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Abstract: Understanding changes in urban green and blue infrastructure (UGBI) associated
with land use management can inform planners on trends in environmental change that
may impact urban resilience. While UGBI change resulting from land use conversion
has received significant research interest, UGBI change within otherwise consistent land
uses has received scant attention. This study developed a high-resolution spatiotemporal
analysis framework to map fine-scale UGBI change across all land use classes in Manchester,
UK, over a period (2000–2017) of significant population growth. The study found that
UGBI declined in 17 out of 29 land use classes, with an overall city-wide UGBI loss of
11.9%, compared to UGBI gains for 6.4% of the city. Declines were most concerning in
residential areas, which cover 33.6% of Manchester, as UGBI in these areas is important
for delivering ecosystem services to citizens. Extrapolation of change rates indicate that
two-thirds of future UGBI loss could occur in residential areas. These results provide
insights into socio-economic processes which are likely to have similar implications for
UGBI trends in other urban areas. Such knowledge is critical to inform land use planning
and management to identify where UGBI is at risk and implement appropriate policies to
reverse or minimise losses.

Keywords: urban; green–blue infrastructure; land use; land cover; image classification;
temporal change

1. Introduction
Environmental features such as woodlands, street trees, rivers, ponds, wetlands, parks,

shrubs, and hedges serve as a vital network of natural and semi-natural spaces, providing
a wide range of recreational, cultural, and provisioning benefits to urban residents. As
climate change is projected to exacerbate extreme weather events in the coming decades,
this network of environmental features, or urban green–blue infrastructure (UGBI), will
serve as an increasingly important resource in bolstering urban climate resilience [1,2].
Vital functions, such as stormwater absorption in canopy leaves and soils, and temperature
cooling through evapotranspiration in vegetation and waterbodies regulate environmental
hazards such as surface flooding and the urban heat island effect [3]. The quantification
of such benefits, as ecosystem services with value to people [2], enables stakeholders to
consider and contrast the relative advantages of UGBI to grey infrastructure adaptations
for resident well-being [4].

Whilst many cities have adopted extensive greening programs in recent years, nu-
merous studies suggest an overall decline in the extent and quality of UGBI in many

Land 2025, 14, 1077 https://doi.org/10.3390/land14051077

https://doi.org/10.3390/land14051077
https://doi.org/10.3390/land14051077
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-8429-870X
https://doi.org/10.3390/land14051077
https://www.mdpi.com/article/10.3390/land14051077?type=check_update&version=1


Land 2025, 14, 1077 2 of 45

urban centres around the world [5,6]. UGBI degradation typically occurs from infill de-
velopment, whereby existing UGBI resources are replaced with impervious surfaces, or
through the expansion of built infrastructure into habitats on the urban periphery [7]. As
the pressure for economic development and housing continues, towns and cities become in-
creasingly built-up, resulting in a growing population with diminishing access to ecosystem
services [8].

Countering such degradation is therefore a key concern amongst many urban plan-
ning stakeholders, that benefit from the knowledge on the magnitude of UGBI change in
relation to the management decisions and drivers behind it [9,10]. However, this is often
difficult to measure as urban development is heterogeneous, occurring over varying spatial
and temporal scales and affected by the local planning, socio-economic, infrastructure,
and environmental context [11]. Complexity in urban development is typically organised
through the concept of land use systems, whereby geographic extents of land are cate-
gorised according to the associated human activities and supporting land covers [12]. As
a planning tool, the application of land use systems can ensure that the distribution of
human activities is adequate to support economic and environmental policy goals [13].

Change in UGBI resources is therefore often approximated in land use change informa-
tion, through association of an assumed proportion, configuration, or amount of UGBI per
land use category [14]. For example, loss of UGBI may be assumed when converting from
recreation areas, typically associated with high UGBI cover, to more built-up industrial
or residential land uses. Land use therefore provides a conceptual framework to quantify
structural change in an urban area and model impacts upon ecosystem services (e.g., urban
cooling) and access to nature [15]. Comparison between land use, or more accurately land
use land cover (LULC) map products at different time points, also provides indication
of localised UGBI change according to socio-economic development pressures [14]. For
example, the conversion of parkland to commercial land use may be quantified across a city,
thus informing stakeholders on the environmental consequences of this change in relation
to economic benefits from converting a public liability to a source of tax revenue [16].

Whilst the concept of land use is useful to investigate the effects of land conversion,
consideration of UGBI change within otherwise static land use areas is also vital to under-
stand the impacts of longer-term land management [17]. For example, numerous studies
highlight increasing tendencies to convert garden UGBI (e.g., lawns, planters) to land cover
types that are easier to manage and are more appropriate to support other household
functions (e.g., tarmac driveways, house extensions) [18]. Land use management, described
within land ownership boundaries or land use parcels [19], is often difficult to monitor due
to small scales and limited planning control. Therefore, the process of UGBI removal may
not be noticed by planning authorities. As demonstrated by studies of private garden land
cover change, UGBI loss aggregated across numerous individual and small parcels can
produce a significant overall environmental impact, such as increasing stormwater runoff
rates and flood risks for the wider neighbourhood [20]. Uncontrolled loss in UGBI resources
may indirectly degrade the impact of any adaptation strategy, increasing vulnerability
amongst urban residents as a result.

Given recognised monitoring difficulties, UGBI changes in consistent land use parcels
have received limited research attention. Since rates of land cover change can vary substan-
tially depending on land use management [21,22], this is an important issue. For example, a
study of temporal UGBI change in Berlin over a 30-year period found that greening policies
in brownfields and street sides resulted in UGBI enhancement, whereas residential and
parking areas suffered UGBI declines [22]. Whilst UGBI change may vary across individual
land parcels, overall trends per land use can help to develop a broader understanding
of the impact of specific land use pressures upon future UGBI resources and associated
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ecosystem services [23]. Trends considered across a wide range of land use classes can in
turn aid spatial prediction of future UGBI change and therefore indicate hotspots of future
UGBI decline to support the development of local UGBI strategies [24,25].

With the expansion of high-resolution digital geo-spatial data in recent years, a wide
range of GIS and image analysis methods have been developed to investigate land use and
land cover change in urban areas [26]. The application of advanced machine learning meth-
ods with very high resolution (<2 m pixels) multi-spectral imagery has been successfully
applied to map land cover types at an appropriate patch-level scale and to improve analyses
such as urban habitat connectivity modelling [27], urban heat island monitoring [28], and
fine-scale land cover change detection [29]. Increasing availability of accessible datasets
from public bodies and national/international mapping agencies enables consideration
of broad-scale land use change [30,31], whilst also supporting finer-scale remote sensing
analysis, providing ancillary data to enhance patch-level object-based land cover change
comparisons [32,33].

Whilst spatial urban change analysis is an important and developing research activity,
most studies focus on land cover change only or consider the concept of land use within
hybrid land use land cover (LULC) categorisation systems. This study therefore attempts
to address a current research gap by presenting a framework to map changes in individual
UGBI patches (e.g., tree removal, grass lawn to paving) to consistent land use parcels across
a city. In line with the previous discussion, this study therefore aims to develop useful
urban planning information by demonstrating application of the framework to:

i. Quantify and visualise spatial dynamics (loss and gain) in UGBI parcels at high
resolution across an entire urban area.

ii. Calculate UGBI loss/gain within each land use and extrapolate future UGBI change
trends to understand risks to future urban environmental conditions.

iii. Link vulnerability in UGBI resources (where UGBI has suffered losses) to land man-
agement practices and wider socio-economic trends.

The approach is applied to a post-industrial city (Manchester, UK) during a period of
historic urban renewal and associated population growth (2000–2017). Given the similarities
in socio-economic circumstances and urban configuration of Manchester to other post-
industrial cities in the UK and Europe, the approach here also aims to provide comparative
evidence of pan-urban trends to contribute to a growing evidence base on UGBI losses
resulting from urban development.

2. Materials and Methods
2.1. Study Area

Manchester (NW England, UK) has a population of 550,000 [34]. Patterns of land use
and UGBI reflect its former industrial heritage and several phases of growth and decline
since the late 1700s (Figure 1). While the city is served by a network of open (e.g., parks,
nature reserves) and private (e.g., gardens) green/blue space areas, evidence suggests that
UGBI cover across the city may be in decline [6]. The city population has grown rapidly
since 2000 (when pop. was approximately 400,000), with many former industrial brownfield
areas converted to high-density residential developments and infill development of existing
UGBI patches (e.g., garden paving, building extensions). Manchester therefore provides a
useful case study of UGBI change which will identify linkages between socio-economic
development and land use management. Manchester City Council has recently revised
its Green and Blue Infrastructure Strategy and is actively seeking to improve knowledge
on UGBI to achieve climate resilience goals [35]. Furthermore, the time period of recent
population growth coincides with the ready availability of very high-resolution spatial data
making it suitable for GIS analysis.
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Figure 1. (A) Reference false colour image (Spot-7, May 2017, B, G, NIR [36]) of study area and location
of Manchester within UK, with land use examples in the city: (B) agriculture, (C) brownfield, (D) com-
mercial and industrial, (E) recreational open space, (F) low-density residential, (G) transport terminal.

2.2. Overview of Methods

The approach follows three key stages:

1. Object-based image classification, and subsequent validation, to produce a very high-
resolution map of UGBI change patches.

2. Semi-automated land use mapping to identify topographic parcels and sub-parcel
features that have remained consistent in land use over the study period.

3. Integration of stages (1) and (2) to identify UGBI change trends across the city, and for
individual land use types, using error-adjustment methods. Visualisation of predicted
future change in UGBI across the city.

Key components of the approach are summarised in the following sub-sections, with
detailed notes on method processes provided in the appendices.
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2.3. Mapping UGBI Change Patches

Image classification was undertaken to categorise UGBI change patches at high res-
olution to assess the impact of small-scale land use management processes (i.e., garden
paving, re-greening of derelict buildings). For analysis purposes UGBI was defined as
all identifiable vegetation features (e.g., tree canopies, grassland, planted shrubs/crops,
natural shrubs) and all identifiable water features (including rivers, canals, ponds) in the
imagery, irrespective of the associated land use. In this definition all sources of vegetation
(green) and water (blue) serve as infrastructure, as opposed solely to explicitly planned
natural resources, to provide ecosystem service benefits [37,38]. The removal of any patch
of vegetation or water may have a detrimental effect on ecosystem services and local climate
resilience, and therefore the same patch or water retained will continue to provide benefits
as infrastructure.

Cloud-free very high-resolution (≤2 m pixel size) imagery was obtained for the years
2000 and 2017. For the year 2000, a true colour three-band (RGB) aerial image compos-
ite (0.25 m pixel size; acquired in the month of June) was purchased from commercial
vendors [39]. Multi-spectral (RGB and near infrared) images were acquired from the Spot-7
(1.5 m pixel size) and Pleiades-1A (0.5 m pixel size) satellite sensors [36], respectively, for
May and October 2017. Multi-date image composites are advantageous since they provide
additional temporal difference information enabling enhanced vegetation classification [40].
High-resolution multi-spectral imagery was not available for the year 2000, therefore the
true colour imagery was identified as the most suitable data source.

