sophisticated algorithms and machine
learning techniques is essential to address the complexities
associated with analyzing such diverse data. This need for
advanced solutions highlights the importance of developing
robust systems capable of processing and interpreting multi-
modal data efficiently. In summary, the growth trajectory of
the multimedia industry underscores the need for innovative
approaches to manage the vast amounts of data generated
daily, particularly video content. These advances not only aim
to improve user engagement, but also ensure a safer online
environment by effectively moderating potentially harmful
content [5]–[7].

Various developments have been introduced to filter the
contents of audio, video, and text data. However, different
disadvantages such as lack of use experience and different
understanding of categories which are often inconsistent make
researchers to find new solutions. Despite the various methods
proposed for the analysis of information and its extraction,
there is still time to pay attention to different modalities [8],
[9]. Several researches had analyzed the video categorization
based on different genres into various semantic concepts. Due
to the high diversity of information or data related to subject,
genre, format, quality, and style, this leads to a variety of
problems during the process and analysis. The information
obtained is from multiple channels and different sources,
where it contains not only audio and video, but also the speech
and text that were applied during the analysis. SO, representing
such information is always a difficult problem and leads to
improvements to existing models [10], [11].

Due to the increase in information related to digital com-
mercials, it became the common reason for the expansion of
larger repositories. Several advances have been made using
neural network models and recent methods, such as BERT
and transformer techniques, have been used to increase the
performance of multimodality-based fusion models [12]. For
this reason, developing fusion-based methods has become
prominent for understanding the performance of deep learning
models with improving the analysis over different feature
extraction techniques. In this paper, we discuss different
processes that integrate feature extraction for analyzing not
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only video and audio but also textual features. Furthermore,
multi-modal fusion methods are applied with the transformer
technique to fuse the features and analyze the performance of
different models.

The main contributions are summarized as follows.
• MFusTSVD model for content classification in YouTube

videos based on text, audio, and video.
• Developed a feature extraction method using an advanced

hand-crafted technique to extract important information
from the data.

• Introduced two innovative BERT-powered fusion schemes
B-SMTLMF and B-CMTLRMF that effectively combine
features from different modalities while improving the
model’s capacity to learn self-representations, particularly
in audio data.

• Significant improvements in speech-related content sepa-
ration and classification capabilities, allowing for more
accurate detection of inappropriate speech and audio
content.

• Achievement of a well-balanced trade-off between pre-
cision and recall, ensuring reliability and robustness in
content moderation tasks.

In Section 2, a detailed literature of various research findings
is discussed. Section 3 presents the methodology and the
system model. In addition, in detail, the feature extraction
methods for audio data. Section 4 discussed the classification
of video data. In Section 5, the results and discussions based
on the benchmark dataset are detailed and show different
performance metrics. Finally, the conclusion with some future
scope of this research is discussed in Section 6.

II. RELATED WORKS

Several studies have explored the recommendation of media
advertisements and content filtering based on social relevance
[13], [14]. The design and production of multimedia content
play a crucial role in feature extraction analysis, as high-
level patterns in temporal and multimedia features often mimic
human cognition. This requires a deep understanding of both
applications and content creation [15], [16]. Kuleshov et al.
[17] analyzed the impact of filtering during pre-processing,
focusing primarily on band-limited input data preparation for
audio super-resolution before down-sampling.

Cambria et al. [18] introduced Sentic-Blending, which
combines modalities for emotion-based content. Their model
combined natural language text and facial expressions to track
sentiments over time, using the MMI and FGNET datasets.
Paleari et al. [19] applied feature- and decision-level fusion
methods, utilizing the eNTERFACE dataset to combine multi-
modal information. Paradarami et al. [20] developed a model
using content characteristics and reviews through a deep neural
network architecture to generate predictive performance using
an aggregated function approach.

Chung et al. [21] proposed a multi-modal collaborative
recommendation technique using the attention mechanism to
represent image features in high order. They used an LSTM
model for feature fusion to capture user preferences. Wei et
al. [22] applied a cross-attention model to fuse image and text

modalities for downstream tasks. Wang et al. [?] developed a
model based on multi-modal transformer token fusion to detect
uninformative tokens and aggregate features.

Zhu et al. [23] introduced a dual-branch attention fusion
deep network to classify multi-resolution data. Their end-
to-end network model integrated feature fusion for classifi-
cation. Zhao et al. [24] proposed a collaborative attention
network with dual spatial branches to improve the accuracy
of classification by improving features and samples. Liu et al.
[25] presented GAFNet, a deep group spatial attention fusion
network model designed to extract high- and low-level features
while preserving local details and global abstraction.

Nina et al. [26] introduced a multi-modal, modality-agnostic
fusion transformer that learns to exchange information be-
tween multiple modalities, such as video, audio and text,
integrating them into a unified multi-modal representation.
The model is trained with a combinatorial loss on various
combinations of modality, enabling it to process and fuse any
number of input modalities at test time. Swalpa Kumar Roy
et al. [27] proposed a multimodal fusion transformer network
comprising a multi-head cross-patch attention mechanism for
hyperspectral image classification. The model utilizes com-
plementary information from different modalities to achieve
better generalization, learning distinctive representations in a
reduced and hierarchical feature space.