Object-based post-classification change detection was used to map UGBI change. This
method compares outputs of independent classifications and is suitable for information
derived from different sensors [41]. A limitation of this approach is that errors in either
input classification dataset will compound within the final change detection layer [42].
A simple two-class (UGBI and non-UGBI) scheme was therefore used to generate an
overall four-class (UGBI stasis, UGBI gain, UGBI loss, non-UGBI stasis) change detection
map. This approach constricted error that can arise from the multiplication of unique
change detection instances [43]. A rigorous manual geo-rectification process was applied to
implement image co-registration to the recommended level of accuracy to minimise error
from spatial mis-registration. Images were respectively cross-examined to concurrent UK
Ordnance Survey MasterMapTM topographic features [44] to ensure registration of both
images to a consistent spatial model. The year 2000 imagery was then downscaled to match
the resolution and alignment of year 2017 image pixels to enable consistent comparison of
classification outputs.

A general framework was applied to ensure similar outputs for the 2000 and 2017
land cover classification exercises. Appendix A provides a detailed overview of methods
for each image date. Overall accuracy was >94% for each classified map, which enabled
intersection to generate the four change detection classes (Figure 2). A separate test sample
dataset was used to assess the accuracy of this output and generate final rules to clean
spurious change detection patches [45], which resulted in the removal of 4.6% of the total
change detection area. The final error matrix (see Appendix A) informed statistical error
adjustment of change detection rates in the final stage.
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resent areas of UGBI lost to development of built infrastructure on undeveloped plots of land;
(C,D) represent areas of UGBI gain from grass development on previously stripped land.

2.4. Consistent Urban Land Use (ULU) Features

For the 2000–2017 study period there are no existing map products that offer consistent
fine-scale land use information. Whilst the Urban Atlas [46] provides an invaluable product
to analyse urban land use, the earliest version of this product is for the year 2006. Other
available land use products typically amalgamate different urban land uses into a small
number of categories and are more suitable for regional-scale analyses. A bespoke land
use product was therefore defined, using the UK National Land Use Database (NLUD
v2006; [47]) as a framework to categorise land use information from selected map layers
from the UK Ordnance Survey [44]. The NLUD infers urban land use types that are
recognised internationally. The urban land use (ULU) hierarchy defined in this study
was based upon NLUD categories that could be feasibly identified through processing of
Ordnance survey layers (see Table 1).
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Table 1. Description of urban land use (ULU) Group and Class categories with mapped extent as a
percentage of the study area.

ULU Group/Class Description % of Study Area
1. Brownfield Land without current purpose 1.72

1.1 Brownfield Brownfield areas, developmental land, and
construction sites 1.72

2. Commercial Areas primarily providing commercial and retail services 4.75
2.1 Commercial Retail and professional services 4.75
3. Community Services Government and public community welfare services 6.62
3.1 Safety and well-being Public safety (e.g., police, fire, social support) 0.34
3.2 Cultural facilities Services supporting cultural recreation 0.17
3.3 Health care Health care services 1.00
3.4 Higher education Non-compulsory adult education services 1.14
3.5 Religious facilities Religious worship in any denomination 0.53
3.6 Schools Compulsory non-adult education services 3.44

4. Industrial Manufacturing, engineering, construction, and energy
distribution services 4.84

4.1 Industrial Manufacturing, warehousing, and distribution sites 4.51
4.2 Energy utilities Generation and distribution of energy supplies 0.33
5. Non-recreational Open Space Predominantly open-space not supporting recreation 7.72
5.1 Agriculture Commercial farming 3.55
5.2 Cemeteries Processing and storage of human remains 0.99
5.3 Water Natural and purpose built water bodies and channels 1.22
5.4 Woodland Continuous tree cover separate to other land uses 1.96

6. Public Recreation Outdoor and indoor facilities supporting physical/
social recreation 17.92

6.1 Public open space General outdoor amenities and open spaces 11.10
6.2 Sports facilities Land and facilities designated for sporting activities 6.31
6.3 Urban farming Non-commercial urban farming 0.51

7. Residential Primarily residential housing of varying
dwelling density 33.30

7.1 Low-density residential Majority of dwellings are semi-detached and detached
housing 22.45

7.2 Medium-density residential Majority of dwellings are terraced housing 7.61

7.3 High-density residential Majority of dwellings are former buildings converted into
flats or purpose-built multi-dwelling apartment housing 3.24

8. Transport Infrastructure supporting the transport of people
and goods 23.13

8.1 Car parking Car parking areas not associated with other land uses 0.55

8.2 Limited access roads Private roads connecting addresses to higher
functioning roads 0.48

8.3 Linking roads B roads connecting significant destinations and feeding
A roads 0.35

8.4 Major roads A roads and dual carriageways 1.50
8.5 Minor roads Roads connecting addresses to higher functioning roads 7.11
8.6 Motorways Motorway roads—as defined in the OS highways dataset 0.69
8.7 Railways Land and infrastructure supporting rail and tram travel 1.94
8.8 Roadsides Access routes between areas for non-vehicular travel 6.56

8.9 Transport terminals Non-rail mass transit travel, e.g., bus and tram
stations, airports 3.95
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Mapping of study area ULU group and class categories for the year 2017 followed
a semi-automated mapping approach, involving data integration, model prediction, and
manual digitisation. The whole process is detailed in Appendix B and produced a vec-
tor ULU map product with a minimum mapping unit of <50 m2 (Figure 3) and overall
estimated thematic accuracy of 97%. The 2017 ULU map provided a reference model to
back-date consistent land use features to the year 2000.
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Figure 3. Example of mapped ULU (NLUD v2006) group (A) and a sub-set of ULU class (B) areas for
the year 2017.

ULU mapping at the same resolution for the year 2000 was not possible due to
limitations in OS data for this period. The legacy land-line dataset for the year 2000 [48],
however, maps topographic features to the same spatial model as the 2017 OS data. Polygon-
to-polygon comparison between OS datasets over time enables the identification of ULU
sub-parcel features that remain consistent in shape and spatial position [49], indicating
consistency in underlying land use type. An automated polygon comparison algorithm
was developed in R [50] to identify consistent ULU sample features (see Appendix C).
The process was successful in identifying 60.2% of candidate 2017 features as samples for
further analysis, which compares favourably to estimates of 76.7–85.2% for actual consistent
2017 ULU areas over the study period. UGBI change classes were clipped to each feature to
aggregate UGBI change rates for ULU classes and groups.

2.5. Mapping UGBI Change

UGBI change between 2000 and 2017 was analysed for: (a) city extent, (b) individual
ULU classes and class groups, (c) 100m grid cells to visualise neighbourhood trends in UGBI
change (see earlier study [51] for demonstration of this grid-based approach). To account for
classification error in the UGBI change detection layer, the error adjustment method described
by [52] was used to estimate net UGBI change for each analysis (see Appendix D). Total error
net change rates with upper (upper UGBI gain—lower UGBI loss) and lower (lower UGBI
gain—upper UGBI loss) bounds of change confidence levels were calculated according to
total change class composition for each analysis area. UGBI stasis was therefore determined
for the respective analysis component where upper net UGBI change ≥ 0 ≥ lower net UGBI
change. Net area change estimates were used to back-date estimates of UGBI levels for the
year 2000. Non-stasis UGBI change trends per ULU class were used to linearly extrapolate
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UGBI levels approximately 17 years into the future (i.e., 2034) by applying change rates to
UGBI proportions recorded for current 2017 ULU class parcels.

3. Results
3.1. Overall UGBI Change

Total UGBI cover for the study area in 2000 was estimated at 50.2% (±2.6%; 95% CI), in
comparison to 44.7% in 2017. This change converts to 5.5% net UGBI loss (±2.6%; 95% CI)
of the total study area, or 10.9% net UGBI loss (low estimate = 6.0%, high estimate = 15.3%;
95% CI) as a percentage of the estimated UGBI in 2000. Approximate UGBI cover per
resident in 2000 was 128.1 m2 compared to 99.8 m2 in 2017—a 22.1% reduction in existing
UGBI per resident. However, despite the overall trend of UGBI loss, UGBI change varies
across the study area. For example, 6.4% (±1.4%; 95% CI) of the study area recorded UGBI
gain, in comparison to UGBI loss for 11.9% (±1.2%; 95% CI).

At the analysis cell level, net gains are recorded for 25.7% of cells in comparison to net losses
recorded for 55% of cells. Figure 4 visualises this dynamism in UGBI gain and loss: existing
built infrastructure has been removed and replaced with UGBI (gain), however, car-parking
facilities now replace UGBI (loss). Overall, 42.7% of analysis cells showed relatively minor UGBI
change (±5%; 95% CI), whilst the maximum recorded UGBI change was 77.9% and 92.2% for
gain and loss cells, respectively (Figure 5). Patterns in analysis cell UGBI change exhibit a high
degree of spatial autocorrelation as evidenced by the Moran’s I test (I = 0.55, p < 0.001).
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3.2. Urban Land Use

Overall trends for ULU classes are largely negative; 17 out of 29 ULU classes experience
statistically significant loss of UGBI (Figure 6). In comparison, Railways is the only class
with net gain in UGBI, with stasis recorded for all other classes. Rates of UGBI change
(as a percentage of estimated year 2000 sample UGBI cover) vary considerably between
classes (Figure 7). Large losses in UGBI are apparent for Car parking (74.2%) and Major
roads (41.7%). Declines in UGBI in Low-, Medium-, and High-density residential classes
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are 11.9%, 28.3%, and 5.7%, respectively. This indicates considerable loss in UGBI from
2000–2017 for residential areas (e.g., gardens), particularly for Medium-density residential
areas characterised by terraced housing.
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Figure 6. UGBI change area as percentage (±95% CI) of total urban land use sample area. Statistically
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negative (UGBI loss).

Change in UGBI is dynamic across ULU classes, with areas of loss and gain recorded
for all classes (Figure 8). Overall UGBI change trends are determined by the balance
between loss and gain UGBI cover, referred to here as the loss area dominance. Whilst the
Woodland ULU class exhibits a lower loss area dominance than Railways, the overall UGBI
gain trend is not significant, as the confidence intervals are neither wholly positive nor
negative (Figure 5). ULU classes which have experienced overall losses in UGBI exhibit
large variation in UGBI gain areas (as a percentage of total sample area) between 1.9% (Car
parking) and 10.4% (Urban farming). ULU classes with stasis in UGBI exhibit ranges of
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2.5–14.6% and 2.1–11.2% for gain and loss area coverage, respectively. The degree of overall
UGBI change rates’ aggregate dynamism between gains and losses in UGBI thus varies
between ULU classes.
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Figure 7. UGBI change as percentage of 2000 green–blue infrastructure per urban land use class.

Comparing overall UGBI change rates reveals similar values for a number of classes,
therefore, in terms of explaining varying rates of UGBI change, some redundancy in class
categorisation may be apparent. To statistically test whether differences in the distribution
of estimated UGBI change rates exist, distributions of class UGBI change rates were created
from exclusive random sample sub-sets. As ULU no-change sample areas vary considerably
in size, thus having variable influence upon overall estimates of class UGBI change, equal
size pixel groupings representing the ULU minimum mapping unit area (45 m2 = 20 pixels)
were used as analysis units. The number of groups selected per class (n = 219) was
determined from the number of units contained within the smallest ULU class sample pixel
area (Linking roads; n = 4402 pixels/20 ≈ 219 sub-sets). UGBI change (as a percentage of
existing UGBI) was then calculated for each sub-set.
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sis, C = Loss). Bracketed figures represent Loss area dominance [ = (Loss area/(Loss area + Gain
area)) × 100].