III. METHODOLOGY

This section presents a multi-modal Fusion Transformer
Safe Video Detection (MFusTSVD) model that performs Con-
tent Filtering and inappropriate content detection in YouTube
videos. The architecture of the multi-modal Fusion Trans-
former Safe Video Detection (MFusTSVD) model is shown
in Fig. 1.

At the initial stage, video pre-processing is processed and
subdivided into video, audio, and text. The audio transcript
data from the video is extracted and converted into text
data. Next, video pre-processing involves several key steps to
enhance the quality and uniformity of the information present
in that data. Frame extraction is performed to break down
the video input V dN = {V d1,V d2, ...,V di|i = i,1,2, ...,N}
into small fixed-sized video clips vcN

M = {vci
1,vci

2, ...,vci
j|i =

1,2, ...,N; j = 1,2, ...,M} each lasting S seconds. Let the total
duration of the video V di be τ seconds, then divide it into
small fixed video clips using Eqn. 1:

Number o f clip(M) =
τ

C
(1)

Here, C represents the desired clip length in seconds and τ

represents the total duration of the video in seconds.
Each clip is sampled into frames taking 1

4
th

of the average
frame rate (AFR), which can be calculated using Eqn. 2.

No. o f Frames(k) =
1
4
∗AFR (2)

The video’s average frame rate (AFR) was 23 to 24 frames
per second (FPS). So, we sampled each clip into frames as 6
FPS, which is approximately 1

4
th

of the AFR of the video (23-
24 FPS). Therefore, each clip vci

j is then sampled at the rate
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Fig. 1: Architecture of MFusTSVD Model

of 6 frames per second (FPS) and is represented as v f i, j
k =

{v f i, j
1 ,v f i, j

2 , ...,v f i, j
5 }, which means that the kth video frame

of video clip vci
j belongs to the video input V di. Finally, the

frame is resized by resizing each frame as 224×224. So, each
clip is resized into the frame as 224×224×3 with 6∗S frames.

A. Necessity of BERT Models in MFusTSVD

The inclusion of BERT-powered fusion schemes,
BSMTLMF and B-CMTLRMF, in MFusTSVD serves
distinct but complementary purposes. The architecture of
BERT, based on self-attention mechanisms, is highly effective
in capturing contextual relationships and nuanced feature
interactions within and between modalities. The reasons why
both schemes are necessary:

1) B-CMTLRMF: This scheme addresses the interdepen-
dence between modalities, such as how audio comple-
ments visual data or how text enhances understanding
of the other two modalities. By capturing cross-modal
interactions, B-CMTLRMF provides a holistic represen-
tation that improves overall classification performance.

2) The combined use of these schemes allows the model
to leverage both intra-modal depth and intermodal syn-
ergies, resulting in significant performance gains across
metrics like accuracy, precision, recall, and F1 score.

3) Computational Cost and Suitability for Real-Time
Systems: We acknowledge that the integration of BERT
models increases computational cost due to their com-

plexity. However, several considerations make their in-
clusion justified and manageable:

4) Performance Justification: The improved accuracy and
robustness provided by BERT models outweigh the
additional cost, particularly in applications where high
accuracy is critical, such as content moderation and
sensitive material classification.

5) Optimization Opportunities: Techniques like model
pruning, quantization, and knowledge distillation can
reduce the computational overhead of BERT without
substantial performance loss, making the system suitable
for applications in near-real time. Additionally, hardware
accelerators (e.g., GPUs, TPUs) can further optimize
inference time.

6) Scalability: By modularizing BSMTLMF and B-
CMTLRMF, the system can be scaled or adapted to bal-
ance performance with computational constraints based
on the deployment scenario.

7) Using only one scheme would result in a loss of either
intra-modal (BSMTLMF) or intermodal (B-CMTLRMF)
insights: Employing only BSMTLMF would limit the
model’s ability to capture cross-modal dependencies,
which are essential for understanding multimodal data
holistically. Using only B-CMTLRMF without the con-
textual enhancement provided by BSMTLMF would
reduce the quality of individual modality features, weak-
ening overall fusion quality.

B. Feature Extraction Process
For the task of classifying videos, three data modalities

are incorporated: textual, visual, and auditory. Each modality
employs a distinct technique for feature extraction, resulting
in varied semantic information. Next, we introduce the feature
extraction method for each modality.

Textual Features: We employ BERT (Bidirectional En-
coder Representations of Transformers) to extract textual fea-
tures from video transcripts. Tokenization is performed using
WordPiece, which segments words into subword tokens T =
{t1, ..., tT} and assigns them token IDs based on a predefined
vocabulary. Then these token IDs are assigned to the token
embeddings X = {x1, ...,xT}. Since transformers lack inherent
word order understanding, Positional Encoding (PEN) is added
to embeddings, computed as per Eqn. 3 and 4.