As the Kruskal–Wallis test (χ2 = 2492, p < 0.001) provided strong evidence of inter-class
differences in the distribution of UGBI change rates, a pairwise Wilcoxon–Mann–Whitney
U test with Bonferroni correction (Base package, R Statistical Programming language; [50])
was used to test for differences between ULU classes. In all, 321 out of a total of 406 (79.1%)
of class pairings displayed significant differences in estimated UGBI change rates, with the
majority of non-significant differences (70 out of 85) recorded between classes of different
ULU groups and the remaining non-significant differences among similar land uses within
ULU groups (Appendix E). Insignificant pairings recorded for Community services (n = 5),
Non-recreational open space (n = 2), and Transport (n = 8) ULU groups evidence similar
development patterns and redundancy between some sub-ULU group classes. In contrast,
Commercial and Industrial ULU classes represent similar land uses for private enterprise
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but exhibit significant differences in UGBI changes rates. Significant differences between
the majority of ULU sub-group classes indicate that the current ULU class categorisation
scheme provides an approximation of varying UGBI change rates within most ULU groups.

3.3. Extrapolation of Change Rates

Linear extrapolation of change rates to levels of UGBI in 2017 provides a simple method
to indicate future levels of UGBI across the study area. Following this method, the majority
of loss in UGBI is expected to occur within the Roadsides, Medium-density residential,
and Low-density residential classes (Figure 9). Whilst rates of net UGBI change for the
Low-density residential class are relatively low (−11.9%), this class contains over 20% of
all 2017 UGBI. As such, assuming land use areas remain relatively static approximately
17 years into the future, current trends indicate 45% of total UGBI loss will occur within this
class (Figure 9). In contrast, expected losses for Roadsides and Medium-density residential
are also relatively high, with 13.5% and 19.8% total losses, respectively. All other classes
record below 4% in total share of predicted loss. Relatively higher rates of UGBI loss for
Car parking and the Major roads class have lower implications for future UGBI levels due
to respective study area coverage of just 0.6% and 1.5% for these classes.
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The implications may be examined on a spatial level at both the analysis cell and
administrative ward level (Figure 10). As evidenced, high estimates of potential UGBI loss
are prevalent within sub-urban residential areas south of the city centre, which contain
large areas of Low-density residential areas. In contrast, when considering the study area
as a whole, future UGBI cover estimates depend upon the calculation method used. When
considering statistically significant UGBI change for ULU classes, UGBI cover in the 2030s is
estimated to decrease by 3.1% (±1.0%; 95% C.I.). In comparison, using study area baseline
change estimates for all UGBI resources, future UGBI cover is expected to decrease by a total
of 4.9% (+1.9%/−2.2%; 95% C.I.). The difference between the two central estimates (1.8%)
provides a basic indication of the level of UGBI change due to land use conversion. Raw
neighbourhood level estimates for UGBI decline do not consider UGBI change from this
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process, nor additional influencing factors, and therefore currently provide an indication
only of the magnitude of future UGBI decline.
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4. Discussion
4.1. UGBI Change Trends

An approximate 3% decline in greenspace was measured in the city of Manchester’s
urban core between 1991 and 2006 [6]. This earlier study was not representative of the
city as a whole but indicates that UGBI degradation recorded here is part of an ongoing
process of decline. Efforts to re-build Manchester’s post-industrial economy began in the
1980s with regeneration of the city centre and have continued apace with substantial re-
development since the year 2000 [53]. Notable developments between 2000 and 2017, such
as Manchester Sportcity [54] and the New Islington district close to central Manchester [55],
are representative of overall economic and population growth during this period. UGBI
degradation has occurred due to densification in built infrastructure [7], through land use
conversion and infill development. The analysis cell (100 m) maps developed in this study
therefore provide a beneficial visual guide at the neighbourhood scale where this change
has occurred in the past and therefore may impact residents further in the future.

For the ULU Transport group, losses or gains in vegetation canopy will impact both
Roadsides (where vegetation is likely to be planted) and adjoining road areas (where tree
canopy may overhang). UGBI losses in Transport road classes are not unexpected given that
countrywide urban street tree losses have been documented in the UK national press [56].
However, to the best of the authors’ knowledge, this process has not been previously
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quantified. Rates of UGBI decline are high for Linking, Minor, and Major roads but do
not represent a significant loss of UGBI when considering total UGBI coverage within the
study area. If the rates of UGBI losses in Roadsides are to remain consistent over time, then
this presents a concern given that such resources are accessible to pedestrians and provide
additional ecosystem services, including particulate capture and noise buffering [57].

UGBI decline recorded for Residential ULU group classes coincide with temporal
declines in garden green infrastructure and pervious surface area identified in other
studies [18,58,59]. For Medium-density residential areas, estimated year 2000 UGBI levels
(27.3%) were already relatively low in comparison to Low-density (46.3%) and High-density
(37.7%) residential classes; existing low levels of ecosystem service provision may therefore
have degraded significantly further over the study period in these ULU class areas [58,60].
UGBI losses in low-density housing are less severe, but if the change rates recorded here
remain consistent over time, they represent a serious concern for future ecosystem service
management, given that this class covers over a fifth of the study area. Evidence from other
studies indicates that population growth may influence conversion of single dwellings
into multi-occupancy units, where garden paving occurs to provide car parking space
for tenants [58,61]. In addition, population pressures on households may also influence
decisions to extend existing housing units or sub-divide existing garden areas for new
housing, in turn pressurising existing UGBI in residential areas [62,63].

The socio-economic status of home-owners may also influence management of private
UGBI. For example, refs. [21,64] found differing levels of UGBI decline associated with the
general affluence of districts, with higher levels of disposable income to invest in garden
development. Certainly, changing lifestyles may also explain an apparent rise in “plastic
lawns” in recent years, which simulate the appearance and texture of grass and are easier
to manage but as a manmade surface may increase surface runoff and add unwanted
plastic debris to the general environment [65]. In comparison, UGBI change rates for the
High-density residential class (e.g., apartment blocks or flats) are significantly lower than
those of other residential classes, as these areas are not subject to the “tyranny of small
decisions” from private garden owners [66,67]. General declines in residential classes
mirror UGBI declines in public (Community Services: Schools, Further education, Health
care, Safety and well-being) and commercial sector (Commercial and Industrial groups)
management, indicating various development pressures to do more with less land [68,69].

Whilst residential UGBI has declined, recent public surveys find that urban residents
generally have positive attitudes towards urban green–blue space [70–72]. There is further
scope in local and national policies to guide urban residents to adopt garden management
practices that enhance nature conservation and climate resilience [20]. Greening efforts by
environmental non-governmental organisations in Manchester [73,74] have undoubtedly
contributed to the UGBI gains measured in this investigation, as evidenced by the expansion
of tree canopies and tree lines (e.g., street trees, edge of woodland, or tree clusters) in many
areas of the city. Indeed, a surprising finding from this investigation is the amount of
dynamism between UGBI gain and loss within the study area. Net gains were recorded
for Railways, whilst overall UGBI stasis was recorded for all ULU Non-recreational Open
Space group classes, in addition to Public open space, and Sports facilities, indicating that
consistent open space land uses over the study period witnessed limited grey development.

4.2. Limitations of the Framework and Future Research Directions

As indicated in similar remote sensing studies, change in urban landcover is typically
non-linear over time [22]. Models predicting land cover change require consideration of a
wide range of climatological, environmental, physical, socio-economic, demographic, and
policy-level factors [30,75]. The simple extrapolation method used in this study provides



Land 2025, 14, 1077 17 of 45

a limited indication of UGBI cover into the future. To improve the analysis here, future
research should take advantage of developments in accessible remote sensing imagery
to repeat the process at various time points and examine the linearity of UGBI change
under varying political and socio-economic conditions [76]. For example, this could be
used in Manchester to examine the impact of various green strategies from the local
government since 2015 [35,77] or even further into the future, consider the impacts on UGBI
resources of recently adopted (February 2024) nationwide (in England) Biodiversity Net
Gain legislation [78].

The information gained from this research may serve to validate the effectiveness of
different UGBI protection policies and thus evidence whether direct intervention mech-
anisms, such as financial incentives for garden de-paving [79] or more restrictive urban
planning regimes [80], could benefit conservation of UGBI and urban ecosystem services. In
addition, as the GIS data used for urban land use mapping have remained consistent since
2017, the approach could be repeated to coincide with UGBI change detection exercises to
consider interactions between the processes of land use and land cover development. UGBI
change, resulting from conversions between distinct land use classes, could further inform
research into cellular automata and machine learning approaches to improve prediction of
urban environmental conditions from various development and policy scenarios [75].

Another limitation of the methodology is the use of the binary classification system
that considers various vegetation and water features, with differing levels of ecosystem
service benefits, as a uniform block of land cover. Whilst change detection in multiple
land cover classes remains a challenge in remote sensing applications [29], future research
should attempt to consider additional stratification of the UGBI class to examine changes
in distinct UGBI components, such as trees, grasses, wetlands, and water, to measure
change in both the quantity and quality of UGBI across the urban area [32,33]. The current
framework could be used to achieve this, as incorporation of the error adjustment method
enables consideration of higher rates of misclassification, which are likely to arise when
incorporating additional classes into change detection processes [45]. Alternative classifica-
tion approaches (e.g., direct change classification, neural networks) could also be explored
as a method to ensure the retention, or even improvement of, accuracy levels in any change
detection layer [29,81].

Information on the change in quality of UGBI, incorporated with improvements to
the temporal resolution of land cover to land use change analysis, and improvements in
change modelling, could enhance the level of projected information on future ecosystem
services available to urban planning stakeholders. Given the risks posed by climate change,
further research to improve methods and outcomes for UGBI change detection will be-
come increasingly vital to support policy decisions to protect urban resident health and
well-being.

5. Conclusions
This study provided a novel examination of urban green and blue infrastructure

(UGBI) change within 29 urban land use classes for the case study city of Manchester, UK
between the years 2000 and 2017. The main findings for Manchester include:

1. 11% of existing UGBI in 2000 was lost by 2017.
2. Dynamic change in UGBI, with 6.4% of the study area recording gains in UGBI

compared to 11.9% of the study area recording losses in UGBI.
3. All urban land use classes (n = 29) record areas of UGBI gain and loss; however,

overall rates, considering the balance between gains and losses, are negative for the
majority (58%) of classes.
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4. Projecting rates of change into the future indicates that nearly two-thirds (64%) of
future UGBI loss could occur within existing Low- and Medium-density residential
areas in the city.

Overall, Manchester has experienced a decline in the extent of UGBI, whilst its resident
population increased in the early part of the 21st century. Local access to associated
ecosystem services for the average resident over this time period is likely to have been
impacted. Whilst the extrapolation methods here can only provide an indication of future
UGBI provision, the overall decline in UGBI across the city is expected to persist as the
population and economy of the city continue to develop (as they have done since the end
of the study). This is a concern given that the ecosystem services provided by local UGBI
support resident well-being and regulate the impacts of extreme weather events, which are
likely to increase in severity and frequency in future with climate change.

The findings here have implications more widely across the UK and further afield
in providing proxy indications of environmental change in cities that share similar socio-
economic and structural characteristics. The framework offers a suitable approach adopting
readily available methods and data, which may be adapted in other urban areas. To the best
of our knowledge, no other study has attempted to measure this process for such a wide
range of land use classes across an entire an urban area. The UGBI to land use change rates
contribute novel information for further research, to improve land cover/land use change
prediction, and support scenario-based policy development for effective environmental
land use management.
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Appendix A
Appendix A.1. Image Classification for 2017

Appendix A.1.1. Pre-Processing

For this exercise, access to a repository of very high spatial resolution (≤5 m pixel size)
multi-spectral imagery was obtained from the European Space Agency [36]. Images were
acquired from the Spot-7 (1.5 m pixel size) and Pleiades-1A (0.5 m pixel size) sensors [36]
for 26 May and 29 October 2017. All images were geo-referenced to the British National
Grid by the vendor and pre-processed to surface reflectance. As cloud cover was evident
in the October Spot-7 imagery, the affected region was replaced by October Pleiades-1A
imagery downscaled to the Spot-7 resolution using nearest neighbour resampling (Raster
package version 3.3-13 [82], R programming language version 3.6 [50]). Both Pleiades-1A
and Spot-7 sensors share virtually identical spectral characteristics and are processed using
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the same radiometric correction methods [83]. In addition, both images were acquired
within a thirty-minute window on the same date, therefore further pre-processing was
considered unnecessary to create a composite October image.