PEN(posi,2i) = sin(
posi

10000
2i
d
) (3)

PEN(posi,2i+1) = cos(
posi

10000
2i+1

d
) (4)

The final token embedding includes [CLS] at the start and
[SEP] at the end, forming the sequence TE , which is input into
BERT’s encoder to generate contextualized word embeddings
as per Eqn. 5

FT
C = BERT (TE) (5)

Each encoding layer consists of a multihead self-attention
sub-layer and a fully connected sub-layer, ensuring effective
contextual representation.
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Audio Feature Extraction: To maximize precision, we
considered two types of feature: Handicraft low-level audio
(HLLA) features and deep learning-based high-level audio
(DHLA) features.

Handicraft Low-Level Audio Features: We use the CO-
VAREP framework to extract HLLA characteristics f HA such
as 1. Pitch & Peak Slope Parameters where it helps to dif-
ferentiate speech tones, detect emphasis, and identify speaker
variations. 2. Mel frequency cepstral coefficients (MFCCs) that
capture timbral and phonetic characteristics, making them use-
ful for speech recognition and emotion detection. 3. Maximum
proportions of dispersion that provides information on speech
rhythm and fluency. 4. Voiced/Unvoiced Segmentation Fea-
tures, which helps distinguish between speech and non-speech
sounds, aiding in content classification. 5. Glottal Source
Parameters that analyze voice quality, which can help detect
emotional tone and speaker characteristics. These features play
a crucial role in our MFusTSVD model by improving its
ability to classify speech-related content, detect inappropriate
speech patterns, and improve overall audio-based filtering.

Deep Audio Feature: We used the SoundNet and VG-
Gish deep learning model to obtain the DHLA feature maps
f DA = { f sound ∥ f V ggish}; f vggish ∈R1024, f sound ∈R128. The size
of a 3-dimensional feature map is represented as H×W ×C,
where H represents the height, w represents the width, and C
represents the number of channels of the feature map. In order
to finished DHLA features f CA, we concatenate f HA and f DA

into feature dimension using Eqn. 6:

f CA = f HA ∥ f DA (6)

Like audio, we considered two types of visual modalities,
including HLLV and Deep Learning-based High-Level Video
(DHLV) features. For visual modality, Facet5 extracts a set
of low-level visual (HLLV) characteristics of handcrafts f HV

including facial action units, facial landmarks, head pose,
gaze tracking and HOG characteristics. We applied two deep
learning models including VGG-19 and RestNet50 to ex-
tract (DHLV) characteristics f DV = { f V gg ∥ f ResNet}; f V gg ∈
R4096, f ResNet ∈ R2048, that is. In order to finished DHLV
features f CV , we concatenate f HV and f DV into the feature
dimension using the following mathematical expression given
in Eqn. 7:

f CV = f HV ∥ f DV (7)

Since the audio and video dimensionality is different from
the dimensionality of the text feature set, we employed a
convolutional one-dimensional operation (Conv1-D) to achieve
the same dimension and enables strong connection with their
adjacent element. To compute unimodal input from the au-
dio and video feature, we performed the Conv1-D operation
followed by batch normalization, activation ReLU, dropout,
soft pooling, and activation ReLU, and mathematically it is
expressed in Eqn. 8 and 9.

FCA = ReLU
(

so f t pooling
(
Drop(ReLU(BN(conv1D( f CA,krCA))))

))
(8)

FCV = ReLU
(

so f t pooling
(
Drop(ReLU(BN(conv1D( f CV ,krCV ))))

))
(9)

Here, krCA and krCV represent the size of the convolution
kernel for the audio and video modalities.

Considering the interconnected nature of elements (time
steps) within uni-modal sequences and their proximity to
neighboring elements, a pooling technique can compress the
temporal dimension. Consequently, we employ soft pooling
to aggregate the time dimension of individual uni-modal se-
quences. Soft pooling effectively reduces the length of the uni-
modal sequence, thereby refining the information encapsulated
within it. Soft-pooling is computed using Eqn. 10.

so f t pooling( f m
i ) = ∑

i∈R

e f m
i

∑ j∈R e f m
i

f m
i ; |m =CA,CV (10)

Here, f m
i refers to the ith element along the temporal axis of

the uni-modal sequence after dropout. R denotes the pooling
region. In contrast to max-pooling and mean-pooling, soft-
pooling allocates non-linear weights to the elements within R,
thereby exhibiting greater expressive capability.

C. BERT-enabled Self Modality Transformer based Low-Rank
multi-modal Fusion (B-SMTLMF)

The proposed B-SMTLMF model employed the concept of
the BERT mechanism to evaluate the importance of correla-
tions between feature characteristics within a singular modality
and capture the contextual characteristics of the set of features.
Contextual characteristic of the audio and video feature set
using the Self Modality Transformer Encoder (SMTE).

The self-Modality Transformer Encoder (SMTE) employs
the multi-head self-attention mechanism used in BERT to
calculate the self-attention score for multi-headed sub-layer,
first compute the key (K), query (Q), and value (V) vectors
for multi-modal feature vectors Fm using linear transformation
given in Eqn. 11.

Q = FmW h
Q;K = FmW h

K ;V = FmW h
V (11)

Where, m represents modalities including the audio feature
set and the video feature set such that m = CA,CV. Then, the
attention score Ai j is computed using Eqn. 12.

Ah
i j = so f tmax(

QKT
√

da
) (12)

Here, da = dhs/h; dhs represents the hidden state dimen-
sion, while h denotes the number of the attention head and
W h

K ∈ Rda×dhs , W h
Q ∈ Rda×dhs , W h

V ∈ Rda×dhs represent weight
matrices. Since the self-attention mechanism is performed for
a series of hidden states Hs= {hs1, ...,hsF}. Here, hidden state
is represented by multi-modal feature vectors Fm. Therefore,
the attention score for the hidden state is computed using Eqn.
13.

Ah
i j = so f tmax

(
(W h

Qhsi)(W h
Khsi)√

da

)
(13)
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Based on the attention score, the output of the multi headed
self-attention sub-layer MH = {hd1, ...,hdH} is given in Eqn.
14.

hdh
i =

F

∑
j=1

Ah
i j(W

h
V hsi) (14)

Concatenate the outputs of all heads as CMH = [hd1
i ∥

hd2
i ... ∥ hdh

i ] and apply a linear transformation using Eqn. 15.

Fm
Linear = Linear(CMH) =WmhMH +b (15)

Where, Wmh ∈ Rdhs×dhs represents the weight matrix, ∥
denotes the concatenation operation. After residual connection,
add the original input to the output and apply layer normal-
ization using Eqn. 16.

Fm
LN = AddNorm(Hs+Fm

Linear) = AddNorm(TE +Fm
Linear)

(16)
Apply a fully connected feed forward network, in position,

providing (M̂H) as input to the feed forward network that gen-
erates the output as OFFN = {oFFN

1 , ...,oFFN
N } and is expressed

in Eqn. 17.

Fm
FFN =W2ReLU(W1Fm

LN +B1)+B2 (17)

Where, W1,W2 ∈ Rdhs×dhs represent weight matrices and
B1,B2 ∈ Rdhs×dhs . Add the output of the input network to the
previous output and apply layer normalization to generate the
final output using Eqn. 18.

Fm
C = AddNorm(Fm

Linear +Fm
FFN) (18)

The final output Fm
C obtained from the last layer is consid-

ered a contextual feature embedding matrix for a given audio
and video input sequence. We employed the entire stack of
H Layers of self-attention multi-headed operation of BERT
architecture for estimating feature correlation using the self-
attention multi-headed mechanism.

D. Self-Modality Low-Rank Multi-modal Fusion

In this work, we used Low-Rank multi-modal fusion
(LRMF) to fuse the characteristics of different modalities,
including video, text, and audio, to predict safe video. LRMF
is a multi-modal based tensor fusion that correlates the features
from different modalities. In this work, we used the concept
LRMF to perform multi-modal feature fusion of three different
feature vectors Fs

C = {FT
C ,FCA

C ,FCV
C } extracted from three dif-

ferent modalities including text, video and audio. We consider
the low rank decomposition method in LRMF to break down
the weight W into distinct factors {W 1, ...,W dl} that align with
the modal features zs and it is expressed mathematically using
Eqn. 19.

W = {W 1, ....,W dl} (19)

Where, dl represents the dimension of the set of text, audio,
and video features, that is, dl = dT ×dCA×dCV . W is obtained

by applying low-rank decomposition based on the LRMF
technique and is expressed in Eqn. 20.

W sel f =
R

∑
i=1

S⊗
s=1

(ω)s
i (20)

Here, R represents the rank value of the matrix. We consider
Rds×ts as sth modality space which includes the number of
modalities S and a random selection of a one-time step is
made from the features of each modality denoted Fs

C ∈ Rds .
The input tensor z, formed by the uni-modal representation is
calculated using Eqn. 21.

Zsel f =
S⊗

s=1

Fs
C (21)

LRMF-based multi-modal feature fusion Zsel f
f usion is obtained

using Eqn. 22.

Zsel f
f usion = g(Zsel f ;W sel f ,Bsel f ) =W sel f .Zsel f +Bsel f (22)

Here, Bsel f represents bias.

W sel f .Zsel f =

(
i=1

∑
R

S⊗
s=1

(ωs f )s
i

)
(

S⊗
s=1

F s
C)

= ∑

(
R

∑
i=1

S⊗
s=1

(ωs f )
s
i .

S⊗
s=1

F s
C

)

=
i=1

∑
R

(
∑

S⊗
s=1

((ωs f )s
i .F

s
C)

) (23)

Here, ∑ and. represent the summation of the element in
the multiplication of elements in a given direction and can
be replaced by

∧S
s=1 xs = x1.x2.x3 that performs the same

summation of the element with the multiplication of elements
in a given direction or the input tensor sequence.