Table A1. Sensor characteristics for Spot-7 and Pleiades-1A imagery.

Sensor Spectral Band Bandwidth Spatial Resolution

Spot-7 1

Panchromatic 0.45–0.745 µm 1.5 m
Blue 0.45–0.52 µm

6 mGreen 0.53–0.59 µm
Red 0.625–0.695 µm

Near Infrared (NIR) 0.76–0.89 µm

Pleiades-1A 2

Panchromatic 0.47–0.83 µm 0.5 m
Blue 0.43–0.55 µm

2 mGreen 0.5–0.62 µm
Red 0.59–0.71 µm

Near Infrared (NIR) 0.74–0.94 µm
1 ASTRIUM (October 2012). Pleiades Imagery User Guide. Retrieved from https://www.intelligence-airbusds.
com/en/8289-imagery-services (accessed 5 January 2019). 2 ASTRIUM (July 2013). SPOT 6 & SPOT 7 Imagery
User Guide. Retrieved from https://www.intelligence-airbusds.com/en/8289-imagery-services (accessed 5
January 2019).

Appendix A.1.2. Classification Features

Additional image feature layers were created prior to classification to enhance informa-
tion in the multi-temporal image data (Table A2). Ancillary spatial data were processed us-
ing the UK Ordnance Survey (OS) MasterMap topography layer [44] to provide contextual
OS landcover data for topological classification purposes (Table A3). As the datasets origi-
nate from different sources, it was important to check the degree of spatial co-registration
to ensure relevant objects (e.g., buildings, roadways) in both datasets overlap the same
spatial location. Root mean square spatial alignment error (tested using n = 210 random
check points) [84,85] was less than one (single) pixel. Therefore, geo-rectification was not
required for any input data layers.

Table A2. Image features for 2017 classification.

Image Features Description Calculation Method
Red

Original image layers No processing requiredGreen
Blue
NIR

NDVI Normalized difference vegetation index—measure
of pixel biomass photosynthetic production [86] NDVI = NIR−Red

NIR+Red

NDWI Normalized difference water index—measure of
water content in water bodies [86] NDWI = Green−NIR

Green+NIR

MeanRGB
Measure of brightness of visible radiation
layers—useful for determining dark pixels [87] MeanRGB = Red+Green+Blue

3

SdRGB Measure of pixel saturation or greyness [87]
SdRGB =

√
∑n

i=1(xi−MeanRGB)
2

n−1

Where n = 3 for red, green, and blue layers;
x is pixel value for red, green or blue layer

RedCHR Chromatic values for red, green, and blue layers;
reduces variance in pixel illumination in image
and useful for other vegetation indices [88]

LyrCHROMATIC = Lyr
Red+Green+Blue

Where Lyr represents the relevant layer for
chromatic value calculation

GreenCHR
BlueCHR

https://www.intelligence-airbusds.com/en/8289-imagery-services
https://www.intelligence-airbusds.com/en/8289-imagery-services
https://www.intelligence-airbusds.com/en/8289-imagery-services
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Table A2. Cont.

Image Features Description Calculation Method

GRVI Green red vegetation index—measure of pixel
greenness [89] GRVI = GreenCHR−RedCHR

GreenCHR+RedCHR

EXG Excess green vegetation index—measure of pixel
greenness [88] EXG = 2GreenCHR − RedCHR − BlueCHR

EXGEXR Excess green minus excess red index—alternative
greenness index to the above [90]

EXGEXR =
EXG − (1.4RedCHR − GreenCHR)

PCA1
4 x principal component layers calculated from the
red, green, blue, and NIR layers

Calculated using principal component
function in ArcMap (version 10.5)

PCA2
PCA3
PCA4

NDVIRAT

Ratio NDVI feature between May and October
images to create single index for seasonal NDVI
variation

NDVIRAT = ocNDVI
NDVI

NDWIRAT

Ratio NDWI feature between May and October
images to create single index for seasonal
NDWI variation

NDWIRAT = NDVIRAT
NDWI

Note: Image features were calculated for both May and October images; for May image features the layer name
acronym remains the same as in the table above, for October image features the prefix oc is added to the relevant
acronym. For example, Mean_RGB is referenced as ocMean_RGB when calculated for October image data only.

Table A3. Processing steps for OS ancillary dataset.

Surface Class (in
Order of Processing) Description Classification Ruleset (Terms in Italics

Represent OSMT Attribute Field)

WATER Exposed water, i.e., water channels,
reservoirs, ponds

descriptiveGroup IS Inland Water, Natural
Environment OR Inland Water, Structure OR
Inland Water

BUILDINGS Vertical standing built structures Theme IS Buildings OR Buildings, Roads
Tracks and Paths OR Buildings, Rail

NATURAL Natural non-water surface such as bare
earth, grass, and other vegetative surfaces

Make IS Natural OR descriptiveGroup IS
Landform OR Landform, Road Or Track OR
Landform, Rail OR Landform, Historic
Interest OR Landform, Inland Water

MANMADE Non-natural surfaces, e.g., asphalt, concrete Make IS Manmade
MULTIPLE Mixed NATURAL and MANMADE surface All remaining records
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Appendix A.1.3. Image Samples for Classification

Classification followed a bottom-up process whereby sub-categories of the UGBI
and non-UGBI classes were first categorised using random forest models with image
segmentation. The sub-categories were then processed using topological classification rules
in conjunction with the OS ancillary feature dataset. A total of 2178 initial sample points
were determined using multi-nomial law [91]. Multinomial law provides a method to
calculate the total number of validation samples in a remote sensing classification exercise
for a given number of classes (7 sub-categories here) and set confidence level (α = 0.05). The
total number of initial validation samples was calculated as 726, which was then doubled
to find the number of training samples based upon a 70:30 training:validation sample
split [92]. This process ensured that the total number of training samples exceeded 1000
which has been found to provide a useful minimum sample number for classification in
other studies [93,94] and ensured that greater than 30 samples would be available for final
validation of the UGBI and non-UGBI classes [95].

Equal area reference zones (n = 33) were generated to guide the stratification of sample
points across the study area with approximately 9 category samples distributed in each zone.
Labels were assigned according to the sub-category class represented by the corresponding
pixel in both images, and points were adjusted manually in some instances to ensure
a relatively even distribution of sub-category samples across the study area. Additional
points (n = 102) representing evergreen vegetation were added to the Canopy class to ensure
the capture of seasonal variation in conditions in the Canopy sample (sample sizes and
descriptions per sub-category are provided in Table A4). Due to difficulties in identifying
the minimum number of sub-category samples in some areas of the imagery, a reduced
total of 2077 samples, including 647 samples for validation, were identified following this
process. Validation samples were sampled within the reference zones to ensure samples
were distributed across the study area and to ensure a ≥ 30% split in the whole sample.

Table A4. Sub-category scheme and sample sizes.

Sub-Category Description Total No. of
Samples

Proportion of
Total Samples (%)

No. of
Training
Samples

No. of
Validation
Samples

Artificial *
Manmade non-vegetative

ground surface, e.g., asphalt,
concrete, paved materials

280 13.8 197 83

Bare earth * Non-vegetative ground surface 284 13.9 198 86

Canopy ** Bole and branch canopy
(shrubs/trees) vegetation 383 18.3 261 122

Grass ** Ground surface
herbaceous vegetation 287 13.7 196 91

Water ** Exposed water, i.e., water
channels, reservoirs, ponds 269 12.8 184 85

Shaded
non-vegetation *

Non-vegetation surfaces
completely obscured by shadow 285 13.7 197 88

Shaded
vegetation **

Vegetation surfaces completely
obscured by shadow 289 13.8 197 92

Total 2077 100 1430 647
* Non-UGBI category; ** UGBI category.

Appendix A.1.4. Classification Process

All random forest models were implemented using the random forest package in R [96]
with iterative model tuning to optimise the mtry and ntree parameters. The VSURF package
in R [97] was used to identify the best image features for segmentation and classification
(see Table A5). Segmentation was conducted using Trimble eCognition software version 9.5.
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1. Random forest classification (Initial sub-set; Table A5) to assign image pixels as either
Non-Vegetation, Vegetation, Shaded non-vegetation, or Shaded vegetation.

2. Segmentation of non-vegetation pixels into objects and random forest classification
(Artificial sub-set; Table A5) to assign objects as either Artificial or Bare earth.

3. Segmentation of vegetation pixels into objects and random forest classification
(Canopy sub-set; Table A5) to assign objects as either Canopy or Grass.

4. All non-Canopy pixels that overlap OS ancillary water areas, re-assign to the
water class.

5. All Artificial and shaded pixels that overlap OS ancillary building areas, re-assign to
the Artificial class.

6. Grass and Bare earth pixels within OS ancillary manmade and building areas, re-
assign to the Artificial class.

7. Manually check classified pixels against imagery for areas of misclassification
and rectify.

8. Group shadow pixels into objects representing the respective shadow class and assign
to respective non-vegetation or vegetation classes, according to the longest shared
border to respective class objects.

9. Re-assign remaining shaded class pixels according to respective majority non-UGBI or
UGBI candidate class within a 100 m circular buffer around the pixel object centroid.

10. Assign all Grass, Canopy, and Water pixels to UGBI class and Artificial and Bare earth
pixels to non-UGBI class.

11. Assess accuracy using error matrix with validation samples (see Table A6).

Table A5. Segmentation and Random Forest parameters for each classification sub-set.

Sub-set Input Classes Output Classes Method Segmentation * and
Classification Layers

RF Settings
Mtry Ntree

Initial Unclassified

Non-vegetation class,
Vegetation class,
Shaded vegetation,
and Shaded
non-vegetation

Pixel Blue, Red, PCA1,
GreenCHR, EXGEXR 3 50

Artificial Non-vegetation Artificial and Bare
earth Object

BlueCHR, NDWI, PCA3,
RedCHR, NDVI, PCA4,
SdRGB, ocNDVI,
SDEV_BlueCHR, ocBlueCHR

3 1000

Canopy Vegetation

Grass and Canopy
(combines
Deciduous and
Evergreen)

Object

GreenCHR, SdRGB, BlueCHR,
Red, EXGEXR, PCA3,
MeanRGB, NDWI, NDVI,
PCA1, PCA4, ocPCA2,
SDEV_BlueCHR, Blue

5 1000

* Segmentation (multi-resolution algorithm) parameters in eCognition (scale factor = 50, shape = 0.1 and compact-
ness = 0.1) remained consistent for each sub-set.

Table A6. Error matrix for 2017 classification.