=
R

∑
i=1

( S∧
s=1

(ωs f )
s
i .F

s
C

)
=

S∧
s=1

( R

∑
i=1

(ωs f )s
i .F

s
C

)

Zsel f
f usion =

[( i=1

∑
R
(ωs f )T

i .F
T

C

)
◦
( i=1

∑
R
(ωs f )CA

i .FCA
C

)
◦
( i=1

∑
R
(ωs f )CV

i .FCV
C

)]
+Bsel f

(24)

Algorithm 1 represents the BERT-enabled Self-Modality
Transformer-based Low-Rank multi-modal Fusion (B-
SMTLMF).

E. Cross Modality Model

In this part, we introduce BERT-enabled cross-modal
transformer low-rank multi-modal fusion (B-CMTLRMF) for
cross-modal feature fusion and their interaction to capture
intra-modal complementary information. We employed three
Cross-Modality Transformers (CMT), including CMT-Text,
CMT-Audio, and CMT-video, that used self-attention multi-
headed mechanisms to perform feature fusion from three
different modalities, including Text, Video, and Audio.

In CMT-Text, the transformer encoder, we performed the
cross-modal feature fusion of the textual feature vectors FT

C
with the audio and video feature matrix f CA and f CV , re-
spectively. First, we compute the attention score for text-audio
cross-modality and text-video cross-modality. The text-audio
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Algorithm 1 B-SMTLMF Algorithm
Input: Token Embedding ← TE , Multi-modal Feature
Fm = {FCA,FCA},weight←W sel f

Output: Self Modality Feature Fusion
Zsel f

f usion
1: Encoding Model
2: FT

C = BERT (TE)
3: Fm

C = SMT E(Fm)
4: Procedure (Fm)
5: Initialize
6: Q = FmW h

Q;K = FmW h
K ;V = FmW h

V
7: for each feature in Fm do
8: for each head in hdh

i do
9: Compute attention score as per Eqn. 15 and Eqn. 16

10: end for
11: end for
12: Concatenate heads CMH = [hd1

i ∥ hd2
i ∥ .... ∥ hdh

i ]
13: Apply Linear Transformation as per Eqn. 17
14: Apply Add and Normalization as per Eqn. 18
15: Apply FFN Fm

FFN =W2ReLU(W1Fm
LN +B1)+B2

16: Apply Add and Normalization as per Eqn. 20
17: End Procedure
18: for i = 1toR do
19: for 1 ot s do
20: W sel f = ∑

R
i=1
⊗S

s=1(ω)s
i

21: Zsel f
f usion =

[(
∑

i=1
R (ωs f )T

i .F
T

C

)
◦(

∑
i=1
R (ωs f )CA

i .FCA
C

)
◦
(

∑
i=1
R (ωs f )CV

i .FCV
C

)]
+

Bsel f

22: end for
23: end for
24: Return Zsel f

f usion

cross-modality attention score AT−CA is computed using the
audio feature matrix FCA as query Q. In contrast, textual
feature vectors FT

C as key K and Value V. Similarly, the Text-
Video Cross-Modality Attention Score AT−CV is computed
by taking the audio feature matrix FCV as query Q while
textual feature vectors FT

C as key K and Value V. After kth

cross-modality multi-head attention layer, we obtained text-
audio cross-modality MHT−CAk

and text-video cross-modality
MHT−CV k

using Eqn. 25 and 26.

MHT−CAk
=CrossMH (FCAk

,FT k
C ,FT k

C ) = wk
cma[hdT−CAk

0 ∥ ...hdT−CAk
p ] (25)

MHT−CV k
=CrossMH (FCV k

,FT k
C ,FT k

C ) = wk
cma[hdT−CV k

0 ∥ ...hdT−CV k
p ] (26)

where, wk
cma represents the weight matrix;

hdT−CAk

i = AT−CA(wk
Qi

. FCAk
,wk

Ki
FT k

C ,wk
Vi

FT k

C and

hdT−CV k

i = AT−CV (wk
Qi
.FCV k

,wk
Ki

FT k

C ,wk
Vi

FT k

C ).AT−CA. (.)
represent single attention layer obtained using Eqn. 9 while
hdT−CAk

i represents ith single head attention layer output
which is computed using Eqn. 10. Add FT−CAk

and FT−CV k

to generate fused cross-modality FCMT,CA,CV k
using Eqn. 27.

FCMT,CA,CV k
= Drop(MHT −CAk +MHT −CV k) (27)

Here, drop(.) represents the dropout layer. The resultant
output FCMT,CA,CV k

was then fed into the residual and nor-
malization layer to generate a set of integrated features based
on textual attention TCA,CV k

and mathematically expressed in
Eqn. 28.

TCA,CV k
= Norm(FT

C +FCMT,CA,CV k
) (28)

In order to obtain the final fused textual feature matrix
Fcrs−T fused with the audio and video feature matrix, the
resultant output TCA,CV k

is fed into the feed-forward, resid-
ual, and normalization layer, which performs the following
operations based on Eqn. 29 and 30.

FFN(TCA,CV k
) = Drop(wk

1(Drop(ReLU(wk
0.T

CA,CV k
+Bk

0)))+Bk
1) (29)

Fcrs−T = Norm
(

TCA,CV k
+FFN(TCA,CV k

)

)
(30)

Where, wk
0,w

k
1 and Bk

0,B
k
1 represent the weight and bias ma-

trix; Drop(.),FFN(.),Norm(.) and ReLU (.) represent dropout,
feedforward, normalization, and the ReLU activation function.
Similarly, we obtained the fused audio feature matrix Fcrs−A

fused with the text and video feature matrix, and the fused
video feature matrix Fcrs−V fused with the audio and text
feature matrix using the CMT-Audio and CMT-Video encoder.
The resultant output Fcrs−A had been computed by passing
the feature matrix FCA,FCV and FT

C to the CMT-Audio
transformer encoder and mathematically it is expressed in Eqn.
31 and 32.

ACA,CV k
= Norm

(
FCA+FCMCA,T,CV k

)
(31)

Fcrs−A = Norm
(

ACA,CV k
+FFN(ACA,CV k

)

)
(32)

The resultant output Fcross−V had been calculated by pass-
ing the feature matrix f CA, f CV and FT

C to the CMT-Video
transformer encoder and is mathematically expressed in Enq.
33 and 34.

VCA,CV k
= Norm

(
f CV +FCMCV,CA,T k

)
(33)

Fcrs−V = Norm
(

VCA,CV k
+FFN(VCA,CV k

)

)
(34)

Algorithm 2 represents pseudo-code for BERT-enabled
cross-modality transformer-based low-rank multi-modal fusion
(B-CMTLMF).
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Algorithm 2 Cross Modality Algorithm

Input: Text feature← FT
C , Audio Features ← FCA, Audio

Features ← FCV , weight ←W crs

Output: Cross Modality Feature Fusion
Z f usion

crs

1: Encoding Model
2: FT

C = BERT (TE)
3: Fcrs−T =CMT Text(FT

C ,FCA,FCV )
4: Fcrs−A =CMTAudio(FCA,FT

C ,FCV )
5: Fcrs−V =CMTVideo(FCV ,FCA,FT

C )
6: ProcedureCMT Text(FT

C ,FCA,FCV )
7: Initialize
8: QA = FCAW h

QA;KT = FT
C W h

KT ;V T = FT
C W h

V T
9: QV = FCVW h

QV ;KT = FT
C WKT h;V T = FT

C W h
V T

10: Compute Attention Score

11: AT−CA
(

wk
QAi

FCAk
,wk

KTi.
FT k

C ,wk
V Ti.

FT k

C

)
and

12: AT−CV (wk
QVi

FCV k
,wk

KTi.
FT k

C ,wk
V Ti.

FT k

C )
13: Compute HEAD Operation

14: hdT−CAk

i = AT−CA
(

wk
QAi

.FCAk
,wk

Ki.
FT k

C ,wk
V Ti.

FT k

C

)
15: hdT−CV k

i = AT−CA
(

wk
Vi
.FCAk

,wk
KTi.

FT k

C ,wk
V Ti.

FT k

C

)
16: Compute cross modality Multi-head Operation
17: MHT−CAk

= wk
cma[hdT−CAk

0 ∥ ...hdT−CAk
p ]

18: MHT−CV k
= wk

cma[hdT−CV k

0 ∥ ...hdT−CV k
p ]

19: Generate fused cross-modality
20: FCMT,CA,CV k

= Drop(MHT−CAk
+MHT−CV k

)
21: Apply Add and Normalization
22: TCA,CV k

= Norm(FT
C +FCMT,CA,CV k

)
23: Apply FFN, Add and Normalization
24: FFN(TCA,CV k

) = Drop(wk
1(Drop(ReLU(wk

0.T
CA,CV k

+
Bk

0)))+Bk
1)

25: Fcrs−T = Norm(TCA,CV k
+FFN(TCA,CV k

))
26: Return Fcrs−T

27: End Procedure
28: Completion of CMTAudio and CMTVideo Fusion
29: for i = 1 to R do
30: for s = 1 to S do
31: Zcrs

f usion = [(∑R
i=1(ω

cr)T
i .F

crs−T ) ◦
(∑R

i=1(ω
cr)A

i .F
crs−A)◦ (∑R

i=1(ω
cr)Vi .F

crs−V )]+Bcrs

32: end for
33: end for
34: Return Zcrs

f usion

IV. MULTI-MODAL FUSION BASED VIDEO CLASSIFICATION
AND LOS

s LRMF enables self and cross-modality based multi-modal
feature fusion set Zsel f

f usion and Zcrs
f usion had been concatenated

to obtained final feature matrix Zcat
f usion. The operation of

concatenation is mathematically expressed in Eqn. 35.

Zcat
f usion =Wf [Z

sel f
f usion ∥ Zcrs

f usion] (35)

Where, Wf represents the learnable weight parameter and
∥ represents the concatenation parameter. The concatenated

output Zcat
f usion is then fed as input to the dense layer and the

SoftMax classification layer to classify the video into safe,
violence, and sexual. The video classification is formulated
using Eqn. 36, 37, and 38:

gi = ReLU(Wcl .Zcat
f usioni

+Bcl) (36)

pdi = so f tmax(W ′cl .gi +B′cl) (37)

y′i = argmax
q

(pdi) (38)

Where, gi represents the dense layer output, pdi represents
the prediction probability of the given input video vdi, Wcl , W ′cl
and Bcl , B′cl represent the learnable weight and bias parameter;
y′i represents the predicted class. To compute loss, we used
the L2-Norm-based cross-entropy function and trained the
proposed model with minimum loss using Eqn. 39.