Non-GBI GBI User (%)
Non-UGBI 248 12 95.4
UGBI 9 378 97.7
Producer (%) 96.5 96.9
Overall accuracy (%) 96.8
Kappa 0.93
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Appendix A.2. Classification of Year 2000 Imagery

Appendix A.2.1. Pre-Processing

The year 2000 true colour aerial image (0.25 m resolution) was downscaled using
nearest neighbour resampling (Raster package version 3.3-13 [82], R programming language
version 3.6 [50]) to the grid resolution (1.5 m) of the 2017 classification layer. The image
was then geo-referenced to within the root mean squared error (RMSE) of a single pixel,
using OS land-line data from the year 2000 as a reference [98]. OS land-line data were used
due to (a) < 1 pixel RMSE between 2017 OS MasterMap topography layer and year 2017
imagery, and (b) difficulty in identifying a suitable number of reference points between
the year 2017 and year 2000 images. Using a spatial reference grid (n = 42 cells) as a
stratification layer, reference OS land-line building polygons were randomly selected and
then manually shifted to overlap the boundaries of the respective building feature in the
image to create shift polygons. The centroids of original and shift polygons thus provided
the reference points to calculate the appropriate rubber sheeting transformation (using
ERDAS Imagine version 2019). Independent polygons for rubber sheeting translation
and validation purposes [99] (approximately 30% of reference sample number) increased
incrementally from 172 and 38 to 504 and 187 polygons, respectively, until <1 pixel RMSE
was achieved.

Appendix A.2.2. Classification Features

Additional image feature layers were created to enhance the limited spectral informa-
tion in the geo-rectified true colour imagery and thus improve the accuracy of classification
(see Table A7). In addition, ancillary spatial data were processed using the year 2000 land-
line data to provide contextual OS landcover data for topological classification purposes
(see Table A8).

Table A7. Image feature 2000 classification.

Image Features Description Calculation Method
Red

Default image layers No further processing requiredGreen
Blue

MeanRGB
Measure of brightness of visible radiation

layers—useful for determining dark pixels [87] MeanRGB = Red+Green+Blue
3

SdRGB Measure of pixel saturation or greyness [87]
SdRGB =

√
∑n

i=1(xi−MeanRGB)
2

n−1

where n = 3 for red, green, and blue layers;
x is pixel value for red, green, or blue layer

RedCHR Chromatic values for red, green, and blue layers;
reduces variance in pixel illumination in image

and useful for other vegetation indices [88]

LyrCHROMATIC = Lyr
Red+Green+Blue

where Lyr represents the relevant layer for
chromatic value calculation

GreenCHR
BlueCHR

GRVI Green red vegetation index—measure of pixel
greenness [89] GRVI = Green−Red

Green+Red

EXG Excess green vegetation index—measure of pixel
greenness [88] EXG = 2GreenCHR − RedCHR − BlueCHR

EXR Excess green vegetation index—measure of pixel
redness [88] EXG = 1.4RedCHR − GreenCHR

EXGEXR Excess green minus excess red index—alternative
greenness index to the above [90] EXGEXR = EXG − EXR
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Table A8. Ancillary OS (Land-line) classification feature.

Ancillary Feature Description Method

BUILDINGS Extents of building features within
land-line data

Land-line polygons containing land-line points
representing building features *

ROADS Extents of road features within
land-line data

Polygon created using a 2.5 m buffer around
land-line polylines representing road centre lines

WATER Extents of water features and
channels within land-line data

Land-line polygons identified with maximum
shared border to land-line polyline features

representing water *
* = Some manual processing required to correct misidentified features where appropriate.

Appendix A.2.3. Image Samples for Classification

Classification followed a bottom-up process whereby temporary categories were
first categorised using a random forest model with image segmentation. The temporary
categories were then processed using topological classification rules in conjunction with the
OS land-line ancillary feature dataset. A total of 2010 initial sample points were determined
using multinomial law [91]. Multinomial law provides a method to calculate the total
number of validation samples in a remote sensing classification exercise for a given number
of classes (initially 5 temporary categories here) and set confidence level (α = 0.05). The
total number of initial validation samples was calculated as 670, which was then doubled
to find the number of training samples based upon a 70:30 training:validation sample
split [92]. This process ensured that the total number of training samples exceeded 1000
which has been found to provide a useful minimum sample number for classification in
other studies [93,94] and ensured that greater than 30 samples would be available for final
validation of the UGBI and non-UGBI classes [95].

Prior information from the 2017 classification determined the stratification of valida-
tion samples according to class coverage, which were distributed evenly across the study
area using equal area reference grid zones (n = 33) as a guide. Labels were assigned accord-
ing to the sub-category class represented by the corresponding pixel in both images, and
points were adjusted manually in some instances to ensure a relatively even distribution of
sub-category samples across the study area (sample sizes and descriptions per sub-category
are provided in Table A9). Due to difficulties in identifying the minimum number of sub-
category samples in some areas of the imagery, a reduced total of 1900 samples, including
670 samples for validation, were identified following this process. Validation samples were
sampled within the reference zones to ensure samples were distributed across the study
area and to ensure a ≥30% split in the whole sample.

Table A9. Temporary category scheme and sample sizes.

Class Total No.
of Samples

Proportion of
Total Samples (%)

No. of
Training
Samples

No. of
Validation
Samples

Non-vegetation ♢ 693 36.47 462 231
Shaded

non-vegetation *,♢ 210 11.05 140 70

Shaded vegetation *,G 240 12.63 160 80
Vegetation G 702 36.95 468 234

Water **,G 55 2.89 0 55
Total 1900 100 1230 670

* Categories merged into single shadow class for training purposes due to lack of spectral separability but retained
in separate categories for UGBI and Non-UGBI validation; ** due to lack of spectral separability between water
and other categories, this category was classified using topological processes only and therefore the training
samples for this category were removed, the validation samples, however, were retained; ♢ Non-UGBI category;
G UGBI category.
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Appendix A.2.4. Classification Process

All random forest models were implemented using the random forest package in
R [96] with model tuning to optimise the mtry and ntree parameters. The VSURF package
in R [97] was used to identify the best image features for segmentation and classification.
Segmentation was conducted using Trimble eCognition software. The first step used
random forest classification to assign image pixels to either the Vegetation, Non-vegetation,
or shadow class, with optimal parameters: mtry = 1, ntree = 500; and classification features:
Blue, Red, GreenCHR. The classified pixels were then converted to polygons to enable
object-based classification with the ancillary OS (land-line) features using the rules in
Table A10.

Table A10. Ruleset for object-based classification.

Candidate Class Rules for Shadow classes
Non-vegetation Relative border to Non-vegetation = 1

Vegetation Relative border to Vegetation = 1
Merge all objects and intersect with WATER and BUILDINGS layer polygons
Candidate class Rules for Shadow class
Non-vegetation Minimum overlap with BUILDINGS > 0

Water Minimum overlap with WATER > 0
Non-vegetation Relative border to Non-vegetation = 1
Non-vegetation Relative border to Water AND Non-vegetation = 1

Vegetation Relative border to Water AND Vegetation = 1
Merge all objects and intersect with WATER layer polygons

Candidate class Rules for Non-vegetation class
Water Minimum overlap with WATER > 0

Merge all objects
Candidate class Rules for Vegetation class
Non-vegetation Minimum overlap with ROAD ≥ 0.8
Non-vegetation Minimum overlap with BUILDINGS ≥ 0.8

Re-classify non-shadow classes to either GBI or non-GBI; Segment shadow class into pixel objects

The remaining shadow pixels are re-assigned using an iterative topological process.
The process iterates through individual shadow class areas in the current classification
dataset by de-constructing them into pixel objects, identifying which pixel objects have non-
shadow neighbours, and then iterating through the candidate pixel objects, re-classifying
where appropriate to the majority neighbouring non-shadow class. If no majority class
is discovered then the neighbourhood area is iteratively expanded by 1× pixel width to
incorporate additional pixels until a majority non-shadow class is identified. After this
stage, accuracy assessment is performed using an error matrix with the validation samples
(see Table A11).

Table A11. Error matrix for 2000 GBI classification.

Non-GBI GBI User (%)
Non-UGBI 293 8 97.3
UGBI 31 338 91.6
Producer (%) 90.4 97.6
Overall accuracy (%) 94.2
Kappa 0.93
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Appendix A.3. UGBI Change Layer (2000–2017)

UGBI and non-UGBI classes for the years 2000 and 2017 were intersected to form an
initial post-classification change detection layer with four change classes: UGBI loss, UGBI
stasis, UGBI gain and non-UGBI stasis. Potential errors in this layer were examined in rela-
tion to both spatial misregistration and patterns of misclassification between corresponding
classification layers. Object-based adjustment was implemented in a number of steps to
void spurious change detection class areas [45].

First slither polygons of 1-pixel width for all change detection classes were voided from
further analysis, as such areas may occur due to misregistration between the classification
datasets. In addition, UGBI loss or UGBI gain classes within BUILDINGS polygons were
re-classified as non-UGBI stasis. UGBI loss and gain class areas that were misclassified
due to particular vegetation conditions at the time of image capture (e.g., dry canopied
vegetation at the time of image collection) were examined and manually re-classified into
the appropriate UGBI stasis class where identified.

Validation class sample numbers, randomly selected within stratifications according
to total class area, were determined using multi-nomial law (n = 618 for 4 classes) [91].
Validation point locations were then examined in relation to both the year 2000 and year
2017 imagery to assign an appropriate change class label. Some points were voided during
this process (approximately 5%) where it was difficult to ascertain the exact change class.
All classes retained >30 samples for validation [95]. Validation points then populated an
error matrix with the kappa statistic (see Table A12) to estimate the overall effectiveness of
the change detection process.

Table A12. Error matrix UGBI change detection layer.

UGBI
Loss UGBI Gain UGBI

Stasis
Non-UGBI

Stasis Users (%)

UGBI loss 60 0 4 1 92.3
UGBI gain 0 35 8 2 77.8
UGBI stasis 4 3 209 1 96.3
Non-UGBI stasis 6 2 0 251 96.9
Producers (%) 85.7 87.5 94.6 98.4
Overall accuracy (%) 94.7 Kappa 0.92

Appendix B.
Appendix B.1. Method Overview

Methods were developed to maximise the information from all available layers to map
urban land use (ULU) efficiently and accurately across the study area (see Figure A2). The
main stages are as follows:

1. ULU categories were defined using the UK NLUD [47] as a framework (see main
article, Section 2.4).

2. Integration of existing data in Ordnance Survey data layers (Table A13) to directly
categorise urban land use (ULU) for as much of the study area as possible.

3. Automated parcel growing after initial ULU categorisation to group remaining non-
assigned topographic features (such as buildings, access paths, and general enclosures)
into parcels that adequately represent a single land use [100].

4. Assignment of ULU labels to non-assigned parcels through manual image interpreta-
tion in conjunction with the Spot-7 and Google Earth imagery.

5. Random forest classification to classify initial ULU residential group areas into either
Low-, Medium-, or High-density residential ULU classes.

6. Validation of final ULU map dataset.
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Table A13. Ordnance Survey (OS) data layers required for urban land use categorisation.

Product * Version Description

MasterMap Sites Layer October 2017 Spatial extents of important locations such as airports,
schools, hospitals, utility and infrastructure sites

MasterMap Greenspace Layer July 2017 Spatial extents of publicly accessible and
non-accessible greenspace areas within urban areas

MasterMap Topography Layer May 2017

Detailed spatial data representing physical (e.g.,
surface extents, physical boundaries, buildings, paths)
and non-physical (e.g., administrative and electoral
boundaries, cartographic text, symbols) features

Open Map Local (Vector) October 2017
Open access street-level mapping vector data product
containing additional extents of useful urban sites not
defined within the above layers

MasterMap Highways Network October 2017 Route lines for highways (roads and paths) network
for geo-spatial network analysis

Building Heights (Alpha) October 2017 Consisting of a number of different height attributes
for each building in the MasterMap Topography Layer

* = all Ordnance Survey products licenced from Edina Digimap AC0000851941 (see https://digimap.edina.ac.uk/
accessed on 9 December 2019); technical information for each layer (see www.ordnancesurvey.co.uk; accessed on
18 January 2020).
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Appendix B.2. Urban Land Use (ULU) Definition

Relationships between the National Land Use database (version 2006) and urban
land use (ULU) 2017 classification, varying from one ULU class to one NLUD class, one
ULU class to many NLUD groups, or many ULU classes to one NLUD group, were found.
Mapping methods trialled with OS data layers indicated achievable levels in ULU thematic
resolution relative to existing UK NLUD categories.

https://digimap.edina.ac.uk/
www.ordnancesurvey.co.uk
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Table A14. Relationships between NLUD 2006 and ULU.