Loss =
1

∑
N
k=1 n(k)

N

∑
i=1

n(i)

∑
j=1

yi jlogy′i j (39)

Where, N represents the number of videos, n(i) represents
the number of video clips in the ith video, yi j and y′i j represent
the actual and predicted class of video clips jth in the ith video.
Algorithm 3 represented pseudo-code for multi-modal fusion-
based Video classification and Loss.

Algorithm 3 multi-modal fusion-based Video classification
and Loss
Input: Self modality fused features Zsel f

f usion, Cross modality
fused features Zcrs

f usion, model parameter Wf , Wcl , Bcl , W ′cl , B′cl
Output: Classification Result and
Loss

1: for each feature in Zsel f
f usion do

2: for each feature in Zcrs
f usion do

3: Zcat
f usion =Wf [Z

sel f
f usion ∥ Zcrs

f usion]
4: end for
5: end for
6: for each feature in Zcat

f usion do
7: gi = ReLU(Wcl .Z

cati
f usion +Bcl)

8: pdi = so f tmax(W ′cl .gi +B′cl)
9: y′i = argmax

q
(pdi)

10: Loss = 1
∑

N
k=1 n(k) ∑

N
i=1 ∑

n(i)
j=1 yi jlogy′i j

11: end for
12: Return Classification Result and Loss

V. RESULTS AND DISCUSSION

A. Experimental Settings

Numerous video data sets are available for research pur-
poses. Google has introduced the YouTube-8M benchmark
dataset, which includes more than 8 million video IDs associ-
ated with labels from 4 716 classes. Furthermore, various other
video benchmarks focus on specific categories such as face
recognition (YouTube Celebrities, YTF), sports (UCF-101,
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Sports-1M), sentiment analysis, action recognition (Kinetics,
HMDB51) and video captioning (MSR-VTT, MSVD). How-
ever, none of the existing benchmarks specifically addresses
the proposed video classification problem. Data sets including
the Elsagate dataset and the NPDI cartoon dataset. Rather,
Elsagate dataset is a publicly available dataset that contains
cartoon video and best candidate dataset to address our issue
in which each video is classified as safe or unsafe, but in this
dataset even clear frame is also labeled as unsafe that misleads
to mis-classification. Moreover, it lacks the intricate behaviors
associated with sensitive content. However, the NPDI dataset
consists of only 900 images, which is too small and unsuitable
for our deep learning-based video classification task. Anime
videos serve as a suitable dataset for our experiments, being
animated videos containing intermittent indecent content. Each
anime series consists of a varying number of episodes, typi-
cally lasting 20 to 25 minutes. As our focus is on fine-grained
detection, the dataset needs to include short-duration video
clips. Consequently, we divided each episode into one-second
duration clips, resulting in 109,835 video clips, encompass-
ing all episodes in that series. To establish ground truth, a
video annotation portal was developed. The annotators, which
consisted of ten undergraduate and graduate students aged 20
to 25, both male and female, received detailed instructions
on the annotation task. Upon logging in, they were presented
with a list of videos to watch. During viewing, they were
tasked with categorizing each video clip as safe, depicting
violence, or containing sexual content. Clips featuring other
acts (e.g., extreme bloodshed or violence, smoking, drug use,
frightening or horror scenes, etc.) were excluded from this
dataset. The manual annotation process resulted in a total of
111,561 video clips, including 57,908 clips classified as safe,
27,003 clips in the sexual-nudity class, and 26,650 clips in the
fantasy violence class.

In the realm of multi-class video classification, the accu-
rate classification of diverse classes, such as safe, violence,
and sexual content, is a critical task with implications for
content moderation, child safety, and platform compliance.
This study undertakes a comprehensive comparative analysis
of seven distinct categories of models, each designed for
distinct fusion methodologies. The objective is to discern their
efficacy in accurately classifying videos in multiple classes.
Our experimental design meticulously evaluates the proposed
methodology through a multi-pronged approach, focusing on:

• Granular Performance Analysis: We systematically vary
video clip size and class distribution to quantify the
methodology’s sensitivity to data granularity and inher-
ent class complexities. This analysis provides valuable
insights into its robustness and adaptability in diverse
video contexts.

• Bench-marking against Established Techniques: We per-
form a rigorous comparison of our methodology against
leading video descriptors and classifiers. This benchmark
sheds light on its competitive advantages and potential
areas for further optimization, informs future research
directions, and contributes to the advancement of the
field.