NLUD 2006 ULU 2017
ORDER GROUP CLASS GROUP

AGRICULTURE & FISHERIES Agriculture 5.1 Agriculture Non-recreational Open
SpaceFisheries

FORESTRY Managed forest 5.4 Woodland
Un-managed forest

MINERALS Mineral workings & quarries Not identifiable Not identifiable

RECREATION & LEISURE

Outdoor amenity & open spaces 6.1 Public open space Public Recreation

Amusement & show places Not identifiable Not identifiable

Libraries, museums & galleries 3.2 Cultural facilities Community Services

Sports Facilities & grounds 6.2 Sports facilities Public Recreation

Holiday parks & camps 7.1 Low-density residential Residential

Allotments & city farms 6.3 Urban farming Public Recreation

TRANSPORT

Transport tracks & ways

8.6 Motorways

Transport

8.4 Major roads

8.3 Linking roads

8.5 Minor roads

8.2 Limited access roads

8.8 Roadsides

8.7 Railways

Transport terminals &
interchanges 8.9 Transport terminals

Car parks 8.1 Car parking
Other Vehicle storage

Goods & freight handling 4.1 Industrial Industrial

Waterways 5.3 Water Non-recreational Open
Space

NLUD 2006 ULU 2017

ORDER GROUP CLASS GROUP

UTILITIES &
INFRASTRUCTURE

Energy production &
distribution 4.2 Energy utilities Industrial

Water storage & treatment 5.3 Water Non-recreational Open
Space

Refuse disposal 4.1 Industrial Industrial

Cemeteries & crematoria 5.2 Cemeteries Non-recreational Open
Space

Post & telecommunications 2.1 Commercial Commercial

RESIDENTIAL

Dwellings 7.1 Low-density residential

Residential

Dwellings 7.2 Medium-density
residential

Dwellings

7.3 High-density residentialHotels, boarding & guest houses

Residential institutions

COMMUNITY SERVICES

Medical & health care services 3.3 Health care

Community Services
Places of worship 3.5 Religious facilities

Education 3.6 Schools

Education 3.4 Higher education

Community services 3.1 Safety and well-being
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Table A14. Cont.

NLUD 2006 ULU 2017
ORDER GROUP CLASS GROUP

RETAIL

Shops

2.1 Commercial Commercial

Shops

Financial & professional
services

Restaurants & cafes

Public houses, bars & nightclubs

INDUSTRY & BUSINESS

Manufacturing 4.1 Industrial Industrial

Offices 2.1 Commercial Commercial

Storage 4.1 Industrial Industrial
Wholesale distribution

VACANT & DERELICT
Vacant

1.1 Brownfield Brownfield
Derelict

DEFENCE Defence Safety and well-being Community Services

UNUSED LAND Unused land 1.1 Brownfield Brownfield

Appendix B.3. Process Steps to Create the Urban Land Use (ULU) Layer

The steps listed below (Table A15) relate to the various stages of the method overview
diagram (Appendix B.1). Steps 1–11 relate to the hierarchical integration of OS data to
produce the initial ULU class and group areas. Steps 12–15 relate to automated parcel
growing routine. Steps 16–20 relate to manual image interpretation. Steps 21–23 relate to
random forest classification of residential ULU areas and final rectification of the ULU layer.

Table A15. Step by step process to create the Urban land use (ULU) layer.

Step Description

1

Select and extract OS MasterMap Topography Layer (OSMT): Polyline features representing obstructing features to create
Obstructing polylines data. Obstructing polylines represent above-ground features such as fences, walls, hedges etc. that
prevent pedestrian access to enclosed areas. Obstructing polylines represent features that define distinct land parcel areas
within the OS Topography dataset.

2 Intersect Obstructing polylines with study area boundary to create set of polygon areas (BASE OS) with unique ID reference
and all with MERGE label pOSMT.

3

Re-classify OSMT: Polygons with MERGE labels where the following attribute conditions are met:

MERGE label * THEME contains THEME excludes DESCRIPTION contains

pBUILDINGS Buildings Rail OR Roads Tracks and
Paths OR Water n.a.

pPATH Roads Tracks And Paths Rail OR Water Path

pROAD Roads Tracks And Paths Rail OR Water Road Or Track

pWATER Water Rail OR Roads Tracks and
Paths n.a.

Railways Rail n.a. n.a.

Roadsides Roads Tracks And Paths Rail OR Water Roadside

* Labels beginning with a lower case p represent preliminary class polygons to be categorised into final ULU classes in
subsequent steps. Other labels represent final ULU classes. Extract re-class label polygons only from the OSMT: Polygons
data to create PRLM ULU.

4 Erase BASE OS polygons using the extents of PRLM ULU, and then merge to form PRLM OS dataset.
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Table A15. Cont.

Step Description

5

Re-classify OS Open Map local (OPMP: Important building points) points with MERGE labels where the following
conditions are met:

MERGE label CLASSIFICATION contains

Community services Fire station OR Police station

Cultural facilities Art Gallery OR Library OR Museum OR Tourist information

Health care Hospice OR Hospital OR Medical care accommodation

Higher education Further education OR Higher or university education

Religious facilities Place of worship

Schools Non-state primary education OR Non-state secondary education OR Primary education OR
Secondary education OR Special needs education

Sports facilities Sports and leisure centre

Transport terminals Airport OR Bus station OR Coach station

6 Re-classify PRLM OS buildings containing re-classified OPMP building points with appropriate MERGE label.

7

Re-classify Highways—All: MasterMap Highways Network (NTWK) polylines where the following conditions are met:

MERGE label routeHierarchy attributes

Motorways Motorway

Major roads A road primary, A road

Linking roads B road, B road primary

Minor roads Minor road, Local road, Local access road

Limited access roads Restricted local access road, Restricted secondary access road,
Secondary access road

8 Re-classify PRLM OS pROADs polygons with MERGE label from contained NTWK polyline.

9

Re-classify OS MasterMap Sites Layer (SITES) polygons where the following conditions are met:
MERGE label Site Layer attribute: Function

Energy utilities Gas Distribution or Storage OR
Electricity distribution

Health care Hospice OR Hospital OR Medical
care accommodation

Higher education

Further education OR Further
education, Higher or university
education OR Higher or university
education

Railways Railway station

Schools

Further education, Non-state
primary education OR Further
education, Non-state secondary
education OR Further education,
Secondary education OR
Non-state primary education OR
Non-state primary education,
Non-state secondary education OR
Primary education OR Primary
education, secondary education
OR Secondary education OR
Special needs education OR
Non-state secondary education

Transport terminals Airport or Bus station or Coach
station

10

Re-classify and retain OS MasterMap Greenspace (GRNS) layer polygons where the following conditions are met:

MERGE label Greenspace Layer: Primary Function (priFunc)

Brownfield Non-functioning



Land 2025, 14, 1077 31 of 45

Table A15. Cont.

Step Description

10

Cemeteries Cemetery

Public open space Public park Or Garden

Religious facilities Religious grounds

Residential Camping Or Caravan park OR Private gardens

Sports facilities Bowling green OR Golf course OR Play space OR Playing field
OR Tennis court OR Other sports facility OR Formal recreation

Urban farming Allotments or community growing spaces

11 Erase GRNS polygons using SITES polygons and then erase PRLM OS using GRNS and SITES layers in turn. Merge GRNS,
SITES, and PRLM OS polygons to form ULU MERGE dataset.

12
Re-classify ULU MERGE pBUILDINGS and pOSMT labels where polygons are surrounded by polygons with single ULU
(excludes Roadsides) class label. Re-classify pPATH polygons that border pBUILDINGS and either any pOSMT, ULU Group
Road, or Roadsides polygons as pBUILDINGS.

13

Re-classify pOSMT polygons into PRLM OS classes; enables iterative grouping of non-ULU class polygons into
self-contained parcels based upon observations of topological relationships in the OS data. Re-classify as follows:

Topological rule PRLM OS * Class hierarchy

Polygon shares common boundary with pBUILDINGS
polygon AND ULU Group Road polygon OS_Access_Build 1

Polygon shares common boundary with pBUILDINGS
polygon AND NOT ULU Group Road polygon OS_Build 2

Polygon shares common boundary with ULU Group
Road polygon and NOT pBUILDINGS polygon OS_Access 3

Polygon shares no common boundary with ULU Group
Road polygon OR pBUILDINGS polygon OS_Island 4

* Topological class definition: OS_Access_Build: Polygon links pBUILDINGS that supports a particular land use to an access
road, enabling land use to function self-sufficiently; OS_Build: Polygon is attached and thus supports a building area
supporting a particular land use; OS_Access: Polygon acts as link between access road to larger land use parcel but is not
directly associated with a building area; OS_Island: Polygon does not satisfy any of the above conditions.

14

Topologically class polygons into single parcel areas following the processes described below:

Process Method

1
Re-assign unique IDs of OS_Build and OS_Access_Build
polygons according to neighbouring pBUILDINGS polygon with
largest area

2 Find pBUILDINGS objects with IDs different to IDs of
neighbouring topological class polygons

3

Use neighbouring IDs to link areas together; assign new ID to all
polygons with any of the neighbouring IDs; iterate this process
until no further polygon IDs can be re-assigned; re-assign
topological class labels to OS_Access_Build if any polygons with
new ID is this class, else re-assign class labels as OS_Build

4
Assign IDs of OS_Build polygons to OS_Access polygons based
upon majority shared border, and reclassify combined area as
OS_Access_Build

5 Merge remaining OS_Build polygons to OS_Access_Build
polygons based upon majority shared border

6 Re-classify remaining OS_Build polygons neighbouring
Roadsides AND OS_Access_Build polygons as OS_Land_Parcels

7 Re-classify remaining OS_Build polygons as OS_Islands

15
Merge OS_Islands with neighbouring class polygons (excluding pWATER, pPATH, and Brownfield) based upon majority
shared border; re-classify remaining OS as OS PARCELS if this condition is not satisfied; dissolve all polygons according to
updated classification.

16
Manually inspect OS PARCELS polygons in conjunction with May 2017 and Google Earth street-view imagery to assign
appropriate ULU class labels; if OS PARCELS do not represent homogenous ULU class parcel area then re-classify as error
parcels.



Land 2025, 14, 1077 32 of 45

Table A15. Cont.

Step Description

17 Rectify error parcels by using polygons to select original contained OS MasterMap polygon areas; group error parcels into
homogenous land parcel areas and assign appropriate class label.

18 Merge remaining non-ULU class polygons (excluding pWATER) into neighbouring ULU polygons according to majority
border relationship.

19

Identify polygons below the minimum mapping unit of 45 m2 and merge with neighbouring class areas according to
majority shared neighbouring border. The minimum mapping unit area (45 m2) was determined by a general observation
that polygons of this size would contain 20 complete classification pixels and thus maintain the expected change detection
accuracy of 85% when considering whole pixel numbers (85% of 20 is thus 17).

20 Manually select pWATER areas that are neither water channels, canals, rivers, nor reservoirs (shared water utilities) and
merge into neighbouring class polygons based upon majority shared boundary.

21
Create parcel based building info features (see Table A16) for Residential polygons using Building Heights polygons by
extracting building polygons with area ≥ 30 m2 (representing actual dwelling areas) contained inside Residential polygon
areas.

22

Classify ULU Residential polygons as follows:

Process Method

1
Select classification samples for Low-, Medium-, and High-density residential classes (using
ancillary imagery and MasterMap polygons as a guide) and split into training and validation
samples

2 Use the random forest algorithm (see Table A17) to re-classify residential polygons ensuring
overall classification accuracy ≥85%

3 Manually re-classify (using ancillary imagery and OS MasterMap polygons as a guide) any
residential polygons that do not contain Building Heights data

23 Create final ULU class layer by ensuring topological errors are corrected, with updated ID values, polygon area, and length
data attached.

Table A16. Parcel-based building info features for random forest classification.

Feature Method
MIN_HT Minimum dwelling building height
MAX_HT Maximum dwelling building height
AVE_HT Average dwelling building height
RAN_HT Difference between MIN_HT and MAX_HT
MIN_AR Minimum dwelling building area
MAX_AR Maximum dwelling building area
AVE_AR Average dwelling building area
RAN_AR Difference between MIN_AR and MAX_AR
MIN_VL Minimum dwelling building volume
MAX_VL Maximum dwelling building volume
AVE_VL Average dwelling building volume
RAN_VL Difference between MIN_VL and MAX_VL

LOG_RATIO_AREA Log of [parcel polygon area/Total residential dwelling area]

LOG_RATIO_VOLUME Log of [parcel polygon area/Total residential
dwelling volume]

B_AVE_NB Average number of dwellings per block
B_AVE_AR Average area of block
B_MIN_AR Minimum residential block area
B_MAX_AR Maximum residential block area
B_RAN_AR Difference between B_MIN_AR and B_MAX_AR
B_AVE_HT Average residential block height
B_MIN_HT Minimum residential block height
B_MAX_HT Maximum residential block height
B_RAN_HT Difference between B_MIN_HT and B_MAX_HT
B_AVE_VL Average residential block volume
B_MIN_VL Minimum residential block volume
B_MAX_VL Maximum residential block volume
B_RAN_VL Difference between B_MIN_VL and B_MAX_VL



Land 2025, 14, 1077 33 of 45

Table A17. Application of Random Forest to re-classify ULU Residential group parcel polygons.

Step Description

1

An initial 300 residential polygons were chosen using random selection (within quantiles for polygon areas)
with class labels manually assigned. Due to the limited number of Residential—High (n = 26) samples
obtained through this process, additional samples (n = 54; total of 80) were obtained for this class. Sample
numbers for Residential—Sub-urban (n = 134) and Residential—Urban (n = 140) remained relatively even.
A reasonable number of polygons for training the data were randomly split (within quantiles for polygon
areas), ensuring a 75/25% split for training and validation polygons, respectively.

2
The final random forest model was tuned with features (B_AVE_AR, AVE_VL, B_AVE_NB, AVE_AR,
MAX_VL, and MAX_AR) selected using the VSURF() algorithm in addition to parameters: mtry = 1 and
ntree = 1000. Overall accuracy on validation samples = 85.1% (kappa = 0.767).

3 Residential polygons lacking appropriate classification feature data (186 out of 5867) were manually
re-classified.

Appendix B.4. Validation of Urban Land Use Layer

As potential error may have occurred from the various methods used, final map
accuracy was assessed using MasterMap topography layer sample polygons contained
within ULU class areas as reference samples. The minimum number of validation samples
was determined as n = 870 (30 per ULU class × 29 classes in total) based upon the minimum
per class sample number rule to validate overall classification accuracy. Polygon samples
were stratified within areal quintiles to ensure even distribution of polygon area sizes
across ULU classes and were then compared to year 2017 multi-spectral imagery to assign
a suitable ULU validation class label. Accuracy was then assessed using the error matrix
method (see Table A18)

Table A18. Error matrix from ULU layer validation.

ULU Group ULU Class User Accuracy
(%)

Producer
Accuracy (%)

Class Confusion (Row-wise)
Counts

Brownfield Brownfield 100 97.1

Commercial Commercial 93.9 93.9 Public open space ×
1|Residential—Low × 1

Community
Services

Religious facilities 100 100
Cultural facilities 100 100

Health care 100 97.1
Safety and well-being 100 97.1

Further education 100 100
Schools 100 100

Industrial Energy utilities 90.9 100 Railways × 2|Woodland × 1
Industrial 93.9 96.9 Residential—Low × 2

Non-recreational
Open Space

Agriculture 93.9 100 Health care ×
1|Residential—Low × 1

Cemeteries 100 100
Water 100 100

Woodland 90.9 100
Major roads × 1|Public open
space × 1|Residential—Low

× 1

Recreational
Open Space

Public open space 93.9 93.9 Residential—Low ×
1|Roadside × 1

Sports facilities 100 97.1
Urban farming 97.0 100 Sports facilities × 1
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Table A18. Cont.

ULU Group ULU Class User Accuracy
(%)

Producer
Accuracy (%)

Class Confusion (Row-wise)
Counts

Residential
Residential—Low 84.4 71.1 Residential—Medium × 5

Residential—Medium 100 80.5

Residential—High 78.8 100 Residential—Low ×
4|Residential—Medium × 3

Transport

Railways 87.9 93.5 Commercial × 2|Brownfield ×
1|Residential—Low × 1

Roadsides 97.0 97.0 Minor roads × 1
Limited access roads 100 100

Minor roads 100 97.1
Linking roads 100 100
Major roads 100 97.1
Motorways 100 100

Transport terminals 100 100
Car parking 97.0 100 Industrial × 1

Overall accuracy = 96.6%; kappa = 0.96.

Appendix C.
Appendix C.1. Polygon Overlap Comparison Process

OS land-line data [48] for the year 2000 provide the reference spatial data to backdate
2017 ULU information using polygon overlap methods. As real-world topographic fea-
tures remain in position over time (e.g., parcel fence-line, road edge), the representative
polyline or polygon line detail should also remain consistent between the OS land-line and
MasterMap products [44]. Polygon-to-polygon comparison between OS datasets enables
the identification of sub-ULU features that remain consistent in shape and spatial position
over time [49].

Visual comparison of sub-2017 ULU OS MasterMap features (MM17) and LL00 poly-
gons revealed both consistencies and inconsistencies in mapping detail between the datasets.
As such, an automatic polygon comparison algorithm was developed to allow some degree
of variance when assessing varying topological circumstances between corresponding
polygon sets (Figure A3).

The polygon comparison algorithm works as follows. As shown in Figure A3A, the
boundaries of Polygon TX1 (MM17 polygon of ULU class XULU) and L1 (LL00 polygon)
mostly coincide, indicating a consistent land use feature over time. The degree of overlap
is calculated as:

Overlap =
area(TX1)

area(L1)
(A1)

In this instance, where Overlap > C.T. (where C.T. = user-defined conditional param-
eter defining the proportion of overlap required between comparative polygons), this is
classified as a no-change ULU sample area. Figure A3B describes a more complex topo-
logical arrangement, as TX1 coincides with combined boundaries of LL00 polygons {L1,
L2, L3, L4}. This could indicate land use change as year 2000 features of different land use
have been combined into a single 2017 ULU area or that consistent land use features have
not been digitised in the 2017 MasterMap layer. Examination of both datasets indicated
that the second condition prevails in most circumstances, therefore the degree of overlap
between polygons A and {B1, B2, B3, B4} in this instance is calculated as:

Overlap =
area({L1, L2, L3, L4})

area({TX1})
(A2)
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Figure A3. Topological circumstances when comparing overlapping polygon features. (A) High de-
gree of overlap between TX1 (MM17) and L1 (LL00) polygons; (B) High degree of overlap between 
Figure A3. Topological circumstances when comparing overlapping polygon features. (A) High
degree of overlap between TX1 (MM17) and L1 (LL00) polygons; (B) High degree of overlap between
TX1 (MM17) and multiple L1-4 (LL00) polygons; (C) Varying degrees (low to high) of overlap between
TX1 (MM17) and multiple L1-3 (LL00) polygons; (D) Low degree of overlap between TX1 (MM17)
and multiple L1-3 (LL00) polygons; (E) High degree of overlap between multiple TX1, TY1 (MM17)
and L1 (LL00) polygons.

Therefore, if Overlap > C.T., then polygons {B1, B2, B3, B4} are classified as consistent
ULU sample areas. In instances where comparison polygons share similar areas but have
different shapes, and do not consistently overlap, use of the Overlap function as defined
in A and B may incorrectly indicate a no-change ULU sample area (Figure A3C). This is
controlled in the process as follows:

(i) Sub-set LL00 polygons that intersect TX1:

LL00 = {L1, L2 . . . , Lmax} (A3)

LL_int = {LL00 : LL00 ∩ TX1} (A4)

(ii.) Select LL00 polygons if ratio of intersected area to LL00 polygon area is >C.T.

LL_test =
{

LL_int :
[

area(LL_int ∩ TX1)

area(LL_int)

]
> C.T.

}
(A5)

(iii.) Calculate Overlap:

Overlap =
area(LL_test)

area(TX1)
(A6)

In this instance, the conditional process removes L1 from the Overlap comparison,
which overlaps TX1 slightly due to a slight change in boundary position. The remaining
L2 and L3 polygons are relatively contiguous with the TX1 polygon and are thus selected
as consistent ULU sample areas. In Figure A3D it appears that there has been significant
change for the representative polygon area. This may not indicate land use change in
itself as neighbouring MM17 features may have been simply re-arranged to define the
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same land use, i.e., reconfiguration of buildings on an existing school site. However,
establishing different orders of polygon neighbours (i.e., identifying which set of multiple
polygons overlaps with another set of multiple polygons) requires significant additional
computation using the algorithmic process. Thus Overlap is simply calculated for either
a ONE reference polygon to ONE test polygon or a ONE reference polygon to MANY
test polygons relationship. In this case, reasoning would suggest that no LL00 polygon
should be selected as a no-change ULU sample. However, this is dependent on how lenient
the conditional overlap threshold (C.T.) is. In Figure A3E, the roles of MM17 and LL00
polygons are reversed, therefore Overlap is calculated by reversing the numerator and
denominator references in Equation (A1). However, L1 may not be considered a no-change
sample area in this instance as:

[ ULU o f TX1 ̸= ULU o f TY1 ] or [ X ̸= Y ] (A7)

L1 is assumed to be a single land use feature comprising different 2017 ULU classes, as
such it appears that this area in 2000 has now been sub-divided for different ULU purposes
in 2017 and has thus changed ULU categorisation over the study period. This process was
implemented using programming language version 3.6 [50], with the code provided in
Appendix C.2 with definition of the C.T. value in Appendix C.3.

Appendix C.2. Polygon Overlap Comparison Algorithm

The following code can be copied as R script. No libraries are required for the algorithm
to function.