In the constant fight to protect children online, understand-
ing the intricacies of child safety detection models is crucial.
This research dives into the relationship between temporal
granularity and the performance of our proposed MFusTSVD
model, specifically its effectiveness in pinpointing subtle child
safety concerns. Using meticulously segmented video clips
of varying lengths (12, 7, 4, and 2 seconds), we trained
separate MFusTSVD instances to capture the intricacies of
temporal context at different scales. To maximize individual
learning, we employ a transfer learning approach, initializing
the encoder weights of a final, fine-tuned classifier with those
of each individual model.

(a) Accuracy

(b) Precision

(c) Recall

Fig. 2: Fine-grained Comparative Analysis for Varying Clip
Sizes

As depicted in Figure 3, we observed a significant up-
ward trend in precision, recall, and AUC values as clip size
decreased. This suggests that the MFusTSVD model thrives
on shorter durations, effectively harnessing localized temporal
context to pinpoint child safety concerns with remarkable
precision. Figure 5 further strengthens this observation, show-
casing individual ROC curves for each clip size. We wit-
nessed a steady upward ascension with decreasing clip lengths,
particularly pronounced for the ”sexual” class of harmful
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content. This potentially indicates an advantage of focusing
on immediate actions within smaller windows for specific
types of child exploitation, potentially avoiding extraneous
information or redundancy that might be introduced by broader
contexts. Balancing granularity with feasibility, we judiciously
set the minimum clip size at 2 seconds. This provides sufficient
temporal context for accurate differentiation while remaining
practical for annotation and resource management.

(a) Accuracy (b) Precision

(c) Recall (d) Recall

Fig. 3: ROC Analysis for Different Instances

B. Bench-marking against Established Techniques

The chosen models include prominent architectures such
as CNNs (VGG-19, ResNet, Combined), RNNs (Memory
Fusion Network (MFN), Early Fusion LSTM (EF-LSTM),
Late Fusion LSTM (LF-LSTM)), Transformer-based architec-
tures (multi-modal Transformer (MulT), Interpretable multi-
modal Routing (IMR)), Tensor fusion-based methods (Tensor
Fusion Network (TFN), Low-rank Modality Fusion (LMF)),
Graph Fusion Methods (multi-modal Graph), Transforme-
LMF (LMF-MulT; Fusion-Based-CM-Attn-MulT), and our
proposed model (DL-Transformer-LMF - DSC2LMVFT). To
obtain the results for each baseline, we first fine-tune each
model by conducting a fifty-times random grid search on the
hyper-parameters. Then, we train each model again with the
best hyper-parameters five times and calculate the mean results
as the final result.

The comparative analysis of unsuitable content detection
and classification methods, as illustrated in the provided ta-
ble, reveals insightful findings regarding the performance of
various benchmark approaches and the proposed MFusTSVD.
The recall values for MFusTSVD are competitive, indicating
its ability to effectively capture relevant instances of Safe, Vio-
lent, and Sexual content. The method’s commendable average
recall underscores its capability to identify instances across
different content classes, ensuring comprehensive coverage.
Furthermore, balanced F-measure values highlight the ability

of MFusTSVD to strike a harmonious trade-off between pre-
cision and recall, further emphasizing its robust performance
in content classification.

These results have significant implications for content
filtering on platforms such as YouTube, suggesting that
MFusTSVD could play a pivotal role in creating a safer online
environment for users. The method’s superior performance
positions it as a promising solution for enhancing content
moderation mechanisms, not only on YouTube but potentially
across various domains requiring accurate and comprehensive
content classification. The success of MFusTSVD in this
comparative analysis underscores its potential as an advanced
and effective approach to the detection and classification of
unsuitable content.

VI. CONCLUSION

The proliferation of YouTube content has necessitated ad-
vanced content filtering mechanisms to ensure a safe and
user-friendly environment. To address this, we proposed an
MFusTSVD model that takes video clips as input. The in-
put is then converted into three modalities, including text,
audio, and video image. We employed a handicraft method
and deep learning to extract feature from audio and video
image data while the BERT transformer was used to extract
textual characteristics. We also proposed a BERT-enabled low-
rank multi-modal fusion-based self-modality B-SMTLMF and
cross-modality B-CMTLRMF feature fusion model to perform
feature fusion obtained from three different modalities. Our
proposed approach, named MFusTSVD, aims to exceed ex-
isting benchmarks by achieving superior accuracy, precision,
recall, and F-measure. The integration of visual fusion and
transformer models offers a holistic solution to the complex
task of content classification, promising greater efficiency and
accuracy. The results of our comparative analysis highlight
the exceptional performance of MFusTSVD when compared
against established benchmarks, including the Memory Fusion
Network (MFN), Early Fusion LSTM, Late Fusion LSTM,
multi-modal Transformer (MulT), and others. In particular,
MFusTSVD consistently outperforms these methods in terms
of accuracy, precision, recall, and F-measure across various
content classes. This demonstrates the model’s efficacy in
accurately detecting and classifying inappropriate content in
YouTube videos. The balanced trade-off between precision
and recall further underscores the reliability and robustness of
MFusTSVD. In the future, we should focus on optimizing and
fine-tuning MFusTSVD for efficiency and scalability. Large-
scale real-world evaluations will provide information on its
performance in diverse contexts and in different languages and
cultures.
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