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Overlap algorithm—function code with instructions (lines starting with ‘#’ are comments
# and not functioning script)
# Author: Fraser Baker; Date: 7th February 2020
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Pre-processing—requires input data as follows:
#
# -> REFERENCE POLYGONS: THESE ARE POLYGONS WITH LAND-USE CLASS
# LABELS; MUST CONTAIN UNIQUE POLYGON ID REFERENCE (REF.ID),
# POLYGON AREA (AREA.REF) AND LAND-USE CLASS LABEL (CLASS)
#
# -> TEST POLYGONS: THESE ARE POLYGONS WITHOUT LAND-USE CLASS
# LABELS; MUST CONTAIN UNIQUE POLYGON ID REFERENCE (TES.ID)
# AND POLYGON AREA (AREA.TES)
#
# Intersect REFFERENCE and TEST POLYGONS to create new dataset
# with the required fields below:
#
# REF.ID = ID OF INTERSECTED REFERENCE POLYGON
# TES.ID = ID OF INTERSECTED TEST POLYGON
# AREA.INT = AREA OF POLYGON INTERSECTION
# AREA.REF = ORIGINAL AREA OF INTERSECTED REFERENCE POLYGON
# AREA.TES = ORIGINAL AREA OF INTERSECTED TEST POLYGON
# RATIO.TES = AREA.INT/AREA.TES
# RATIO.REF = AREA.INT/AREA.REF
# CLASS = LAND-USE CLASS ASSIGNED TO REFERENCE POLYGON
#
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# data.frame (DF) required from this dataset only
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# overlap() function defined below—requires following inputs from user:
#
# DF = data.frame of REFERENCE to TEST polygon intersection
# ID = unique ID of REFERENCE polygon under investigation
# c.t = conditional threshold to assess polygon overlap
#
# all other variables in function call should be assigned NULL
#
overlap <- function(DF,ID,c.t,rel.REF.2.TES = NULL,TES.sub.of.RES = NULL,
a = NULL,a.TES.ov.REF = NULL,a.REF.ov.TES = NULL){
#
a <- DF[DF$REF.ID%in%ID,] #subset main dataframe according to ID of
# REFERENCE polygon under investigation
#
if(length(a$TES.ID)>1){
# If a has multiple records then REFERENCE polygon is subdivided by
# multiple TEST polygons
#
a.REF.ov.TES <- a[a$RATIO.REF>c.t,] # subset all records where RATIO.TES > c.t
#
if(length(a.TES.ov.REF$TES.ID) > 0){ # assess if any records for TEST polygons remain
rel.REF.2.TES <- ifelse((sum(a.TES.ov.REF$AREA.TES)/unique(a.TES.ov.REF$AREA.REF))>c.t,1,0)
# If TRUE TEST polygons form part of group that sub-divides and overlaps a REFERENCE
# polygon within threshold tolerance; CON = 1 in this case
#
TES.sub.of.REF <- unique(a.REF.ov.TES$TES.ID) # store ID’s of TEST polygons intersected
# with the REFERENCE polygon
}
} else {
# If a has single record then this this suggests REFERENCE may be matched to a single
# TEST polygon or forms a group of REFERENCE polygons that sub-divides a single TEST
# polygon
a.TES.ov.REF <- DF[DF$TES.ID%in%a$TES.ID,] # subset all records from main dataframe by
# TEST.ID in a
#
a.TES.ov.REF <- a.TES.ov.REF[a.REF.ov.TES$RATIO.REF > c.t,] # subset all records where
# RATIO.REF > c.t.
#
if(length(a.TES.ov.REF$REF.ID) > 0){ #
if((sum(a.TES.ov.REF$AREA.REF)/unique(a.TES.ov.REF$AREA.REF)) > c.t){
# If TRUE REFERENCE polygons form part of group that sub-divides and
# overlaps a TEST polygon within threshold tolerance
if(length(unique(a.TES.ov.REF$CLASS))==1){ # multiple land-use classes are not acceptable
#
rel.REF.2.TES <- ifelse(length(a.TES.ov.REF$REF.ID)>1,2,1)
# If TRUE TEST polygon is part of group that sub-divides
# and overlaps REFERENCE polygon within threshold tolerance: CON = 2;
# ELSE REFERENCE polygon overlaps single TEST polygon only: CON = 1
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}
#
TES.sub.of.REF <- unique(a.TES.ov.REF$TES.ID) # store relevant ID values for TEST polygons
#
}
}
}
#
return(list(REF.ID=ID,CLASS=unique(a$CLASS),RL.CON=rel.REF.2.TES,
TES.ID=TES.sub.of.REF))
# function returns list for input REFERENCE polygon with: REF.ID;
# CLASS (Class of REFERENCE polygon);RL.CON (relative condition of overlap);
# TES.ID (IDs of TEST polygons intersected to REFERENCE polygons)
}
#
# Note: for large datasets that parrallel processing may be required to loop through all
# unique REFERENCE polygon IDs

Appendix C.3. Definition of the C.T. Parameter in the Polygon Algorithm

Sensitivity analysis was conducted to identify an optimal C.T. value that produced
a reasonable trade-off between sample error rate and total number of correctly identified
ULU class polygons. For this, 300 ULU polygons were randomly selected as validation
areas and were classed as either no change (n = 242), partially changed (n = 18), or fully
changed (n = 40) when comparing changes in features between overlapping 2000 and
2017 imagery. The overlap algorithm was then run for no-change and full-change MM17
polygons, using a sequence of test C.T. values defined as:

a1 =
85

100
; an = an−1 +

1
1, 000, 000

; f or n ≤ 100 (A8)

The correct polygon recall rate was therefore calculated as the percentage of actual
no-change polygons identified by the algorithm for each test C.T. value. The process was
also run on the full dataset for C.T. values 0.85, 0.90, and 0.999999. This examined how the
proportion of identified no-change MM17 polygons varies according to stringency in C.T.
value. Three values were tested due to the computational time required to implement this
process for full polygon datasets. Comparison between the error and no-change percentage
determined a suitable C.T. value for final sample calculation. The final LL00 sample dataset
was then validated using an independent sample of ULU class MM17 polygons (n = 384).
Actual ULU class labels were recorded for sample polygons in order to populate an error
matrix with kappa statistics [91,101] and determine overall accuracy of the chosen Overlap
C.T. value.

The estimated recall accuracy of the C.T. threshold of the Overlap algorithm is above
98% for all threshold settings (Figure A4). Totals of 63.5%, 60.2%, and 38% of total MM17
candidate sample polygons (n = 662,828) were identified as no-change areas for C.T. thresh-
old values 0.85, 0.9, and >0.999, respectively. The first two values return a considerable
sample area when considering that the estimated percentage of actual no-change ULU
areas is 80.7%.
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Appendix D.
Implementation of Error Adjustment Method to Estimate Net UGBI Change

Theory and development of the error adjustment method are provided by [52]. The
following practical example demonstrates how this method was implemented in this
investigation. The first stage of the method requires an independent accuracy assessment
of the change layer using an error matrix. Final class area estimates are also required to
calculate proportional class coverage for the area under investigation. Dummy information
is demonstrated in Table A19 for the change detection classes used in this investigation.

Table A19. Example error matrix for error adjustment method.

Loss Gain UGBI
Stasis

Non-UGBI
Stasis Total Class Area

(m2)
Proportion of

Total Area
Loss 115 0 8 2 125 767,993 0.13
Gain 0 97 22 6 125 432,567 0.08
GBI stasis 5 3 241 1 250 2,007,921 0.35
Non-GBI stasis 6 2 0 242 250 2,505,441 0.44

Totals 5,713,922 1

The second stage thus requires this information to calculate error-adjusted class pro-
portions of total area per class:

p.j = ∑
i

Wi
nij

ni
(A9)

where p.j is the error-adjusted proportion per column-wise class j; Wi is the proportion of
total area for row-wise class i; nij is error matrix count for row-wise class i and column-wise
class j; ni is total row cell count for row-wise class i. Using this equation an adjusted error
matrix is calculated (see below). For each cell the proportion of total area is calculated
according to appropriate error count, with column sums per class providing the total
error-adjusted area proportion per class (Table A20).
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Table A20. Example error-adjusted proportion of total class area for change classes.

Loss Gain GBI Stasis Non-GBI
Stasis

Loss 0.124 0.000 0.009 0.002
Gain 0.000 0.059 0.013 0.004
GBI stasis 0.006 0.005 0.338 0.002
Non-GBI stasis 0.010 0.003 0.000 0.425
Error-adjusted
proportion of total area 0.14 0.07 0.36 0.43

Error-adjusted area (m2) 801,607.0 382,778.3 2,059,179.6 2,470,357.1

As shown above the error-adjusted areas per class (rows) are calculated by multiplying
the error-adjusted proportions per respective reference class (columns) by the total class
area. To calculate confidence interval estimates, first the standard error of the error-adjusted
proportion is found using the following equation:

S(p.j) =

√√√√
∑q

i=1 W2
i

nij
ni

(
1 − nij

ni

)
ni − 1

(A10)

where q is the total number of classes. For example, the standard error of the error-adjusted
proportion for the loss class is calculated as follows:

S(Loss) =

0.132
115
125

(
1 − 115

125

)
125 − 1

+ 0.082
0

125
(
1 − 0

125
)

125 − 1
+ 0.352

5
250

(
1 − 5

250
)

250 − 1
+ 0.442

6
250

(
1 − 6

250
)

250 − 1


1
2

= 0.0075 (A11)

Confidence interval estimates of error-adjusted area are calculated by converting the stan-
dard error proportion into an areal figure and multiplying this figure by the z-score for the
required confidence level (e.g., 95% here)—see below:

Area(S(Loss)) = z ·Areatot·S(Loss) = 1.96·5713922·0.0075
= ±83991.7m2 (A12)

Error-adjusted area estimates are thus required for loss and gain classes only. The total
change area is calculated using the high and low class estimates for both classes. Central,
upper, and lower net change are calculated as follows:

Â(Net) = Â(Gain)− Â(Loss) = 382778.3 − 801607.0 = −418828.7m2 (A13)

Â(UpperNet) =
[
Â(Gain) + Area(S(Gain))

]
−

[
Â(Loss)− Area(S(Loss))

]
= [382778.3 + 58402.7]− [801607.0 − 83991.7]
= −276434m2

(A14)

Â(LowerNet) = Â(Net) +
[
Â(Net)− Â(UpperNet)

]
= −418828.7 + [−418828.7 − (−276434)]
= −561223.1m2

(A15)

This process is calculated for all areas of analysis: (i) study area; (ii) analysis cells;
(iii) ULU class samples. Error matrix values remain consistent in all cases, whilst change
class and total area values vary between analysis areas. Upper and lower net change values
thus confine the boundaries of potential UGBI change. If lower net change ≤ 0 ≤ upper
net change for the analysis area then a no-change (stasis) condition is recorded.
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Appendix E.
Insignificant Differences Between Urban Land Use Classes Within Urban Land Use Groups

Insignificant differences between ULU classes within ULU groups may indicate some
redundancy in using multiple sub-ULU group classes, where two or more ULU classes
could be merged to identify a consistent sub-group UGBI change.

ULU Class 1 ULU Class 2 p-Values ULU Group
Agriculture Water 1 Non-public open space
Agriculture Woodland 0.1 Non-public open space

Further education Health care 1 Community services
Further education Religious facilities 1 Community services
Further education Schools 1 Community services

Health care Religious facilities 1 Community services
Health care Schools 1 Community services

Limited access roads Railways 1 Transport
Linking roads Minor roads 1 Transport
Linking roads Motorways 1 Transport
Linking roads Roadsides 1 Transport
Major roads Motorways 1 Transport
Minor roads Motorways 0.8 Transport
Minor roads Roadsides 1 Transport
Motorways Roadsides 1 Transport

Note: Insignificant differences detected using Pairwise Wilcoxon–Mann–Whitney U test; R programming language
version 3.6 [50].
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